
(Uni- and Bi-)Dimensional Scaling: A
Toolbox for MATLAB

Version: October 24, 2012

1



Contents

1 Introduction 8
1.1 The Primary Proximity Matrix for Illustrating Unidimensional

Scaling: Agreement Among Supreme Court Justices . . . . . . 9
1.2 Additional Data Sets Used for Illustration . . . . . . . . . . . 10

1.2.1 Risk Perception . . . . . . . . . . . . . . . . . . . . . . 11
1.2.2 Morse Code Digit Data . . . . . . . . . . . . . . . . . . 12
1.2.3 Hampshire County (in England) Inter-town Distances . 12
1.2.4 Semantic Differential Data on the “Three Faces of Eve” 20
1.2.5 Skew-Symmetric Matrices from Thurstone . . . . . . . 21

2 The Basics of Linear Unidimensional Scaling (LUS) 23
2.1 Iterative Quadratic Assignment . . . . . . . . . . . . . . . . . 24
2.2 An M-file for Performing LUS Through Iterative QA . . . . . 25
2.3 A Useful Utility for the QA Task Generally . . . . . . . . . . . 27

3 Confirmatory and Nonmetric LUS 29
3.1 The Confirmatory Fitting of a Given Order . . . . . . . . . . . 30
3.2 The Monotonic Transformation of a Proximity Matrix . . . . . 31

3.2.1 An Application Incorporating proxmon.m . . . . . . . 32
3.3 Using the MATLAB Statistical Toolbox M-file for Metric and

Nonmetric (Multi)dimensional scaling . . . . . . . . . . . . . . 37
3.4 A Convenient Utility for Plotting a LUS Representation . . . . 39

4 Incorporating an Additive Constant in LUS 40
4.1 The Incorporation of an Additive Constant in LUS Through

the M-file, linfitac.m . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 Increasing the Computational Speed of the M-file, linfitac.m . 45

5 Circular Unidimensional Scaling (CUS) 45
5.1 The Circular Unidimensional Scaling Utilities . . . . . . . . . 46

5.1.1 The M-function, unicirac.m . . . . . . . . . . . . . . . 48

2



6 LUS for Two-Mode (Rectangular) Proximity Data 51
6.1 Reordering Two-Mode Proximity Matrices . . . . . . . . . . . 53
6.2 Fitting a Two-Mode Unidimensional Scale . . . . . . . . . . . 56
6.3 Increasing the Computational Speed of the M-file, linfittmac.m 61

7 The Analysis of Skew-Symmetric Proximity Matrices 63

8 Order-Constrained Partition Construction 70
8.1 The Dynamic Programming Implementation . . . . . . . . . . 72
8.2 Two Utility Functions For Coordinate Estimation . . . . . . . 75
8.3 Extensions to Generalized Ultrametrics . . . . . . . . . . . . . 81

9 Some Possible LUS and CUS Generalizations 84
9.1 Additive Representation Through Multiple Structures . . . . . 84
9.2 Individual Differences . . . . . . . . . . . . . . . . . . . . . . . 86
9.3 Incorporating Transformations of the Proximities . . . . . . . 86
9.4 Finding and Fitting Best LUS Structures in the Presence of

Missing Proximities . . . . . . . . . . . . . . . . . . . . . . . . 88
9.5 Obtaining Good Object Orders Through a Dynamic Program-

ming Strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.6 Extending LUS and CUS Representations Through Additively

Imposed Centroid Matrices . . . . . . . . . . . . . . . . . . . . 93
9.7 Fitting the LUS Model Through Partitions Consistent With a

Given Object Order . . . . . . . . . . . . . . . . . . . . . . . . 102
9.8 Concave and Convex Monotonic (Isotonic) Regression . . . . . 105

Monotonic Regression . . . . . . . . . . . . . . . . . . 106
Convex Monotonic Regression . . . . . . . . . . . . . . 106
Concave Monotonic Regression . . . . . . . . . . . . . 106
Convex-Concave Monotonic Regression . . . . . . . . . 107

9.9 The Dykstra-Kaczmarz Method for Solving Linear (In)equality
Constrained Least-Squares Tasks . . . . . . . . . . . . . . . . 108
9.9.1 A Review of the DK Strategy . . . . . . . . . . . . . . 109
9.9.2 A General M-file for Solving Linear Inequality Con-

strained Least-Squares Tasks . . . . . . . . . . . . . . . 110
9.9.3 A Few Applications of least squares dykstra.m . . . . . 111

3



9.10 The L1 Fitting of Unidimensional Scales (with an Additive
Constant) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

The MATLAB Functions linfitl1.m and linfitl1ac.m . . 113
9.10.1 Iterative Linear Programming . . . . . . . . . . . . . . 116
9.10.2 The L1 Finding and Fitting of Multiple Unidimensional

Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.11 The Confirmatory Fitting of Tied Coordinate Patterns in Bidi-

mensional City-Block Scaling . . . . . . . . . . . . . . . . . . 120
9.12 Matrix Color Coding and Presentation . . . . . . . . . . . . . 124

10 Comparing Categorical (Ultrametric) and Continuous (LUS)
Representations for a Proximity Matrix 127
10.1 Comparing Equally-Spaced Versus Unrestricted Representa-

tions for a Proximity Matrix . . . . . . . . . . . . . . . . . . . 130
10.2 Representing an Order-Constrained LUS and an Ultrametric

on the Same Graph . . . . . . . . . . . . . . . . . . . . . . . . 134

11 The Representation of Proximity Matrices by Structures De-
pendent on Order (Only) 134
11.1 Anti-Robinson (AR) Matrices for Symmetric Proximity Data . 136

11.1.1 Interpreting the Structure of an AR matrix . . . . . . . 138
11.2 Fitting a Given AR Matrix in the L2-Norm . . . . . . . . . . . 141
11.3 Finding an AR Matrix in the L2-Norm . . . . . . . . . . . . . 142
11.4 Fitting and Finding a Strongly Anti-Robinson (SAR) Matrix

in the L2-Norm . . . . . . . . . . . . . . . . . . . . . . . . . . 144
11.5 Representation Through Multiple (Strongly) AR Matrices . . 146
11.6 lp Fitted Distance Metrics Based on Given Object Orders . . . 147

12 Circular-Anti-Robinson (CAR) Matrices 148
12.1 Fitting a Given CAR Matrix in the L2-Norm . . . . . . . . . . 151
12.2 Finding a CAR Matrix in the L2-Norm . . . . . . . . . . . . . 152
12.3 Representation Through Multiple (Strongly) CAR Matrices . . 152

13 Anti-Robinson (AR) Matrices for Two-Mode Proximity Data153
13.1 Fitting and Finding Two-Mode AR Matrices . . . . . . . . . . 154

4



13.2 Multiple Two-Mode AR Reorderings and Fittings . . . . . . . 155

14 Some Bibliographic Comments 156

A Header Comments for the M-files Mentioned in the Text or
Used Internally by Other M-files; Given in Alphabetical Or-
der 161

5



List of Tables

1 Dissimilarities Among Nine Supreme Court Justices. . . . . . 10
2 Dissimilarities Among Eighteen Risks. . . . . . . . . . . . . . 15
3 A Proximity Matrix, morse digits, for the Ten Morse Code

Symbols Representing the First Ten Digits. . . . . . . . . . . . 15
4 A Dissimilarity Matrix Among Twenty-seven Hampshire County

Towns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 A Two-Mode Dissimilarity Matrix for Eve Black Between Ten

Scales and Fifteen Concepts. . . . . . . . . . . . . . . . . . . . 19
6 The Two Unidimensional Scalings of the supreme agree5x4

Data Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7 Dissimilarities Among Ten Supreme Court Justices for the

2005/6 Term. The Missing Entry Between O’Connor and Alito
is Represented With an Asterisk. . . . . . . . . . . . . . . . . 88

List of Figures

1 Facsimile of John Norden’s Distance Map for Hampshire County
(1625). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Cobbett’s 1830 Map of Hampshire County. . . . . . . . . . . . 17
3 A Famous Sailing from Southampton. . . . . . . . . . . . . . . 18
4 Plot of the Monotonically Transformed Proximities (Dispari-

ties) and Fitted Values (Distances) (y-axis) Against the Orig-
inal Supreme Court Proximities (Dissimilarities) (x-axis). . . . 36

5 The LUS Representation Using linearplot.m with the Coordi-
nates Obtained from linfit.m on the supreme agree Proximities. 40

6 Two-dimensional Circular Plot for the morse digits Data Ob-
tained Using circularplot.m. . . . . . . . . . . . . . . . . . . . 52

7 The LUS Representation for the supreme agree 2005 6 Prox-
imities Using linearplot.m with the Coordinates Constructed
from linfitac missing.m. . . . . . . . . . . . . . . . . . . . . . . 91

6



8 The City-Block Scaling of the Hampshire Towns Based on the
Given Tied Coordinate Patterns (in Groups of Three) Ob-
tained with biscalqa tied.m. . . . . . . . . . . . . . . . . . . . 125

9 A Joint Order-Constrained LUS and Ultrametric Representa-
tion for the supreme agree Proximity Matrix . . . . . . . . . . 135

7



1 Introduction

A broad characterization of unidimensional scaling can be given as the search
for an arrangement of n objects from a set, say S = {O1, . . . , On}, along a
single dimension (for linear unidimensional scaling (LUS)), or around a closed
circular structure (for circular unidimensional scaling (CUS)), such that the
induced n(n− 1)/2 interpoint distances between the objects reflect the given
proximity information. These latter proximities are assumed to be the data
available to guide the search, and in the form of an n× n symmetric matrix
P = {pij}, where pij (= pji ≥ 0, and pii = 0) is a dissimilarity measure for
the objects Oi and Oj in which larger values indicate more dissimilar objects.
We begin by presenting several illustrative data sets that can be carried along
throughout this monograph for numerical illustration. Later sections intro-
duce the basic LUS and CUS tasks and provide a variety of useful extensions
and generalizations of each. In all instances, the MATLAB computational
environment is relied on to effect our analyses, using the Statistical Toolbox,
for example, to carry out some of the common (multi)dimensional scaling
methods, and our own open-source MATLAB M-files (freely available as a
Toolbox from a web site listed later), whenever the extensions go beyond
what is currently available commercially, and/or if the commercial methods
fail to provide adequate analysis strategies.

The title given to this monograph includes the phrase “bidimensional scal-
ing.” The prefix “bi” is justified by considering an additive combination of
two distinct unidimensional scales — or to use jargon common to the mul-
tidimensional scaling literature, a unidimensional model is extended to one
involving a two-dimensional city-block metric. In theory, city-block scaling
can be extended to more than two dimensions, but the convenient planar
graphical representation would be lost; we therefore choose to limit our dis-
cussion to just the two-dimensional case.

