10
Confirmatory MDS

If more is known about the proximities or the objects, then additional re-
strictions (or constraints) can be imposed on the MDS model. This usually
means that the MDS solutions must satisfy certain additional properties
of the points’ coordinates or the distances. These properties are derived
from substantive considerations. The advantage of enforcing such additional
properties onto the MDS model is that one thus gets direct feedback about
the validity of one’s theory about the data. If the Stress of a confirmatory
MDS solution is not much higher than the Stress of a standard (“uncon-
strained”) MDS solution, the former is accepted as an adequate model.
Several procedures that allow one to impose such external constraints are
described and illustrated.

10.1 Blind Loss Functions

In most MDS applications discussed so far, we did not just represent the
data geometrically and then interpret the solutions, but started by formu-
lating certain predictions on the structure of the MDS configuration. For
example, in Section 4.1, it was conjectured that the similarity scores on the
colors would lead to a circular point arrangement in a plane (color circle).
In Section 4.3, it was predicted that the similarity data on facial expres-
sions could be explained by a 3D coordinate system with specified axes.
However, these predictions had no influence on the MDS solution. Rather,
structural hypotheses were dropped when the data were handed over to



228 10. Confirmatory MDS

an MDS computer program. The MDS program optimizes Stress, which is
substantively blind; that is, it is not tailored to the particular questions
that are being asked. The program mechanically grinds out “some” opti-
mal distance representation under a few general restrictions such as the
dimensionality m and the admissible transformations on the proximities.

Minimizing Stress gives a solution that is locally optimal. Yet, other local
minimum solutions may exist with a similar Stress, or possibly even with
lower Stress (see also Section 13.4). The question is which solution should
be preferred. If a hypothesis for the data is available, then, of course, we
would be particularly interested in the solution that most directly speaks
to this hypothesis. This is obviously the solution that most closely satisfies
the hypothesis, even if its Stress is somewhat higher than the Stress for
other solutions.

Assume, for example, that we had not obtained the color circle in Figure
4.1 because the computer program succeeded in finding a solution with
a lower Stress value. Assume further that the formally optimal but theo-
retically unintelligible solution had Stress .05, but the one matching our
predictions had .06. Having had only the Stress-optimal solution, we prob-
ably would have concluded—incorrectly—that the predictions were wrong.
Thus, what we want is a method that guarantees that the solution satisfies
our expectations. Once we have it, we can decide whether this solution has
an acceptable fit to the data.

10.2 Theory-Compatible MDS: An Example

Consider an example. Noma and Johnson (1977) asked subjects to assess
the similarity of 16 ellipses having different shapes and sizes. The ellipses
were constructed according to the design shown in Figure 10.1. The hori-
zontal dimension of this design configuration is eccentricity (“shape”), and
the vertical, area (“size”).! The design shows, for example, that ellipse 4 is
very flat and long, but 13 is more circular and also larger.2 The subjects
had to rate each pair of ellipses on a scale from 1 (“most similar”) to 10
(“least similar or most different”). This rating was replicated three times,
with the pairs presented in different random orders. Table 10.1 gives the
aggregated scores for one individual.

LEccentricity is defined as [1 — (h/n)2]1/2 and area is w/4-h-n, where h is the length
of the ellipse’s major axis and n is the length of its minor axis. Hence, eccentricity is a
function of the ratio of h and n, and area depends on the product of A and n.

2Noma and Johnson (1977, p. 31) characterize the design as follows: “A factorial
design with four equally spaced levels of area crossed with four equally spaced levels of
eccentricity was employed in constructing the stimuli. The largest ellipse was in a 3:1
ratio to the smallest, and the most eccentric was in a 1.66:1 ratio to the least eccentric.”
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13 14 15 16
9 10 11 12
5 6 7 8
1 2 3 4

FIGURE 10.1. Design configuration for ellipses in Noma—Johnson study. X-axis
is eccentricity (“shape”); Y-axis is area (“size”).

TABLE 10.1. Dissimilarities for 16 ellipses; summed over three replications of
subject DF (Noma & Johnson, 1977).

No.l 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1] =
2118 -
3126 9 -
4123 14 12 —
5| 4 17 17 25 -
6|15 6 13 13 18 -
716 17 10 6 21 17 -
8124 20 13 10 24 17 12 -

10116 9 16 14 21 8 11 10 14 -

11(20 13 11 9 18 12 8 11 22 12 -

12122 18 17 12 21 21 12 6 23 13 11 —

13(16 16 21 24 13 16 22 23 4 16 21 22 -

14|17 14 16 19 20 9 14 17 13 4 14 17 17 -

15121 20 15 9 25 14 8 11 19 19 4 16 22 17 -
16126 19 14 15 24 16 11 12 22 16 10 6 30 17 9 -

