
20
Procrustes Procedures

The Procrustes problem is concerned with fitting a configuration (testee) to
another (target) as closely as possible. In the simplest case, both configura-
tions have the same dimensionality and the same number of points, which
can be brought into a 1–1 correspondence by substantive considerations.
Under orthogonal transformations, the testee can be rotated and reflected
arbitrarily in an effort to fit it to the target. In addition to such rigid mo-
tions, one may also allow for dilations and for shifts. In the oblique case,
the testee can also be distorted linearly. Further generalizations include an
incompletely specified target configuration, different dimensionalities of the
configurations, and different numbers of points in both configurations.

20.1 The Problem

We now consider a problem that arose repeatedly throughout the text. In
Figure 2.14, using rotations, reflections, and dilations, we found it possible
to match two configurations almost perfectly. Without these transforma-
tions, it would have been difficult to see that ratio and ordinal MDS led
to virtually the same configurations. If the dimensionality of two configu-
rations is higher than 2D, such comparisons become even more difficult or,
indeed, impossible. Therefore, one needs procedures that eliminate mean-
ingless differences as much as possible by transforming one configuration
(testee) by a set of admissible transformations so that it most closely ap-
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proximates a given target configuration. Such fitting problems are known
as Procrustes problems (Hurley & Cattell, 1962).1

In geometry, two figures (configurations) are called similar if they can be
brought to a complete match by rigid motions and dilations. These trans-
formations are admissible for all MDS solutions up to ratio MDS, so we
can freely exploit similarity transformations to facilitate comparisons of dif-
ferent MDS configurations. Before considering similarity transformations,
however, we first consider a restricted Procrustes problem, the orthogonal
Procrustes. Once this problem is solved, it can be easily extended to cover
the similarity case.

20.2 Solving the Orthogonal Procrustean Problem

Let A be the target configuration and B the corresponding testee. Assume
that A and B are both of order n×m. We now want to fit B to A by rigid
motions. That is, we want A ≈ BT by picking a best-possible matrix T
out of the set of all orthogonal T. Geometrically, T therefore is restricted
to rotations and reflections.

Without the restriction TT′ = T′T = I, T could be any matrix, which
means, geometrically, that T is some linear transformation. Such transfor-
mations, however, do not, in general, preserve B’s “shape”. Rather, linear
transformations can cause shears, stretch B differentially along some di-
rections, or collapse its dimensionality (see, e.g., Green & Carroll, 1976).
Such transformations are clearly inadmissible ones, because they generally
change the ratios of the distances among B’s points and, thus, affect the
fit of these distances to the data. For the moment, we are not interested in
such transformations.

As for the ≈ criterion, a reasonable definition would be to measure the
distances between corresponding points, square these values, and add them
to obtain the sum-of-squares criterion L. The transformation T should be
chosen to minimize this L. Expressed in matrix notation, the differences of
the coordinates of A and BT are given by A − BT. We want to minimize
the sum of the squared error, that is,

L(T) = tr (A − BT)′(A − BT) (20.1)

or, equivalently,

L(T) = tr (A − BT)(A − BT)′,

1Procrustes was an innkeeper in Greek mythology who “fitted” his guests to his beds
by stretching them or by chopping off their legs. The terminology “Procrustes problem”
is now standard, even though it is generally misleading, inasmuch we do not want to
mutilate or distort the testee configuration.
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as explained in Table 7.4. In other words, L(T) measures the squared dis-
tances of the points of A and the corresponding points of BT.

Expanding (20.1), we get

L(T) = tr (A − BT)′(A − BT)
= tr A′A + tr T′B′BT − 2tr A′BT

= tr A′A + tr B′B − 2tr A′BT

over T subject to T′T = TT′ = I. Note that the simplification
tr T′B′BT = tr B′B is obtained by using the property of invariance of
the trace function under cyclic permutation (see Table 7.4, property 3),
which implies tr T′B′BT = tr B′BTT′, and using T′T = TT′ = I, so
that tr B′BTT′ = tr B′B. Because tr A′A and tr B′B are not dependent
on T, minimizing L(T) is equivalent to minimizing

L(T) = c − 2tr A′BT (20.2)

over T subject to T′T = I, where c is a constant that is not dependent on
T.

Minimization of L(T) can be accomplished by applying the concept of
an attainable lower bound (Ten Berge, 1993).2 Suppose that we can find an
inequality that tells us that L(T) ≥ h and also gives the condition under
which L(T) = h. Solving L(T) = h for T (subject to the appropriate
constraints) automatically gives us the smallest possible value of L(T) and
hence the global minimum.

