
23
Modeling Asymmetric Data

Distances are always symmetric, but proximities may be asymmetric. Prox-
imities, therefore, cannot always be fully represented by the distances among
points in an MDS space. If one feels that the proximities deviate from be-
ing symmetric due to error only, this is not a problem. In that case, one
may somehow symmetrize the proximities (e.g., by first averaging the corre-
sponding pijs and pjis and then running the MDS on these averages). If one
hypothesizes, however, that the nonsymmetries are meaningful, one needs
special models for analyzing such data. In this chapter, we consider a num-
ber of such models. First, it is shown that an asymmetric proximity matrix
can always be decomposed into a symmetric and a skew-symmetric com-
ponent. The symmetric component can be then be subjected to ordinary
MDS. For the skew-symmetric part, we discuss special visualization tech-
niques for either the nonsymmetric component by itself or for embedding
the nonsymmetric component into an MDS representation of the symmet-
ric component. In the rest of the chapter, we treat a variety of models that
analyze asymmetric proximities directly or indirectly. Many other models
for asymmetric data exist. For a good overview of models for asymmetric
data, we refer to Zielman and Heiser (1996).

23.1 Symmetry and Skew-Symmetry

We compare the values in row A of Table 4.2 with those in column A. Row
A shows the confusion rate for code A, presented first, with codes B, C,
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and so on, respectively, presented afterwards. In column A, the code A is
always the second stimulus in the comparison. Comparing corresponding
elements in column A and row A, we note, for example, that p(A, R) = .35,
and p(R, A) = .13. Hence, A is definitely confused more often with R if it
is presented before A than if it follows A in time.

Thus, the Morse code data are definitely not symmetric. However, in
the analysis of these data so far, asymmetries played no further role. They
were simply discarded as error, and only the symmetric part was analyzed.
But is that good science? We know that asymmetries are not uncommon
in cognition. A child, for example, is typically seen as similar to a parent,
but one would not say that the parent resembles the child. This asymmetry
is explained as a prototype–specimen relation: the specimen resembles the
prototype, but the prototype does not resemble the specimen. Other ex-
amples and more theorizing are reported by Tversky (1977), for example.
So, it is at least conceivable that the asymmetries in the Morse code data
are not purely random but systematic.

To arrive at an answer to that question, we first note that every square
matrix P can be uniquely decomposed into a symmetric matrix and a skew-
symmetric matrix: That is, every asymmetric proximity matrix P can be
uniquely decomposed into

P = M + N, (23.1)

where M is symmetric and N is skew-symmetric. This means that M = M′

and N = −N′. The two components of P are

M = (P + P′)/2, and (23.2)
N = (P − P′)/2. (23.3)

Note that the diagonal elements of N are always zero, because for those
elements it holds that nii = (pii − pii)/2 = 0.

To demonstrate this decomposition numerically, consider the following
example, where P is equal to the first four rows and columns of Table 4.2.
Then, P has the decomposition

P =

⎡⎢⎣ 92 4 6 13
5 84 37 31
4 38 87 17
8 62 17 88

⎤⎥⎦ = M + N

=

⎡⎢⎣ 92.0 4.5 5.0 10.5
4.5 84.0 37.5 46.5
5.0 37.5 87.0 17.0

10.5 46.5 17.0 88.0

⎤⎥⎦ +

⎡⎢⎣ 0.0 -0.5 1.0 2.5
0.5 0.0 -0.5 -15.5

-1.0 0.5 0.0 0.0
-2.5 15.5 0.0 0.0

⎤⎥⎦ . (23.4)

To show that the decomposition is unique, assume that P = M1 + N1
is another such decomposition with M1 = M′

1 and N1 = −N′
1. Then, we

have P′ = M′
1 + N′

1 = M1 − N1, and it follows that P + P′ = 2M1 and
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P − P′ = 2N1. Inserting this into (23.2) and (23.3), respectively, we find
that M = M1 and N = N1, which proves uniqueness of the decomposition
(23.1).

Furthermore, the decomposition in M and N allows one to partition
the sum-of-squares into a part due to symmetry and a part due to skew-
symmetry. That is,∑

i,j

p2
ij =

∑
i,j

[ 1
2 (pij + pji) + 1

2 (pij − pji)
]2

=
∑
i,j

1
4

[
(pij + pji)2 + (pij − pji)2 + 2(pij + pji)(pij − pji)

]
=

∑
i,j

m2
ij +

∑
i,j

n2
ij + 2

∑
i,j

mijnij

=
∑
i,j

m2
ij +

∑
i,j

n2
ij .

The cross-product term
∑

i,j mijnij vanishes because∑
i,j

mijnij = 1
4

∑
i,j

(pij + pji)(pij − pji)

= 1
4

⎡⎣∑
i,j

p2
ij −

∑
i,j

p2
ji +

∑
i,j

pijpji −
∑
i,j

pijpji

⎤⎦ = 0.

Thus, M and N are orthogonal because tr MN = 0. The decomposition
of the sum-of-squares suggests analyzing asymmetric data in two separate
steps: the analysis of the symmetric part and the analysis of the skew-
symmetric part. For the Morse code data, the sum of the squared proxim-
ities without the diagonal equals 698,309.0, from which 671,489.5 (96%) is
due to symmetry and 26,819.5 (4%) is due to asymmetry. This implies that
the symmetric part of the data is dominant, and asymmetry plays a minor
role, but may still reveal interesting relations.

23.2 A Simple Model for Skew-Symmetric Data

The simplest model for representing skew-symmetric data N locates every
object on a line such that the signed distance for every pair of coordinates
represents the corresponding elements of N. Expressed algebraically, this
model postulates that nij = xi − xj , or, in matrix form,

N = x1′ − 1x′, (23.5)

where x has sum zero. Choosing x = n−1N1 or, in other words, the averages
of the nij values within each row i over all columns, is the least-squares
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solution for (23.5). Obviously, this model is so restricted that it does not
fit many data. Hence, we now turn to more general models.