From related research (see Section 17.4) it could be expected that an
MDS configuration similar to the design configuration would result from
the proximities. That is, the MDS configuration should form a rectangular
grid as in Figure 10.1, although not necessarily with the same spacing of the
vertical and horizontal lines. This would allow us to explain the similarity
judgments by the dimensions “shape” and “area”. Ordinal MDS of the data
in Table 10.1 yields, however, a configuration (Figure 10.2) that is in def-
inite disagreement with these predictions. But, then, a theory-conforming
configuration does not necessarily have to have the lowest-possible Stress.
Rather, it would be sufficient if it had an acceptably low Stress. Indeed, such
a solution exists. It is shown in Figure 10.3. Its Stress is .185, as compared
to .160 for the theory-incompatible solution in Figure 10.2. This example
shows that there can be different MDS configurations that all represent a
given set of data with roughly the same precision.
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13 14 15 16
9 10 11 12
5 6 7 8
1 2 3 4

FIGURE 10.2. Minimal-Stress MDS FIGURE 10.3. Minimal-Stress the-
representation for data in Table 10.1. ory-compatible MDS.

10.3 Imposing External Constraints on
MDS Representations

We now show how a confirmatory MDS procedure can be constructed. We
begin by considering the task of constructing an ordinal MDS representa-
tion of the facial expression data from Table 4.4 of Abelson and Sermat
(1962) in 2D so that (a) the Stress is as low as possible, and (b) all points
can be coordinated by dimensions that are a linear combination of the three
external scales of Engen et al. (1958). Condition (b) is an additional re-
quirement imposed on the MDS representation. It is called a side constraint
or an external constraint to distinguish it from the internal constraints due
to the data and the general representation function.
The restriction that is imposed on the configuration is

X = YC,

where Y is the 13 x 3 matrix with the three external scales of Table 4.3,
and C is a 3 x 2 matrix of unknown weights. This matrix equation is
shown explicitly in Table 10.2. The mathematical problem to be solved is
to minimize ¢2(X) by an appropriate choice of C, subject to the condition
X = YC. Solutions for this problem were given by Bentler and Weeks
(1978), Bloxom (1978), and De Leeuw and Heiser (1980). We follow the
approach of De Leeuw and Heiser (1980), because they show that this and
more general constrained MDS models can be handled easily within the
majorization framework (see Chapter 8).
As shown in (8.27), raw Stress can be majorized by

7(X,Z) = n}+tr X'VX —2tr X'B(Z)Z, (10.1)

which is equal to 0,.(X) if Z = X; that is, 0,(X) = 7(X,X). Let X =
V*B(Z)Z be the Guttman transform (8.28) of Z, where Z satisfies the
imposed constraints. Then (10.1) equals

7(X,Z) = nZ+tr X'VX —2tr X'VX
- P X-X)VX-X)-tr X VX. (10.2)
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TABLE 10.2. Matrix equation X = YC in (10.1), with Y taken from Table 4.3;
X is the desired 13 x 2 MDS configuration; C is an unknown matrix of weights.

[ z11 z12 ] r3.8 4.2 4.1 7
21 22 59 54 438
r31 32 88 78 7.1
T41 T42 7.0 59 4.0
T51 T52 3.3 25 3.1
Z61 Z62 3.5 6.1 6.8 c11 €12
T7 T2 = 21 80 8.2 c21 €22
T81 82 6.7 42 6.6 c31  C32
r91 T92 74 6.8 59
r10,1 10,2 29 3.0 5.1
r11,1  T11,2 22 22 6.4
r12,1  T12,2 1.1 86 89
L z13,1 13,2 L 4.1 1.3 1.0

For a given configuration Z, only the second term of 7(X,Z) is dependent
on X, whereas the first and last terms are constant with respect to X. Using
o-(X) = 7(X, X), (10.2) shows that, for every configuration X, raw Stress
is the sum of lack of model fit, ng —tr X/VX, and lack of confirmation fit,
tr (X — X)'V(X — X). The latter is best expressed as a percentage of the
total raw Stress. For example, if there are no constraints on X, then the
lack of confirmation fit is 0%.
Finding a constrained update amounts to minimizing

tr (X — X)'V(X - X), (10.3)

subject to the restrictions on X, in each iteration. The X that minimizes
(10.3) and satisfies the constraints is used as the update. Thus, step 6
(computation of the Guttman transform) in the majorization algorithm of
Chapter 9 (see also Figure 9.2) is followed by step 6a, in which (10.3) is
minimized over X, subject to the constraints on X. De Leeuw and Heiser
(1980) note that it is not necessary to find the global minimum of (10.3).
The decrease of Stress is guaranteed as long as

tr (X" — X)' V(X" - X) < tr (Y - X)'V(Y - X) (10.4)

holds for the update X*.
For the faces data, we simply substitute X by YC in (10.3), which yields

L(C) = tr(YC-X)'V(YC-X)
= r X VX +1tr C'Y'VYC - 2tr C'Y'VX.
L(C) needs to be minimized over C, because Y is fixed (see also Section

8.3). Finding the optimal weights C" is a simple regression problem that
is solved by

C*=(Y'VY)'Y'VX,
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FIGURE 10.4. Theory-consistent solution by constrained MDS of the facial ex-
pression data of Abelson and Sermat (1962) with Stress .14.