To apply this notion to the problem in (20.2), let us first consider a lower
bound inequality derived by Kristof (1970). If Y is a diagonal matrix with
nonnegative entries, and R is orthogonal, Kristof’s inequality states that

−tr RY ≥ −tr Y, (20.3)

with equality if and only if R = I.
To prove this theorem, note that because Y is diagonal, we may express

(20.3) as

−tr RY = −
∑

i

riiyii ≥ −
∑

i

yii.

Now, because RR′ = R′R = I, it holds for each column j of R that
r′

jrj =
∑

i r2
ij = 1, so that −1 ≤ rii ≤ 1. Thus, −riiyii ≥ −yii. Obviously,

only if rii = 1 or, in matrix terms, only if R = I, then inequality (20.3) is
an equality.

2The orthogonal Procrustes problem was first solved by Green (1952) and later si-
multaneously by Cliff (1966) and Schönemann (1966). Their solutions are, however,
somewhat less easy to understand and to compute.
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We can use this theorem to find L(T) as follows. Let PΦQ′ be the
singular value decomposition of A′B, where P′P = I, Q′Q = I, and Φ is
the diagonal matrix with the singular values. Using the invariance of the
trace function under cyclic permutation (see Table 8.3)

L(T) = c − 2tr A′BT = c − 2tr PΦQ′T
= c − 2tr Q′TPΦ

≥ c − 2tr Φ.

Because T is orthonormal, so is Q′TP. Now the minimization of L(T) is
written in the form of (20.3) with R = Q′TP and Y = Φ. We know that
L(T) is minimal if R = I or, equivalently, Q′TP = I. Hence, we have to
choose T as

T = QP′, (20.4)

because substitution of (20.4) in Q′TP yields Q′QP′P = I, so that L(T) =
c − 2tr Φ.

20.3 Examples for Orthogonal Procrustean
Transformations

We now consider a simple artificial case where T can be computed by
hand. In Figure 20.1, two vector configurations, A and B, are shown. Their
points are connected to form rectangles. If panels 1 and 2 of Figure 20.1
are superimposed (panel 3), then L(T) is equal to the sum of the squared
lengths of the dashed-line segments that connect corresponding points of
A and B. Computing T as discussed above, we find

T =
( −.866 −.500

−.500 .866

)
.

What does T do to B? From Figure 20.1, we see that T should first
reflect B along the horizontal axis (or, reflect it on the vertical axis) and
then rotate it by 30◦ counterclockwise. The reflection matrix is thus

U1 =
( −1 0

0 1

)
and the rotation matrix by 30◦ is

R1 =
(

cos 30◦ sin 30◦

− sin 30◦ cos 30◦

)
=

(
.866 .500

−.500 .866

)
.

Applying U1 first and R1 afterwards yields U1R1 = T and BT = BU1R1.
But the decomposition of T into U1 and R1 is not unique. This may be
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FIGURE 20.1. Illustration of some steps involved in fitting B to A by an orthog-
onal transformation.
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more evident geometrically: in order to transform B into BT, it would also
be possible to first rotate B by −30◦ (i.e., clockwise by 30◦) and then reflect
it horizontally. This reverses the order of rotation and reflection but leads
to the same result. Another possibility would be to reflect B vertically and
then turn it by 210◦. To see that this produces the same effect, we simply
find the corresponding reflection and rotation matrices,

U2 =
(

1 0
0 −1

)
,

R2 =
(

cos 210◦ sin 210◦

− sin 210◦ cos 210◦

)
=

( −.866 −.500
.500 −.866

)
,

which yield T = U2R2 = U1R1. Thus, T can be interpreted in different
ways.

20.4 Procrustean Similarity Transformations

We now return to our original Procrustean problem of fitting one MDS
configuration (testee) to another (target) MDS configuration. Because the
overall size and the origin of MDS configurations are irrelevant, we now
attempt to optimally exploit these additional transformations in fitting the
testee matrix to the target. That is, we now extend the rotation/reflection
task by finding an optimal dilation factor and an optimal translation for B
(Schönemann & Carroll, 1970). In the context of Figure 20.1, this means
that BT should also be scaled to the size of A, so that the corresponding
points are incident, i.e., lie on top of each other. The translation generalizes
the fitting problem so that it can be used for distance representations where
there is no fixed origin.

