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Chapter 3
Dimensionality Reduction - Nonlinear 
Methods

This chapter covers various methods for nonlinear dimensionality reduction,
where the nonlinear aspect refers to the mapping between the high-
dimensional space and the low-dimensional space. We start off by discussing
a method that has been around for many years called multidimensional
scaling. We follow this with several recently developed nonlinear
dimensionality reduction techniques called locally linear embedding,
isometric feature mapping, and Hessian eigenmaps. We conclude by
discussing two related methods from the machine learning community
called self-organizing maps and generative topographic maps. 

3.1 Multidimensional Scaling - MDS

In general, multidimensional scaling (MDS) is a set of techniques for the
analysis of proximity data measured on a set of objects in order to reveal
hidden structure. The purpose of MDS is to find a configuration of the data
points in a low-dimensional space such that the proximity between objects in
the full-dimensional space is represented with some degree of fidelity by the
distances between points in the low-dimensional space. This means that
observations that are close together in a high-dimensional space should be
close in the low-dimensional space. Many aspects of MDS were originally
developed by researchers in the social science community, and the method is
now widely available in most statistical packages, including the MATLAB
Statistics Toolbox. 

We first provide some definitions and notation before we go on to describe
the various categories of MDS [Cox and Cox, 2001]. As before, we assume
that we have a data set with n observations. In general, MDS starts with
measures of proximity that quantify how close objects are to one another or
how similar they are. They can be of two types: those that indicate similarity
or dissimilarity. A measure of dissimilarity between objects r and s is denoted
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62 Exploratory Data Analysis with MATLAB

by δrs, and the similarity is denoted by srs. For most definitions of these
proximity measures, we have

and 

.

Thus, we see that for a dissimilarity measure δrs, small values correspond to
observations that are close together, while the opposite is true for similarity
measures srs. These two main types of proximity measures are easily
converted into the other one when necessary (see Appendix A for more
information on this issue). Thus, for the rest of this chapter, we will assume
that proximity measures dissimilarity between objects. We also assume that the
dissimilarities are arranged in matrix form, which will be denoted by ∆. In
many cases, this will be a symmetric n x n matrix (sometimes given in either
lower or upper triangular form). 

In the lower-dimensional space, we denote the distance between
observation r and s by drs. It should also be noted that in the MDS literature
the matrix of coordinate values in the lower-dimensional space is denoted by X.
We follow that convention here, knowing that it might be rather confusing
with our prior use of X as representing the original set of n p-dimensional
observations. 

In MDS, one often starts with or might only have the dissimilarities ∆, not
the original observations. In fact, in the initial formulations of MDS, the
experiments typically involved qualitative judgements about differences
between subjects, and p-dimensional observations do not make sense in that
context. So, to summarize, with MDS we start with dissimilarities ∆ and end
up with d-dimensional1 transformed observations X. Usually, d = 2 or d = 3 is
chosen to allow the analyst to view and explore the results for interesting
structure, but any d < p is also appropriate.

There are many different techniques and flavors of MDS, most of which fall
into two main categories: metric MDS and nonmetric MDS. The main
characteristic that divides them arises from the different assumptions of how
the dissimilarities δrs are transformed into the configuration of distances drs

[Cox and Cox, 2001]. Metric MDS assumes that the dissimilarities δrs

calculated from the p-dimensional data and distances drs in a lower-
dimensional space are related as follows

, (3.1)

1 We realize that the use of the notation d as both the lower dimensionality of the data (d < p) and
the distance drs between points in the configuration space might be confusing. However, the
meaning should be clear from the context.

δrs 0≥ δrr 0=

0 srs 1≤ ≤ srr 1=

drs f δrs( )≈
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where f is a continuous monotonic function. The form of f(•) specifies the
MDS model. For example, we might use the formula

 . (3.2)

Mappings that follow Equation 3.2 are called ratio MDS [Borg and Groenen,
1997]. Another common choice is interval MDS, with f(•) given by

,

where a and b are free parameters. Other possibilities include higher degree
polynomials, logarithmic, and exponential functions.

Nonmetric MDS relaxes the metric properties of f(•) and stipulates only
that the rank order of the dissimilarities be preserved. The transformation or
scaling function must obey the monotonicity constraint:

,

for all objects. Because of this, nonmetric MDS is also known as ordinal MDS. 

3.1.1 Metric MDS

Most of the methods in metric MDS start with the fact that we seek a
transformation that satisfies Equation 3.1. We can tackle this problem by
defining an objective function and then using a method that will optimize it.
One way to define the objective function is to use the squared discrepancies
between drs and  as follows

. (3.3)

In general, Equation 3.3 is called the stress; different forms for the scale factor
give rise to different forms of stress and types of MDS. The scale factor used
most often is

,

in which case, we have an expression called Stress-1 [Kruskal, 1964a]. The
summation is taken over all dissimilarities, skipping those that are missing.

f δrs( ) bδrs=

f δrs( ) a bδrs+=

δrs δab< f δrs( ) f δab( )≤⇒

f δrs( )

 f δrs( ) drs–( )2

s
∑

r
∑ 

 

scale factor
---------------------------------------------------

  drs
2

s
∑

r
∑
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64 Exploratory Data Analysis with MATLAB

As we stated previously, sometimes the dissimilarities are symmetric, in
which case, we only need to sum over 1 = r < s = n.

Thus, in MDS, we would scale the dissimilarities using f(•) and then find a
configuration of points in a d-dimensional space such that when we calculate
the distances between them the stress is minimized. This can now be solved
using numerical methods and operations research techniques (e.g., gradient
or steepest descent). These methods are usually iterative and are not
guaranteed to find a global solution to the optimization problem. We will
expand on some of the details later, but first we describe a case where a closed
form solution is possible. 

The phrase metric multidimensional scaling is often used in the literature to
refer to a specific technique called classical MDS. However, metric MDS
includes more than this one technique, such as least squares scaling and
others [Cox and Cox, 2001]. For metric MDS approaches, we first describe
classical MDS followed by a method that optimizes a loss function using a
majorization technique.

Classical MDS

If the proximity measure in the original space and the distance are taken to
be Euclidean, then a closed form solution exists to find the configuration of
points in a d-dimensional space. This is the classical MDS approach. The
function f(•) relating dissimilarities and distances is the identity function, so
we seek a mapping such that

.

This technique originated with Young and Householder [1938], Torgerson
[1952], and Gower [1966]. Gower was the one that showed the importance of
classical scaling, and he gave it the name principal coordinates analysis,
because it uses ideas similar to those in PCA. Principal coordinate analysis
and classical scaling are the same thing, and they have become synonymous
with metric scaling. 

We now describe the steps of the method only, without going into the
derivation. Please see any of the following for the derivation of classical
MDS: Cox and Cox [2001], Borg and Groenen [1997], or Seber [1984].

Procedure - Classical MDS

1. Using the matrix of dissimilarities, ∆, find matrix Q, where each
element of Q is given by

.

drs δrs=

qrs  
1
2
---δrs

2–=
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2. Find the centering matrix H using

,

where I is the n x n identity matrix, and 1 is a vector of n ones.

3. Find the matrix B, as follows

.

4. Determine the eigenvectors and eigenvalues of B:

.

5. The coordinates in the lower-dimensional space are given by 

,

where Ad contains the eigenvectors corresponding to the d largest
eigenvalues, and  contains the square root of the d largest
eigenvalues along the diagonal.

We use similar ideas from PCA to determine the dimensionality d to use in
Step 5 of the algorithm. Although, d = 2 is often used in MDS, since the data
can then be represented in a scatterplot. 

For some data sets, the matrix B might not be positive semi-definite, in
which case some of the eigenvalues will be negative. One could ignore the
negative eigenvalues and proceed to step 5 or add an appropriate constant to
the dissimilarities to make B positive semi-definite. We do not address this
second option here, but the reader is referred to Cox and Cox [2001] for more
details. If the dissimilarities are in fact Euclidean distances, then this problem
does not arise.