so that
X" =YC"

The unconstrained 2D solution of the faces data in Figure 4.9 has 01 =
.11. The theory-compatible solution (where the dimensions are constrained
to be linear combinations of three external scales) has o1 = .14 (see Figure
10.4). The unconstrained and constrained solutions only differ with respect
to point 8. The raw Stress of the constrained solution is 0.0186 (= o),
of which .0182 (=97%) is the lack of model fit and .0004 (=3%) is Stress
due to the constraints. Therefore, the theory-consistent solution can be
accepted at the cost of a slightly higher Stress value. The optimal C equals

219 .031
C=| —-.035 .137
—.024 .053

What does C do to Y? One way of interpreting C as an operator on Y
is to decompose C into its singular value components:

985 .168
224 000 ][ 1.000 —.029

C=P®Q = | —.140 .919 [ H ]
“lop a7 | L 000 150 029 1.000

C first rotates Y by P, because P is orthonormal,® and takes out the third
dimension. Then, ® multiplies the X-axis by .224 and the Y-axis by .150.

3In fact, the orthonormality of P only implies that P’P = I, but not that P'P =1,
as required for a rotation matrix. However, P can be interpreted as a matrix that rotates
Y to two dimensions.
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Finally, Q' rotates the space somewhat, but only in the XY -plane. Note
that the final rotation by Q' could as well be omitted, because it does not
change the distances. Thus, C can be understood as a transformation of
the 3D space of the external scales that rotates this space into a plane and
also stretches this plane differentially along its coordinate axes so that the
resulting configuration has minimal Stress.

The three external variables are plotted as lines such that the angles
of the lines correspond to correlations between the variables and the X-
and Y-axes, respectively (Figure 10.4). In comparison to Figure 4.9 (where
the external variables were fitted afterwards, not simultaneously), variable
pleasant /unpleasant has about the same direction, whereas the variables
sleep/tension and attention/rejection have been interchanged. Because the
latter two variables are highly intercorrelated, however, this interchange
does not lead to a much different interpretation.

Eaxternal Constraints and Optimal Scaling

Instead of the linear constraints used above, a multitude of other con-
straints can be used for which the least-squares solution of (10.4) can be
computed, each constraint leading to a different model. De Leeuw and
Heiser (1980) discuss many sorts of constraints, some of which are shown
below. Apart from the general majorization result that Stress is reduced
in every iteration, they also prove several other convergence results if the
global minimum of (10.4) can be established. A more accessible overview
of constrained MDS and its applications is given by Heiser and Meulman
(1983D).

The facial expression data were analyzed by Heiser and Meulman (1983b)
in a slightly different way. They used only the ordinal information of the
three external variables of the faces data. Let Y = [y; y2 y3] be the matrix
of the three external variables. The constraints on the MDS solution are
X = YC, where Y = [y; ¥2 ¥3] and each column yj can be optimally
scaled (see, e.g., Young, 1981; Gifi, 1990). In optimal scaling of an ordinal
variable, the original variable yy, is replaced by a different variable y;, that
has the same order as the original variable and reduces the loss function,
hence the name optimal scaling. Ordinal transformations on the external
variables are computed using monotone regression, and implemented in the
programs SMACOF-1I (Meulman, Heiser, & De Leeuw, 1983) and PROXSCAL
(see Appendix A). Thus, (10.4) was not only optimized over C, but also
over {/, where every column of Y is constrained to have the order of the
corresponding external variable y. Apart from finding an optimal trans-
formation of the proximities, an optimal transformation of the external
variables is also found here. In their analysis of the facial expression data,
Heiser and Meulman (1983b) conclude that pleasant—unpleasant is a more
basic dimension than attention—rejection, which is a nonlinearly related ef-
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fect. Optimal scaling of external variables allows interesting models to be
specified, such as the one below.

If only two external variables are involved in a 2D MDS space, then
the ordinal restrictions on the two external variables result in dimensional
restrictions or in an axial partitioning of the space. For example, the hy-
pothesized grid-like structure in Figure 10.3 was enforced onto the MDS
configuration by the two external variables

yi o= [1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4] and
e = [1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4].

Then, X is obtained by X = ?C, with the secondary approach to ties (i.e.,
ties remain tied). The external variables y; and yy are derived from the
design configuration in Figure 10.1. Thus, the 2-tuple (f1(yi1), f2(y:2)) con-
tains the coordinates of each point ¢, where f; and fo are Stress-minimizing
monotonic functions that use the secondary approach to ties. These require-
ments come from psychophysics. We do not expect that an ellipse that is
twice as eccentric in terms of the ratio of its axes is also perceived as twice
as eccentric, for example. Rather, we would expect by the Weber—Fechner
law that perceived eccentricity should be related to “objective” eccentric-
ity in a roughly logarithmic way, in general. Indeed, that is exactly what
the data show in Figure 10.3. Note that we did not enforce a logarithmic
spacing on the horizontal axis. Rather, this function was found by MDS as
the best in terms of Stress.*

Regionally Constrained MDS

Optimal scaling of the external variables can also be used to impose regional
constraints on the MDS solution. For example, we know for each point two
facets and use MDS to separate the different classes of points by two sets
of parallel lines, where each set corresponds to one facet. This constraint
only works if the number of dimensions is equal to the number of external
variables and only for axial partitioning of the MDS space. In addition, the
facets should be ordered.