8



1.1 The Primary Proximity Matrix for Illustrating Unidimensional
Scaling: Agreement Among Supreme Court Justices

On Saturday, July 2, 2005, the lead headline in The New York Times read as
follows: “O’Connor to Retire, Touching Off Battle Over Court.” Opening the
story attached to the headline, Richard W. Stevenson wrote, “Justice Sandra
Day O’Connor, the first woman to serve on the United States Supreme Court
and a critical swing vote on abortion and a host of other divisive social issues,
announced Friday that she is retiring, setting up a tumultuous fight over her
successor.” Our interests are in the data set also provided by the Times that
day, quantifying the (dis)agreement among the Supreme Court justices during
the decade they had been together. We give this in Table 1 in the form of
the percentage of non-unanimous cases in which the justices disagree, from
the 1994/95 term through 2003/04 (known as the Rehnquist Court). The
dissimilarity matrix (in which larger entries reflect less similar justices) is
listed in the same row and column order as the Times data set, with the
justices obviously ordered from “liberal” to “conservative”:

1: John Paul Stevens (St)
2: Stephen G. Breyer (Br)
3: Ruth Bader Ginsberg (Gi)
4: David Souter (So)
5: Sandra Day O’Connor (Oc)
6: Anthony M. Kennedy (Ke)
7: William H. Rehnquist (Re)
8: Antonin Scalia (Sc)
9: Clarence Thomas (Th)

We use the Supreme Court data matrix of Table 1 for various illustrations
of unidimensional scaling in the sections to follow. It will be loaded into a
MATLAB environment with the command: load supreme_agree.dat

The supreme_agree.dat file is in simple ascii form with verbatim contents
as follows:

.00 .38 .34 .37 .67 .64 .75 .86 .85

.38 .00 .28 .29 .45 .53 .57 .75 .76

.34 .28 .00 .22 .53 .51 .57 .72 .74

.37 .29 .22 .00 .45 .50 .56 .69 .71

9



.67 .45 .53 .45 .00 .33 .29 .46 .46

.64 .53 .51 .50 .33 .00 .23 .42 .41

.75 .57 .57 .56 .29 .23 .00 .34 .32

.86 .75 .72 .69 .46 .42 .34 .00 .21

.85 .76 .74 .71 .46 .41 .32 .21 .00

1.2 Additional Data Sets Used for Illustration

In addition to the data on the Supreme Court just described, there are five
more data sets used throughout this monograph to provide examples of usage
for specific M-files introduced. One is from Johnson and Tversky (1984) on
perceptions of risk, and is in the form of an 18 × 18 symmetric proximity
matrix. In our circular scaling representations, we will rely on the famous
Morse Code digit data from Rothkopf (1957). The third proximity matrix for
our discussion of multidimensional scaling (really, in two dimensions) based
on the Euclidean and/or city-block metric, was derived from an inter-town
distance matrix among twenty-seven Hampshire County cities (in England),
published by John Norden in 1625. Penultimately, we give six (two-mode or
rectangular) (10×15) proximity matrices from Osgood and Luria (1954) that
provide semantic differential data on a well-known case of multiple person-
ality (the Three Faces of Eve). There are two replications given for each of
the separate personalities of Eve White, Eve Black, and Jane; we will chose
one of these matrices for purposes of illustration. Finally, to have two skew-
symmetric matrices to scale these kinds of data unidimensionally, we use an

St Br Gi So Oc Ke Re Sc Th
1 St .00 .38 .34 .37 .67 .64 .75 .86 .85
2 Br .38 .00 .28 .29 .45 .53 .57 .75 .76
3 Gi .34 .28 .00 .22 .53 .51 .57 .72 .74
4 So .37 .29 .22 .00 .45 .50 .56 .69 .71
5 Oc .67 .45 .53 .45 .00 .33 .29 .46 .46
6 Ke .64 .53 .51 .50 .33 .00 .23 .42 .41
7 Re .75 .57 .57 .56 .29 .23 .00 .34 .32
8 Sc .86 .75 .72 .69 .46 .42 .34 .00 .21
9 Th .85 .76 .74 .71 .46 .41 .32 .21 .00

Table 1: Dissimilarities Among Nine Supreme Court Justices.

10



old data set from Thurstone (1959) involving the comparison of relative seri-
ousness of thirteen offenses. These comparisons were done by school children
before and after seeing a movie showing what the life of a gambler was like.

1.2.1 Risk Perception

The data set on risk perception (an 18 × 18 proximity matrix) is generated
from Johnson and Tversky (1984) and given in Table 2. It involves eighteen
risks:

1: accidental falls
2: airplane accidents
3: electrocution
4: fire
5: flood
6: heart disease
7: homicide
8: leukaemia
9: lightning
10: lung cancer
11: nuclear accident
12: stomach cancer
13: stroke
14: terrorism
15: tornados
16: toxic chemical spill
17: traffic accidents
18: war

The original proximity matrix was obtained by averaging the ratings from a
group of subjects who evaluated risk pairs on a scale from one (very dissim-
ilar) to nine (very similar). To key these as dissimilarities, the similarities
were subtracted from 10.0 to produce the entries given in Table 2 (the ascii
data file is called risk_rate.dat).

11



1.2.2 Morse Code Digit Data

A different data set used to illustrate the fitting of (multiple) circular struc-
tures, is given in the form of a rather well-known proximity matrix in Table
3 (and called morse_digits.dat). The later is a 10 × 10 proximity matrix
for the ten Morse Code symbols that represent the first ten digits: (0: − −
− − −; 1: • − − − −; 2: • • − − −; 3: • • • − −; 4: • • • • −; 5: • • • •
• ; 6: − • • • • ; 7: − − • • • ; 8: − − − • • ; 9: − − − − •). (Note that
the labeling of objects in the output is from 1 to 10; thus, a translation back
to the actual numbers corresponding to the Morse Code symbols requires a
subtraction of one.) The entries in Table 3 have a dissimilarity interpretation
and are defined for each object pair by 2.0 minus the sum of the two pro-
portions for a group of subjects used by Rothkopf in the 1950’s, representing
“same” judgments to the two symbols when given in the two possible presen-
tation orders of the signals. Based on previous multidimensional scalings of
the complete data set involving all of the Morse code symbols and in which
the data of Table 3 are embedded, it might be expected that the symbols
for the digits would form a clear linear unidimensional structure that would
be interpretable according to a regular progression in the number of dots to
dashes. It turns out, as discussed in greater detail in a later section, that a
circular model (or better, the sum of two such circular models) is probably
more consistent with the patterning of the proximities in Table 3 than are
representations based on linear unidimensional scalings.

1.2.3 Hampshire County (in England) Inter-town Distances

Table 4 provides a 27×27 dissimilarity matrix among twenty-seven Hampshire
County towns (the first name listed is from Figure 1; current spellings are
given in parentheses):

1: Bramfhot (Bramshott)
2: Hertford bridge (Hartfordbridge)
3: Stoke-bridge (Stockbridge)
4: Whit-church (Whitchurch)
5: Micheldouer (Micheldever)
6: Odyam (Odiham)

12



7: Lymington (Lymington)
8: Beaulieu (Beaulieu)
9: Titchefeild (Titchefield)
10: Wickham (Wickham)
11: Ouerton (Overton)
12: Bafingftoke (Basingstoke)
13: S. Hampton (Southhamption)
14: Chrift-Church (ChristChurch)
15: Ryngwood (Ringwood)
16: Fording-Bridge (Fordingbridge)
17: Rumfey (Romsey)
18: Andouer (Andover)
19: Kingefelere (Kingsclere)
20: B. Waltham (Bishops Waltham)
21: Alresforde (Alresford)
22: Alton (Alton)
23: Petersfeild (Petersfield)
24: Hauant (Havant)
25: Fareham (Fareham)
26: Portefmouth (Portesmouth)
27: Winchefter (Winchester)

These data are from John Norden’s book (published 1625), England, an In-
tended Guyde for English Travailers. A facsimile page is given in Figure 1
(with its interesting reverse column order compared to Table 4); a (more or
less current map) of the county appears in Figure 2 (Cobbett’s Hampshire
Map from 1830) that shows many of the twenty-seven county towns. Hamp-
shire County is in south-central England and borders on the English Channel.
It includes the port of Southampton (from whence the Titanic sailed on its
maiden voyage (April 10, 1912; see Figure 3)) (the ascii data file is called
hampshire_proximities.dat).

13



Figure 1: Facsimile of John Norden’s Distance Map for Hampshire County (1625).

14



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
1 0.0 7.6 6.9 5.4 6.2 7.5 6.4 7.1 6.2 7.5 7.1 8.2 6.0 7.7 6.8 6.9 4.8 7.5
2 7.6 0.0 7.0 7.0 5.8 8.1 6.9 7.9 5.8 7.9 6.5 8.0 7.6 5.7 6.6 6.4 4.7 6.2
3 6.9 7.0 0.0 3.0 5.9 7.6 7.4 7.9 3.3 8.3 6.5 7.9 7.7 7.0 6.1 6.7 7.0 7.1
4 5.4 7.0 3.0 0.0 7.0 8.3 6.1 7.4 3.8 7.3 6.5 7.7 7.2 6.3 5.4 5.7 5.8 6.1
5 6.2 5.8 5.9 7.0 0.0 8.5 5.3 6.5 3.3 7.7 6.5 8.2 7.9 7.0 2.3 6.9 7.2 7.3
6 7.5 8.1 7.6 8.3 8.5 0.0 7.5 4.4 5.8 6.9 8.1 4.1 3.0 8.2 8.1 7.6 6.7 8.0
7 6.4 6.9 7.4 6.1 5.3 7.5 0.0 7.7 8.0 8.0 4.0 8.2 7.5 3.8 7.5 6.8 5.3 3.0
8 7.1 7.9 7.9 7.4 6.5 4.4 7.7 0.0 8.1 6.1 6.9 3.8 4.8 8.4 8.0 6.7 7.7 7.4
9 6.2 5.8 3.3 3.8 3.3 5.8 8.0 8.1 0.0 7.8 6.5 7.1 6.3 7.0 2.4 6.5 7.1 7.0
10 7.5 7.9 8.3 7.3 7.7 6.9 8.0 6.1 7.8 0.0 8.0 4.3 4.1 7.7 8.6 7.0 6.9 7.4
11 7.1 6.5 6.5 6.5 6.5 8.1 4.0 6.9 6.5 8.0 0.0 6.9 8.3 7.1 6.3 2.7 6.8 4.3
12 8.2 8.0 7.9 7.7 8.2 4.1 8.2 3.8 7.1 4.3 6.9 0.0 7.1 8.1 7.9 7.0 7.8 7.9
13 6.0 7.6 7.7 7.2 7.9 3.0 7.5 4.8 6.3 4.1 8.3 7.1 0.0 7.1 4.9 7.4 5.7 7.8
14 7.7 5.7 7.0 6.3 7.0 8.2 3.8 8.4 7.0 7.7 7.1 8.1 7.1 0.0 7.1 6.4 7.1 2.5
15 6.8 6.6 6.1 5.4 2.3 8.1 7.5 8.0 2.4 8.6 6.3 7.9 4.9 7.1 0.0 5.5 7.5 7.8
16 6.9 6.4 6.7 5.7 6.9 7.6 6.8 6.7 6.5 7.0 2.7 7.0 7.4 6.4 5.5 0.0 5.8 7.8
17 4.8 4.7 7.0 5.8 7.2 6.7 5.3 7.7 7.1 6.9 6.8 7.8 5.7 7.1 7.5 5.8 0.0 7.0
18 7.5 6.2 7.1 6.1 7.3 8.0 3.0 7.4 7.0 7.4 4.3 7.9 7.8 2.5 7.8 7.8 7.0 0.0

Table 2: Dissimilarities Among Eighteen Risks.