Consider now the example in Figure 20.2, where Y is derived from X by
reflecting it horizontally, then rotating it by 30◦, shrinking it by s = 1/2,
and finally shifting it by the translation vector t′ = (1.00, 2.00). Formally,
Y = sXT+1t′, where T is the rotation/reflection matrix and 1 is a vector
of 1s. Given the coordinate matrices

X =

⎛⎜⎜⎝
1 2

−1 2
−1 −2

1 −2

⎞⎟⎟⎠ and Y =

⎛⎜⎜⎝
0.07 2.62
0.93 3.12
1.93 1.38
1.07 0.88

⎞⎟⎟⎠ ,

we want to find s, T, and t that transform Y back to X. In this case,
we know the solutions: because Y = sXT + 1t′, we subtract first 1t′

on both sides, which yields Y − 1t′ = sXT; then, premultiplying by 1/s
and postmultiplying by T−1 = T′ gives (1/s)(Y − 1t′)T′ = X, which is
(1/s)YT′ − (1/s)1t′T′ = X. In words: we first multiply Y by 1/s, then
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FIGURE 20.2. Illustration of fitting Y to X by a similarity transformation.

rotate it clockwise by 30◦ and reflect it horizontally, and then subtract the
translation vector (1/s)1t′T′ from it. Because the T matrix is the same
as the one discussed in the last section, and 1/s = 2 and t′ = (1, 2) are
also known, the transformations involved in mapping Y back into X can
be computed easily.

In general, of course, only X and Y are given, and we have to find optimal
s, T, and t. The loss function L(s, t,T) is therefore

L(s, t,T) = tr [X − (sYT + 1t′)]′[X − (sYT + 1t′)], (20.5)

subject to T′T = I. An optimal translation vector t is obtained by setting
the derivative of L(s, t,T) with respect to t equal to zero and solving for
t, i.e.,

∂L(s, t,T)/∂t = 2nt − 2X′1 + 2sT′Y′1 = 0, (20.6)
t = n−1(X − sYT)′1. (20.7)

Inserting the optimal t (20.7) into (20.5) gives

L(s,T)

= tr [(X − sYT) − 11′

n
(X − sYT)]′[(X − sYT) − 11′

n
(X − sYT)]

= tr [(I − 11′

n
)(X − sYT)]′[(I − 11′

n
)(X − sYT)]

= tr [JX − sJYT]′[JX − sJYT],

with J the centering matrix I−n−111′. Similarly, setting the partial deriva-
tive of L(s,T) to s equal to zero and solving for s yields

∂L(s,T)/∂s = 2s(tr Y′JY) − 2tr X′JYT = 0, (20.8)
s = (tr X′JYT)/(tr Y′JY). (20.9)
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Inserting the optimal s into L(s,T) gives

L(s,T) = tr [JX − tr X′JYT
tr Y′JY

JYT]′[JX − tr X′JYT
tr Y′JY

JYT]

= tr X′JX +
(tr X′JYT)2

tr Y′JY
− 2

(tr X′JYT)2

tr Y′JY

= tr X′JX − (tr X′JYT)2

tr Y′JY
. (20.10)

Minimizing (20.10) over T (TT′=I) is equal to minimizing −tr X′JYT
over T because T may always be chosen such that tr X′JYT is nonnega-
tive. Therefore, we can apply the results from the previous section to find
the optimal T. This also explains why maximizing the correlation r(A,BT)
(see Section 20.6) or (20.1) yields the same T as the Procrustes problem
(20.1).

The steps to compute the Procrustean similarity transformation are:

1. Compute C = X′JY.

2. Compute the SVD of C; that is, C = PΦQ′.

3. The optimal rotation matrix is T = QP′.

4. The optimal dilation factor is s = (tr X′JYT)/(tr Y′JY).

5. The optimal translation vector is t = n−1(X − sYT)′1.

20.5 An Example of Procrustean Similarity
Transformations

We now return to Figure 20.2. To transform Y back to X, the original
transformations that led to Y have to be undone. According to our com-
putation scheme of the previous section, what has to be found first is the
orthogonal matrix T, then the dilation factor s, and finally t.

C = X′JY turns out to be simply C = X′Y in the present case, because
J = I − 11′/n can be seen to center the rows of X′ or the columns of Y.
But the columns of X are centered already (i.e., the values in the columns
of X sum to 0); thus J is not needed here. For C = X′Y we obtain

C =
( −1.72 −1.00

−4.00 6.96

)
.

The singular value decomposition of C, C = PΦQ′, is

C =
(

.00 −1.00
1.00 .00

)(
8.03 .00
.00 1.99

)( −.50 .87
.87 .50

)
.
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Thus, T is given by

T = QP′ =
( −.87 −.50

−.50 .87

)
.

It is easier to see what T does when it is decomposed into a rotation and
a subsequent reflection:

T = RU =
(

.87 −.50

.50 .87

)( −1 0
0 1

)
.

In R, we have cos(α) = .87 and hence3 α = 30◦. Also, sin(α) = .50; thus,
α = 30◦. Hence, R rotates Y by 30◦ to the right or clockwise, which aligns
the sides of Y in Figure 20.2 with the coordinate axes. U then undoes the
previous reflection along the horizontal axis, because all of the coordinates
in the first column of YR are reflected by −1.