Since this uses the decomposition of a square matrix, some of the properties
and issues discussed about PCA are applicable here. For example, the lower-
dimensional representations are nested. The first two dimensions of the 3-D
coordinate representation are the same as the 2-D solution. It is also
interesting to note that PCA and classical MDS provide equivalent results
when the dissimilarities are Euclidean distances [Cox and Cox, 2001].

Example 3.1
For this example, we use the BPM data described in Chapter 1. Recall that one
of the applications for these data is to discover different topics or sub-topics.
For ease of discussion and presentation, we will look at only two of the topics
in this example: the comet falling into Jupiter (topic 6) and DNA in the O. J.

H I n 1– 11T–=

B HQH=

B ALAT=

X AdLd
1 2⁄=

Ld
1 2⁄
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Simpson trial (topic 9). First, using the match distances, we extract the
required observations from the full interpoint distance matrix.

% First load the data - use the 'match' interpoint
% distance matrix.
load matchbpm
% Now get the data for topics 9 and 6. 
% Find the indices where they are not equal to 6 or 9.
indlab = find(classlab ~= 6 & classlab ~=9);
% Now get rid of these from the distance matrix.
matchbpm(indlab,:) = [];
matchbpm(:,indlab) = [];
classlab(indlab) = [];

The following piece of code shows how to implement the steps for classical
MDS in MATLAB. 

% Now implement the steps for classical MDS
% Find the matrix Q:
Q = -0.5*matchbpm.^2;
% Find the centering matrix H:
n = 73;
H = eye(n) - ones(n)/n;
% Find the matrix B:
B = H*Q*H;
% Get the eigenvalues of B.
[A,L] = eig(B);
% Find the ordering largest to smallest.
[vals, inds] = sort(diag(L));
inds = flipud(inds);
vals = flipud(vals);
% Re-sort based on these.
A = A(:,inds);
L = diag(vals); 

We are going to plot these results using d = 2 for ease of visualization, but we
can also construct a scree-type plot to look for the ‘elbow’ in the curve. As in
PCA, this can help us determine a good value to use. The code for
constructing this plot and finding the coordinates in a 2-D space is given next.

% First plot a scree-type plot to look for the elbow.
% The following uses a log scale on the y-axis.
semilogy(vals(1:10),'o')
% Using 2-D for visualization purposes, 
% find the coordinates in the lower-dimensional space.
X = A(:,1:2)*diag(sqrt(vals(1:2)));
% Now plot in a 2-D scatterplot
ind6 = find(classlab == 6);
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FIGURE 3.1

The top plot shows the logarithm of the eigenvalues. The bottom plot is a scatterplot of the
2-D coordinates after classical MDS. Note the good separation between the two topics, as
well as the appearance of sub-topics for topic 6.
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ind9 = find(classlab == 9);
plot(X(ind6,1),X(ind6,2),'x',X(ind9,1),X(ind9,2),'o')
legend({'Topic 6';'Topic 9'})

The scree plot is shown in Figure 3.1 (top), where we see that the elbow looks
to be around d = 3. The scatterplot of the 2-D coordinates is given in Figure
3.1 (bottom). We see clear separation between topics 6 and 9. However, it is
also interesting to note that there seems to be several sub-topics in topic 6. 
❑ 

MATLAB provides a function called cmdscale for constructing lower-
dimensional coordinates using classical MDS. This is available in the
Statistics Toolbox. 

Metric MDS - SMACOF

The general idea of the majorization method for optimizing a function is as
follows. Looking only at the one-dimensional case, we want to minimize a
complicated function f(x) by using a function g(x , y) that is easily minimized.
The function g has to satisfy

,

for a given y such that

.

Looking at graphs of these function one would see that the function g is
always above f, and they coincide at the point x = y. The method of
minimizing f is iterative. We start with an initial value x0, and we minimize
g(x , x0) to get x1. We then minimize g(x , x1) to get the next value, continuing
in this manner until convergence. Upon convergence of the algorithm, we
will also have minimized f(x).

The SMACOF (Scaling by Majorizing a Complicated Function) method
goes back to de Leeuw [1977], and others have refined it since then, including
Groenen [1993]. The method is simple, and it can be used for both metric and
nonmetric applications. We now follow the notation of Borg and Groenen
[1997] to describe the algorithm for the metric case. They show that the
SMACOF algorithm satisfies the requirements for minimizing a function
using majorization, as described above. We leave out the derivation, but
those who are interested in this and in the nonmetric case can refer to the
above references as well as Cox and Cox [2001]. 

The raw stress is written as

f x( ) g x  y,( )≤

f y( ) g y  y,( )=
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for all available dissimilarities . The inequality r < s in the summation
means that we only sum over half of the data, since we are assuming that the
dissimilarities and distances are symmetric. We might have some missing
values, so we define a weight wrs with a value of 1 if the dissimilarity is
present and a value of 0 if it is missing. The notation drs(X) makes it explicit
that the distances are a function of X (d-dimensional transformed
observations), and that we are looking for a configuration X that minimizes
stress.

Before we describe the algorithm, we need to present some relationships
and notation. Let Z be a possible configuration of points. The matrix V has
elements given by the following

and

.

This matrix is not of full rank, and we will need the inverse in one of the
update steps. So we turn to the Moore-Penrose inverse, which will be
denoted by V+. 2

We next define matrix B(Z) with elements

, 

and

.

2 The Moore-Penrose inverse is also called the pseudoinverse and can be computed using the
singular value decomposition. MATLAB has a function called pinv that provides this inverse.

σ X( ) wrs drs X( ) δrs–( )2

r s<
∑=

wrsδrs
2

r s<
∑ wrsdrs

2 X( )
r s<
∑ 2 wrsδr sdrs X( ),

r s<
∑–+=

δrs

vij wij ,–= i j≠

vii wij

j 1 i j≠,=

n

∑=

bij

 
wijδij

dij Z( )
--------------– dij Z( ) 0≠

0 dij Z( ) 0=





= i j≠

bii bij

j 1 j i≠,=

n

∑–=
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We are now ready to define the Guttman transform. The general form of
the transform is given by 

,

where the k represents the iteration number in the algorithm. If all of the
weights are one (none of the dissimilarities are missing), then the transform
is much simpler:

.

The SMACOF algorithm is outlined below.

SMACOF Algorithm

1. Find an initial configuration of points in Rd. This can either be
random or nonrandom (i.e., some regular grid). Call this X0.

2. Set Z = X0 and the counter to k = 0.

3. Compute the raw stress σ ( ).
4. Increase the counter by 1: k = k + 1.

5. Obtain the Guttman transform .
6. Compute the stress for this iteration, σ ( ).

7. Find the difference in the stress values between the two iterations.
If this is less than some pre-specified tolerance or if the maximum
number of iterations has been reached, then stop.

8. Set , and go to step 4.

We illustrate this algorithm in the next example.

Example 3.2
We turn to a different data set for this example and look at the leukemia
data. Recall that we can look at either genes or patients as our observations;
in this example we will be looking at the genes. To make things easier, we
only implement the case where all the weights are 1, but the more general
situation is easily implemented using the above description. First we load the
data and get the distances.

% Use the Leukemia data, using the genes (columns)
% as the observations.
load leukemia
y = leukemia';
% Get the interpoint distance matrix.
% pdist gets the interpoint distances.

Xk V+B(Z)Z=

Xk n 1– B Z( )Z=

X0

Xk

Xk

Z Xk=

EDA.book  Page 70  Wednesday, October 27, 2004  9:10 PM



Dimensionality Reduction - Nonlinear Methods 71

% squareform converts them to a square matrix.
D = squareform(pdist(y,'seuclidean'));
[n,p] = size(D);
% Turn off this warning... :
warning off MATLAB:divideByZero

Next we get the required initial configuration and the stress associated with
it.