Table 3: A Proximity Matrix, morse digits, for the Ten Morse Code Symbols Representing
the First Ten Digits.

0.00 .75 1.69 1.87 1.76 1.77 1.59 1.26 .86 .95

.75 0.00 .82 1.54 1.85 1.72 1.51 1.50 1.45 1.63

1.69 .82 0.00 1.25 1.47 1.33 1.66 1.57 1.83 1.81

1.87 1.54 1.25 0.00 .89 1.32 1.53 1.74 1.85 1.86

1.76 1.85 1.47 .89 0.00 1.41 1.64 1.81 1.90 1.90

1.77 1.72 1.33 1.32 1.41 0.00 .70 1.56 1.84 1.64

1.59 1.51 1.66 1.53 1.64 .70 0.00 .70 1.38 1.70

1.26 1.50 1.57 1.74 1.81 1.56 .70 0.00 .83 1.22

.86 1.45 1.83 1.85 1.90 1.84 1.38 .83 0.00 .41

.95 1.63 1.81 1.86 1.90 1.64 1.70 1.22 .41 0.00

15



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
1 0 12 24 20 16 10 35 32 22 18 18 13 25 43 38 37 25 24 20 17 12 6 8 16 20 23 18
2 12 0 27 18 18 5 43 38 30 27 16 8 32 48 44 40 30 24 14 24 17 9 17 28 29 32 24
3 24 27 0 10 9 22 20 17 18 15 12 18 13 25 19 15 7 16 16 13 8 20 20 23 18 23 6
4 20 18 10 0 6 14 30 26 23 20 3 9 21 38 30 24 16 6 6 16 11 22 18 26 23 28 11
5 16 18 9 6 0 13 25 23 18 15 6 9 17 32 27 23 13 8 10 12 6 11 13 21 18 22 9
6 10 5 22 14 13 0 37 34 26 23 11 4 24 44 38 36 25 19 11 20 12 5 14 24 24 28 19
7 35 43 20 30 25 37 0 4 13 16 30 34 9 9 8 11 13 25 35 20 24 32 26 20 15 16 18
8 32 38 17 26 23 34 4 0 10 12 27 32 5 13 11 12 11 22 32 13 20 28 30 17 12 14 16
9 22 30 18 23 18 26 13 10 0 3 26 25 6 21 20 19 11 21 27 6 14 21 14 9 2 7 12
10 18 27 15 20 15 23 16 12 3 0 20 22 8 24 21 20 11 20 24 20 11 18 11 8 3 8 10
11 18 16 12 3 6 11 30 27 26 20 0 7 22 36 30 26 17 8 5 16 10 12 17 26 22 27 12
12 13 8 18 9 9 4 34 32 25 22 7 0 25 41 36 32 22 16 6 18 11 7 15 25 24 28 16
13 25 32 13 21 17 24 9 5 6 8 22 25 0 17 14 13 7 19 26 8 15 23 17 14 8 12 10
14 43 48 25 38 32 44 9 13 21 24 36 41 17 0 6 11 20 30 41 24 32 40 35 29 24 26 26
15 38 44 19 30 27 38 8 11 20 21 30 36 14 6 0 5 14 24 36 22 27 26 39 28 22 23 20
16 37 40 15 24 23 36 11 12 19 20 26 32 13 11 5 0 11 20 31 19 24 32 29 28 21 24 17
17 25 30 7 16 13 25 13 11 11 11 17 22 7 20 14 11 0 12 22 10 13 22 19 20 13 18 7
18 24 24 16 6 8 19 25 22 21 20 8 16 19 30 24 20 12 0 11 16 13 18 20 27 20 27 10
19 20 14 16 6 10 11 35 32 27 24 5 6 26 41 36 31 22 11 0 21 13 13 20 29 26 32 16
20 17 24 13 16 12 20 20 13 6 20 16 18 8 24 22 19 10 16 21 0 8 15 10 11 6 11 6
21 12 17 8 11 6 12 24 20 14 11 10 11 15 32 27 24 13 13 13 8 0 8 8 16 14 18 7
22 6 9 20 22 11 5 32 28 21 18 12 7 23 40 26 32 22 18 13 15 8 0 8 19 20 23 15
23 8 17 20 18 13 14 26 30 14 11 17 15 17 35 39 29 19 20 20 10 8 8 0 11 12 15 13
24 16 28 23 26 21 24 20 17 9 8 26 25 14 29 28 28 20 27 29 11 16 19 11 0 7 8 17
25 20 29 18 23 18 24 15 12 2 3 22 24 8 24 22 21 13 20 26 6 14 20 12 7 0 5 13
26 23 32 23 28 22 28 16 14 7 8 27 28 12 26 23 24 18 27 32 11 18 23 15 8 5 0 22
27 18 24 6 11 9 19 18 16 12 10 12 16 10 26 20 17 7 10 16 6 7 15 13 17 13 22 0

Table 4: A Dissimilarity Matrix Among Twenty-seven Hampshire County Towns.

16



Cobbett's Hampshire 1830

http://www.geog.port.ac.uk/webmap/hantsmap/hantsmap/cobbett/cob2larg.htm (1 of 2) [3/28/2007 10:39:00 AM]

Figure 2: Cobbett’s 1830 Map of Hampshire County.

17



http://www.maritimequest.com/liners/titanic/photos/art/04_titanic.jpg

http://www.maritimequest.com/liners/titanic/photos/art/04_titanic.jpg [3/28/2007 2:11:52 PM]

Figure 3: A Famous Sailing from Southampton.

18



concepts 1(a) 2(b) 3(c) 4(d) 5(e) 6(f) 7(g) 8(h) 9(i) 10(j) 11(k) 12(l) 13(m) 14(n) 15(o)
scales
1 4.0 1.0 7.0 7.0 1.0 1.0 1.0 7.0 6.5 2.5 3.5 6.0 7.0 4.0 1.0
2 7.0 7.0 1.0 1.0 7.0 7.0 4.5 1.0 2.0 7.0 4.5 1.5 1.0 7.0 7.0
3 1.0 1.0 7.0 7.0 4.0 2.5 4.0 7.0 6.0 4.0 2.0 6.5 1.0 1.5 1.0
4 1.0 7.0 7.0 4.0 5.5 4.0 4.0 7.0 6.5 2.5 6.0 6.5 1.0 4.0 1.0
5 7.0 4.0 1.0 1.0 7.0 1.0 1.0 1.0 1.5 7.0 2.0 1.0 4.0 4.5 4.0
6 2.0 1.0 7.0 7.0 4.0 1.5 7.0 7.0 5.0 4.0 4.5 6.0 7.0 1.5 4.0
7 1.0 7.0 7.0 7.0 1.0 1.0 4.0 7.0 6.0 4.0 5.0 6.5 1.0 1.0 1.0
8 7.0 7.0 1.5 1.0 7.0 7.0 7.0 1.0 2.0 5.5 3.5 2.0 1.0 4.0 7.0
9 7.0 7.0 1.0 1.0 7.0 4.0 7.0 1.0 1.5 4.0 2.0 1.5 7.0 4.0 7.0
10 7.0 7.0 1.0 1.0 7.0 7.0 1.0 1.0 1.5 7.0 4.5 1.5 1.0 4.0 7.0

Table 5: A Two-Mode Dissimilarity Matrix for Eve Black Between Ten Scales and Fifteen
Concepts.

19



1.2.4 Semantic Differential Data on the “Three Faces of Eve”

To have available a two-mode (10 × 15) matrix for purposes of illustration,
we chose the first replication of Eve Black’s Semantic Differential data given
in Table 5 (eve_black_one.dat). There are six such exemplars available:

eve_white_one.dat; eve_white_two.dat; eve_black_one.dat
eve_black_two.dat; jane_one.dat; jane_two.dat

Readers are welcome to experiment with these as they see fit. All have the
same ten rows (or scales) with the table entries being dissimilarities for the
left-most member of the bipolar pair:

1) cold-hot
2) valuable-worthless
3) tense-relaxed
4) small-large
5) fast-slow
6) dirty-clean
7) weak-strong
8) tasty-distasteful
9) deep-shallow
10) active-passive

The fifteen columns correspond to the concepts being rated:
1(a): love
2(b): child
3(c): my doctor
4(d): me
5(e): my job
6(f): mental sickness
7(g): my mother
8(h): peace of mind
9(i): fraud
10(j): my spouse
11(k): self-control
12(l): hatred
13(m): my father

20



14(n): confusion
15(o): sex

To provide some background for these data, we give a short plot summary
for the 1957 movie, The Three Faces of Eve; Joanne Woodward won an Oscar
for her portrayal of Eve White/Eve Black/Jane:

Eve White is a quite, mousy, unassuming wife and mother who keeps suf-
fering from headaches and occasional black outs. Eventually she is sent to see
psychiatrist Dr. Luther, and, while under hypnosis, a whole new personality
emerges: the racy, wild, fun-loving Eve Black. Under continued therapy, yet
a third personality appears, the relatively stable Jane. This film, based on
the true-life case of a multiple personality, chronicles Dr. Luther’s attempts
to reconcile the three faces of Eve’s multiple personalities.

The real reason, however, that this particular data matrix exemplar is
used from among the six we have available, is to give two quotes from the
movie:

Ralph White: I’ve never seen you take a drink in your life.
Eve Black: Honey, there are a lot of things you ain’t never seen me do;

that’s no sign I don’t do ’em.

The Soldier: When I spend eight bucks on a dame, I don’t just go home
with the morning paper, y’know what I mean?