The transformations s and t are also easy to compute. For s we compute
s = (tr X′JYT)/(tr Y′JY) = 10.02/5.01 = 2, which is just the inverse
of the dilation factor from above. Finally, we find t′ = (3.73,−2.47). It
is harder to understand why such a translation is obtained, and not just
(−1,−2). At the beginning of the previous section, it was shown alge-
braically that to undo the translation t it is generally not correct to set
−t. This is so because other transformations are also done at the same
time; thus, what has to be back-translated is not Y, but Y after it has
been back-rotated, -reflected, and -dilated. If we check what these trans-
formations do to Y in Figure 20.2, we can see that t = (3.73,−2.47) must
result. (Note, in particular, that R rotates Y about the origin, not about
the centroid of Y.)

20.6 Configurational Similarity and Correlation
Coefficients

So far, we have considered Procrustean procedures primarily for transform-
ing a configuration so that it becomes easier, in one sense or another, to
look at. We now discuss a measure that assesses the degree of similarity
between the transformed configuration and its target. One obvious choice
for such a measure is the product-moment correlation coefficient computed
over the corresponding coordinates of X and YT.

Consider the three data matrices in Table 20.1, taken from a study by
Andrews and Inglehart (1979). The matrices show the product-moment

3Note that R′ = R−1 rotates a configuration to the left or counterclockwise. See
(7.31), which shows a rotation matrix for the plane that moves the points counterclock-
wise.
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TABLE 20.1. Intercorrelations of items in three studies on well-being in the
U.S.A., Italy, and Denmark, respectively. Items are: (1) housing, (2) neighbor-
hood, (3) income, (4) standard of living, (5) job, (6) spare time activities, (7)
transportation, (8) health, (9) amount of spare time, (10) treatment by others,
(11) getting along with others. Decimal points omitted.

Italy
1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11

1 – 33 44 52 38 37 26 23 20 27 23 –
2 38 – 23 19 29 23 28 18 21 29 31 46 –
3 30 21 – 77 57 43 38 25 23 17 19 38 29 –
4 42 30 66 – 56 52 38 28 29 22 2 46 35 64 –
5 10 18 34 23 – 49 35 23 23 32 29 29 30 42 47 –
6 27 28 33 36 31 – 28 28 39 25 32 27 29 28 37 41 –
7 14 19 28 29 26 26 – 18 24 18 22 16 16 22 24 20 18 –
8 15 11 23 21 17 15 22 – 27 17 21 08 13 14 12 24 15 17 –
9 17 15 18 26 25 29 18 08 – 20 28 22 21 19 26 24 37 15 14 –

10 23 30 27 30 38 26 26 20 26 – 69 27 33 26 30 32 26 17 14 23 –
11 18 18 14 24 23 21 21 29 14 36 – 31 39 29 37 34 38 22 13 28 53 -

U.S.A. Denmark

TABLE 20.2. Similarity coefficients of three attitude structures on well-being.
Lower half: squared correlations over coordinates. Upper half: squared congru-
ence coefficients of distances.

U.S.A. Italy Denmark
U.S.A. 1.000 0.883 0.859
Italy 0.347 1.000 0.857
Denmark 0.521 0.515 1.000

correlations of 11 questions on subjective well-being asked in the U.S.A.,
Italy, and Denmark, respectively. The questions were always phrased ac-
cording to the schema “How satisfied are you with [X]?”. The interviewees
responded by giving a score on a rating scale. The scores were correlated
over persons. Data from representative samples in each of nine different
Western societies were available. The general hypothesis was that the atti-
tude structures on well-being in these countries would be very similar.

Andrews and Inglehart (1979) represented each of these correlation ma-
trices in a 3D MDS space. For the matrices in Table 20.1, this leads to the
Stress values .09, .08, and .04, respectively. It was then asked how similar
each pair of these configurations is, and Procrustean transformations were
used to “remove inconsequential differences in the original locations, orien-
tations, and sizes of the configurations” (Andrews & Inglehart, 1979, p.78).
For our three data sets, this leads to the indices in Table 20.2 (lower half).
(Note that we report squared correlations here, which is in agreement with
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the notion of common variance in statistics.) On the basis of such measures,
Andrews and Inglehart conclude that “there seems to be a basic similarity
in structures among all nine of these Western societies” (p.83).