% Get the first term of stress.
% This is fixed - does not depend on the configuration.
stress1 = sum(sum(D.^2))/2;  
% Now find an initial random configuration.
d = 2;
% Part of Statistics Toolbox
Z = unifrnd(-2,2,n,d);
% Find the stress for this.
DZ = squareform(pdist(Z));
stress2 = sum(sum(DZ.^2))/2;
stress3 = sum(sum(D.*DZ));
oldstress = stress1 + stress2 - stress3;

Now we iteratively adjust the configuration until the stress converges.

% Iterate until stress converges.
tol = 10^(-6);
dstress = realmax;
numiter = 1;
dstress = oldstress;
while dstress > tol & numiter <= 100000
    numiter = numiter + 1;
    % Now get the update.
    BZ = -D./DZ;
    for i = 1:n
        BZ(i,i) = 0;
        BZ(i,i) = -sum(BZ(:,i));
    end
    X = n^(-1)*BZ*Z;
    Z = X;
    % Now get the distances.
    % Find the stress.
    DZ = squareform(pdist(Z));
    stress2 = sum(sum(DZ.^2))/2;
    stress3 = sum(sum(D.*DZ));
    newstress = stress1 + stress2 - stress3;
    dstress = oldstress - newstress;
    oldstress = newstress;
end
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A scatterplot of the resulting configuration is shown in Figure 3.2, with two
different ways to classify the data. We see that some clustering is visible. 
❑

3.1.2 Nonmetric MDS

An algorithm for solving the nonmetric MDS problem was first discussed by
Shepard [1962a, 1962b]. However, he did not introduce the idea of using a
loss function. That came with Kruskal [1964a, 1964b] who expanded the ideas
of Shepard and gave us the concept of minimizing a loss function called
stress.

Not surprisingly, we first introduce some more notation and terminology
for nonmetric MDS. The disparity is a measure of how well the distance drs

matches the dissimilarity . We represent the disparity as . The r-th point
in our configuration X will have coordinates

.

We will use the Minkowski dissimilarity to measure the distance between
points in our d-dimensional space. It is defined as

,

where λ > 0. See Appendix A for more information on this distance and the
parameter λ. 

We can view the disparities as a function of the distance, such as

,

where

 .

Thus, the order of the original dissimilarities is preserved by the disparities.
Note that this condition allows for possible ties in the disparities. 

We define a loss function L, which is really stress, as follows

δrs d̂rs

xr xr1  … xrd, ,( )T=

drs xri xsi– λ

i 1=

d

∑
1 λ⁄

=

d̂rs f drs( )=

δrs δab< d̂r s d̂ ab≤⇒
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FIGURE 3.2

Here we show the results of using the SMACOF algorithm on the leukemia data set. The
top panel shows the data transformed to 2-D and labeled by B-cell and T-cell. The lower panel
illustrates the same data using different symbols based on the ALL or AML labels. There is
some indication of being able to group the genes in a reasonable fashion.
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 .

It could be the case that we have missing dissimilarities or the values might
be meaningless for some reason. If the analyst is faced with this situation,
then the summations in the definition of stress are restricted to those pairs
(r,s) for which the dissimilarity is available.

As with other forms of MDS, we seek a configuration of points X, such that
the stress is minimized. Note that the coordinates of the configuration enter
into the loss function through the distances drs. The original dissimilarities
enter into the stress by imposing an ordering on the disparities. Thus, the
stress is minimized subject to the constraint on the disparities. This constraint
is satisfied by using isotonic regression (also known as monotone regression)3

to obtain the disparities. 
We now pause to describe the isotonic regression procedure. This was first

described in Kruskal [1964b], where he developed an up-and-down-blocks
algorithm. A nice explanation of this is given in Borg and Groenen [1997], as
well as in the original paper by Kruskal. We choose to describe and
implement the method for isotonic regression outlined in Cox and Cox
[2001]. Isotonic regression of the drs on the δrs partitions the dissimilarities into
blocks over which the  are constant. The estimated disparities  are
given by the mean of the drs values within the block.

Example 3.3
The easiest way to explain (and hopefully to understand) isotonic regression
is through an example. We use a simple one given in Cox and Cox [2001].
There are four objects with the following dissimilarities

.

A configuration of points yields the following distances

.

We now order the dissimilarities from smallest to largest and use a single
subscript to denote the rank. We also impose the same order (and subscript)
on the corresponding distances. This yields

3 This is also known as monotonic least squares regression. 

L S

drs d̂r s–( )
2

r s<
∑

drs
2

r s<
∑

--------------------------------- S*

T*
-----= = =

d̂rs d̂rs

δ12 2.1 δ13, 3.0 δ14, 2.4 δ23, 1.7 δ24, 3.9 δ34, 3.2= = = = = =

d12 1.6 d13, 4.5 d14, 5.7 d23, 3.3 d24, 4.3 d34, 1.3= = = = = =
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The constraint on the disparities requires these distances to be ordered such
that di < di+1. If this is what we have from the start, then we need not adjust
things further. Since that is not true here, we must use isotonic regression to
get . To do this, we first get the cumulative sums of the distances di defined
as

,

where N is the total number of dissimilarities available. In essence, the
algorithm finds the greatest convex minorant of the graph of Di, going
through the origin. See Figure 3.3 for an illustration of this. We can think of
this procedure as taking a string, attaching it to the origin on one end and the
last point on the other end. The points on the greatest convex minorant are
those where the string touches the points Di. These points partition the
distances di into blocks, over which we will have disparities of constant value.
These disparities are the average of the distances that fall into the block. Cox
and Cox [2001] give a proof that this method yields the required isotonic
regression. We now provide some MATLAB code that illustrates these ideas. 

% Enter the original data.
dissim = [2.1 3 2.4 1.7 3.9 3.2];
dists = [1.6 4.5 5.7 3.3 4.3 1.3];
N = length(dissim);
% Now re-order the dissimilarities.
[dissim,ind] = sort(dissim);
% Now impose the same order on the distances.
dists = dists(ind);
% Now find the cumulative sums of the distances.
D = cumsum(dists);
% Add the origin as the first point.
D = [0 D];

It turns out that we can find the greatest convex minorant by finding the
slope of each Di with respect to the origin. We first find the smallest slope,
which defines the first partition (i.e., it is on the greatest convex minorant).
We then find the next smallest slope, after removing the first partition from
further consideration. We continue in this manner until we reach the end of
the points. The following code implements this process.

% Now find the slope of these.
slope = D(2:end)./(1:N);

δ1 1.7 δ2, 2.1 δ3, 2.4 δ4, 3.0 δ5, 3.2 δ6, 3.9= = = = = =

d1 3.3 d2, 1.6 d3, 5.7 d4, 4.5 d5, 1.3 d6, 4.3.= = = = = =

d̂rs

Di dj ,
j 1=

i

∑= i 1  …  N, ,=
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% Find the points on the convex minorant by looking
% for smallest slopes.
i = 1;
k = 1;
while i <= N
    val = min(slope(i:N));
    minpt(k) = find(slope == val);
    i = minpt(k) + 1;
    k = k + 1;
end

It turns out that this procedure yields extra points, ones that are not on the
convex minorant. MATLAB has a function called convhull that finds all of
the points that are on the convex hull4 of a set of points. This also yields extra
points because we only want those points that are on the ‘bottom’ of the
convex hull. To get the desired points, we take the intersection of the two
sets.5

K = convhull(D, 0:N);
minpt = intersect(minpt+1,K) - 1;

Now that we have the points that divide the distances into blocks, we find the
disparities, which are given by the average distance in that block. 