23.3 The Gower Model for Skew-Symmetries

An interesting decomposition of a skew-symmetric matrix has been given
by Gower (1977) and Constantine and Gower (1978). The singular value
decomposition of any skew-symmetric matrix N has the special form

N = PKΦP′, (23.6)

where P is orthonormal, Φ has singular values ordered in pairs (φ1, φ1,
φ2, φ2, . . .), and K is a permutation-reflection matrix that has along its
diagonal 2×2 blocks with off-diagonal values −1 and 1. The decomposition
of N in (23.4) is⎡⎢⎣ .16 .00 .00 -.99

-.97 .19 .00 -.16
-.01 -.04 1.00 -.00
-.19 -.98 -.04 -.03

⎤⎥⎦
⎡⎢⎣ 0 1 0 0

-1 0 0 0
0 0 0 1
0 0 -1 0

⎤⎥⎦
⎡⎢⎣ 15.72

15.72
.91

.91

⎤⎥⎦
⎡⎢⎣ .00 .19 -.04 -.98

-.16 .97 .01 .19
.99 .16 .00 .03
.00 .00 1.00 -.04

⎤⎥⎦ .

The dimensions here come in pairs with equal singular values. Such a pair
of dimensions is called a bimension. Each bimension spans a plane. Its
points can be taken from the pairs of columns (1,2), (3,4), and so on of PK
or from the respective columns of P. The configurations are the same in
both cases. Their interpretation hinges on how any two points are related
to each other in terms of (a) the angle subtended by the vectors that they
define, and (b) the area of the triangle spanned by these vectors. The
area of the triangle represents the size of the asymmetry, and sense of the
angle represents the sign of the asymmetry. Note that because the singular
values in each bimension are equal, the bimension may be freely rotated
or reflected without changing the fit. Thus, in the Gower model, the axes
cannot be interpreted.

To illustrate these notions, let us apply the Gower decomposition to the
skew-symmetric part of the Morse code confusion data (Rothkopf, 1957).
Zielman and Heiser (1996) did the same analysis on the Morse codes that
represent the 10 digits only. The first bimension (with singular value 67.37,
showing 34% of the total skew-symmetry) of the full table is presented in
Figure 23.1, a display we call a Gower diagram. In this display, all the
rows of P are plotted as vectors and we have to use a clockwise rotation
for positive estimates of nij . To understand how to interpret this plot,
consider the triangle between the origin, point H, and point V. The area of
the triangle is an estimate of the size of the asymmetry. Because clockwise
rotations indicate positive estimates, going from H to V indicates that if H
is the first stimulus in the pair, it is more often confused with V than vice
versa.
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FIGURE 23.1. Gower diagram of the skew-symmetric part of the Morse code
data (first bimension). The area of the triangle between the origin and the two
points H and V is an estimate of the value nHV. The clockwise rotation indicates
that nHV > 0 and nVH < 0.

Once identified, an asymmetry like this one can be interpreted substan-
tively. In this case, it is easy to understand, because the sequence HV is
· · · · followed by · · · −, whereas VH is · · · − followed by · · · ·. Clearly, the
middle − makes it easier for the subjects to distinguish the two signals.

We also note from Figure 23.1 that the big contributors to asymmetry are
the signals X, 4, V, and H, where, for example, H4, VX, and V4 generate
higher confusion rates than, respectively, 4H, XV, and 4V. In contrast, for
E, I, and T it does not really matter whether they occur as the first or
second signal, because they lie close to the origin and do not have much
asymmetry with other signals.

Some of the properties of Gower’s model are as follows.

• If n is even, then there are n/2 bimensions; if n is odd, then there
are n/2 − 1 bimensions; that is, φn = 0.

• Points that lie on the same line through the origin do not have asym-
metry, thus spanning a triangle with zero area.

• A point close to the origin has little asymmetry with all other points,
and, hence, triangles where these points together with the origin and
any other point form the corners tend to be small, in general.

• If there is a line through the origin in a bimension such that all of
the vectors project positively on this line, then reordering N by the
order of the vectors of the bimension yields a matrix with all negative
elements in the lower (or upper) triangular matrix and the positive
elements in the upper (or lower) triangular matrix. No circular triads
are present in the data in this case.
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• If points lie on a line not through the origin of the vectors, then the
points form an additive scale. Let the order of three points along such
a line be A, B, C. Then, the area spanned by the triangle OAC equals
OAB + OBC, which is clearly additive.

• When computing the solution for the Gower model, we do not know
a priori what the direction of interpretation will be. If the submatrix
of K equals

[
0 -1
1 0

]
, then an anticlockwise rotation from vector i to

j indicates a positive estimate of nij and a negative estimate for nij .

If the computational procedure gives
[

0 1
-1 0

]
as a submatrix, then we

have to apply a clockwise rotation to identify a positive estimate of
nij .

23.4 Modeling Skew-Symmetry by Distances

The power of the Gower decomposition is that a graph of only n objects
is obtained in a plane where the angles subtended by the vectors have a
fixed meaning. A disadvantage is that areas represent the size of asymme-
tries, because judgments on areas are cognitively demanding. Interpreting
distances is easier. Therefore, we propose a new model for visualizing a
skew-symmetric matrix that expresses asymmetries by Euclidean distances.

The distance model for skew-symmetry uses Euclidean distances between
points i and j to estimate the size of the skew-symmetric effect |nij |. In
addition, similar to the Gower model, the direction of rotation is impor-
tant. If the angle measured clockwise between the vector to point i and
the vector to point j is less then 180◦, then nij is estimated by dij(X).
Conversely, if this angle is between 180◦ and 360◦ measured clockwise (or,
equivalently, between 0 and −180◦, in the counterclockwise sense), then
nij is estimated by −dij(X). Thus, the model predicts that starting from a
point i all points j that are in the half plane with positive angles between 0◦

and 180◦ (measured clockwise) have a positive estimate for nij . All points
j that have negative angles between 0◦ and −180◦ (measured clockwise)
produce a negative estimate for nij .