Such an evaluation assumes that the observed similarity indices are
greater than can be expected by chance alone. For two configurations, X
and Y, both chosen completely at random, r(X, sYT + 1t′) = r(X,Y∗)
would probably not be zero but should be positive. The fewer points there
are in X and Y, the greater the correlation should be. The Procrustean
transformations are designed to maximize r(X,Y∗); the fewer points there
are, the greater the effect of these transformations, in general. Langeheine
(1980b, 1982) has studied by extensive computer simulations what r-values
could be expected for different numbers of points (n) and different di-
mensionalities (m). He finds virtually the same results for different error
models (such as sampling the points from multidimensional rectangular
or normal distributions). For n = 10 and m = 3, the parameters rele-
vant for the present 3D MDS configurations with ten points, he reports
0.072 ≤ r2(X,Y∗) ≤ 0.522 and r̄2(X,Y∗) = 0.260. Furthermore, only 5%
of the observed coefficients were greater than 0.457. We should therefore
conclude that the degree of similarity observed for these structures is hardly
impressive.

20.7 Configurational Similarity and Congruence
Coefficients

It is possible to skip the Procrustean transformations altogether and still
arrive at a measure of similarity for each pair of configurations. This can
be done by directly comparing the distances of X and Y, because their
ratios remain the same under any transformations where T′T = I. Thus,
Shepard (1966) computes the product-moment correlation coefficient over
the corresponding distances of X and Y, and Poor and Wherry (1976)
report extensive simulations on the behavior of such correlations in ran-
domly chosen configurations. Yet, the usual correlation is an inadmissible
and misleading index when used on distances. To see why, consider the fol-
lowing example. Assume that X and Y consist of three points each. Let the
distances in X be d12(X) = 1, d23(X) = 2, d13(X) = 3 and the distances in
Y, d12(Y) = 2, d23(Y) = 3, d13(Y) = 4. The correlation of these distances
is r = 1, indicating perfect similarity of X and Y. But this is false; X and
Y do not have the same shape: Y forms a triangle, but X’s points lie on a
straight line because they satisfy the equation d12(X) + d23(X) = d13(X).
If a constant s is subtracted from each distance in this equation, the in-
equality d12(X) − k + d23(X) − k �= d13(X) − k results. The translated
values vij = dij(X)−k are therefore not distances of three collinear points.
Thus, pulling out any nonzero constant from the distances implies that the
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new values are either distances of a configuration different from the one we
wanted to assess, or are not even distances at all, i.e., they correspond to
no geometric configuration whatsoever. Hence, correlating distances does
not properly assess the similarity of geometric figures (configurations).

The problem is easily resolved, however, if we do not extract the mean
from the distances and compute a correlation about the origin, not the
centroid. The resulting congruence coefficient is

c(X,Y) =

∑
i<j wijdij(X)dij(Y)

[
∑

i<j wijd2
ij(X)]1/2[

∑
i<j wijd2

ij(Y)]1/2 ,

with wij nonnegative weights. Because distances are nonnegative and, by
the Cauchy–Schwarz inequality, c(X,Y) ranges from 0 to 1, we have c(X,Y) =
1 if X and Y are perfectly similar [i.e., if r(X, sYT + 1t′) = 1], and c = 0
if r = 0. But apart from these boundary cases, there is no easy relation of
r and c and it seems impossible to convert a given r-value directly into the
corresponding c-value, and vice versa.

Computing the congruence coefficients for the MDS configurations of
the data in Table 20.1 yields the values in the upper half of Table 20.2. In
comparison with the Procrustean correlation values in the lower half of the
matrix, these measures lead to a different interpretation of the similarity
pattern: the similarity of the Italian and the U.S.A. configurations is lowest
in terms of r but highest in terms of c. Indeed, the order of the similarities
among countries is exactly the opposite for both coefficients. Thus, using
two equally admissible indices leads to different conclusions. Why this is
so is not difficult to see: each coefficient must condense a great deal of
information on the similarity of two configurations into a single number,
and this can be done by weighting this or that piece of information more
or less. Furthermore, the distinction between geometric and correlational
similarity should be noted in problems of this sort.

The question that remains is whether r and c typically yield different
answers in practical applications. In particular, by comparing r with its
statistical norms (Langeheine, 1982) and c with analogous norms (Leutner
& Borg, 1983), are we likely to conclude in one case that the configuration
pair is significantly similar and in the other that it is not? In simulation
studies, Borg and Leutner (1985) showed that, for randomly chosen config-
urations with different numbers of points and dimensionalities, r and c led
to the same statistical judgment in not more than 60% of the cases. Hence,
if we claim that two configurations are more similar than can reasonably
be expected by chance alone, both the r and c values should be well above
their respective statistical norms.