Consider the following example. The ordinal MDS solution (Figure 4.7) of
the Morse code data of Rothkopf (1957) was interpreted using two physical
properties of the signals. The two properties are signal length (varying from
.05 to .95 seconds) and signal type (the ratio of long vs. short beeps). Figure
4.7 shows that the unconstrained MDS solution can be partitioned by these
two facets. However, the dashed lines (partitioning the plane by signal type)
have a rather irregular curvature. We now ask whether an MDS solution

40n the dimension “size”, in contrast, this spacing is not obvious, which may be
due to the size range of the ellipses. See also Figure 17.8 for a similar experiment with
rectangles.
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FIGURE 10.5. Theory-consistent solution by constrained MDS of the Morse code
data of Rothkopf (1957) with Stress .21.

exists that can be partitioned by straight lines while still being acceptable
in terms of Stress. We use PROXSCAL to answer this question.

The external variables for signal type y; and the signal length yo have
a value for every Morse code. The 2D MDS space is constrained to be a
linear combination of signal length and signal type; that is, X = YC, with
Y = [y1 ¥2] where ¥; and ¥y, are monotonic transformations of y; and
y2, respectively. In contrast to the example above, we now allow that tied
coordinates can be untied (primary approach to ties). This combination of
restrictions implies that there is a direction in the MDS space that repre-
sents y1, and all projections of the points onto this line satisfy the order of
the signal lengths, so that perpendicular lines separate the space into re-
gions with equal signal lengths. The same holds for ¥, so that a separation
of the space for signal types is obtained. Figure 10.5 shows the solution of
the ordinal MDS analysis with the external constraints described above.
This theory-consistent configuration has Stress .21 (o, = .043), and the
unconstrained solution in Figure 4.7 has Stress .18. The raw Stress can
be decomposed into model Stress (=.0429, .997%) and Stress due to the
constraints (=.00011, .003%). Apart from theory-consistency, Figures 10.5
and 4.7 differ with respect to the location of the points representing the
Morse codes E and T (labeled as 1 and 2, respectively, in both figures).
These points are less well represented, which is reflected by their Stress
per point (see Section 3.4) of .095 and .082, respectively, the largest con-
tributions to overall Stress. In summary, however, the difference in Stress
of the constrained and the unconstrained solutions is rather small, so that
the theory-consistent solution seems acceptable.
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Cluster Differences Scaling

A different type of constraint was suggested by Heiser (1993), who pro-
posed a mixture of an MDS analysis and a cluster analysis. This method
was called cluster differences scaling. Every object is assigned to a cluster,
and every cluster is represented by a point in the space. In cluster differ-
ences scaling, Stress is optimized over the coordinates and over the cluster
memberships. Groenen (1993) showed that this method can be interpreted
as MDS with the restriction that the configuration is of the type GX, where
G is an n X k indicator matrix (which has a single one in each row, and all
other values zero), and X is a k x m matrix of the k cluster coordinates.
Heiser and Groenen (1997) elaborate on this model, give a decomposition
of the dispersion (sum of squared dissimilarities), and present a convergent
algorithm. The assignment of objects to clusters (by matrix G) gives rise
to many local minima. Groenen (1993) and Heiser and Groenen (1997)
managed to avoid such local minima by repeatedly computing a fuzzy form
of cluster differences scaling until the fuzzy form yields the same result as
the crisp form.

The Extended Euclidean Model

Suppose that the proximities are not very well explained by an MDS in low-
dimensional space. One reason could be that some objects are quite unique.
One could account for this and allow each object to retain its uniqueness
in MDS by assigning a uniqueness dimension to each object, in addition
to the low-dimensional space common to all objects (Bentler & Weeks,
1978). A uniqueness dimension x; for object i has coordinates of zero for
all objects, except for object 7. Thus, the matrix of coordinates consists of
the usual n x m matrix of coordinates X common to all objects, augmented
by a diagonal n X n matrix U of uniqueness coordinates. The augmented
coordinate matrix is denoted by [X|U]. The distance between objects ¢ and
jis

m

1/2
di;(X|U) = (Z(xm — Tja)? 4 ul; + Uf;) ;

a=1

which is called the extended Euclidean distance (Winsberg & Carroll, 1989).
The distance consists of a common part and a part determined by the
uniqueness of the objects i and j.

This special coordinate matrix also can be viewed as an example of a
constrained configuration. The constraints simply consist of fixing the off-
diagonal elements of U to zero while leaving the diagonal elements free
(Bentler & Weeks, 1978).
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10.4  Weakly Constrained MDS

We now consider a weaker form of constraining an MDS solution. It puts
additional external restrictions on the configuration that are not strictly
enforced. Rather, they may be violated, but any violation leads to higher
Stress. Weakly constrained MDS attempts to minimize such violations.