To fit the distance model to skew-symmetric data, we need to determine
for point i whether point j lies in the positive or in the negative rotational
half of the plane. Let xi be the 2 × 1 vector with the row coordinates of
point i. Now, a rotation of xi by −90◦ is obtained by reflecting the first
coordinate vector and then swapping the dimensions, that is, by T′xi with

T′ =
[

0 1
−1 0

]
and T =

[
0 −1
1 0

]
.

If another vector xj is projected onto T′xi, and the result is positive, then
point j is on the positive side of the plane so that nij is estimated by
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xi

xj

T’xi

FIGURE 23.2. Illustration of determining whether point j gives a positive or
negative contribution for a combination ij. Vector xj is projected on T′xi, the
−90◦ rotation of xi. In this example, the projection x′

jT
′xi is positive indicating

a positive estimate for nij .

dij(X). Figure 23.2 gives an example of this case. On the other hand, if the
projection is negative, then point j is on the negative side of the plane so
that nij is estimated by −dij(X). The projection of xj onto T′xi is given
by x′

jT
′xi. Let the sign function be defined by

sign(z) =

⎧⎨⎩
1 if z > 0,
0 if z = 0,

−1 if z < 0.

Now, the estimate of nij can be obtained by sign(x′
jT

′xi)dij(X). A formal
model for the distance model for skew-symmetry is obtained by minimizing
the sum of squared differences between nij and its estimate, that is, by
minimizing

L(X) =
n∑

i=1

n∑
j=1

[nij − sign(xiTxj)dij(X)]2 (23.7)

over X.
We applied this model to the skew-symmetric part of the Morse code

data and the results are given in Figure 23.3. Small distances in the plot
generally indicate small skew-symmetries. The plot is dominated by large
asymmetries that are shown by large distances. For example, we see that H
and X have a large distance. Because we are using a clockwise rotation, the
sequence HX leads to higher confusion rates than presenting X first and H
afterwards. Comparing this solution to the Gower diagram in Figure 23.1
shows that there is not so much difference. However, the advantage of the
distance model for skew symmetry is that the distance of two points shows
to what extent the proximities of two objects are asymmetric.

Some caution is required here. The loss function (23.7) was fitted with a
general-purpose optimization routine in MatLab. Such a routine may not
be optimal for this loss function. In particular, we expect that this loss
function may be quite sensitive to local optima. Further study is needed to
see how severe this problem is.
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FIGURE 23.3. Plot of the distance model for skew-symmetry on the Morse code
data. The distance in a clockwise direction estimates positive values for nij and
those in an anticlockwise direction estimate minus the distance for nij .

As is the case for the Gower decomposition, the dimensions in the current
model come in pairs, the so-called bimension. The distance model for skew-
symmetry could be extended to two or more pairs of such dimensions.
It seems natural to compute the distance for each bimension separately,
inasmuch as the interpretation is done bimensionwise.

23.5 Embedding Skew-Symmetries as Drift Vectors
into MDS Plots

Another simple method for asymmetries is simultaneously displaying the
symmetric part and the skew-symmetric part of the data. This makes it
possible to see how these two data components are related to each other.
The skew-symmetric values are embedded into the MDS representation of
the symmetrized data by drawing arrows (drift vectors) from each point i
to any other point j in the configuration so that these vectors correspond
in length and direction to the values in row i of the skew-symmetric matrix
(Borg, 1979; Borg & Groenen, 1995). Thus, on point R in Figure 4.6 we
would attach a vector of length .11 = (.35 − .13)/2 pointing towards A.
The units for the arrows are chosen so that they can be represented most
conveniently in the given configuration. The arrow’s direction towards A
is chosen to express that A is more often confused with R when presented
first than vice versa.

To avoid a cluttered picture, we can draw only the resultant of the vector
bundle thus attached to each point. The resultant averages out random
nonsymmetries and shows the general drift (see Figure 23.4). Length and
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direction angle of drift vectors are computed as follows. We use vector
notation and show the 2D case.

1. Do for all points i.

2. Do for all points j �= i.

3. Given vectors xi and xj in terms of their MDS coordinates,
aij = xj − xi is the vector from point i to point j in the
MDS configuration.

4. Norm aij to unit length to get bij ; that is, bij = aij/(a′
ijaij)1/2.

5. Multiply bij by element nij of the skew-symmetric component
of the proximity matrix to obtain cij ; that is, cij = nijbij .

6. End do.

7. Average the n vectors cij to obtain the (average) drift vector for
point i, di; that is, di = n−1 ∑

j cij .

8. For plotting di, compute di’s length as the root mean square
of its elements and the direction angle relative to the Y -axis,
αi = arccos(d′

iu/
√

d′
idi), where u′ = (0, 1).

9. End do.

Figure 23.4 shows the 2D MDS solution with the embedded drift vectors.
It is obvious that the nonsymmetries in the confusion data are not random
(see also Möbus, 1979). One notes that the arrows exhibit a definite vector
field with a trend that, in substantive terms, indicates that shorter Morse
code signals are more often confused with longer ones than vice versa.
The vertical axis reflects the temporal length of the signals. The signal E,
for example, is just one ·, while the signal for O is – – – – –. Moreover,
because the trend is towards the North-West, the asymmetries also reflect
the composition pattern of the signals: signals in the direction of the drift
vectors tend to have more short components (see Figure 4.7).

23.6 Analyzing Asymmetry by Unfolding

We now change to models that directly analyze the entire asymmetric prox-
imity matrix. One property that all these models share is that they some-
how model both the symmetric part of the data and the skew-symmetric
part. One of the simplest distance models that can be used is unfolding (see
Chapters 14 to 16) as, for example, has been suggested by Gower (1977).