The problems associated with such similarity coefficients are ultimately
due to the fact that these measures are extrinsic to substantive problems.
It would be an illusion to believe that somehow a better coefficient could be
constructed, because any such coefficient must condense the given complex
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information into a single number. It is evident that the way this should be
done depends on the substantive question being studied. Moreover, it seems
that, in a case like the Andrews–Inglehart study on attitude structures, the
question of how close corresponding points can be brought to each other
is much too parametric. The formal reason is that with 10 points in a 3D
space, the MDS configurations are not strongly determined by Stress; that
is, many other configurations exist (some more similar, some less similar
among themselves) that represent the data almost equally well. This was
shown by Borg and Bergermaier (1981). The deeper scientific reason is that
there is actually no basis for expecting such a point-by-point matching of
different attitude structures in the first place. In Section 5.3, the similarity
question was therefore asked quite differently: can two (or more) MDS
configurations both be partitioned into regions by facets from the same
facet design [see also Shye (1981)]. Because this could be done, it was
concluded that the structures were indeed similar in the sense that they all
reflected the same facets. In other contexts, the pointwise matching of two
configurations may be more meaningful, but this has to be checked in each
single case. For the psychophysical example discussed in Section 17.4, for
example, such indices are adequate in Figure 17.8 to assess the fit of the
design configuration (transformed in a theoretically meaningful way) and
the respective MDS representations. It is a widespread fallacy, however,
to believe that such indices are somehow “harder” and “more meaningful”
than the pictures themselves. Rather, the indices play only a supplementary
role, because the pictures show in detail where the configurations match
and where they do not.

20.8 Artificial Target Matrices in
Procrustean Analysis

Procrustean procedures were first introduced in factor analysis because
it frequently deals with relatively high-dimensional vector configurations
which would otherwise be hard to compare. Moreover, with very few ex-
ceptions [e.g., the radex of Guttman (1954) or the positive manifold hy-
pothesis of Thurstone (1935)], factor analysts have been interested only
in dimensions, whose similarity can be seen directly from comparing X
and YT. In addition, it was soon noted that the Procrustean methods
can also be used in a confirmatory manner, where X does not relate to
a configuration of empirical data but is a matrix constructed to express
a substantive hypothesis; for example, X could contain the point coordi-
nates for an expected configuration in a psychophysical study such as the
one on rectangles in Section 17.4. Here, we might simply take the solid grid
configuration in Figure 17.7 as a target for the MDS configuration in Fig-
ure 17.8 (assuming, for the sake of argument, that the MDS configuration
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was generated under the Euclidean metric, because otherwise no rotations
are admissible). Of course, in the plane, such rotations are more cosmetic
(to obtain better aligned plots, e.g.) and we can easily do without them.
However, imagine that the stimuli had been boxes rather than rectangles.
A theory for the similarity judgments on such stimuli would certainly ask
for a 3D representation, but the common principal-component orientation
routinely used by most MDS procedures may not give us the desired ori-

entation. Hence, even though using the design configuration without, say,
any logarithmic rescalings of its dimensions may be primitive, it may lead
to a more interpretable orientation of the MDS configuration.

Sometimes the target matrix X and testee matrix Y do not to have the
same dimensionality. For example, in the rectangle study from above, we
might have various other variables associated with the rectangles (such as
different colorings and patterns). A higher-dimensional MDS space is then
probably necessary to represent their similarity scores. Nevertheless, the
2D design lattice can still serve to derive a partial target matrix X, which
can serve as a partial hypothesis structure for the higher-dimensional MDS
configuration. Technically, what needs to be done in this case to guarantee
that the necessary matrix computations can be carried out is to append
columns of zeros on X until the column orders of the augmented X and the
Y matrix match. A reference for procedures on missing dimensionalities in
Procrustean analysis is Peay (1988).

A further generalization of the Procrustean procedures allows partial
specification of X by leaving some of its elements undefined (Browne, 1972a;
Ten Berge, Kiers, & Commandeur, 1993). This possibility is needed when
only partial hypotheses exist. A typical application is the case in which
some points represent previously investigated variables and the remaining
variables are “new” ones. We might then use the configuration from a
previous study as a partial target for the present data in order to check how
well this structure has been replicated. A different strategy was pursued by
Commandeur (1991) in the Matchals program where entire rows can be
undefined.

Another case of an incomplete formal match of X and Y is one in which
the configurations contain a different number of points. Consider a study
of Levy (1976) concerned with the psychology of well-being. Using a facet-
theoretical approach, Levy used items based on two facets: A = {state,
resource} and B = life area with eight elements. Respondents were asked
how satisfied they were with the content of an item on a 9-point rating
scale. For example, the respondent had to indicate how satisfied he or she
was with “the city as place to live” on a scale of −4 for “very dissatisfied”
to +4 for “very satisfied”. The data were taken from two studies carried
out in 1971, one in the U.S. and one in Israel. Similarity coefficients were
derived from the items (correlations for the U.S. study and µ2 for the
Israel study), followed by an MDS analysis for each country. The resulting
coordinate matrices for the configurations are given in Table 20.3. There



20.8 Artificial Target Matrices in Procrustean Analysis 443

TABLE 20.3. Generating comparable matrices Xc and Yc by averaging the co-
ordinates of points in X and Y that have equivalent structuples, dropping rows
that do not have matching structuples, and permuting the rows of the resulting
matrices into a common order of structuples. Bold-face structuples are common
to both studies.