Let us try to represent the color data from Table 4.1 ordinally by dis-
tances in a plane so that (a) the Stress is as low as possible, and (b) all
points lie on a perfect circle. Condition (b) is the external constraint im-
posed on the MDS representation.

Figure 4.1 shows that the usual MDS result already satisfies condition (b)
very closely, so we use this solution in the following as a starting configura-
tion. The confirmatory scaling problem then consists of finding a projection
of the points onto a circle such that the Stress value goes up as little as
possible. If we pick a point somewhere close to the center of the color circle
in Figure 4.1 and construct a circle around this point such that it encloses
all points of the configuration, then an approximate solution to our scaling
problem could be found simply by projecting all points radially towards
the outside onto this circle. An optimal solution can be constructed in a
similar fashion.

First, augment the proximity matrix in Table 4.1 with a “dummy” object
Z. Z does not stand for an additional concrete stimulus, but serves an auxil-
iary purpose here and represents the circle center in the MDS configuration.
The proximities between Z and any of the real stimuli 434,445, ...,674 are
defined as missing data. This leads to the 15 x 15 data matrix P; in Table
10.3.

Second, define another 15 x 15 proximity matrix Ps which expresses the
side constraints. No external constraints are to be imposed on the distances
between any two color points. However, all should lie on a circle and so all
must have the same distance to point Z. This gives the constraint pattern
P5 shown in Table 10.4, where all elements except those in row Z and in
column Z are missing values. All elements in row and column Z are set
equal to 10, but any other number would do as well.

Third, use the configuration in Figure 4.1 as a starting configuration,
after adding proper coordinates for one further point, Z. The coordinates
of Z should be chosen so that Z lies somewhere in the center of the circular
manifold in Figure 4.1. This can be done most easily by centering the MDS
configuration in Figure 4.1, that is, shifting it so that the centroid of all
14 points coincides with the origin, or, computationally, by subtracting
the mean from the values in each column of X in turn. Z then has the
coordinates (0.0, 0.0).

Fourth, define a loss criterion for the scaling procedure. We choose

or(X;P1;P2) = 0,.(X;P1) + a - 0,.(X; Pa), (10.5)
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TABLE 10.3. Similarities for colors with wavelengths 434 to 674 nm (Ekman,
1954); Z is a dummy variable; — denotes a missing value; the matrix is called Py
in the text.

nm | 434 445 465 472 490 504 537 555 584 600 610 628 651 674 Z
4341 - 86 42 42 18 06 07 04 02 07 09 12 13 16 —
445| 86 - 50 44 22 09 07 O7r 02 04 O7 11 13 14 -
465 42 50 - 81 47 17 10 08 02 01 02 01 05 03 -
472 | 42 44 81 - 54 25 10 09 02 01 00 01 02 04 -
490 18 22 47 54 - 61 31 26 07 02 02 01 02 00 -
504| 06 09 17 25 61 - 62 45 14 08 02 02 02 01 -
537 07 07 10 10 31 62 - 73 22 14 05 02 02 00 —
555 04 07 08 09 26 45 73 - 33 19 04 03 02 02 -
584 02 02 02 02 07 14 22 33 -~ 58 37 27 20 23 —
600 07 04 01 01 02 08 14 19 58 - 74 50 41 28 -
610 09 07 02 00 02 02 05 04 37 74 - 76 62 55 -
628 12 11 01 01 01 02 02 03 27 50 76 — 8 68 —
651 13 13 05 02 02 02 02 02 20 41 62 8 - 76 -
6741 16 14 03 04 00 01 00 02 23 28 55 68 76 — -

z| - - - - - - - - - - - - - - _

TABLE 10.4. Restriction matrix for color data in Table 10.3; — denotes a missing
value; the matrix is called P2 in the text.

nm | 434 445 465 472 490 504 537 555 584 600 610 628 651 674 Z
B - - - - - - - - - - - -~
450 - - - - - - - - - - - - - 0
465 - - - - - - - - - - - - - 10
. T
e e 1)
504 - - - - - - - - - - - - - 10
G . (1)
5550 - - - - - - - - - - - - 10
G T (1)
600 - - - - - - - - - - - - - 10
610 - - - - - - - - - - - - - 10
628 - - - - - - - - - - - - - 10
651 - - - - - - - - - - - - - 10
2 e (1)

z| 10 10 10 10 10 10 10 10 10 10 10 10 10 10 -
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where 0,.(X;Pq) is the loss of configuration X relative to Py, o.(X;P3)
the loss relative to Ps, and a is a nonnegative weight. This means that
0,.(X;P1) is the Stress of a given configuration relative to the proximity
matrix Py, and o,(X;P2) is the Stress of this configuration relative to the
constraint matrix Py. The second term of (10.5) is called a penalty term.
It penalizes the solution for not satisfying the constraints. The strength of
the penalty is determined by the size of the penalty parameter a. Of course,
0.(X;P1) and 0,.(X;Ps) are computed only over those elements of the
matrices P; and P, that are not defined to be missing data. Thus,

o (X;P) = [di; — di(X)]?, for all defined p;;,

1<j

where c@j (dependent on P) is the target distance (disparity) of d;;(X) de-
fined by the chosen MDS model. In the present example, we choose ordinal
MDS and the secondary approach to ties on P5, because all tied data val-
ues in the restriction matrix Py should be mapped into exactly the same
distance. (With the primary approach to ties, 0,.(X;P2) = 0 for any X, be-
cause all defined elements of P4 are equal.) But then the target distances in
o.(X;P3) obtained by monotone regression are all equal to the arithmetic
mean of the distances from point Z to all other points of the configuration
X.