We look at an example of brand switching data. These data are derived
from supermarket scanner data as described by Bell and Lattin (1998).
In this example, we want to investigate how households change in buying
15 different cola soft drinks. The daily purchases of cola soft drinks were
recorded for 488 U.S. households over a period of 104 weeks from June 1991
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FIGURE 23.4. 2D Morse code MDS configuration with drift vectors to model the
asymmetry in the Morse codes.

to June 1993. A household is considered to make a change whenever the
products were of a different type or brand for two subsequent purchases.
If a household has more than one purchase on a day, then we divide this
switch evenly over all the products that have been bought that day. Table
23.1 shows the rounded brand switching data for colas. The rows of the
table indicate the type of cola bought before and the column indicates the
type of cola that is currently bought. Thus, the changes are made from the
row product to the column product.

Brand switching data can be interpreted as similarities, because large
values indicate that households easily switch between the two products
and, hence, consider them similar. For unfolding, we need to transform
these similarities into dissimilarities. One such transformation can be ob-
tained by the gravity model discussed in Section 6.4. This model stems from
astronomy and relates the gravitational force pij to a squared Euclidean
distance d2

ij by the relation pij = kmimj/d2
ij , where k is a constant and

mi and mj are the masses of the two bodies. We equate mi and mj with
the row and column sums of the brand switching matrix. Then,

δij =
(

mi · mj

pij

)1/2

(23.8)

gives an asymmetric dissimilarity matrix on which unfolding can be per-
formed. If pij equals zero, then δij is declared missing. The brand switching
data converted in the sense of the gravity model are given in Table 23.2.
Note that Zielman and Heiser (1993) and Groenen and Heiser (1996) have
used the gravity model in a similar context.

We have applied unfolding to the cola brand switching data. The joint
representation is given in Figure 23.5, where the rows (the colas from which
the change is made) are plotted as solid points and the columns (the colas
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TABLE 23.1. Brand switching data among 15 different colas. The row indicates
from which product the change is made, the column contains the product to
which is changed.

To
From a. b. c. d. e. f. g. h. i. j. k. l. m. n. o.

a. Coke decaf 41 11 2 8 0 2 15 8 14 0 9 11 0 6 2
b. Coke diet decaf 9 341 32 3 4 8 55 78 31 1 63 16 17 14 4
c. Pepsi diet decaf 3 27 160 15 8 2 18 15 32 2 31 13 2 12 7
d. Pepsi decaf 7 3 17 89 2 3 16 8 4 0 3 27 1 6 3
e. Canfield 1 7 6 2 119 6 20 8 19 0 16 15 2 21 7
f. Coke 4 4 2 1 4 73 37 8 12 3 8 33 3 36 6
g. Coke classic 14 53 16 16 22 38 675 98 56 10 48 187 33 172 20
h. Coke diet 5 74 14 12 7 5 108 716 123 26 92 31 11 27 18
i. Pepsi diet 14 35 36 3 15 11 56 120 422 20 86 82 29 38 10
j. RC diet 0 5 0 1 3 3 6 30 5 12 17 6 4 14 1
k. Rite diet 13 70 29 6 12 5 49 87 92 19 471 40 11 34 8
l. Pepsi 8 18 9 26 19 29 204 26 91 5 29 663 24 217 51
m. Private label 2 14 4 3 1 2 35 13 22 1 20 19 364 23 1
n. RC 7 10 13 7 19 34 171 30 31 10 36 230 22 440 41
o. Wildwood 3 3 7 3 10 9 26 22 11 2 4 48 2 35 215

TABLE 23.2. Brand switching data of Table 23.1 converted in the sense of the
gravity model (23.8).

To
From a. b. c. d. e. f. g. h. i. j. k. l. m. n. o.

a. Coke decaf 20 89 150 56 0 122 113 143 94 0 116 129 0 153 159
b. Coke diet decaf 99 37 86 210 203 139 135 105 145 274 100 245 144 230 258
c. Pepsi diet decaf 123 93 27 67 103 200 170 171 102 139 102 195 302 178 140
d. Pepsi decaf 59 206 62 20 152 120 133 173 214 0 242 100 315 186 158
e. Canfield 181 155 120 156 23 98 136 199 112 0 120 154 256 114 118
f. Coke 88 199 201 214 120 27 97 193 137 93 165 100 202 84 124
g. Coke classic 117 136 178 133 127 94 57 137 159 127 168 105 152 96 169
h. Coke diet 182 108 177 144 211 242 132 47 100 74 113 241 246 227 167
i. Pepsi diet 96 137 97 252 126 143 161 102 47 74 103 130 133 168 196
j. RC diet 0 120 0 144 93 91 163 67 144 31 77 159 119 91 205
k. Rite diet 98 96 106 175 139 209 170 117 100 74 43 183 212 175 216
l. Pepsi 152 231 234 103 135 106 102 263 123 177 214 55 176 85 105
m. Private label 185 159 213 185 358 245 149 226 152 241 156 198 27 158 454
n. RC 144 273 171 175 119 86 98 216 185 111 169 82 162 52 103
o. Wildwood 132 300 141 161 99 101 151 152 187 149 305 109 324 112 27
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FIGURE 23.5. Unfolding on the brand switching data of Table 23.1 after being
converted by the gravity model. The solid points denote the the colas chosen at
time t, the open circles represent colas chosen at time t + 1.

to which the change is made) as open circles. To interpret this diagram, one
studies, for example, how Coke diet buyers change: note that they tend to
move to Riet diet, Coke diet decaf, Pepsi diet, RC diet, and Pepsi diet decaf,
because they are the nearest in the plot. They are not likely to change to
Private label, Wildwood, and Canfield because these brands are far away.
A striking feature of the solution is that there is not much changing going
on for customers buying the Private label because it is located far away
from all other colas. In the same manner, one can focus on any other cola
and see how customers change to the competing colas.