U.S. Study Structuple Structuple Xc

1 82.878 -42.163 23 23 83.014 -41.638
2 88.993 -60.939 23 17 -4.189 -31.551
3 60.183 -46.662 23 14 3.004 -8.451
4 100.000 -16.787 23 26 -100.000 -28.496
5 -13.325 -87.959 21 22 19.631 -46.593
6 -19.009 -100.000 21 18 8.226 -15.692
7 -4.189 -31.551 17
8 3.004 -8.451 14
9 -100.000 -28.496 26

10 27.065 -38.147 12
11 19.631 -46.593 22
12 41.695 20.110 29
13 -7.944 40.172 25
14 7.994 15.670 15
15 8.226 -15.692 18

Israel Study Structuple Structuple Yc

1 55.109 -38.601 22 23 100.000 -87.625
2 100.000 -87.625 23 17 -20.501 45.374
3 -100.000 -59.374 26 14 9.139 9.563
4 -89.866 -100.000 26 26 -94.933 -79.687
5 -50.625 -60.229 16 22 55.109 -38.601
6 3.523 -48.208 18 18 -12.976 -39.149
7 -20.501 45.374 17
8 -31.567 49.099 27
9 -29.474 -30.089 18

10 9.139 -9.563 14

are 15 points in the U.S. representation, but only 10 in the Israeli solution.
However, most of these points are associated with structuples that are
common across the two studies. Hence, we can proceed as indicated in
Table 20.3: (1) in each configuration, average the coordinates of all points
that have common structuples; (2) set up matrices Xc and Yc consisting
of the average coordinate vectors in such a way that the rows of Xc and
Yc correspond substantively (i.e., in terms of their structuples); centroids
without a partner in the other configuration are dropped; (3) with Xc

and Yc proceed as in a usual Procrustean problem; (4) finally, use the
transformations computed in (3) to transform the original matrices (Borg,
1977b, 1978a). Provided there are enough different common structuples,
this procedure does what can be done to make the configurations easier to
compare.
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20.9 Other Generalizations of Procrustean
Analysis

Here, we consider variants of the Procrustes problem. In particular, we
discuss the so-called oblique Procrustean rotation, rotation to optimal con-
gruence, and robust Procrustean rotation.

The problem of oblique Procrustean rotation has been encountered pre-
viously in this book under different names. It consists of rotating each
coordinate axis independently of the others in such a way that BT approx-
imates A as closely as possible. Thus, we want to minimize (20.1) without
any constraint on T. Such a solution can be readily found by multiple
regression for each dimension separately.

Oblique Procrustes rotation can be interpreted as follows. Let T be de-
composed by a singular value decomposition; then T = PΦQ′. It follows
what T does: first, B is rotated by P; then Φ multiplies the coordinate
vectors of BP with different weights, thus geometrically stretching BP dif-
ferentially along the axes, and finally BPΦ is rotated by Q′. Hence, only
if Φ = I is T = PQ′ an orthonormal matrix. The transformation problem
turns out to be the same as the one encountered in Section 4.3, where ex-
ternal scales had to be optimally placed into a given configuration. In factor
analysis, certain additional constraints are often placed on T, so that the
oblique Procrustes problem is not always equivalent to the linear fitting.
However, these additional constraints are not relevant in the MDS context
(see, e.g., Browne, 1969, 1972b; Browne & Kristof, 1969; Mulaik, 1972). Ap-
plying oblique Procrustes rotation of MDS solutions has to be done with
caution, because the transformed solution has different distances.

A different fit criterion for Procrustes rotation is based on the congruence
between the columns of A and BT. Brokken (1983) proposed a rotation
method where the congruence between corresponding columns is optimized.
If A and B have column means of zero, then rotation to optimal congruence
can be interpreted as Procrustes rotation while assuming that each column
of A and B is measured on an interval level. Kiers and Groenen (1996)
developed a majorizing algorithm to optimize this criterion. This type of
analysis is particularly suitable if the columns of the matrices are interval
variables measured on the same scale.