Fifth, find a method to minimize (10.5). This does not pose a new prob-
lem. We proceed as in Chapter 8, that is, using the majorizing approach
to minimize Stress.

Sixth, given the initial configuration of the unconstrained solution in
Figure 4.1, iterate to solve the MDS task. If we start with a = 1, the
restrictions only slightly determine the final solution. As « is increased, the
effect of the side constraints on the configuration is increased. If a — oo,
then every solution strictly satisfies the circular constraint. Because the
effect of the constraints on the solution is set by the penalty parameter
a, the method in this section that minimizes (10.5) may be called weakly
constrained MDS (after the weakly constrained regression of Ten Berge,
1991). Often, choosing a = 100 generates a theory-conforming solution.

If it is at all possible to impose the side constraints onto a configura-
tion of n points in a space of fixed dimensionality, we should end up with
0.(X;P3y) = 0, provided the iterations do not get stuck in a local minimum.
Of course, we can impose conditions that are impossible to satisfy (e.g., at-
tempting to represent the distances among a cube’s corners in a ratio MDS
plane). The final 0,.(X;P1) is an index for how well the theory-conforming
solution represents the given data. However, the raw measures o.(X;P;)
and o, (X;P3) are not very practical, so we express the fit of X relative to
P, and P5 by a more familiar index such as Stress.

A procedure similar to the one described above is the program CMDA
(Borg & Lingoes, 1980). Weakly constrained MDS can also be computed
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555

FIGURE 10.6. Stress-optimal (circles) and perfectly circular (points) MDS rep-
resentation of color proximities in Table 4.1.

by programs that allow for data weights, such as KysT and PROXSCAL.
Then data weights w;;, are set to 0 for missing proximities, and w;;1 =1
for nonmissing proximities of P; and w;;2 = a for nonmissing proximities
of PQ.

With the matrices given in Tables 10.3 and 10.4, and using ordinal MDS
with the secondary approach to ties, we obtain the configuration of the
solid points in Figure 10.6. To demonstrate how o,.(X; P3) has affected the
MDS solution, Figure 10.6 also shows the MDS configuration (open circles)
obtained from a regular MDS analysis. The Stress of the weakly constrained
MDS configuration relative to Py is o1 = 0.0374, whereas it is 07 = 0.0316
for the unconstrained MDS configuration. The side constraints have led
to an increment in Stress so small that both representations should be
considered equally good, especially because we can assume that the data
are not error-free. We therefore conclude that the color-circle theory is
compatible with the given data.

A different approach was followed by Cox and Cox (1991). They forced
the configuration onto the surface of a sphere by expressing the point coor-
dinates not as Cartesian but as spherical coordinates, and then minimizing
Stress only over the longitude and latitude angles that specify the points’
positions in space.

Hubert, Arabie, and Meulman (1997) analyzed a related but different
problem, namely to model the dissimilarities by distance between points
along the path of the circle. This model is essentially the same as unidi-
mensional scaling where the dimension is bent to be circular. Hubert et al.
call their model circular unidimensional scaling. In Section 13.5, we show
that unidimensional scaling suffers from many local minima and that a
combinatorial approach is useful to find a global minimum. For this rea-
son, Hubert et al. use combinatorial optimization together with iterative
projection techniques to solve the circular unidimensional scaling problem.
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TABLE 10.5. Correlations of eight intelligence tests (lower half); for structuples,
see text; upper half contains hypothesized similarities.

Test |NA1 NA2 NI GI1 GI2 GA1l GA2 GA3
NA1l| - 5 4 3 3 4 4 4
NA2| .67 - 4 3 3 4 4 4
NI 40 50 - 4 4 3 3 3
GI1 | .19 .26 .52 - 5 4 4 4
GI2 | .12 .20 .39 .55 — 4 4 4
GA1l| 25 .28 31 49 .46 - 5 5
GA2| 26 .26 .18 .25 .29 .42 - 5
GA3| 39 38 24 22 .14 .38 40 -

Enforcing Order Constraints onto MDS Distances

We now look at weakly constrained MDS where certain order relations are
imposed onto the MDS distances. Consider the correlation matrix in Table
5.1, repeated for convenience in the lower half of Table 10.5 (Guttman,
1965). The variables here are eight intelligence test items, coded by the
facets “language of communication” = {N = numerical, G = geometrical}
and “requirement” = {I = inference, A = application}. For example, item
1 and item 2 both were classified as NA or numerical-application items.