% Now that we have all of the minorant points 
% that divide into blocks, the disparities are 
% the averages of the distances over those blocks.
j = 1;
for i = 1:length(minpt)
    dispars(j:minpt(i)) = mean(dists(j:minpt(i)));
    j = minpt(i) + 1;
end

The disparities are given by

.

The graphs that illustrate these concepts are shown in Figure 3.3, where we
see that the disparities fall into three groups, as given above.
❑ 

Now that we know how to do isotonic regression, we can describe
Kruskal’s algorithm for nonmetric MDS. This is outlined below.

4 The convex hull of a data set is the smallest convex region that contains the data set.
5 Please see the M-file for an alternative approach, courtesy of Tom Lane of The MathWorks.

d̂1 2.45 d̂2 2.45 d̂3 3.83 d̂4 3.83 d̂5 3.83 d̂6 4.3=,=,=,=,=,=
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Procedure - Kruskal’s Algorithm

1. Choose an initial configuration X0 for a given dimensionality d. Set
the iteration counter k equal to 0. Set the step size α to some desired
starting value.

2. Normalize the configuration to have mean of zero (i.e., centroid is
at the origin) and a mean square distance from the origin equal to 1.

3. Compute the interpoint distances for this configuration.
4. Check for equal dissimilarities. If some are equal, then order those

such that the corresponding distances form an increasing sequence
within that block.

5. Find the disparities  using the current configuration of points
and isotonic regression.

6. Append all of the coordinate points into one vector such that

.

7. Compute the gradient for the k-th iteration given by

FIGURE 3.3

This shows the idea behind isotonic regression using the greatest convex minorant. The
greatest convex minorant is given by the dashed line. The places where it touches the graph
of the cumulative sums of the distances partition the distances into blocks. Each of the
disparities in the blocks are given by the average of the distances falling in that partition. 
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,

where  represents the Kronecker delta function, not dissimilar-
ities. This function is defined as follows

The value of the sgn(•) function is +1, if the argument is positive
and –1 if it is negative. 

8. Check for convergence. Determine the magnitude of the gradient
vector for the current configuration using

.

If this magnitude is less than some small value ε or if some
maximum allowed number of iterations has been reached, then the
process stops. 

9. Find the step size α

,

where k represents the iteration number and 

10. The new configuration is given by

.
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11. Increment the counter: k = k + 1. Go to step 2.

A couple of programming issues should be noted. When we are in the
beginning of the iterative algorithm, we will not have values of the stress for
k – 5 or k – 1 (needed in Step 9). In these cases, we will simply use the value
at the first iteration until we have enough. We can use a similar idea for the
gradient. Kruskal [1964b] states that this step size provides large steps during
the initial iterations and small steps at the end. There is no claim of optimality
with this procedure, and the reader should be aware that the final
configuration is not guaranteed to be a global solution. It is likely that the
configuration will be a local minimum for stress, which is typically the case
for greedy iterative algorithms. It is recommended that several different
starting configurations be used, and the one with the minimum stress be
accepted as the final answer. 

This leads to another programming point. How do we find an initial
configuration to start the process? We could start with a grid of points that
are evenly laid out over a d-dimensional space. Another possibility is to start
from the configuration given by classical MDS. Finally, one could also
generate random numbers according to a Poisson process in Rd. 

Another issue that must be addressed with nonmetric MDS is how to
handle ties in the dissimilarities. There are two approaches to this. The
primary approach states that if δrs = δtu, then  is not required to be equal to

. The secondary and more restrictive approach requires the disparities to
be equal when dissimilarities are tied. We used the primary approach in the
above procedure and in our MATLAB implementation. 

Example 3.4
The nmmds function (included in the EDA Toolbox) that implements
Kruskal’s nonmetric MDS is quite long, and it involves several helper
functions. So, we just show how it would be used rather than repeating all of
the code here. We return to our BPM data, but this time we will look at two
different topics: topic 8 (the death of the North Korean leader) and topic 11
(Hall’s helicopter crash in North Korea). Since these are both about North
Korea, we would expect some similarity between them. Previous
experiments showed that the documents from these two topics were always
grouped together, but in several sub-groups [Martinez, 2002]. We apply the
nonmetric MDS method to these data using the Ochiai measure of semantic
dissimilarity.

load ochiaibpm
% First get out the data for topics 8 and 11. 
% Find the indices where they are not equal to 8 or 11.
indlab = find(classlab ~= 8 & classlab ~= 11);
% Now get rid of these from the distance matrix.
ochiaibpm(indlab,:) = [];
ochiaibpm(:,indlab)=[];

d̂rs

d̂tu
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classlab(indlab) = [];
% We only need the upper part.
n = length(classlab);
dissim = [];
for i = 1:n
    dissim = [dissim, ochiaibpm(i,(i+1):n)];
end
% Find configuration for R^2.
d = 2;
r = 1;
% The nmds function is in the EDA Toolbox.
[Xd,stress,dhats] = nmmds(dissim,d,r);
ind8 = find(classlab == 8);
ind11 = find(classlab == 11);
% Plot with symbols mapped to class (topic).
plot(Xd(ind8,1),Xd(ind8,2),'.',...
    Xd(ind11,1),Xd(ind11,2),'o')
legend({'Class 8';'Class 11'})

The resulting plot is shown in Figure 3.4. We see that there is no clear
separation between the two topics, but we do have some interesting structure
in this scatterplot indicating the possible presence of sub-topics. 
❑ 

FIGURE 3.4

This shows the results of applying Kruskal’s nonmetric MDS to topics 8 and 11, both of
which concern North Korea. We see some interesting structure in this configuration and the
possible presence of sub-topics. 
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What should the dimensionality be when we are applying MDS to a set of
data? This is a rather difficult question to answer for most MDS methods. In
the spirit of EDA, one could apply the procedure for several values of d and
record the value for stress. We could then construct a plot similar to the scree
plot in PCA, where we have the dimension d on the horizontal axis and the
stress on the vertical axis. Stress always decreases with the addition of more
dimensions, so we would be looking for the point at which the payoff from
adding more dimensions decreases (i.e., the value of d where we see an elbow
in the curve). 

The Statistics Toolbox, Version 5 includes a new function for multi-
dimensional scaling called mdscale. It does both metric and nonmetric
MDS, and it includes several choices for the stress. With this function, one can
use weights, specify the type of starting configuration, and request replicates
for different random initial configurations. 

3.2 Manifold Learning

Some recently developed approaches tackle the problem of nonlinear
dimensionality reduction by assuming that the data lie on a submanifold of
Euclidean space M. The common goal of these methods is to produce
coordinates in a lower dimensional space, such that the neighborhood
structure of the submanifold is preserved. In other words, points that are
neighbors along the submanifold are also neighbors in the reduced
parameterization of the data. (See Figure 3.5 and Example 3.5 for an
illustration of these concepts.) 

These new methods are discussed in this section. We will first present
locally linear embedding, which is an unsupervised learning algorithm that
exploits the local symmetries of linear reconstructions. Next, we cover
isometric feature mapping, which is an extension to classical MDS. Finally,
we present a new method called Hessian eigenmaps, which addresses one of
the limitations of isometric feature mapping. 

All of these methods are implemented in MATLAB, and the code is freely
available for download. (We provide the URLs in Appendix B.) Because of
this, we will not be including all of the code, but will only show how to use
the existing implementations of the techniques.

3.2.1 Locally Linear Embedding

Locally linear embedding (LLE) was developed by Roweis and Saul [2000].
The method is an eigenvector-based method, and its optimizations do not
involve local minima or iterative algorithms. The technique is based on
simple geometric concepts. First, we assume that the data are sampled in
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sufficient quantity from a smooth submanifold. We also assume that each
data point and its neighbors lie on or close to a locally linear patch of the
manifold M.