1.2.5 Skew-Symmetric Matrices from Thurstone

To have (two) skew-symmetric matrices for use in our examples, we begin with
a very old data set, originally collected in 1929 in a study of the influence of
motion pictures on children’s attitudes (see Thurstone, 1959, pp. 309–319).
Both before and after seeing a film entitled Street of Chance, which depicted
the life of a gambler, 240 school children were asked to compare the relative
seriousness of thirteen offenses presented in all 78 possible pairs:

1): bankrobber
2): gambler

21



3): pickpocket
4): drunkard
5): quack doctor
6): bootlegger
7): beggar
8): gangster
9): tramp
10): speeder
11): petty thief
12): kidnaper
13): smuggler

The data are given below, where the entries show the proportion of the school
children who rated the offense listed in the column to be more serious than the
offense listed in the row. The above-diagonal entries were obtained before the
showing of the film; those below were collected after. The obvious substantive
question here involves the effect of the film on the assessment of the offense
of being a gambler.

1:bankrobber x .07 .08 .05 .27 .29 .01 .50 .00 .06 .02 .73 .21
2:gambler .79 x .71 .52 .76 .92 .07 .92 .05 .41 .49 .90 .81
3:pickpocket .93 .51 x .25 .67 .75 .02 .86 .02 .39 .42 .87 .68
4:drunkard .95 .70 .70 x .81 .95 .01 .92 .03 .37 .62 .91 .87
5:quack doctor .67 .36 .28 .16 x .49 .02 .70 .02 .12 .22 .64 .55
6:bootlegger .70 .31 .30 .13 .50 x .00 .79 .01 .09 .26 .68 .50
7:beggar .98 .95 .97 .94 .98 .98 x .96 .42 .86 .96 1.0 .99
8:gangster .50 .18 .13 .11 .32 .27 .01 x .02 .08 .08 .36 .31
9:tramp 1.0 .96 .98 .96 .99 .98 .64 .99 x .91 .97 .99 1.0
10:speeder .94 .73 .68 .67 .89 .90 .21 .94 .13 x .58 .90 .92
11:petty thief .97 .64 .62 .47 .81 .76 .06 .89 .05 .36 x .98 .78
12:kidnaper .38 .27 .16 .08 .35 .30 .02 .62 .01 .08 .03 x .27
13:smuggler .73 .31 .30 .16 .46 .49 .02 .66 .02 .11 .24 .64 x

To generate two skew-symmetric matrices from the data just given, the
entry defined for each pair of offenses in the “before” and “after” skew-
symmetric matrices, is a difference in the proportions of rating one offense

22



more serious than the other. For example, because the proportion judging
a bootlegger more serious than a bankrobber is .29 before the movie was
shown, an entry of .29− .79 = −.42 is present for the (bankrobber, bootleg-
ger) above-diagonal pair in the before matrix: the negative value above the
diagonal indicates that the second member (bootlegger) is less serious than
the first (bankrobber) (the two data matrices are called

thurstone_skew_symmetric_before.dat;
thurstone_skew_symmetric_after.dat.

2 The Basics of Linear Unidimensional Scaling (LUS)

The LUS task can be characterized as arranging the objects in S along a single
dimension such that the induced n(n − 1)/2 interpoint distances between
the objects reflect the proximities in P. The most common formalization
of this task is through a least-squares criterion and finding n coordinates,
x1, x2, . . . , xn, so

∑
i<j

(pij − |xj − xi|)2 (1)

is minimized. In turn, this optimization suggested by (1) can be rephrased as
two separate problems to be solved simultaneously: find a set of n numbers,
x1 ≤ x2 ≤ · · · ≤ xn, and a permutation on the first n integers, ρ(·) ≡ ρ, for
which

∑
i<j

(pρ(i)ρ(j) − (xj − xi))
2 (2)

is minimized. Thus, a set of locations (coordinates) is defined along a contin-
uum as represented in ascending order by the sequence x1, x2, . . . , xn; the n

objects are allocated to these locations by the permutation ρ, so object Oρ(i)

is placed at location i.

The minimization of (2) can be carried out directly by the maximization

of the single term,
∑

i(t
(ρ)
i )2 (under the mild regularity condition that all off-

diagonal proximities in P are positive and not merely nonnegative), where

23



t
(ρ)
i = (u

(ρ)
i − v

(ρ)
i )/n,

for

u
(ρ)
i =

i−1∑
j=1

pρ(i)ρ(j), when i ≥ 2;

v
(ρ)
i =

n∑
j=i+1

pρ(i)ρ(j), when i < n,

and

u
(ρ)
1 = v(ρ)n = 0.

In words, u
(ρ)
i is the sum of the entries within row ρ(i) of {pρ(i)ρ(j)} from the

extreme left up to the main diagonal; v
(ρ)
i is the sum from the main diagonal

to the extreme right. If ρ∗ denotes the permutation that maximizes
∑

i(t
(ρ)
i )2,

then we can let xi = t
(ρ∗)
i , with the order induced by t

(ρ∗)
1 , . . . , t(ρ

∗)
n being con-

sistent with the constraint, x1 ≤ x2 ≤ · · · ≤ xn. In short, the minimization of
(2) reduces to the combinatorial optimization of the single term

∑
i(t

(ρ)
i )2, and

where the coordinate estimation is completed as an automatic byproduct.

2.1 Iterative Quadratic Assignment

Because the measure of loss in (2) can be reduced algebraically to∑
i<j

p2ij + n(
∑
i

x2i − 2
∑
i

xit
(ρ)
i ), (3)

subject to the constraints that x1 ≤ · · · ≤ xn and
∑

i xi = 0, or as

∑
i<j

p2ij + n

∑
i

(xi − t
(ρ)
i )2 −

∑
i

(t
(ρ)
i )2

 , (4)

the two optimization subproblems to be solved simultaneously of identifying
an optimal permutation and a set of coordinates can be separated:

(a) assuming that an ordering of the objects is known (and denoted, say, as

ρ0 for the moment), find those values x01 ≤ · · · ≤ x0n to minimize
∑

i(x
0
i−t

(ρ0)
i )2.

24



If the permutation ρ0 produces a monotonic form for the matrix {pρ0(i)ρ0(j)}
in the sense that t

(ρ0)
1 ≤ t

(ρ0)
2 ≤ · · · ≤ t(ρ

0)
n , the coordinate estimation is

immediate by letting x0i = t
(ρ0)
i , in which case

∑
i(x

0
i − t

(ρ0)
i )2 is zero.

(b) assuming that the locations x01 ≤ · · · ≤ x0n are known, find the per-

mutation ρ0 to maximize
∑

i xit
(ρ0)
i . Any such permutation which even only

locally maximizes
∑

i xit
(ρ0)
i , in the sense that no adjacently placed pair of ob-

jects in ρ0 could be interchanged to increase the index, will produce a mono-
tonic form for the nonnegative matrix {pρ0(i)ρ0(j)}. Also, the task of finding

the permutation ρ0 to maximize
∑

i xit
(ρ0)
i is actually a quadratic assignment

(QA) task, discussed extensively in the literature of operations research. As
usually defined, a QA problem involves two n × n matrices, A = {aij} and
B = {bij}, and we seek a permutation ρ to maximize

Γ(ρ) =
∑
i,j

aρ(i)ρ(j)bij. (5)

If we define bij = |xi − xj| and let aij = pij, then

Γ(ρ) =
∑
i,j

pρ(i)ρ(j)|xi − xj| = 2n
∑
i

xit
(ρ)
i ,

and thus, the permutation that maximizes Γ(ρ) also maximizes
∑
xit

(ρ)
i .

2.2 An M-file for Performing LUS Through Iterative QA

To carry out the unidimensional scaling of proximity matrix, we will rely
on the M-file, uniscalqa.m, downloadable (as are all the other M-files we
mention throughout this monograph) as open-source code from

http://cda.psych.uiuc.edu/new_unidimensionalscaling_mfiles.
We give the output from a MATLAB session below using the data of Table
1. We note that these Supreme Court data were first written into a text file
called supreme_agree.dat and placed into the MATLAB workspace with
the load command. Also, from the help file written as part of the output for
uniscalqa.m (and which is also given in the Appendix), the proximity in-
put matrix is called supreme_agree; we use an equally-spaced target matrix
targlin(9) (available from the same site that uniscalqa.m was obtained);

25



the built-in MATLAB random permutation generator, randperm(9), is in-
voked for a starting permutation.

>> load supreme_agree.dat

>> supreme_agree

supreme_agree =

0 0.3800 0.3400 0.3700 0.6700 0.6400 0.7500 0.8600 0.8500

0.3800 0 0.2800 0.2900 0.4500 0.5300 0.5700 0.7500 0.7600

0.3400 0.2800 0 0.2200 0.5300 0.5100 0.5700 0.7200 0.7400

0.3700 0.2900 0.2200 0 0.4500 0.5000 0.5600 0.6900 0.7100

0.6700 0.4500 0.5300 0.4500 0 0.3300 0.2900 0.4600 0.4600

0.6400 0.5300 0.5100 0.5000 0.3300 0 0.2300 0.4200 0.4100

0.7500 0.5700 0.5700 0.5600 0.2900 0.2300 0 0.3400 0.3200

0.8600 0.7500 0.7200 0.6900 0.4600 0.4200 0.3400 0 0.2100

0.8500 0.7600 0.7400 0.7100 0.4600 0.4100 0.3200 0.2100 0

>> help uniscalqa.m

UNISCALQA carries out a unidimensional scaling of a symmetric

proximity matrix using iterative quadratic assignment.

syntax: [outperm, rawindex, allperms, index, coord, diff] = ...

uniscalqa(prox, targ, inperm, kblock)

PROX is the input proximity matrix (with a zero main diagonal

and a dissimilarity interpretation);

TARG is the input target matrix (usually with a zero main

diagonal and a dissimilarity interpretation representing

equally spaced locations along a continuum);

INPERM is the input beginning permutation (a permutation of the

first $n$ integers). OUTPERM is the final permutation of PROX

with the cross-product index RAWINDEX

with respect to TARG redefined as

$ = \{abs(coord(i) - coord(j))\}$;

ALLPERMS is a cell array containing INDEX entries corresponding

to all the permutations identified in the optimization from

ALLPERMS{1} = INPERM to ALLPERMS{INDEX} = OUTPERM.

The insertion and rotation routines use from 1 to KBLOCK

(which is less than or equal to $n-1$) consecutive objects in

the permutation defining the row and column order of the data

matrix. COORD is the set of coordinates of the unidimensional

scaling in ascending order;

DIFF is the value of the least-squares loss function for the

26



coordinates and object permutation.

>> [outperm, rawindex, allperms, index, coord, diff] = ...

uniscalqa(supreme_agree, targlin(9), randperm(9), 1);

>> outperm

outperm =

1 2 3 4 5 6 7 8 9

>> coord

coord =

-0.5400

-0.3611

-0.2967

-0.2256

0.0622

0.1611

0.2567

0.4478

0.4956

>> diff

diff =

0.4691

As might be expected given the Times presentation of Table 1 using the order
from “liberal” to “conservative,” the obtained unidimensional scaling was for
the identity permutation in outperm with the (ordered) coordinates given in
coord with a least-squares loss value of .4691 (in diff).