One can predict how these items should be correlated among each other
by invoking the contiguity principle. This principle is based on the (seem-
ingly) plausible idea that “variables which are more similar in their facet
structure will also be more related empirically” (Foa, 1965, p.264).> Simi-
larity in facet structure is typically defined as the number of structs that
two structuples have in common, whereas empirical similarity is assessed
by some correlation between items (Foa, 1958). Hence, one predicts here,
for example, that item 4 should be at least as similar to item 8 as to item 2,
because the former share one definitional element (their language), whereas
the latter differ on both facets. Predictions of this kind imply that the MDS
configuration should be circular (Figure 10.7).

To test this prediction, we have to set up a restriction matrix P, that
enforces certain order relations onto the MDS distances. Because Py (lower
half in Table 10.5) contains similarity coefficients, we choose P3’s values
correspondingly. A P5 that confirms the theory of Figure 10.7 is given
in the upper half of Table 10.5. It is built as follows. The proximities for
items with the same structuples, such as p(NA1,NA2) and p(GA1,GA3), all
are set to the value 5. The proximities that correspond to the immediate

5Upon closer inspection, the contiguity makes sense only if all facets are ordered in
the sense of the observational range (see Borg & Shye, 1995). However, we do not study
these conditions here but simply use the example to demonstrate how certain constraints
can be set up.
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FIGURE 10.7. Hypothesized configura- FIGURE 10.8. Best MDS representa-
tion of points representing intelligence tion that perfectly satisfies regional hy-
tests with different facet compositions potheses in Figure 10.7.

(G = geometrical, N = numerical; A =

application, I = inference).

neighborhood relations (shown in Figure 10.7 by the line segments) are
set to the value 4, since none of these distances should be larger than
any distance between definitionally equivalent items. Finally, what remain
are the large distances between the groups NI, GA and the groups NA, GI,
which are set to 3 in P5. Because we are doing ordinal MDS on similarities,
the values 3, 4, and 5 are immaterial and may be replaced by any numbers
that have the same order. By using the primary approach to ties on Ps, all
distances associated with a, say, 4 in Py, should not be larger than those
associated with a 3 in P5. However, the distances within either class are
not required to be equal.

The weakly constrained MDS representation (with a = 100) is shown in
Figure 10.8. It satisfies the side constraints perfectly, with an acceptably
small overall Stress (o7 = .0404). What remains, though, is some scatter
among the items with the same structuples (notably GA and GI), so more
and/or modified facets might be considered.

10.5 General Comments on Confirmatory MDS

Confirmatory MDS offers models that are open for theory-driven ad hoc
specifications. Standard MDS models, in contrast, are more like closed sys-
tems that allow the user only some global specifications, such as choosing
the dimensionality of the solution space or the Minkowski metric parameter
(see Chapter 17). The purpose of confirmatory MDS is to enforce certain
expected relations on an otherwise optimal data representation in order to
see how compatible these relations are with the data.
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The varieties of confirmatory MDS are, in principle, without bounds.
New theories may require new confirmatory MDS procedures. Dimensional
theories are best served by the existing procedures, and regional theories
worst. We have seen that it is rather easy to enforce certain axial parti-
tionings onto an MDS solution. It is also not too difficult to enforce cluster
structures onto the MDS configuration, for example, for strict clustering
by cluster differences scaling (Heiser & Groenen, 1997) and for weak clus-
tering by setting up appropriate order constraints on the distances (Borg
& Lingoes, 1987). However, with the MDS programs available today, it is
difficult to enforce a more intricate regional pattern such as a radex, for
example, onto an MDS solution. It is even more difficult, or even impossi-
ble, to formulate constraints on general partitionability relative to a facet
design for the points, as discussed in Chapter 5.5

Apart from such problems of enforcing particular types of constraints
onto an MDS solution, the general question of how to evaluate such meth-
ods and their results within cumulative scientific research remains to be
answered. The more theoretically guided researcher may be tempted to al-
ways force his or her theory onto an MDS solution and then evaluate the
resulting Stress. Unless there is a good estimate for the random noise com-
ponent in the data (e.g., reliability measures), this is a dangerous strategy,
because it does not allow one to separate errors of approximation from
errors of estimation. The latter are due to sampling errors, and Stress in
standard (unconstrained) MDS essentially reflects, as we saw in Chapter 3,
such random errors in the data. Thus, high Stress values may be discarded
as “technical” information only. Errors of approximation, however, would
not go away even if the data were perfectly reliable. They simply express
the misfit of the model. To separate these two error sources, one should
always compute a standard MDS solution and then compare its Stress to
the Stress obtained under additional restrictions. What is important, then,
is the Stress increment. If strict constraints are used (as opposed to weakly
constrained MDS), one should compare the ratio of Stress due to model
misfit and Stress due to violation of the constraints. If the latter term is
relatively small, then the theory-confirming solution can be accepted.