The LLE algorithm starts by characterizing the local geometry of the
patches by finding linear coefficients that reconstruct each data point by
using only its k nearest neighbors, with respect to Euclidean distance. There
will be errors in the reconstruction, and these are measured by 

, (3.4)

where the subscript j ranges over those points that are in the neighborhood
of xi. The weights are found by optimizing Equation 3.4 subject to the
following constraint:

.

The optimal weights are found using least squares, the details of which are
omitted here.

Once the weights Wij are found, we fix these and find a representation yi of
the original points in a low-dimensional space. This is also done by
optimizing a cost function, which in this case is given by

FIGURE 3.5

This shows the submanifold for the Swiss roll data set. We see that this is really a 2-D
manifold (or surface) embedded in a 3-D space. 
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. (3.5)

This defines a quadratic form in yi, and it can be minimized by solving a
sparse eigenvector problem. The d eigenvectors corresponding to the
smallest nonzero eigenvalues provide a set of orthogonal coordinates
centered at the origin. The method is summarized below.

Locally Linear Embedding

1. Determine a value for k and d.

2. For each data point xi, find the k nearest neighbors.
3. Compute the weights Wij that optimally reconstruct each data point

xi from its neighbors (Equation 3.4). 

4. Find the d-dimensional points yi that are optimally reconstructed
using the same weights found in step 3 (Equation 3.5).

Note that the algorithm requires a value for k, which governs the size of the
neighborhood, and a value for d. Of course, different results can be obtained
when we vary these values. We illustrate the use of LLE in Example 3.5.

3.2.2 Isometric Feature Mapping - ISOMAP

Isometric feature mapping (ISOMAP) was developed by Tenenbaum, de
Silva and Langford [2000] as a way of enhancing classical MDS. The basic
idea is to use distances along a geodesic path (presumably measured along
the manifold M) as measures of dissimilarity. As with LLE, ISOMAP assumes
that the data lie on an unknown submanifold M that is embedded in a p-
dimensional space. It seeks a mapping  that preserves the intrinsic
metric structure of the observations. That is, the mapping preserves the
distances between observations, where the distance is measured along the
geodesic path of M. It also assumes that the manifold M is globally isometric
to a convex subset of a low-dimensional Euclidean space. 

In Figure 3.6, we show an example that illustrates this idea. The Euclidean
distance between two points on the manifold is shown by the straight line
connecting them. If our goal is to recover the manifold, then a truer indication
of the distance between these two points is given by their distance on the
manifold, i.e., the geodesic distance along the manifold between the points. 

The ISOMAP algorithm has three main steps. The first step is to find the
neighboring points based on the interpoint distances dij. This can be done by
either specifying a value of k to define the number of nearest neighbors or a
radius ε. The distances are typically taken to be Euclidean, but they can be
any valid metric. The neighborhood relations are then represented as a

Φ y( ) yi Wijyj
j
∑–

2

i
∑=

f:  X Y→

EDA.book  Page 83  Wednesday, October 27, 2004  9:10 PM



84 Exploratory Data Analysis with MATLAB

weighted graph, where the edges of the graph are given weights equal to the
distance dij. The second step of ISOMAP provides estimates of the geodesic
distances between all pairs of points i and j by computing their shortest path
distance using the graph obtained in step one. In the third step, classical MDS
is applied to the geodesic distances and an embedding is found in d-
dimensional space as described in the first section of this chapter. 

Procedure - ISOMAP 

1. Construct the neighborhood graph over all observations by con-
necting the ij-th point if point i is one of the k nearest neighbors of
j (or if the distance between them is less than ε). Set the lengths of
the edges equal to dij.

2. Calculate the shortest paths between points in the graph.

3. Obtain the d-dimensional embedding by applying classical MDS to
the geodesic paths found in step 2.

FIGURE 3.6

This is a data set that was randomly generated according to the Swiss roll parametrization
[Tenenbaum, de Silva and Langford, 2000]. The Euclidean distance between two points
indicated by the circles is given by the straight line shown here. If we are seeking the
neighborhood structure as given by the submanifold M, then it would be better to use the
geodesic distance (the distance along the manifold or the roll) between the points. One can
think of this as the distance a bug would travel if it took the shortest path between these
two points, while walking on the manifold.
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The input to this algorithm is a value for k or ε and the interpoint distance
matrix. It should be noted that different results are obtained when the value
for k (or ε) is varied. In fact, it could be the case that ISOMAP will return fewer
than n lower-dimensional points. If this happens, then the value of k (or ε)
should be increased.

3.2.3 Hessian Eigenmaps

We stated in the description of ISOMAP that the manifold M is assumed to
be convex. Donoho and Grimes [2003] developed a method called Hessian
eigenmaps that will recover a low-dimensional parametrization for data
lying on a manifold that is locally isometric to an open, connected subset of
Euclidean space. This significantly expands the class of data sets where
manifold learning can be accomplished using isometry principles. This
method can be viewed as a modification of the LLE method. Thus, it is also
called Hessian locally linear embedding (HLLE). 

We start with a parameter space  and a smooth mapping ,
where  is the embedding space and d < p. Further, we assume that Θ is an
open, connected subset of , and  is a locally isometric embedding of Θ
into . The manifold can be written as a function of the parameter space, as
follows

.

One can think of the manifold as the enumeration  of all possible
measurements as one varies the parameters θ for a given process. 

We assume that  we have some observat ions  mi  that represent
measurements over many different choices of control parameters θ i (i =
1,...,n). These measurements are the same as our observations xi.6 The HLLE
description given in Donoho and Grimes [2003] considers the case where all
data points lie exactly on the manifold M. The goal is to recover the
underlying parameterization  and the parameter settings θi, up to a rigid
motion. 

We now describe the main steps of the HLLE algorithm. We leave out the
derivation and proofs because we just want to provide the general ideas
underlying the algorithm. The reader is referred to the original paper and the
MATLAB code for more information and implementation details. 

The two main assumptions of the HLLE algorithm are:

1. In a small enough neighborhood of each point m, geodesic distances
to nearby points m’ (both on the manifold M) are identical to
Euclidean distances between associated parameter points θ and θ’.

6 We use different notation here to be consistent with the original paper.

Θ Rd⊂ ψ: Θ Rp→
Rp

Rd ψ
Rp

M ψ Θ( )=

m ψ θ( )=

ψ
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This is called local isometry. (ISOMAP deals with the case where
M assumes a globally isometric parameterization.) 

2. The parameter space Θ is an open, connected subset of , which
is a weaker condition than the convexity assumption of ISOMAP.

In general, the idea behind HLLE is to define a neighborhood around some
m in M and obtain local tangent coordinates. These local coordinates are used
to define the Hessian of a smooth function . The function f is
differentiated in the tangent coordinate system to produce the tangent
Hessian. A quadratic form (f) is obtained using the tangent Hessian, and the
isometric coordinates θ can be recovered by identifying a suitable basis for
the null space of (f).

The inputs required for the algorithm are a set of n p-dimensional data
points, a value for d, and the number of nearest neighbors k to determine the
neighborhood. The only constraint on these values is that min(k,p) > d. The
algorithm estimates the tangent coordinates by using the SVD on the
neighborhood of each point, and it uses the empirical version of the operator
(f). The output of HLLE is a set of n d-dimensional embedding coordinates. 

Example 3.5
We generated some data from an S-curve manifold to be used with LLE and
ISOMAP and saved it in a file called scurve.mat.7 We show both the true
manifold and the data randomly generated from this manifold in Figure 3.7. 

load scurve
% The scurve file contains our data matrix X.
% First set up some parameters for LLE.
K = 12;
d = 2; 
% Run LLE - note that LLE takes the input data
% as rows corresponding to dimensions and
% columns corresponding to observations. This is
% the transpose of our usual data matrix.
Y = lle(X,K,d);
% Plot results in scatter plot.
scatter(Y(1,:),Y(2,:),12,[angle angle],'+','filled');

We show the results in Figure 3.8. Note by the colors that neighboring points
on the manifold are mapped into neighboring points in the 2-D embedding.
Now we use ISOMAP on the same data.