2.3 A Useful Utility for the QA Task Generally

For the QA problem in (5), the attempt to find ρ to maximize Γ(ρ), reorga-
nizes the (proximity) matrix as Aρ = {aρ(i)ρ(j)}, which hopefully shows the

27



same pattern, more or less, as (the fixed target) B; equivalently, we maxi-
mize the usual Pearson product-moment correlation between the off-diagonal
entries in B and Aρ. Another way of rephrasing this search when B is given
by the equally-spaced target matrix, {|i − j|}, is to say that we seek a per-
mutation ρ that provides a structure “close” as possible to what is called an
anti-Robinson (AR) form for Aρ, i.e., the degree to which the entries in Aρ,
moving away from the main diagonal in either direction never decrease (and
usually increase); this is exactly the pattern exhibited by the equally-spaced
target matrix, B = {|i− j|}.

The type of heuristic optimization strategy we use for the QA task in
order.m, implements simple object interchange/rearrangement operations.
Based on given matrices A and B, and beginning with some permutation
(possibly chosen at random), local interchanges and rearrangements of a par-
ticular type are implemented until no improvement in the index can be made.
By repeatedly initializing such a process randomly, a distribution over a set
of local optima can be achieved. Three different classes of local operations
are used in the M-file, order.m: (i) the pairwise interchanges of objects in the
current permutation defining the row and column order of the data matrix
A. All possible such interchanges are generated and considered in turn, and
whenever an increase in the cross-product index would result from a partic-
ular interchange, it is made immediately. The process continues until the
current permutation cannot be improved upon by any such pairwise object
interchange. The procedure then proceeds to (ii): the local operations con-
sidered are all reinsertions of from 1 to kblock (which is less than n and set
by the user) consecutive objects somewhere in the permutation defining the
current row and column order of the data matrix. When no further improve-
ment can be made, we move to (iii): the local operations are now all possible
rotations (or inversions) of from 2 to kblock consecutive objects in the cur-
rent row/column order of the data matrix. (We suggest a use of kblock equal
to 3 as a reasonable compromise between the extensiveness of local search,
speed of execution, and quality of solution.) The three collections of local
changes are revisited (in order) until no alteration is possible in the final
permutation obtained.

The use of order.m is illustrated in the verbatim recording below on the

28



supreme_agree data. There are index permutations stored in the MATLAB
cell-array allperms, from the first randomly generated one in allperms{1},
to the found local optimum in allperms{index}. (These have been sup-
pressed in the output.) Notice that retrieving entries in a cell-array requires
the use of curly braces, {,}. The M-file, targlin.m, provides the equally-
spaced target matrix as an input. Starting with a random permutation and
the supreme_agree data matrix, the identity permutation is found (in fact, it
would be the sole local optimum identified upon repeated starts using random
permutations).

>> load supreme_agree.dat

>> [outperm,rawindex,allperms,index] = order(supreme_agree,targlin(9),randperm(9),3);

outperm =

1 2 3 4 5 6 7 8 9

rawindex =

145.1200

index =

19

3 Confirmatory and Nonmetric LUS

In developing linear unidimensional scaling (as well as other types of) repre-
sentations for a proximity matrix, it is convenient to have a general mecha-
nism available for solving linear (in)equality constrained least-squares tasks.
The two such instances discussed in this section involve (a) the confirma-
tory fitting of a given object order to a proximity matrix (through an M-file
called linfit.m), and (b) the construction of an optimal monotonic transfor-
mation of a proximity matrix in relation to a given unidimensional ordering
(through an M-file called proxmon.m). In both these cases, we rely on what

29



can be called the Dykstra-Kaczmarz method for solving linear inequality con-
strained least-squares problems (the latter solution strategy is developed in
greater detail in Section 9.9).

3.1 The Confirmatory Fitting of a Given Order

The M-function, linfit.m, fits a set of coordinates to a given proximity
matrix based on some given input permutation, say, ρ(0). Specifically, we
seek x1 ≤ x2 ≤ · · · ≤ xn such that

∑
i<j(pρ0(i)ρ0(j) − |xj − xi|)2 is minimized

(and where the permutation ρ(0) may not even put the matrix {pρ0(i)ρ0(j)} into
a monotonic form). Using the syntax

[fit,diff,coord] = linfit(prox,inperm)

the matrix {|xj − xi|} is referred to as the fitted matrix (fit); coord gives
the ordered coordinates; and diff is the value of the least-squares criterion.
The fitted matrix is found through the Dykstra-Kaczmarz method where the
equality constraints defined by distances along a continuum are imposed to
construct the fitted matrix, i.e., if i < j < k, then |xi−xj|+|xj−xk| = |xi−xk|.
Once found, the actual ordered coordinates are retrieved by the usual t

(ρ0)
i

formula but computed on fit. In the example below of the use of linfit.m,
the identity permutation obtained from the use of uniscalqa.m is used as
the input permutation.

>> load supreme_agree.dat

>> [fit,diff,coord] = linfit(supreme_agree,[1 2 3 4 5 6 7 8 9])

fit =

0 0.1789 0.2433 0.3144 0.6022 0.7011 0.7967 0.9878 1.0356

0.1789 0 0.0644 0.1356 0.4233 0.5222 0.6178 0.8089 0.8567

0.2433 0.0644 0 0.0711 0.3589 0.4578 0.5533 0.7444 0.7922

0.3144 0.1356 0.0711 0 0.2878 0.3867 0.4822 0.6733 0.7211

0.6022 0.4233 0.3589 0.2878 0 0.0989 0.1944 0.3856 0.4333

0.7011 0.5222 0.4578 0.3867 0.0989 0 0.0956 0.2867 0.3344

0.7967 0.6178 0.5533 0.4822 0.1944 0.0956 0 0.1911 0.2389

0.9878 0.8089 0.7444 0.6733 0.3856 0.2867 0.1911 0 0.0478

1.0356 0.8567 0.7922 0.7211 0.4333 0.3344 0.2389 0.0478 0

30



diff =

0.4691

coord =

-0.5400

-0.3611

-0.2967

-0.2256

0.0622

0.1611

0.2567

0.4478

0.4956

3.2 The Monotonic Transformation of a Proximity Matrix

The function, proxmon.m, provides a monotonically transformed proximity
matrix that is closest in a least-squares sense to a given input matrix. The
syntax is

[monproxpermut,vaf,diff] = proxmon(proxpermut,fitted)

Here, proxpermut is the input proximity matrix (which may have been sub-
jected to an initial row/column permutation, hence the suffix “permut”);
fitted is a given target matrix; the output matrix monproxpermut is closest
to fitted in a least-squares sense and obeys the order constraints obtained
from each pair of entries in (the upper-triangular portion of) proxpermut

(and where the inequality constrained optimization is carried out using the
Dykstra-Kaczmarz iterative projection strategy); vaf denotes “variance-ac-
counted-for” and indicates how much variance in monproxpermut can be ac-
counted for by fitted; finally, diff is the value of the least-squares loss
function and is the sum of squared differences between the entries in fitted

and monproxpermut (actually, diff is one-half of such a sum because the loss
function is over i < j).

When fitting a given order, fitted would correspond to the matrix {|xj−
xi|}, where x1 ≤ x2 ≤ · · · ≤ xn; the input proxpermut would be {pρ0(i)ρ0(j)};

31



monproxpermut would be {f(pρ0(i)ρ0(j))}, where the function f(·) satisfies the
monotonicity constraints, i.e., if pρ0(i)ρ0(j) < pρ0(i′)ρ0(j′) for 1 ≤ i < j ≤ n and
1 ≤ i′ < j′ ≤ n, then f(pρ0(i)ρ0(j)) ≤ f(pρ0(i′)ρ0(j′)). The transformed proximity
matrix {f(pρ0(i)ρ0(j))} minimizes the least-squares criterion (diff) of∑

i<j

(f(pρ0(i)ρ0(j))− |xj − xi|)2,

over all functions f(·) that satisfy the monotonicity constraints. The vaf is
a normalization of this loss value by the sum of squared deviations of the
transformed proximities from their mean:

VAF = 1−
∑

i<j(f(pρ0(i)ρ0(j))− |xj − xi|)2∑
i<j(f(pρ0(i)ρ0(j))− f̄)2

,

where f̄ denotes the mean of the off-diagonal entries in {f(pρ0(i)ρ0(j))}.

3.2.1 An Application Incorporating proxmon.m

The script M-file listed below gives an application of proxmon.m using the
identity permutation for our supreme_agree matrix. First, linfit.m is in-
voked to obtain a fitted matrix (fit); proxmon.m then generates the mono-
tonically transformed proximity matrix (monprox) with vaf = .9869 and diff

= .0349. The strategy is then repeated one-hundred times (i.e., finding a fit-
ted matrix based on the monotonically transformed proximity matrix, finding
a new monotonically transformed matrix, and so on). To avoid degeneracy
(where all matrices would converge to zeros), the sum of squares of the fit-
ted matrix is normalized. As indicated in the output below, the final vaf
is .9934 with a diff of .0190. (Although the permutation found earlier for
supreme_agree remains the same throughout the construction of the optimal
monotonic transformation, in this particular example it would also remain
optimal with the same VAF if the unidimensional scaling were repeated with
monprox now considered the input proximity matrix. Even though probably
rare, other data sets might not have such an invariance, and it may be desir-
able to initiate an iterative routine that finds a unidimensional scaling [i.e.,
an object ordering] in addition to monotonically transforming the proximity
matrix.)