23.7 The Slide-Vector Model

The unfolding model for asymmetry estimates many parameters. To reduce
the number of parameters, a constrained form of unfolding can be used. One
such model is the slide-vector model that constrains the row and column
points to be equal up to a translation. This restriction implies that the
solution consists of the points that represent the choice objects and one
uniform shift of the entire space, the slide-vector z, in a fixed direction. This
model was first proposed by De Leeuw and Heiser (1982, who attributed
it to a personal communication with Kruskal, 1973) and was thoroughly
worked out by Zielman and Heiser (1993). Note that Carroll and Wish
(1974b) refer to the same model when they speak of the drift vector model.
The rationale behind the model is that the data can be thought to consist
of symmetric distances augmented by a strong wind: changes against the
wind direction will take more effort, whereas changes in the direction are
easier. In fact, Figure 23.4 suggests just that model.
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To lay out the slide-vector model formally, we define X to be the row
coordinates and Y the column coordinates in the unfolding problem. Then,
the restriction in the slide-vector model amounts to yis = xis − zs. The
definition of the distance in the slide-vector model is given by

dij(X,Y, z) =

(∑
s

(xis − yjs)2
)1/2

=

(∑
s

(xis + zs − xjs)2
)1/2

.(23.9)

Thus, the row points X are equal to the column points Y translated by
the slide-vector z.

Clearly, if z = 0, then (23.9) reduces to the ordinary symmetric Euclidean
distance. For two objects that are at the same position, dij(X,Y, z) reduces
to (

∑
s z2

s)1/2, which again is symmetric. In fact, if diagonal values δii are
fitted in the unfolding problem, then these entries are all estimated by the
length of the slide vector.

The slide-vector model can easily be fitted by considering unfolding as
MDS with missing within-group dissimilarities (see Section 14.1) combined
with external constraints (see Section 10.3). In matrix notation, the slide-
vector restrictions are given by Y = X−1z′. Stacking the row and column
coordinates underneath each other gives[

X
Y

]
=

[
X

X − 1z′

]
=

[
I 0
I −1

] [
X
z′

]
= E

[
X
z′

]
.

Thus, the slide-vector model is fitted by providing the external constraints
E in this way.

Consider a small illustrative example of three objects for generating the
matrix of external constraints E. Suppose we want to apply the slide-vector
model in two dimensions. Then, the full MDS matrix becomes

∆ =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 δ11 δ12 δ13
0 0 0 δ21 δ22 δ23
0 0 0 δ31 δ32 δ33

δ11 δ21 δ31 0 0 0
δ12 δ22 δ32 0 0 0
δ13 δ23 δ33 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ and W =

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

Note that the matrix W indicates that the within-block dissimilarities are
missing, so that we are dealing with unfolding. The between-block dissim-
ilarities contain the asymmetric data. The matrix of coordinates is simply⎡⎢⎢⎢⎢⎢⎢⎣

x11 x12
x21 x22
x31 x32
y11 y12
y21 y22
y31 y32

⎤⎥⎥⎥⎥⎥⎥⎦ ,
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FIGURE 23.6. The slide-vector model fitted to the brand switching data of Ta-
ble 23.1 after being converted by the gravity model. Panel (a) shows the joint
representation of rows (*) and columns (o). Panel (b) shows the representation
with one set of points and the slide vector. The arrow in the center that indicates
the slide vector is rather small.

that is, restricted to be equal to

E
[

X
z′

]
=

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
1 0 0 −1
0 1 0 −1
0 0 1 −1

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎣

x11 x12
x21 x22
x31 x32
z1 z2

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
x11 x12
x21 x22
x31 x32

x11 − z1 x12 − z2
x21 − z1 x22 − z2
x31 − z1 x32 − z2

⎤⎥⎥⎥⎥⎥⎥⎦ .

Thus, the slide-vector model can be fitted by providing the matrix of exter-
nal variables E above to an MDS program that allows for linear restrictions
on the configuration and allows for missing values of the dissimilarities.

We now return to the colaswitching data of Table 23.1 and their trans-
formations by the gravity model in Table 23.2. The slide-vector model was
fitted by Proxscal in SPSS as it allows for external variables such as those
defined by E. The resulting configuration is given in Figure 23.6. Because
the slide-vector model is a constrained version of unfolding, there are two
possible representations. The joint representation in Figure 23.6a shows
the row and column points together. It can be clearly seen that the column
points are indeed equal to the row point up to a translation. The second
representation (see Figure 23.6b) only shows a single set of coordinates
together with the slide-vector z.

The example shows that the slide vector is rather small for these data.
The model mostly captures the symmetric part of the data and shows that
a uniform trend in the asymmetries, however large they may be, is relatively
small.
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It seems that switching takes place mostly between colas of the same
type. For example, there is switching with the group of Coke, Pepsi, RC,
and Canfield, within the group Pepsi diet, Coke diet decaf, Rite diet, and
Coke diet, but less switching between these groups. In this solution, too,
we see that Private label is farthest away from all other colas indicating
that those households do not switch easily to other colas.

A disadvantage of the slide-vector model is that it is quite restrictive
compared to unconstrained unfolding. Instead of n×p coordinates for Y in
unrestricted unfolding, the slide-vector model only estimates p parameters
for the slide vector. It seems that the slide-vector model works better if
asymmetries are large relative to the symmetric part of the data. We also
expect the slide-vector model to perform better for small data sets because
the restrictions on the coordinates are weaker than for large n.

23.8 The Hill-Climbing Model

The formal advantage of the slide-vector model is that it easily fits into
the constrained unfolding framework so that it can be fitted by a standard
program such as Proxscal. The joint representation of X and the con-
strained Y is easy to interpret even though it doubles the number of points.
The more parsimonious representation of only X and z seems harder to in-
terpret. To remedy the latter problem, we propose an adaptation of the
slide-vector model. We are not aware of references in the literature that
have proposed this model earlier.