% Now run the ISOMAP - we need the distances for input.
% We need the data matrix as n x p.
X = X';
dists = squareform(pdist(X));

7 Look at the file called example35.m for more details on how to generate the data.

Rd

f: M R→
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FIGURE 3.7

The top panel shows the true S-curve manifold, which is a 2-D manifold embedded in 3-D.
The bottom panel is the data set randomly generated from the manifold. The gray scale
values are an indication of the neighborhood. See the associated color figure following
page 144.
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options.dims = 1:10;    % These are for ISOMAP.
options.display = 0;
[Yiso, Riso, Eiso] = isomap(dists, 'k', 7, options);

Constructing a scatter plot of this embedding to compare with LLE is left as
an exercise to the reader. As stated in the text, LLE and ISOMAP have some
problems with data sets that are not convex. We show an example here using
both ISOMAP and HLLE to discover such an embedding. These data were
generated according to the code provided by Donoho and Grimes [2003].
Essentially, we have the Swiss roll manifold with observations removed that
fall within a rectangular area along the surface. 

% Now run the example from Grimes and Donoho.
load swissroll
options.dims = 1:10;
options.display = 0;
dists = squareform(pdist(X'));
[Yiso, Riso, Eiso] = isomap(dists, 'k', 7, options);
% Now for the Hessian LLE.
Y2 = hlle(X,K,d);
scatter(Y2(1,:),Y2(2,:),12,tt,'+');

FIGURE 3.8

This is the embedding recovered from LLE. Note that the neighborhood structure is pre-
served. See the associated color figure following page 144.
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FIGURE 3.9

The top panel contains the 2-D coordinates from ISOMAP. We do see the hole in the
embedding, but it looks like an oval rather than a rectangle. The bottom panel shows the
2-D coordinates from HLLE. HLLE was able to recover the correct embedding. See the
associated color figure following page 144.
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We see in Figure 3.9 that ISOMAP was unable to recover the correct
embedding. We did find the hole, but it is distorted. HLLE was able to find
the correct embedding with no distortion. 
❑ 

We note a few algorithmic complexity issues. The two locally linear
embedding methods, LLE and HLLE, can be used on problems with many
data points (large n), because the initial computations are performed on small
neighborhoods and they can exploit sparse matrix techniques. On the other
hand, ISOMAP requires the calculation of a full matrix of geodesic distances
for its initia l step.  However,  LLE and HLLE are affected by the
dimensionality p, because they must estimate a local tangent space at each
data point. Also, in the HLLE algorithm, we must estimate second
derivatives, which can be difficult with high-dimensional data.

3.3 Artificial Neural Network Approaches

We now discuss two other methods that we categorize as ones based on
artificial neural network (ANN) ideas: the self-organizing map and the
generative topographic mapping. These ANN approaches also look for
intrinsically low-dimensional structures that are embedded nonlinearly in a
high-dimensional space. As in MDS and the manifold learning approaches,
these seek a single global low-dimensional nonlinear model of the
observations. Both of these algorithms try to fit a grid or predefined topology
(usually 2-D) to the data, using greedy algorithms that first fit the large-scale
linear structure of the data and then make small-scale nonlinear refinements.

There are MATLAB toolboxes available for both self-organizing maps and
generative topographic maps. They are free, and they come with extensive
documentation and examples. Because the code for these methods can be
very extensive and would not add to the understanding of the reader, we will
not be showing the code in the book. Instead, we will show how to use some
of the functions in the examples. 

3.3.1 Self-Organizing Maps - SOM

The self-organizing map or SOM is a tool for the exploration and
visualization of high-dimensional data [Kohonen, 1998]. It derives an orderly
mapping of data onto a regular, low-dimensional grid. The dimensionality of
the grid is usually d = 2 for ease of visualization. It converts complex,
nonlinear relationships in the high-dimensional space into simpler geometric
relationships such that the important topological and metric relationships are
conveyed. The data are organized on the grid in such a way that observations
that are close together in the high-dimensional space are also closer to each
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other on the grid. Thus, this is very similar to the ideas of MDS, except that
the positions in the low-dimensional space are restricted to the grid. The grid
locations are denoted by ri.

There are two methods used in SOM: incremental learning and batch
mapping. We will describe both of them, and then illustrate some of the
functions in the SOM Toolbox8 in Example 3.6. We will also present a brief
discussion of the various methods for visualizing and exploring the results of
SOM.

The incremental or sequential learning method for SOM is an iterative
process. We start with the set of observations xi and a set of p-dimensional
model vectors mi. These model vectors are also called neurons, prototypes, or
codebooks. Each model vector is associated with a vertex (ri) on a 2-D lattice
that can be either hexagonal or rectangular and starts out with some initial
value (mi(t=0)). This could be done by setting them to random values, by
setting them equal to a random subset of the original data points or by using
PCA to provide an initial ordering.

At each training step, a vector xi is selected and the distance between it and
all the model vectors is calculated, where the distance is typically Euclidean.
The SOM Toolbox handles missing values by excluding them from the
calculation, and variable weights can also be used. The best-matching unit
(BMU) or model vector is found and is denoted by mc. Once the closest model
vector mc is found, the model vectors are updated so that mc is moved closer
to the data vector xi. The neighbors of the BMU mc are also updated, in a
weighted fashion. The update rule for the model vector mi is

,

where t denotes time or iteration number. The learning rate is given by α (t)
and 0 < α (t) < 1, which decreases monotonically as the iteration proceeds. 

The neighborhood is governed by the function hci(t), and a Gaussian
centered at the best-matching unit is often used. The SOM Toolbox has other
neighborhood functions available, as well as different learning rates α (t). If
the Gaussian is used, then we have

,

where the symbol  denotes the distance, and the ri are the coordinates on
the grid. The size or width of the neighborhood is governed by σ (t), and this
value decreases monotonically. 

The training is usually done in two phases. The first phase corresponds to
a large learning rate and neighborhood radius σ (t), which provides a large-
scale approximation to the data. The map is fine tuned in the second phase,

8 See Appendix B for the website where one can download the SOM Toolbox.
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where the learning rate and neighborhood radius are small. Once the process
finishes, we have the set of prototype or model vectors over the 2-D
coordinates on the map grid.

The batch training method or Batch Map is also iterative, but it uses the
whole data set before adjustments are made rather than a single vector. At
each step of the algorithm, the data set is partitioned such that each
observation is associated with its nearest model vector. The updated model
vectors are found as a weighted average of the data, where the weight of each
observation is the value of the neighborhood function hic(t) at its BMU c. 

Several methods exist for visualizing the resulting map and prototype
vectors. These methods can have any of the following goals. The first is to get
an idea of the overall shape of the data and whether clusters are present. The
second goal is to analyze the prototype vectors for characteristics of the
clusters and correlations among components or variables. The third task is to
see how new observations fit with the map or to discover anomalies. We will
focus on one visualization method called the U-matrix that is often used to
locate clusters in the data [Ultsch and Siemon, 1990]. 

The U-matrix is based on distances. First, the distance of each model vector
to each of its immediate neighbors is calculated. This distance is then
visualized using a color scale. Clusters are seen as those map units that have
smaller distances, surrounded by borders indicating larger distances.
Another approach is to use the size of the symbol to represent the average
distance to its neighbors, so cluster borders would be shown as larger
symbols. We illustrate the SOM and the U-matrix visualization method in
Example 3.6.

Example 3.6
We turn to the oronsay data set to illustrate some of the basic commands in
the SOM Toolbox. First we have to load the data and put it into a MATLAB
data structure that is recognized by the functions. This toolbox comes with
several normalization methods, and it is recommended that they be used
before building a map. 