32



>> type uniscale_monotone_test

load supreme_agree.dat

inperm = [1 2 3 4 5 6 7 8 9];

proxpermut = supreme_agree(inperm,inperm);

[fit,diff,coord] = linfit(proxpermut,1:9)

[monprox,vaf,diff] = proxmon(proxpermut,fit)

sumfitsq = sum(sum(fit.^2));

for i = 1:100

[fit,diff,coord] = linfit(monprox,1:9);

sumnewfitsq = sum(sum(fit.^2));

fit = sqrt(sumfitsq)*(fit/sumnewfitsq);

[monprox,vaf,diff] = proxmon(proxpermut,fit);

end

fit

coord

vaf

diff

monprox

disparities = squareform(monprox);

dissimilarities = squareform(proxpermut);

distances = squareform(fit);

[dum, ord] = sortrows([disparities(:) dissimilarities(:)]);

plot(dissimilarities, distances, ’bo’, dissimilarities(ord),disparities(ord),’r.-’)

xlabel(’Dissimilarities’)

ylabel(’Distances/Disparities’)

legend({’Distances’ ’Disparities’},’Location’,’NorthWest’);

33



>> uniscale_monotone_test

fit =

0 0.1789 0.2433 0.3144 0.6022 0.7011 0.7967 0.9878 1.0356

0.1789 0 0.0644 0.1356 0.4233 0.5222 0.6178 0.8089 0.8567

0.2433 0.0644 0 0.0711 0.3589 0.4578 0.5533 0.7444 0.7922

0.3144 0.1356 0.0711 0 0.2878 0.3867 0.4822 0.6733 0.7211

0.6022 0.4233 0.3589 0.2878 0 0.0989 0.1944 0.3856 0.4333

0.7011 0.5222 0.4578 0.3867 0.0989 0 0.0956 0.2867 0.3344

0.7967 0.6178 0.5533 0.4822 0.1944 0.0956 0 0.1911 0.2389

0.9878 0.8089 0.7444 0.6733 0.3856 0.2867 0.1911 0 0.0478

1.0356 0.8567 0.7922 0.7211 0.4333 0.3344 0.2389 0.0478 0

diff =

0.4691

coord =

-0.5400

-0.3611

-0.2967

-0.2256

0.0622

0.1611

0.2567

0.4478

0.4956

monprox =

0 0.2467 0.2433 0.2467 0.6517 0.6517 0.7967 1.0117 1.0117

0.2467 0 0.0800 0.1356 0.4044 0.5022 0.6178 0.8089 0.8567

0.2433 0.0800 0 0.0711 0.4092 0.4092 0.5533 0.7444 0.7922

0.2467 0.1356 0.0711 0 0.3030 0.4092 0.5022 0.6733 0.7211

0.6517 0.4044 0.4092 0.3030 0 0.1774 0.1774 0.4044 0.4092

0.6517 0.5022 0.4092 0.4092 0.1774 0 0.0800 0.3030 0.3030

0.7967 0.6178 0.5533 0.5022 0.1774 0.0800 0 0.1911 0.1774

34



1.0117 0.8089 0.7444 0.6733 0.4044 0.3030 0.1911 0 0.0478

1.0117 0.8567 0.7922 0.7211 0.4092 0.3030 0.1774 0.0478 0

vaf =

0.9869

diff =

0.0349

fit =

0 0.2234 0.2463 0.2643 0.6338 0.7235 0.8021 1.0067 1.0067

0.2234 0 0.0228 0.0409 0.4103 0.5001 0.5787 0.7832 0.7832

0.2463 0.0228 0 0.0180 0.3875 0.4773 0.5559 0.7604 0.7604

0.2643 0.0409 0.0180 0 0.3695 0.4592 0.5378 0.7424 0.7424

0.6338 0.4103 0.3875 0.3695 0 0.0898 0.1684 0.3729 0.3729

0.7235 0.5001 0.4773 0.4592 0.0898 0 0.0786 0.2831 0.2831

0.8021 0.5787 0.5559 0.5378 0.1684 0.0786 0 0.2046 0.2046

1.0067 0.7832 0.7604 0.7424 0.3729 0.2831 0.2046 0 0

1.0067 0.7832 0.7604 0.7424 0.3729 0.2831 0.2046 0 0

coord =

-0.1226

-0.0724

-0.0672

-0.0632

0.0199

0.0401

0.0578

0.1038

0.1038

vaf =

0.9934

35



diff =

0.0190

monprox =

0 0.2447 0.2447 0.2447 0.6787 0.6787 0.7927 1.0067 1.0067

0.2447 0 0.0474 0.0474 0.3854 0.5001 0.5787 0.7832 0.7927

0.2447 0.0474 0 0.0180 0.4414 0.4414 0.5559 0.7604 0.7604

0.2447 0.0474 0.0180 0 0.3695 0.4414 0.5378 0.7424 0.7424

0.6787 0.3854 0.4414 0.3695 0 0.1542 0.1542 0.3854 0.3854

0.6787 0.5001 0.4414 0.4414 0.1542 0 0.0474 0.2831 0.2831

0.7927 0.5787 0.5559 0.5378 0.1542 0.0474 0 0.2046 0.1542

1.0067 0.7832 0.7604 0.7424 0.3854 0.2831 0.2046 0 0

1.0067 0.7927 0.7604 0.7424 0.3854 0.2831 0.1542 0 0

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Dissimilarities

D
is

ta
nc

es
/D

is
pa

rit
ie

s

 

 
Distances
Disparities

Figure 4: Plot of the Monotonically Transformed Proximities (Disparities) and Fitted Values
(Distances) (y-axis) Against the Original Supreme Court Proximities (Dissimilarities) (x-
axis).

There are several items to point out about the example just given. First,
it was actually run by invoking a script M-file, uniscale_monotone_test,
the contents of which can be seen by issuing the simple command,

36



type uniscale_monotone_test

The commands are performed by typing the script file name in the command
window. We also note that a rather arbitrary number of iterations of the
fitting process were carried out (i.e., one-hundred). An alternative strategy
would have been to exit upon a minimal change in, say, the VAF value.
Second, we show how to plot the entries in the various matrices (monprox,
supreme_agree, and fit) by first changing them to vector form through
the MATLAB M-function, squareform.m. Figure 4 then shows the plot
of both monprox (called “disparities”) and fit (called “distances”0 against
supreme_agree (called “dissimilarities”). Such a (joint) plot is called a Shep-
ard diagram in the literature of multidimensional scaling.

3.3 Using the MATLAB Statistical Toolbox M-file for Metric and
Nonmetric (Multi)dimensional scaling

There is an M-file, mdscale.m, within the MATLAB Statistical Toolbox that
performs various types of metric and nonmetric multidimensional scaling
analyses. When the dimensionality is set at “1”, and the loss criterion is
set to “metricstress”, the LUS task in (1) is being solved but with a differ-
ent type of optimization strategy based on gradients. The criterion reported
is stress, defined by the square-root of our diff divided by the sum-of-
squares for the interpoint distances. As can be seen from the MATLAB
session below, the gradient-based method has a very difficult time in finding
the best solution defined by the identity permutation, and only two out of
one-hundred random starts produced it. (We have suppressed most of the
output; the best solution out of the one-hundred is reported automatically,
and is identical [given the same coordinates] to that obtained with a sin-
gle random start of uniscalqa.m). It is true generally that gradient-based
methods have an extremely hard time avoiding purely local optima when
used in one dimension. A reliance on uniscalqa.m is a much better option
for approaching the LUS task.

>> load supreme_agree.dat

>> opts = statset(’Display’,’final’,’Maxiter’,1000);

37



>> [coord,stress] = mdscale(supreme_agree,1,’Criterion’,’metricstress’,’Start’,...

’random’,’Replicates’,100,’Options’,opts)

6 iterations, Final stress criterion = 0.213021

4 iterations, Final stress criterion = 0.511745

4 iterations, Final stress criterion = 0.213232

4 iterations, Final stress criterion = 0.222266

5 iterations, Final stress criterion = 0.373536

2 iterations, Final stress criterion = 0.607790

2 iterations, Final stress criterion = 0.579076

2 iterations, Final stress criterion = 0.567206

3 iterations, Final stress criterion = 0.459125

2 iterations, Final stress criterion = 0.602695

*remaining starts deleted*

coord =

-0.5400

-0.3611

-0.2967

-0.2256

0.0622

0.1611

0.2567

0.4478

0.4956

stress =

0.2125

38



3.4 A Convenient Utility for Plotting a LUS Representation

To actually plot a LUS representation, we provide an M-file, linearplot.m,
with usage syntax

[linearlength] = linearplot(coord,inperm)

Here, linearlength is the total length of representation from the smallest
coordinate to the largest; coord is the ordered set of coordinates that get
labeled with the values in inperm. As can be seen from the output below
and Figure 5, the LUS representation separates the far left, {Stevens:1}, from
the moderate liberals, {Breyer:2, Ginsberg:3, Souter:4}; and the far right,
{Scalia:8, Thomas:9}, from the moderate right, {O’Connor:5, Kennedy:6,
Rehnquist:7}.

>> [fit,diff,coord] = linfit(supreme_agree,[1 2 3 4 5 6 7 8 9])

fit =

0 0.1789 0.2433 0.3144 0.6022 0.7011 0.7967 0.9878 1.0356

0.1789 0 0.0644 0.1356 0.4233 0.5222 0.6178 0.8089 0.8567

0.2433 0.0644 0 0.0711 0.3589 0.4578 0.5533 0.7444 0.7922

0.3144 0.1356 0.0711 0 0.2878 0.3867 0.4822 0.6733 0.7211

0.6022 0.4233 0.3589 0.2878 0 0.0989 0.1944 0.3856 0.4333

0.7011 0.5222 0.4578 0.3867 0.0989 0 0.0956 0.2867 0.3344

0.7967 0.6178 0.5533 0.4822 0.1944 0.0956 0 0.1911 0.2389

0.9878 0.8089 0.7444 0.6733 0.3856 0.2867 0.1911 0 0.0478

1.0356 0.8567 0.7922 0.7211 0.4333 0.3344 0.2389 0.0478 0

diff =

0.4691

coord =

-0.5400

-0.3611

-0.2967

-0.2256

0.0622

0.1611

39



0.2567

0.4478

0.4956

>> [linearlength] = linearplot(coord,[1 2 3 4 5 6 7 8 9])

linearlength =

1.0356

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9

Figure 5: The LUS Representation Using linearplot.m with the Coordinates Obtained from
linfit.m on the supreme agree Proximities.

4 Incorporating an Additive Constant in LUS

A generalization to the basic LUS task that incorporates an additional ad-
ditive constant will prove extremely convenient when extensions to multiple
unidimensional scales are proposed. In this section we emphasize a single
LUS structure through the more general least-squares loss function of the

40



form ∑
i<j

(pij − {|xj − xi| − c})2, (6)

where c is some constant to be estimated along with the coordinates x1, . . . , xn.
Much later, the restriction to fitting only a single unidimensional structure
to a symmetric proximity matrix is removed; the latter will rely heavily on
a computational approach that includes the augmentation by an estimated
additive constant and a procedure of successive residualization of the original
proximity matrix. For example, the fitting of two LUS structures to a prox-
imity matrix {pij} could be rephrased as the minimization of a loss function
generalizing (6) to the form∑

i<j

(pij − [|xj1 − xi1| − c1]− [|xj2 − xi2| − c2])
2. (7)

The attempt to minimize (7) could proceed with the fitting of a single LUS
structure to {pij}, [|xj1 − xi1| − c1], and once obtained, fitting a second LUS
structure, [|xj2−xi2|−c2], to the residual matrix, {pij− [|xj1−xi1|−c1]}. The
process would then cycle by repetitively fitting the residuals from the second
linear structure by the first, and the residuals from the first linear structure
by the second, until the sequence converges. In any case, obvious extensions
would also exist for the inclusion of more than two LUS structures.