The new model is based on the hill-climbing metaphor: walking uphill is
more difficult than walking downhill, whereas on a plateau walking from
point A to B takes the same effort as walking from B to A. This idea can
be modeled by choosing the distance measure as

dij(X, z) =

(∑
s

(xis − xjs)2
)1/2

+
∑

s(xis − xjs)zs

(
∑

s(xis − xjs)2)
1/2 , (23.10)

or in matrix notation

dij(X, z) = ‖xi − xj‖ +
(xi − xj)′z
‖xi − xj‖ . (23.11)

A least-squares model estimating (23.11) is given by

L(X, z) =
n∑

i=1

n∑
j=1

(
δij −

[
‖xi − xj‖ +

(xi − xj)′z
‖xi − xj‖

])2

. (23.12)

The rationale behind this model is that the projection of the difference
vector xi − xj of going from point i to point j on a slope given by the
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slope vector z measures to what extent it is more difficult or easier to go
from point i to j than the Euclidean distance only. If the difference vector
is orthogonal to the slope vector z, then no asymmetry is modeled. If the
difference vector is parallel to the slope vector, then maximum asymmetry
is achieved. Note that dii(X, z) = 0 by definition so that the diagonal values
cannot be modeled. The denominator ‖xi −xj‖ in (23.11) is chosen so that
the length of the Euclidean distance between i and j does not influence the
amount of asymmetry.

The orientation of the difference vector, and thus the positioning of the
points, is influenced by the asymmetry in the data because the orientation
of the difference vector determines the projection on the slope vector. It
may be verified that (23.12) can be decomposed into a symmetric part
M with elements mij = (δij + δji)/2 and a skew-symmetric part N with
elements nij = (δij − δji)/2; that is,

L(X, z) = 2
n∑

i=1

n∑
j=i+1

(mij − ‖xi − xj‖)2

+
n∑

i=1

n∑
j=1

(
nij − (xi − xj)′z

‖xi − xj‖
)2

. (23.13)

This reformulation shows that the distances directly model the symmet-
ric part of ∆, and the projections model the skew-symmetric part. The
size of the symmetric part and the skew-symmetric part can be expressed
in terms of the sum-of-squares ‖M‖2 and ‖N‖2. The relative difference
between those measures influences the solution (23.13) in how much sym-
metry and how much skew-symmetry of the data is fitted. Consider the
following adaptation of (23.13); that is,

Lw(X, z) =
2α

‖M‖2

n∑
i=1

n∑
j=i+1

(mij − ‖xi − xj‖)2

+
1 − α

‖N‖2

n∑
i=1

n∑
j=1

(
nij − (xi − xj)′z

‖xi − xj‖
)2

, (23.14)

where 0 ≤ α ≤ 1 is a fixed weight that sets the relative importance of the
two parts. Choosing α = 1 fits only the symmetric part M as in regular
MDS. For α = 0, only the skew-symmetric part N is fitted. If α = .5, then
both parts are equally important in the solution. Note that the length of
z only reflects the amount of skew-symmetry that is captured from N. For
the interpretation, it is the direction of z that shows how the difference
vectors project on the hill slope z.

We have fitted the hill-climbing model to the cola data. Our model cannot
be estimated by a constrained form of MDS and a specialized algorithm
had to be developed. Here we have used a general-purpose minimization



23.8 The Hill-Climbing Model 511

Coke
decaf

Coke
diet
decaf

Pepsi
diet
decaf

Pepsi
decaf

Canfield

Coke
Coke
classic

Coke
diet

Pepsi
diet

RC diet

Rite diet

Pepsi

Private label

RC

Wildwood

FIGURE 23.7. The hill-climbing model fitted to the brand switching data of
Table 23.1 after being converted by the gravity model. The dotted line gives the
direction of the slope up the hill.

function in MatLab to compute a solution. Figure 23.7 presents the results.
The slope vector gives the uphill direction. The symmetric part of the data
can be interpreted as usual. For example, there seems to be much switching
between Coke, Coke classic, RC, and Pepsi because they are close together.
To a lesser extent this also holds for the group of Coke decaf and Pepsi
decaf, the group Coke diet, Pepsi diet and Rite diet, and the group of Coke
diet decaf and Pepsi diet decaf.

To see how much skew-symmetry is present, the hill-climbing model pre-
dicts that changing from Private label to most other colas is easier than
changing from those colas to Private label. The reason is that starting from
Private label to any other cola it is downhill and the other way is uphill. We
also see that there are several groups of colas whose difference vectors are
almost orthogonal to the slope direction. Those groups lie at the same alti-
tude on the hill and hardly display asymmetry in how often people change
from one cola to the other or vice versa. One such group is Coke, Coke
classic, RC, and Pespi. Other groups that are mostly symmetric consist of
Coke decaf and Pepsi decaf, a group with Pepsi diet and Rite diet, and
a group of Coke diet decaf and Pepsi diet decaf. In a similar way, more
relations could be deferred from the hill-climbing representation in Figure
23.7.

The hill-climbing model resembles to some extent the jet-stream model
proposed by Gower (1977). This model uses the metaphor of flying times
taking the jet-stream into account. Using our notation, the distances in the
jet-stream model are defined by

dij(X, z) =
‖xi − xj‖

1 + (xi−xj)′z
‖xi−xj‖

. (23.15)
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The difference from the hill-climbing model is that the asymmetry factor
appears in the jet-stream model in the denominator, whereas in the hill-
climbing model it turns up as a separate term.

23.9 The Radius-Distance Model

Another model for fitting asymmetry directly is based on a representation
of objects by circles with different radii (Okada & Imaizumi, 1987). The
asymmetric dissimilarity δij is modeled along the line connecting the cen-
ters i and j of two circles. The radius-distance from i to j is defined as the
Euclidean distance dij between the centers of the circles, subtracting the
starting radius of object i and adding the ending radius of object j. Thus,
the radius-distance model can be fitted by minimizing

L(X, r) =
n∑

i=1

n∑
j=1

[δij − (dij(X) − ri + rj)]2

= ‖∆ − (D(X) − 1r′ + r1′)‖2, (23.16)

where D(X) has elements dij(X) which refer to the usual Euclidean dis-
tance and r is a vector containing nonnegative radii ri. As the hill-climbing
model, the radius distance model always fits the diagonal elements by 0
because for the symmetric part dii(X) = 0 and for the skew-symmetric
part ri − ri = 0.