% Use the oronsay data set.
load oronsay
% Convert labels to cell array of strings.
for i = 1:length(beachdune)
    mid{i} = int2str(midden(i));
    % Use next one in exercises.
    bd{i} = int2str(beachdune(i));
end
% Normalize each variable to have unit variance.
D = som_normalize(oronsay,'var');
% Convert to a data structure.
sD = som_data_struct(D);
% Add the labels - must be transposed.
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sD = som_set(sD,'labels',mid');

We can visualize the results in many ways, most of which will be left as an
exercise. We show the U-matrix in Figure 3.10 and include labels for the
codebook vectors.

% Make the SOM
sM = som_make(sD);
sM = som_autolabel(sM,sD,'vote');
% Plot U matrix.
som_show(sM,'umat','all');
% Add labels to an existing plot.
som_show_add('label',sM,'subplot',1);

Note that the larger values indicate cluster borders, and low values indicate
clusters. By looking at the colors, we see a couple of clusters - one in the lower
left corner and one in the top. The labels indicate some separation into
groups.
❑ 

FIGURE 3.10

This is the SOM for the oronsay data set. We can see some cluster structure here by the
colors. One is in the upper part of the map, and the other is in the lower left corner. The
labels on the map elements also indicate some clustering. Recall that the classes are midden
(0), Cnoc Coig (1), and Caisteal nan Gillean (2). See the associated color figure following
page 144.
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3.3.2 Generative Topographic Maps - GTM

The SOM has several limitations [Bishop, Svensén and Williams, 1996]. First,
the SOM is based on heuristics, and the algorithm is not derived from the
optimization of an objective function. Preservation of the neighborhood
structure is not guaranteed by the SOM method, and there could be problems
with convergence of the prototype vectors. The SOM does not define a
density model, and the use of the codebook vectors as a model of the
distribution of the original data is limited. Finally, the choice of how the
neighborhood function should shrink during training is somewhat of an art,
so it is difficult to compare different runs of the SOM procedure on the same
data set. The generative topographic mapping (GTM) was inspired by the
SOM and attempts to overcome its limitations. 

The GTM is described in terms of a latent variable model (or space) with
dimensionality d [Bishop, Svensén and Williams, 1996, 1998]. The goal is to
find a representation for the distribution p(x) of p-dimensional data, in terms
of a smaller number of d latent variables m = (m1, ... , md). As usual, we want
d < p, and often take d = 2 for ease of visualization. We can achieve this goal
by finding a mapping y(m;W), where W is a matrix containing weights, that
takes a point m in the latent space and maps it to a point x in the data space.
This might seem somewhat backward from what we considered previously,
but we will see later how we can use the inverse of this mapping to view
summaries of the observations in the reduced latent space. 

We start with a probability distribution p(m) defined on the latent variable
space (with d dimensions), which in turn induces a distribution p(y|W) in the
data space (with p dimensions). For a given m and W, we choose a Gaussian
centered at y(m;W) as follows:

,

where the variance is β-1,9 and  denotes the inner product. Other models
can be used, as discussed in Bishop, Svensén and Williams [1998]. The matrix
W contains the parameters or weights that govern the mapping. To derive the
desired mapping, we must estimate β and the matrix W. 

The next step is to assume some form for p(m) defined in the latent space.
To make this similar to the SOM, the distribution is taken as a sum of delta
functions centered on the nodes of a regular grid in latent space:

,

9 We note that this is different than the usual notation, familiar to statisticians. However, we are
keeping it here to be consistent with the original derivation.
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where K is the total number of grid points or delta functions. Each point mk

in the latent space is mapped to a corresponding point y(mk;W) in the data
space, where it becomes the center of a Gaussian density function. This is
illustrated in Figure 3.11. 

We can use maximum likelihood and the Expectation-Maximization (EM)
algorithm (see Chapter 6) to get estimates for β and W. Bishop, Svensén and
Williams [1998] show that the log-likelihood function for the distribution
described here is given by

. (3.6)

They next choose a model for y(m;W), which is given by

,

where the elements of φ (m) have M fixed basis functions φj (m), and W is of
size p x M. For basis functions, they choose Gaussians whose centers are
distributed on a uniform grid in latent space. Note that the centers for these
basis functions are not the same as the grid points mi. Each of these Gaussian
basis functions φ has a common width parameter σ . The smoothness of the
manifold is determined by the value of σ, the number of basis functions M,
and their spacing. 

Looking at Equation 3.6, we can view this as a missing-data problem,
where we do not know which component k generated each data point xi. The

FIGURE 3.11

This illustrates the mapping used in GTM. Our latent space is on the left, and the data space
is on the right. A Gaussian is centered at each of the data points, represented by the spheres.
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EM algorithm for estimating β and W consists of two steps that are done
iteratively until the value of the log-likelihood function converges. In the E-
step, we use the current values of the parameters to evaluate the posterior
probabilities of each component k for every data point. This is calculated
according to the following

, (3.7)

where the subscript ‘old’ indicates the current values.
In the M-step, we use the posterior probabilities to find weighted updates

for the parameters. First, we calculate a new version of the weight matrix
from the following equation

, (3.8)

where Φ is a K x M matrix with elements Φ kj = φj (mk), X is the data matrix, T
is a K x n matrix with elements τ ki , and G is a K x K diagonal matrix where
the elements are given by

.

Equation 3.8 is solved for Wnew using standard linear algebra techniques. A
time-saving issue related to this update equation is that Φ is constant, so it
only needs to be evaluated once.

We now need to determine an update for β that maximizes the log-
likelihood. This is given by

. (3.9)

To summarize, the algorithm requires starting points for the matrix W and
the inverse variance β. We must also specify a set of points mi, as well as a set
of basis functions φj  (m). The parameters W and β define a mixture of
Gaussians with centers Wφ(mk) and equal covariance matrices given by β-1I.
Given initial values, the EM algorithm is used to estimate these parameters.
The E-step finds the posterior probabilities using Equation 3.7, and the M-
step updates the estimates for W and β using Equations 3.8 and 3.9. These
steps are repeated until the log-likelihood (Equation 3.6) converges.
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So, the GTM gives us a mapping from this latent space to the original p-
dimensional data space. For EDA purposes, we are really interested in going
the other way: mapping our p-dimensional data into some lower-
dimensional space. As we see from the development of the GTM, each datum
xi provides a posterior distribution in our latent space. Thus, this posterior
distribution in latent space provides information about a single observation.
Visualizing all observations in this manner would be too difficult, so each
distribution should be summarized in some way. Two summaries that come
to mind are the mean and the mode, which are then visualized as individual
points in our latent space. The mean for observation xi is calculated from

.

The mode for the i-th observation (or posterior distribution) is given by the
maximum value τ ki over all values of k. The values  or modes are shown as
symbols in a scatterplot or some other visualization scheme. 

Example 3.7
We again turn to the oronsay data to show the basic functionality of the
GTM Toolbox.10 The parameters were set according to the example in their
documentation.

load oronsay
% Initialize parameters for GTM.
noLatPts = 400;
noBasisFn = 81;
sigma = 1.5;
% Initialize required variables for GTM.
[X,MU,FI,W,beta] = gtm_stp2(oronsay,noLatPts,...
    noBasisFn,sigma);
lambda = 0.001;
cycles = 40;
[trndW,trndBeta,llhLog] = gtm_trn(oronsay,FI,W,...
    lambda,cycles,beta,'quiet');

The function gtm_stp2 initializes the required variables, and gtm_trn does
the training. Each observation gets mapped into a probability distribution in
the 2-D map, so we need to find either the mean or mode of each one to show
as a point. We can do this as follows:

% Get the means in latent space.
mus = gtm_pmn(oronsay,X,FI,trndW,trndBeta);
% Get the modes in latent space.