The explicit inclusion of two constants, c1 and c2, in (7) rather than adding
these two together and including a single additive constant, c, deserves some
additional introductory explanation. As would be the case in fitting a single
LUS structure using the loss function in (6), two interpretations exist for
the role of the additive constant, c. We could consider {|xj − xi|} to be
fitted to the translated proximities {pij + c}, or alternatively, {|xj − xi| − c}
to be fitted to the original proximities {pij}, where the constant c becomes
part of the actual model. Although these two interpretations do not lead
to any algorithmic differences in how we would proceed with minimizing the
loss function in (6), a consistent use of the second interpretation suggests
that we frame extensions to the use of multiple LUS structures as we did in
(7), where it is explicit that the constants c1 and c2 are part of the actual
models to be fitted to the (untransformed) proximities {pij}. Once c1 and
c2 are obtained, they could be summed as c = c1 + c2, and an interpretation

41



made that we have attempted to fit a transformed set of proximities {pij +
c} by the sum {|xj1 − xi1| + |xj2 − xi2|} (and in this latter case, a more
usual terminology would be one of a two-dimensional scaling (MDS) based
on the city-block distance function). However, such a further interpretation is
unnecessary and could lead to at least some small terminological confusion in
further extensions that we might wish to pursue. For instance, if some type of
(optimal nonlinear) transformation, say f(·), of the proximities is also sought
(e.g., a monotonic function of some form as we did in Section 3.2), in addition
to fitting multiple LUS structures, and where pij in (7) is replaced by f(pij),
and f(·) is to be constructed, the first interpretation would require the use
of a “doubly transformed” set of proximities {f(pij) + c} to be fitted by the
sum {|xj1 − xi1|+ |xj2 − xi2|}. In general, it seems best to avoid the need to
incorporate the notion of a double transformation in this context, and instead
merely consider the constants c1 and c2 to be part of the models being fitted
to a transformed set of proximities f(pij).

4.1 The Incorporation of an Additive Constant in LUS Through
the M-file, linfitac.m

We present and illustrate an M-function, linfitac.m, that fits a given sin-
gle unidimensional scale (by providing the coordinates x1, . . . , xn) and the
additive constant (c) for some fixed input object ordering along the con-
tinuum defined by a permutation ρ(0). This approach directly parallels the
M-function given earlier as linfit.m, but now with an included additive
constant estimation. The usage syntax of

[fit,vaf,coord,addcon] = linfitac(prox,inperm)

is similar to that of linfit.m except for the inclusion (as output) of the
additive constant addcon, and the replacement of the least-squares criterion
of diff by the variance-accounted-for (vaf) given by the general formula

VAF = 1−
∑

i<j(pρ(0)(i)ρ(0)(j) + c− |xj − xi|)2∑
i<j(pij − p̄)2

,

where p̄ is the mean of the proximity values under consideration.

42



To illustrate the invariance of vaf to the use of linear transformations of
the proximity matrix (although coord and addcon obviously will change de-
pending on the transformation used), the identity permutation was fitted us-
ing two different matrices: the original proximity matrix for supreme_agree,
and one standardized to mean zero and variance one. The latter matrix is
obtained with the utility proxstd.m, with usage explained in its M-file header
comments given in the Appendix. Note that for the two proximity matrices
employed, the VAF values are exactly the same (.9796) but the coordinates
and additive constants differ; a listing of the standardized proximity matrix is
given in the output to show explicitly how negative proximities pose no prob-
lem for the fitting process that allows the incorporation of additive constants
within the fitted model.

>> load supreme_agree.dat

>> inperm = [1 2 3 4 5 6 7 8 9];

>> [fit,vaf,coord,addcon] = linfitac(supreme_agree,inperm)

fit =

0 0.1304 0.1464 0.1691 0.4085 0.4589 0.5060 0.6483 0.6483

0.1304 0 0.0160 0.0387 0.2780 0.3285 0.3756 0.5179 0.5179

0.1464 0.0160 0 0.0227 0.2620 0.3124 0.3596 0.5019 0.5019

0.1691 0.0387 0.0227 0 0.2393 0.2898 0.3369 0.4792 0.4792

0.4085 0.2780 0.2620 0.2393 0 0.0504 0.0976 0.2399 0.2399

0.4589 0.3285 0.3124 0.2898 0.0504 0 0.0471 0.1894 0.1894

0.5060 0.3756 0.3596 0.3369 0.0976 0.0471 0 0.1423 0.1423

0.6483 0.5179 0.5019 0.4792 0.2399 0.1894 0.1423 0 0

0.6483 0.5179 0.5019 0.4792 0.2399 0.1894 0.1423 0 0

vaf =

0.9796

coord =

-0.3462

-0.2158

-0.1998

-0.1771

0.0622

43



0.1127

0.1598

0.3021

0.3021

addcon =

-0.2180

>> supreme_agree_stan = proxstd(supreme_agree,0.0)

supreme_agree_stan =

0 -0.6726 -0.8887 -0.7266 0.8948 0.7326 1.3271 1.9216 1.8676

-0.6726 0 -1.2130 -1.1590 -0.2942 0.1381 0.3543 1.3271 1.3812

-0.8887 -1.2130 0 -1.5373 0.1381 0.0300 0.3543 1.1650 1.2731

-0.7266 -1.1590 -1.5373 0 -0.2942 -0.0240 0.3003 1.0028 1.1109

0.8948 -0.2942 0.1381 -0.2942 0 -0.9428 -1.1590 -0.2402 -0.2402

0.7326 0.1381 0.0300 -0.0240 -0.9428 0 -1.4832 -0.4564 -0.5104

1.3271 0.3543 0.3543 0.3003 -1.1590 -1.4832 0 -0.8887 -0.9968

1.9216 1.3271 1.1650 1.0028 -0.2402 -0.4564 -0.8887 0 -1.5913

1.8676 1.3812 1.2731 1.1109 -0.2402 -0.5104 -0.9968 -1.5913 0

>> [fit,vaf,coord,addcon] = linfitac(supreme_agree_stan,inperm)

fit =

0 0.7050 0.7914 0.9139 2.2073 2.4799 2.7345 3.5037 3.5037

0.7050 0 0.0864 0.2089 1.5024 1.7750 2.0295 2.7987 2.7987

0.7914 0.0864 0 0.1225 1.4159 1.6885 1.9431 2.7123 2.7123

0.9139 0.2089 0.1225 0 1.2935 1.5661 1.8206 2.5898 2.5898

2.2073 1.5024 1.4159 1.2935 0 0.2726 0.5272 1.2964 1.2964

2.4799 1.7750 1.6885 1.5661 0.2726 0 0.2546 1.0238 1.0238

2.7345 2.0295 1.9431 1.8206 0.5272 0.2546 0 0.7692 0.7692

3.5037 2.7987 2.7123 2.5898 1.2964 1.0238 0.7692 0 0

3.5037 2.7987 2.7123 2.5898 1.2964 1.0238 0.7692 0 0

vaf =

0.9796

coord =

44



-1.8710

-1.1661

-1.0796

-0.9572

0.3363

0.6089

0.8635

1.6327

1.6327

addcon =

1.5480

4.2 Increasing the Computational Speed of the M-file, linfitac.m

The iterative projection optimization process implemented in linfitac.m,
alternates between finding the additive constant and the coordinates. As
discussed in Section 9.7, it is also possible to fit the LUS model through par-
titions consistent with a given object order, and without alternating between
the additive constant and coordinate estimation. This can dramatically in-
crease the speed of linfitac.m if this alternative computational routine is
used for the optimization engine (e.g., some 75 times as fast in a few test
problems we have tried). We have implemented this alternative in the M-file,
linfitac_altcomp.m, with exactly the same syntax as linfitac.m (note
that for usage elsewhere and in comparison to linfitac.m, the addcon in
linfitac_altcomp.m is opposite in sign and is also included in fit). The
reader is encouraged to use this alternative M-file whenever the problem size
warrants and computational quickness is at a high premium.

5 Circular Unidimensional Scaling (CUS)

Circular unidimensional scaling (CUS) has the objective of placing n objects
around a closed continuum such that the reconstructed distance between
each pair of objects, defined by the minimum length over the two possible

45



paths that join the objects, reflects the given proximities as well as possible.
Explicitly, and in analogy with the loss function for linear unidimensional
scaling (LUS), we wish to find a set of coordinates, x1, . . . , xn, plus an (n+1)st

value (a circumference), x0 ≥ |xj − xi| for all 1 ≤ i ̸= j ≤ n, minimizing∑
i<j

(pij + c−min{|xj − xi|, x0 − |xj − xi|})2, (8)

or equivalently,∑
i<j

(pij − [min{|xj − xi|, x0 − |xj − xi|} − c])2, (9)

where c is again some constant to be estimated. The value x0 represents the
total length of the closed continuum, and the expression, min{|xj − xi|, x0 −
|xj − xi|}, gives the minimum length over the two possible paths joining
objects Oi and Oj.

5.1 The Circular Unidimensional Scaling Utilities

The two circular unidimensional scaling utilities that implement the mechan-
ics of fitting the CUS model, parallel the LUS utilities of linfit.m and
linfitac.m. The M-files, cirfit.m and cirfitac.m, carry out confirma-
tory fittings of a given order (assumed to be an object ordering around a
closed unidimensional structure), and have syntax:

[fit, diff] = cirfit(prox,inperm)

[fit,vaf,addcon] = cirfitac(prox,inperm)

where inperm is the given order; fit is an n× n matrix fitted to the matrix
prox(inperm,inperm) with a least-squares value diff. The syntax for the
routine, cirfitac.m, is the same except for the inclusion of an additive
constant, addcon, and the use of vaf rather than diff.

In brief, then, the type of matrix being fitted to the proximity matrix has
the form

{min(| xρ(j) − xρ(i) |, x0 − | xρ(j) − xρ(i) |) − c},

46



where c is an estimated additive constant (assumed equal to zero in cirfit.m),
xρ(1) ≤ xρ(2) ≤ · · · ≤ xρ(n) ≤ x0, and the last coordinate, x0, is the circumfer-
ence of the circular structure. We can obtain these latter coordinates from
the adjacent spacings in the output matrix fit. As an example, we applied
cirfit.m to the morse_digits proximity matrix with an assumed identity
input permutation; the spacings around the circular structure between the
placements for objects 1 and 2 is .5337; 2 and 3: .7534; 3 and 4: .6174; 4
and 5: .1840; 5 and 6: .5747; 6 and 7: .5167; 7 and 8: .3920; 8 and 9: .5467;
9 and 10: .1090; and back around between 10 and 1: .5594 (the sum of all
these adjacent spacings is 4.787 and is the circumference (x0) of the circular
structure). For cirfitac.m, the additive constant was estimated as -.8031
with a vaf of .7051; here, the spacings around the circular structure between
the placements for objects 1 and 2 is .2928; 2 and 3: .4322; 3 and 4: .2962; 4
and 5: .0234; 5 and 6: .3338; 6 and 7: .2758; 7 and 8: .2314; 8 and 9: .2800;
9 and 10: .0000; and back around between 10 and 1: .2124 (here, x0 has a
value of 2.378).