An algorithm to minimize L(X, r) can be easily formulated by recogniz-
ing that the loss can be decomposed in a symmetric and skew-symmetric
part (Bove & Critchley, 1993). This property means that L(X, r) may be
written as

L(X, r) = ‖(∆ + ∆′)/2 − D(X)‖2

+‖(∆ − ∆′)/2 − (r1′ − 1r′)‖2. (23.17)

Therefore, the symmetric part can be fitted by a regular MDS on (∆ +
∆′)/2. The solution for the skew-symmetric part N = (∆−∆′)/2 requires
a bit more care because of the nonnegativity constraints on the radii ri.
Some rewriting allows the skew-symmetric term of (23.17) to be expressed
as

‖N − (r1′ − 1r′)‖2 = tr N′N + 2nr′Jr − 4r′JN1, (23.18)

where N = (∆−∆′)/2 and J = I− n−111′ is the centering matrix. There
is a simple analytic solution to (23.18). In Section 23.2, the unconstrained
minimizer for (23.18) was given as ru = n−1JN1. Note that the centering
matrix J can be left out because N1 has column sum zero due to the skew-
symmetry of N. It is clear that ru does not satisfy the restriction that all
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FIGURE 23.8. The radius-distance model of Okada and Imaizumi (1987) fitted
to the brand switching data of Table 23.1 after being converted by the gravity
model.

ri ≥ 0. However, any rc = ru + c1 with a c ≥ mini ri will be a feasible
solution. The reason is that adding a constant does not change (23.18),
because r is premultiplied by J and the nonnegativity constraints will be
satisfied. Therefore, we choose c = mini ri so that the smallest radius equals
zero.

Figure 23.8 shows the results of the distance radius model to these data.
The symmetric relations can be easily interpreted by considering the centers
of the circles. Large distances indicate little mutual switching whereas colas
at close distance imply more mutual switching. The asymmetric part is
taken care of by the differences in circle sizes. The fitted distance going
from Coke decaf to Rite diet is indicated by the arrow in Figure 23.8.
Going the other way around, from Rite diet to Coke decaf, the distance is
computed from the border of the Rite diet circle to the far end of the Coke
decaf circle. Because the circle of Coke decaf is larger than the circle of Rite
diet, the distance Rite diet to Coke decaf is larger than the distance Coke
decaf to Rite diet. This indicates that more households are changing from
Coke decaf to Rite diet than vice versa. In a similar way, all the relations
can be interpreted.

A nonmetric version of the radius-distance model was proposed by Okada
and Imaizumi (1987) who included a gradient-based algorithm. However,
the algorithmic approach outlined here can still be followed. First, replace
the δij by d̂ij as was done in Chapter 9 when going from metric to nonmetric
MDS. Then alternatingly update one set of parameters while keeping the
other fixed. Thus, given X and r, update d̂. Normalize d̂′d̂ to n2 so that
the trivial solution of d̂ = 0, X = 0, and r = 0 is avoided. Next, update
X and r given d̂. The update of X is given by (8.29) where (D̂ + D̂′)/2
should used instead of the dissimilarities. The update of r can be obtained
by rc discussed above. Remain iterating until convergence is obtained.
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a. b.

FIGURE 23.9. A circular vector field (panel a) and a configuration with a dom-
inant point that “feeds” into all other points (panel b).

Okada (1990) discusses how the radius-distance model can be extended
to ellipsoids instead of circles. This relaxation has the advantage that for
each dimension and each object the radius can be different thereby allowing
to estimate the skew-symmetric component in a better way. Okada (1990)
also presents a gradient based algorithm.

23.10 Using Asymmetry Models

The MDS user should be aware of the simple but important fact that any
asymmetry model is, as all models are, designed for a particular purpose
only. Each such model represents one particular form of asymmetry only.
It helps to detect only those patterns in the data on which it focuses. If the
chosen model does not show this particular form of asymmetry for the given
data, it does not imply that there are no other systematic asymmetries in
the data. Consider, for example, the slide-vector model. It is made to show
to what extent the data contain a general asymmetry in one direction of the
space. As we can see in Figure 23.6, this form of asymmetry can be rather
small. However, the data may contain other interesting asymmetries. Figure
23.9 shows two particular forms of asymmetries that would go unnoticed
by the slide-vector model: the circular vector field in panel A and the
configuration with one “dominant” element in panel B. (Neither of these
cases is inconceivable for real data.) The circular field would be detected
by the drift-vector model, for example, but the case in panel B would not
lead to a (resultant) drift vector that adequately describes the asymmetries.
Rather, in this case, it would be more revealing to show all the drift vectors
attached to this one particular point, provided that the asymmetries can
be considered big enough (relative to the symmetric part of the data) and,
of course, reliable enough to warrant further studies.

When analyzing asymmetries, the user should experiment with different
models to avoid missing systematic patterns that exist in the data. Mod-
els that identify the extent of one global and linear trend, in particular,
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should be complemented with models that represent the more fine-grained
asymmetries. To use such a hierarchy of models also allows one to assess
whether it is worth it, relative to the quality of the data, to pursue models
with many free fitting parameters.

23.11 Overview

In this section, we give a summary of the models for asymmetry and skew-
symmetry discussed in this chapter. The reader should know that the dis-
cussion in this chapter is not exhaustive. Other models for asymmetry exist
in the literature, some aimed at specific applications. In this chapter, we
have restricted ourselves to mostly distance-based models for asymmetry
or skew-symmetry.

Many of the models for asymmetry can be decomposed into a symmetric
part and a skew-symmetric part. Some models only estimate the skew-
symmetric part. Others fit the asymmetric data directly. Table 23.3 gives
an overview of the models discussed in this chapter. Analyzing the skew-
symmetric component separately from the symmetric part has the advan-
tage that for the interpretation one only cares about the skew-symmetry.
On the other hand, it may be useful to see the symmetric and skew-
symmetric relations simultaneously. An important issue in deciding for an
asymmetry model is the way of representing the asymmetry and how easy
it is to interpret it. The latter remains a subjective matter.