In some cases, all but a few of the points of two configurations may
be similar (after rotation). Verboon (1994) discusses the following artificial
example. Let A contain the coordinates of cornerpoints of a centered square
and B the same coordinates but rotated by 45◦. An “outlier” in B is created
by multiplying the second coordinate of point 1 by −10. This outlier has
a different orientation (180◦) and is located much farther from the origin
than the other points. Ordinary Procrustes analysis yields a rotation matrix
with an angle of −18◦, a deviation of more than 60◦.
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Verboon and Heiser (1992) and Verboon (1994) propose a robust form of
Procrustes analysis that is less sensitive to outliers. They start by decom-
posing the misfit into the contribution of error of each object to the total
error; that is,

L(T) = tr (A − BT)′(A − BT)

=
n∑

i=1

(ai − T′bi)′(ai − T′bi) =
n∑

i=1

r2
i ,

where ai denotes row i of A. The basic idea is to downweight large resid-
uals so that outliers have less influence on the final rotation. This can be
achieved by minimizing

Lr(T) =
n∑

i=1

f(ri),

with f(x) a robust function. Some often-used robust functions are |x|, the
Huber function (Huber, 1964), and the biweight function (Beaton & Tukey,
1974), all of which have as a main characteristic that f(ri) < r2

i for large
values of ri. Clearly, choosing f(x) = x2 reduces Lr(T) to L(T). Algorithms
for minimizing Lr(T) for different robust functions f(x) based on iterative
majorization can be found in Verboon (1994).

20.10 Exercises

Exercise 20.1 Consider the three correlation matrices in Table 20.1 on
p. 438. Scale each data matrix individually via MDS. Then use Procrustean
transformations to eliminate irrelevant differences among the MDS solu-
tions. How do the three solutions differ from one another?

Exercise 20.2 It looks as if the plane spanned by dimension 1 and dimen-
sion 2 in Figure 4.3 corresponds closely to the 2D configuration in Figure
4.1.

(a) Replicate the scalings and then fit the 3D solution to the 2D solution
by Procrustean methods.

(b) Compute indices that indicate the similarity of the 2D MDS solution
and the fitted plane of the 3D solution. Use two different measures of
similarity.

Exercise 20.3 Use the data matrix of Table 4.1 on p. 65 and represent it
in a 3D MDS space. Then use an artificial target matrix to swing the MDS
solution into a plane that shows a color circle.
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Exercise 20.4 The matrices below show the point coordinates of two con-
figurations in three dimensions.

X =

⎡⎢⎢⎢⎢⎢⎢⎣
1 2 −.5

−1 2 .5
−1 0 −.5

1 0 .5
−1 −2 .5

1 −2 −.5

⎤⎥⎥⎥⎥⎥⎥⎦ and Y =

⎡⎢⎢⎢⎢⎢⎢⎣
1.2449 −0.8589 −1.7202
0.4572 1.1834 −1.7793

−0.9626 0.5000 −0.5321
0.9086 −0.4459 0.3364

−1.1118 0.8645 1.8433
−0.5361 −1.2432 1.8519

⎤⎥⎥⎥⎥⎥⎥⎦ .

(a) Find the rotation that optimally fits Y to X.

(b) Assess the fit of the fitted Y to the target X.

Exercise 20.5 The matrix below shows the coordinates of four points in
4D. Transform this configuration so that it optimally fits into a 2D plane.
(Hint: Procrustean transformations may not be the best method to solve
this problem.)

M =

⎡⎢⎢⎣
1.4944 −0.2109 −1.5806 −0.4718
0.2397 0.4019 −1.9928 0.8993

−1.4944 0.2109 1.5806 0.4718
−0.2397 −0.4019 1.9928 −0.8993

⎤⎥⎥⎦
Exercise 20.6 Use the coordinate matrices X and Y from Section 20.4.

(a) Augment matrix Y with a vector of random error so that Y becomes
three-dimensional. Repeat the Procrustean transformations and as-
sess the fit to the target configuration.

(b) Repeat the above with different amounts of random error. How does
this error affect the fittings?

Exercise 20.7 Assume we drop the constraint that TT′ = I in Section 20.2
and admit any linear transformation T to solve the loss function in formula
20.1.

(a) Show that T = (B′B)−1B′A minimizes the loss function in this case.
(Hint: Expand the expression and use the rules developed in Section
8.3.)

(b) Apply the result to two simple 2D configurations, A and B, that are
both centered.

(c) Study geometrically in which way T affects B in fitting it to A.

(d) Analyze what T does to B in terms of its singular value decomposi-
tion. (Hint: Note the the SVD decomposes T into a rotation/reflection,
followed by a stretching along the dimensions, followed by another ro-
tation/reflection.)
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(e) What properties of a configuration B are generally left unchanged
when using a linear transformation T? (Hint: Check points that are
on a straight line in B. Where do they end up in BT? Also, consider
the dashed grid in Figure 17.9 and how it is related to its design grid
in Figure 17.7.)

(f) Repeat fitting B to A, but now make sure that neither A nor B is
centered. Compare the shape of BT in this case to the shape of BT
in the centered case above.