10 See Appendix B for information on where to download the GTM Toolbox.

mi τ k imk

k 1=

K

∑=

mi

EDA.book  Page 97  Wednesday, October 27, 2004  9:10 PM



98 Exploratory Data Analysis with MATLAB

modes = gtm_pmd(oronsay,X,FI,trndW);

We now plot the values in the lower-dimensional space using symbols
corresponding to their class.

ind0 = find(midden == 0);
ind1 = find(midden == 1);
ind2 = find(midden == 2);
plot(mus(ind0,1),mus(ind0,2),'k.',mus(ind1,1),...
    mus(ind1,2),'kx',mus(ind2,1),mus(ind2,2),'ko')

The resulting plot is shown in Figure 3.12, where we can see some separation
into the three groups. 
❑ 

3.4 Summary and Further Reading

In this chapter, we discussed several methods for finding a nonlinear
mapping from a high-dimensional space to one with lower dimensionality.

FIGURE 3.12

This shows the map obtained from GTM, where the distribution for each point is summa-
rized by the mean. Each mean is displayed using a different symbol: Class 0 is ‘ . ’; Class 1
is ‘x’; and Class 2 is ‘o’. We can see some separation into groups from this plot.
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The first set of methods was grouped under the name multidimensional
scaling, and we presented both metric and nonmetric MDS. We note that in
some cases, depending on how it is set up, MDS finds a linear mapping. We
also presented several methods for learning manifolds, where the emphasis
is on nonlinear manifolds. These techniques are locally linear embedding,
ISOMAP, and Hessian locally linear embedding. ISOMAP is really an
enhanced version of classical MDS, where geodesic distances are used as
input to classical MDS. HLLE is similar in spirit to LLE, and its main
advantage is that it can handle data sets that are not convex. Finally, we
presented two artificial neural network approaches called self-organizing
maps and generative topographic maps. 

We have already mentioned some of the major MDS references, but we also
include them here with more information on their content. Our primary
reference for terminology and methods was Cox and Cox [2001]. This is a
highly readable book, suitable for students and practitioners with a
background in basic statistics. The methods are clearly stated for both
classical MDS and nonmetric MDS. Also, the authors provide a CD-ROM
with programs (running under DOS) and data sets so the reader can use these
tools. 

Another book by Borg and Groenen [1997] brings many of the algorithms
and techniques of MDS together in a way that can be understood by those
with a two-semester course in statistics for social sciences or business. The
authors provide the derivation of the methods, along with ways to interpret
the results. They do not provide computer software or show how this can be
done using existing software packages, but their algorithms are very clear
and understandable.

A brief introduction to MDS can be obtained from Kruskal and Wish [1978].
This book is primarily focused on applications in the social sciences, but it
would be useful for those who need to come to a quick understanding of the
basics of MDS. Computational and algorithmic considerations are not
stressed in this book. There are many overview papers on MDS in the various
journals and encyclopedias; these include Mead [1992], Siedlecki, Siedlecka
and Sklansky [1988], Steyvers [2002], and Young [1985].

Some of the initial work in MDS was done by Shepard in 1962. The first
paper in the series [Shepard, 1962a] describes a computer program to
reconstruct a configuration of points in Euclidean space, when the only
information that is known about the distance between the points is some
unknown monotonic function of the distance. The second paper in the series
[Shepard, 1962b] presents two applications of this method to artificial data.
Kruskal continued the development of MDS by introducing an objective
function and developing a method for optimizing it [Kruskal, 1964a, 1964b].
We highly recommend reading the original Kruskal papers; they are easily
understood and should provide the reader with a nice understanding of the
origins of MDS. 

Because they are relatively recent innovations, there are not a lot of
references for the manifold learning methods (ISOMAP, LLE, and HLLE).
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However, each of the websites has links to technical reports and papers that
describe the work in more depth (see Appendix B). A nice overview of
manifold learning is given in Saul and Roweis [2002], with an emphasis on
LLE. Further issues with ISOMAP are explored in Balasubramanian and
Schwartz [2002]. More detailed information regarding HLLE can be found in
a technical report written by Donoho and Grimes [2002].

There is one book dedicated to SOM written by Kohonen [2001]. Many
papers on SOM have appeared in the literature, and a 1998 technical report
lists 3,043 works that are based on the SOM [Kangas and Kaski, 1998]. A nice,
short overview of SOM can be found in Kohonen [1998]. Some recent
applications of SOM have been in the area of document clustering [Kaski, et
al., 1998; Kohonen, et al., 2000] and the analysis of gene microarrays [Tamayo,
et al., 1999]. Theoretical aspects of the SOM are discussed in Cottrell, Fort and
Pages [1998]. The use of the SOM for clustering is described in Kiang [2001]
and Vesanto and Alhoniemi [2000]. Visualization and EDA methods for SOM
are discussed in Mao and Jain [1995], Ultsch and Siemon [1990], Deboeck and
Kohonen [1998], and Vesanto [1997; 1999]. GTM is a recent addition to this
area, so there are fewer papers, but for those who want further information,
we recommend Bishop, Svensén and Williams [1996, 1997a, 1997b, and 1998],
Bishop, Hinton and Strachan [1997], and Bishop and Tipping [1998]. 

Exercises

3.1 Try the classical MDS approach using the skull data set. Plot the
results in a scatterplot using the text labels as plotting symbols (see the
text function). Do you see any separation between the categories of
gender? [Cox and Cox, 2001]. Try PCA on the skull data. How does
this compare with the classical MDS results?

3.2 Apply the SMACOF and nonmetric MDS methods to the skull data
set. Compare your results with the configuration obtained through
classical MDS.

3.3 Use plot3 (similar to plot, but in three dimensions) to construct a 3-
D scatterplot of the data in Example 3.1. Describe your results.

3.4 Apply the SMACOF method to the oronsay data set and comment
on the results.

3.5 Repeat the Examples 3.2, 3.4 and problem 3.4 for several values of d.
See the help on gplotmatrix and use it to display the results for
d > 2. Do a scree-like plot of stress versus d to see what d is best.

3.6 The Shepard diagram for nonmetric MDS is a plot where the ordered
dissimilarities are on the horizontal axis. The distances (shown as
points) and the disparities (shown as a line) are on the vertical. With
large data sets, this is not too useful. However, with small data sets, it
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can be used to see the shape of the regression curve. Implement this in
MATLAB and test it on one of the smaller data sets.

3.7 Try using som_show(sM) in Example 3.6. This shows a U-matrix for
each variable. Look at each one individually and add the labels to the
elements: som_show(sM,'comp',1), etc. See the SOM Toolbox
documentation for more information on how these functions work.

3.8 Repeat Example 3.6 and problem 3.7 using the other labels for the
oronsay data set. Discuss your results.

3.9 Repeat the plot in Example 3.7 (GTM) using the modes instead of the
means. Do you see any difference between them?

3.10 Do a help on the Statistics Toolbox (version 5) function mdscale.
Apply the methods (metric and nonmetric MDS) to the skulls and
oronsay data sets.

3.11 Apply the ISOMAP method to the scurve data from Example 3.5.
Construct a scatterplot of the data and compare to the results from
LLE.

3.12 Apply the LLE method to the swissroll data of Example 3.5.
Construct a scatterplot and compare with HLLE and ISOMAP.

3.13 What is the intrinsic dimensionality of the swissroll and scurve
data sets?

3.14 Where possible, apply MDS, ISOMAP, LLE, HLLE, SOM, and GTM to
the following data sets. Discuss and compare the results.
a. BPM data sets
b. gene expression data sets

c. iris
d. pollen

e. posse
f. oronsay

g. skulls
3.15 Repeat Example 3.2 with different starting values to search for

different structures. Analyze your results.
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