As a rule of thumb, it holds that if a standard MDS solution is similar to
what was predicted theoretically, enforcing the theory onto the MDS solu-
tion does not make much difference in terms of Stress. However, if standard
MDS does not yield the expected configuration, then it is impossible to say
whether confirmatory MDS will make much difference. That depends on
the loss function and its local minima.

SGuttman (1976) suggested combining MDS with multidimensional scalogram anal-
ysis, using MSA’s notions of contiguity. See also Borg and Groenen (1998). These ideas
have not yet been studied systematically, however.
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Stress increments must be evaluated in any case, and this is a complex
matter (Lingoes & Borg, 1983). What must be taken into account here is:
(a) the number of points, n, because enforcing external constraints on few
points or distances is generally easier than dealing with a large n; (b) the
dimensionality of the MDS solution, m, for reasons similar to those for n;
(c) the error component in the proximities, because with very noisy data,
further constraints have less effect on Stress; (d) the similarity between the
standard solution and the confirmatory solution: minor corrections of the
standard solution should have little effect on Stress; and (e) the increased
theoretical intelligibility of the confirmatory solution over the standard
solution: if the latter makes little sense, one may be willing to accept larger
increments in Stress, because a theoretically justified solution promises to
be more stable over replications, and there is no reason to predict stability
for structures that are not understood.

10.6 Exercises

Ezercise 10.1 Consider the matrix below. In its lower half it shows sim-
ilarity coefficients for tonal stimuli (Levelt, Geer, & Plomp, 1966). Each
stimulus consisted of two simultaneously heard tones with a fixed ratio
between their frequencies. Fifteen stimuli were used: the twelve musical
intervals within the octave; and in addition two wider intervals (4:9 and
2:5) and one narrow interval between minor and major second (11:12). To
control for pitch effects, the mean frequency for each interval was held con-
stant at 500 Hz. Previous analyses by Levelt et al. (1966) and by Shepard
(1974) had shown that the subjective similarities for these tone intervals
form a horseshoe-like structure in the two-dimensional MDS plane.

Freq. Ratio[No. |15 13 12 7 6 3 9 2 10 5 8 14 1 11 4
15:16 5| - 14 13 12 11 10 9 8 7 6 5 4 3 2 1
11:12 13132 - 14 13 12 11 10 9 8 7 6 5 4 3 2

8:9 12129 32 - 14 13 12 11 10 9 8 7 6 5 4 3
5:6 7119 22 28 - 14 13 12 11 10 9 8 7 6 5 4
4:5 6 (14 17 23 28 - 14 13 12 11 10 9 8 7 6 5
3:4 3 (15 10 13 22 25 - 14 13 12 11 10 9 8 7 6
5:7 9 8 8 14 25 24 27 - 14 13 12 11 10 9 8 7
1:2 2 9 10 14 13 18 21 22 - 14 13 12 11 10 9 8
5:8 10 6 7 13 20 21 17 22 27 — 14 13 12 11 10 9
3:5 5 (12 11 12 15 20 24 13 25 24 - 14 13 12 11 10
4:7 8 7 11 15 14 18 14 16 13 27 30 — 14 13 12 11
8:15 14| 7 10 7 10 17 10 19 18 18 18 26 — 14 13 12
1:2 1 8§ 3 9 91415 9 14 12 13 22 26 — 14 13
4:9 111914 6 8 8 12 9 10 10 17 20 13 29 - 14
2:5 4 9 14 6 10 7 12 10 16 18 18 14 13 25 30 -
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TABLE 10.6. Correlation coefficients (decimal points omitted) for the 30 forms

of protest acts described in Table 1.2.
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(a) Replicate Shepard’s MDS analysis and verify that the order of the
stimuli on the horseshoe corresponds to the order of the entries of
the table.

(b)

Use confirmatory ordinal MDS and try to unbend the horseshoe such

that it does not bend back upon itself. The upper half of the table
indicates a pattern of values that satifies such a simple structure. You
may use these pseudodata to impose the “unbending” constraints, but
note that a simplex is a biconditional order structure. Impose only
minimal constraints.

()

Compare the constrained MDS solution with the one that does not
use external constraints and discuss the findings.

Ezercise 10.2 Consider the lower-half matrix in Table 17.7. Its uncon-
strained city-block MDS representation is shown in Figure 17.8. Try to
force a perfect “rectangular” structure onto this solution so that, for ex-
ample, points 1, 2, 3, and 4 lie on a straight vertical line, and points 1, 5,
9, and 13 lie on a straight horizontal line (see dashed grid in Figure 17.8).

Ezercise 10.3 Table 10.6 shows the intercorrelations of the 30 forms of
protest behavior (Levy, 1983) analyzed before in Section 1.2 (West German
data of early 1974, N = 2307).
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(a) Use confirmatory MDS to enforce a solution where the points are
perfectly separated in 3D space in the sense of their design facets
that are shown in Table 1.2.

(b) Compare the solution to an “unconstrained” solution as discussed in
Section 1.2.

(c) Discuss any amount of additional Stress due to the external con-
straints.