Throughout this chapter, we only discussed the analysis of two-way
asymmetric data. For three-way data, several models have been proposed
in the literature. For example, Okada and Imaizumi (1997) extend the
radius-distance model to the case of replications of two-way asymmetry
data. De Rooij and Heiser (2000) extend distance measures to deal with
the case of one-mode three-way asymmetric data.

23.12 Exercises

Exercise 23.1 Consider the data in the table below. They represent
preceding–following contingencies for certain types of threat display be-
haviors shown by a common bird, the great tit (Blurton Jones, 1968). The
numbers correspond to the proportion of times that the behavior in col-
umn j followed the behavior in row j. For example, feeding follows fluffing
3% of the time. Spence (1978) argues that these data are “a measure of
how ‘close’ behavior j is to behavior i” and uses MDS to “visually detect”
possible groupings of behaviors. The asymmetry of the data is noticed by
Spence, but not studied.
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TABLE 23.3. Summary of the properties of the models for asymmetric data dis-
cussed in this chapter. A + or a − in the columns P,M, and N indicate whether
the model fits asymmetric proximities directly (column P), the symmetric part
separately (column M), and the skew-symmetric part separately (column N).

Section Model P M N Graphical Representation
23.3 Signed-distance model – – + Signed distances between points on

line
23.3 Gower decomposition – – + Areas between vectors plus orientation
23.4 Distance model for

skew-symmetry
– – + Distance between points plus orienta-

tion
23.5 Scaling the skew-

symmetry
– + + Symmetry by distance between points,

skew-symmetry by a summary vector
23.6 Unfolding + – – Distances between row and column ob-

jects
23.7 Slide-vector model + – – As unfolding, but row and column

points are equal up to a translation
23.8 Hill-climbing model + – – Symmetry by distance between points,

skew-symmetry modeled by projection
of difference vector onto the slope di-
rection.

23.9 Radius-distance model – + + Distance between two points with the
radius from the starting circle removed
and the radius of the arriving circle
added
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Type of Behavior 1 2 3 4 5 6 7 8 9 10 11 12 13
1 Attack 4 17 16 11 10 13 11 0 6 0 0 9 4
2 Head down 26 0 5 14 4 13 2 8 5 0 0 5 18
3 Horizontal 25 3 0 12 13 11 3 2 10 8 0 4 9
4 Head up 5 9 8 8 14 15 5 4 13 0 2 5 12
5 Wings out 22 13 10 5 2 10 2 7 7 0 0 2 19
6 Feeding 2 5 18 13 11 3 3 5 13 8 1 16 1
7 Incomplete feeding 4 10 15 4 4 13 7 22 0 0 12 8 0
8 Hopping around 1 10 0 4 2 4 46 0 3 6 11 11 3
9 Hopping away 0 4 6 9 5 1 8 4 1 6 31 15 10

10 Crest raising 0 0 0 6 7 3 0 11 17 1 30 13 12
11 Fluffing 0 4 5 6 3 3 0 23 13 35 0 6 3
12 Looking around 5 0 5 0 3 6 12 12 11 30 8 0 9
13 Hopping towards 5 25 12 8 21 4 2 2 2 7 5 6 0

(a) Assess, by matrix decomposition, just how asymmetric these data
are.

(b) Use the symmetric portion of the data for a two-dimensional MDS
analysis. Then, add the skew-symmetric portion as vectors to a few
behaviors that are strongly asymmetric, and to a few others that are
only mildly asymmetric.

(c) How would you interpret the symmetric portion of these data? (Hint:
Blurton Jones speculates that behaviors within each “group” may
have certain causal factors in common.)

(d) Scale these data by the slide vector model, using Proxscal.

Exercise 23.2 Consider the data matrix below (Coombs, 1964). It shows
the frequencies with which an article that appeared in the journal shown
as a row entry cites an article in the column journal.

Journal AJP JASP JAP JCPP JCP JEdP JexP Pka
Am. J. Psy. 119 8 4 21 0 1 85 2
J. Abnorm. Soc. Psy. 32 510 16 11 73 9 119 4
J. Applied Psy. 2 8 84 1 7 8 16 10
J. Comp. Physiol. Psy. 35 8 0 533 0 1 126 1
J. Consulting Psy. 6 116 11 1 225 7 12 7
J. Educ. Psy. 4 9 7 0 3 52 27 5
J. Exp. Psy. 125 19 6 70 0 0 586 15
Psychometrika 2 5 5 0 13 2 13 58

To study the interaction behavior of these journals, we may follow Coombs,
Dawes, and Tversky (1970) by first subtracting the column and the row
means from the matrix entries. This leaves pure interaction values. Then,
proceed as follows.

(a) Split the matrix of interaction values into its symmetric and skew-
symmetric component.
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(b) Scale the symmetric part via MDS. Interpret the solution.

(c) Attach drift vectors to the points of the MDS configuration by hand or
by using an appropriate graphics package (see, e.g., Borg & Groenen,
1995).

(d) How do you interpret these drift vectors?

Exercise 23.3 Consider Table 23.2 on p. 505 with the asymmetric dissimi-
larities obtained from the brand switching between 15 colas.

(a) Compute the skew-symmetric matrix of this table.

(b) Compute the unidimensional skew-symmetry model (23.5). Plot the
results on a line. How do you interpret this solution?

(c) Apply Gower’s decomposition to these data. Plot the first bimension.
Interpret the solution.

(d) Which model do you expect to recover the skew-symmetry the best?
Why do you think so?

(e) Compute for both models how much of the sum of squared skew-
symmetry is recovered by the unidimensional skew-symmetry model
and by Gower’s decomposition using the first bimension. Does your
computation coincide with your expectations?

(f) Do the two models differ in their interpretation? If so, how?