>> load morse_digits.dat

>> morse_digits

morse_digits =

0 0.7500 1.6900 1.8700 1.7600 1.7700 1.5900 1.2600 0.8600 0.9500

0.7500 0 0.8200 1.5400 1.8500 1.7200 1.5100 1.5000 1.4500 1.6300

1.6900 0.8200 0 1.2500 1.4700 1.3300 1.6600 1.5700 1.8300 1.8100

1.8700 1.5400 1.2500 0 0.8900 1.3200 1.5300 1.7400 1.8500 1.8600

1.7600 1.8500 1.4700 0.8900 0 1.4100 1.6400 1.8100 1.9000 1.9000

1.7700 1.7200 1.3300 1.3200 1.4100 0 0.7000 1.5600 1.8400 1.6400

1.5900 1.5100 1.6600 1.5300 1.6400 0.7000 0 0.7000 1.3800 1.7000

1.2600 1.5000 1.5700 1.7400 1.8100 1.5600 0.7000 0 0.8300 1.2200

0.8600 1.4500 1.8300 1.8500 1.9000 1.8400 1.3800 0.8300 0 0.4100

0.9500 1.6300 1.8100 1.8600 1.9000 1.6400 1.7000 1.2200 0.4100 0

>> [fit,diff] = cirfit(morse_digits,1:10)

fit =

0 0.5337 1.2871 1.9044 2.0884 2.1237 1.6071 1.2151 0.6684 0.5594

0.5337 0 0.7534 1.3707 1.5547 2.1294 2.1407 1.7487 1.2021 1.0931

1.2871 0.7534 0 0.6174 0.8014 1.3761 1.8927 2.2847 1.9554 1.8464

1.9044 1.3707 0.6174 0 0.1840 0.7587 1.2754 1.6674 2.2141 2.3231

2.0884 1.5547 0.8014 0.1840 0 0.5747 1.0914 1.4834 2.0301 2.1391

2.1237 2.1294 1.3761 0.7587 0.5747 0 0.5167 0.9087 1.4554 1.5644

1.6071 2.1407 1.8927 1.2754 1.0914 0.5167 0 0.3920 0.9387 1.0477

1.2151 1.7487 2.2847 1.6674 1.4834 0.9087 0.3920 0 0.5467 0.6557

0.6684 1.2021 1.9554 2.2141 2.0301 1.4554 0.9387 0.5467 0 0.1090

0.5594 1.0931 1.8464 2.3231 2.1391 1.5644 1.0477 0.6557 0.1090 0

diff =

47



7.3898

>> [fit,vaf,addcon] = cirfitac(morse_digits,1:10)

fit =

0 0.2928 0.7250 1.0212 1.0446 0.9996 0.7238 0.4924 0.2124 0.2124

0.2928 0 0.4322 0.7284 0.7518 1.0856 1.0166 0.7852 0.5052 0.5052

0.7250 0.4322 0 0.2962 0.3196 0.6534 0.9292 1.1606 0.9374 0.9374

1.0212 0.7284 0.2962 0 0.0234 0.3572 0.6330 0.8644 1.1444 1.1444

1.0446 0.7518 0.3196 0.0234 0 0.3338 0.6096 0.8410 1.1210 1.1210

0.9996 1.0856 0.6534 0.3572 0.3338 0 0.2758 0.5072 0.7872 0.7872

0.7238 1.0166 0.9292 0.6330 0.6096 0.2758 0 0.2314 0.5114 0.5114

0.4924 0.7852 1.1606 0.8644 0.8410 0.5072 0.2314 0 0.2800 0.2800

0.2124 0.5052 0.9374 1.1444 1.1210 0.7872 0.5114 0.2800 0 0.0000

0.2124 0.5052 0.9374 1.1444 1.1210 0.7872 0.5114 0.2800 0.0000 0

vaf =

0.7051

addcon =

-0.8031

5.1.1 The M-function, unicirac.m

The function M-file, unicirac.m, carries out a circular unidimensional scal-
ing of a symmetric dissimilarity matrix (with the estimation of an additive
constant) using an iterative quadratic assignment strategy (and thus, can be
viewed as an analogue of uniscalqa.m for the LUS task). We begin with
an equally-spaced circular target constructed using the M-file, targcir.m
(that could be invoked with the command targcir(10)), a (random) start-
ing permutation, and then use a sequential combination of the pairwise inter-
change/rotation/insertion heuristics; the target matrix is re-estimated based
on the identified (locally optimal) permutation. The whole process is re-
peated until no changes can be made in the target or the identified (locally
optimal) permutation. The explicit usage syntax is

[find,vaf,outperm,addcon] = unicirac(prox,inperm,kblock)

where the various terms should now be familiar. The given starting permu-
tation, inperm, is of the first n integers (assumed to be around the circle);
find is the least-squares optimal matrix (with variance-accounted-for of vaf)
to prox having the appropriate circular form for the row and column object
ordering given by the final permutation, outperm. The spacings between the

48



objects are given by the entries immediately above the main diagonal in find

(and the extreme (1, n) entry in find). The block size in the use the iterative
quadratic assignment routine is kblock; the additive constant for the model
is given by addcon.

The problem of local optima is much more severe in CUS than in LUS.
Given the heuristic identification of inflection points (i.e., the clock- or coun-
terclockwise change of direction for the calculation of distances between ob-
ject pairs), the relevant spacings can vary somewhat depending on the ‘equiv-
alent’ orderings identified around a circular structure. The example given
below was identified as the best achievable (and for some multiple number
of times) over 100 random starting permutations for inperm; with its vaf of
71.90%, it is apparently the best attainable. Given the (equivalent to the)
identity permutation identified for outperm, the substantive interpretation
for this representation is fairly clear — we have a nicely interpretable order-
ing of the Morse code symbols around a circular structure involving a regular
replacement of dashes by dots moving clockwise until the symbol containing
all dots is reached, and then a subsequent replacement of the dots by dashes
until the initial symbol containing all dashes is reached.

>> [find,vaf,outperm,addcon] = unicirac(morse_digits,randperm(10),2)

find =

0 0.0247 0.3620 0.6413 0.9605 1.1581 1.1581 1.0358 0.7396 0.3883

0.0247 0 0.3373 0.6165 0.9358 1.1334 1.1334 1.0606 0.7643 0.4131

0.3620 0.3373 0 0.2793 0.5985 0.7961 0.7961 1.0148 1.1016 0.7503

0.6413 0.6165 0.2793 0 0.3193 0.5169 0.5169 0.7355 1.0318 1.0296

0.9605 0.9358 0.5985 0.3193 0 0.1976 0.1976 0.4163 0.7125 1.0638

1.1581 1.1334 0.7961 0.5169 0.1976 0 0.0000 0.2187 0.5149 0.8662

1.1581 1.1334 0.7961 0.5169 0.1976 0.0000 0 0.2187 0.5149 0.8662

1.0358 1.0606 1.0148 0.7355 0.4163 0.2187 0.2187 0 0.2963 0.6475

0.7396 0.7643 1.1016 1.0318 0.7125 0.5149 0.5149 0.2963 0 0.3513

0.3883 0.4131 0.7503 1.0296 1.0638 0.8662 0.8662 0.6475 0.3513 0

vaf =

0.7190

outperm =

4 5 6 7 8 9 10 1 2 3

addcon =

-0.7964

49



The plotting function circularplot.m

To assist in the visualization of the results from a circular unidimensional
scaling, the M-function called circularplot.m, provides the coordinates of
a scaling around a circular structure plus a plot of the (labeled) objects
around the circle. The usage syntax is

[circum,radius,coord,degrees,cumdegrees] = ...

circularplot(circ,inperm)

The coordinates are derived from the n×n interpoint distance matrix (around
a circle) given by circ; the positions are labeled by the order of objects given
in inperm. The output consists of a plot, the circumference of the circle
(circum) and radius (radius); the coordinates of the plot positions (coord),
and the degrees and cumulative degrees induced between the plotted positions
(in degrees and cumdegrees). The positions around the circle are numbered
from 1 (at the “noon” position) to n, moving clockwise around the circular
structure.

As an example, Figure 6 provides an application of circularplot.m to
the just given example of unicirac.m. The text output also appears below:

>> [circum,radius,coord,degrees,cumdegrees] = circularplot(find,outperm)

circum =

2.4126

radius =

0.3840

coord =

0 0.3840

0.0247 0.3832

0.3107 0.2256

0.3821 -0.0380

0.2293 -0.3080

0.0481 -0.3810

50



0.0481 -0.3810

-0.1649 -0.3468

-0.3600 -0.1336

-0.3254 0.2038

degrees =

0.0644

0.8783

0.7273

0.8315

0.5146

0.0000

0.5695

0.7716

0.9148

1.0113

cumdegrees =

0.0644

0.9428

1.6700

2.5015

3.0161

3.0161

3.5856

4.3571

5.2719

6.2832

6 LUS for Two-Mode (Rectangular) Proximity Data

The proximity data considered thus far for obtaining some type of structure,
such as a LUS or CUS, have been assumed to be on one intact set of objects,
S = {O1, . . . , On}, and complete in the sense that proximity values are present
between all object pairs. Suppose now that the available proximity data are
two-mode, and between two distinct object sets, SA = {O1A, . . . , OnaA} and
SB = {O1B, . . . , OnbB}, containing na and nb objects, respectively, given by

51



−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4 4 5

6

7

8

910
1

2

3

Figure 6: Two-dimensional Circular Plot for the morse digits Data Obtained Using circu-
larplot.m.

52



an na×nb proximity matrix Q = {qrs}. Again, we assume that the entries in
Q are keyed as dissimilarities, and a joint structural representation is desired
for the combined set SA ∪SB. We might caution at the outset of the need to
have legitimate proximities to make the analyses to follow very worthwhile or
interpretable. There are many numerical elicitation schemes where subjects
(e.g., raters) are asked to respond to some set of objects (e.g., items). If the
elicitation is for, say, preference, then proximity may be a good interpretation
for the numerical values. If, on the other hand, the numerical value is merely
a rating given on some more-or-less objective criterion where only errors of
observation induce the variability from rater to rater, then probably not.

To have an example of a two-mode data set that might be used in our
illustrations, we extracted a 5×4 section from our supreme_agree proximity
matrix. The five rows correspond to the judges, {St,Gi,Oc,Re,Th}; the four
columns to {Br,So,Ke,Sc}; the corresponding file, supreme_agree5x4.dat,
has contents:

0.3000 0.3700 0.6400 0.8600

0.2800 0.2200 0.5100 0.7200

0.4500 0.4500 0.3300 0.4600

0.5700 0.5600 0.2300 0.3400

0.7600 0.7100 0.4100 0.2100

Because of the way the joint set of row and columns objects is numbered, the
five rows are labeled from 1 to 5 and the four columns from 6 to 9. Thus,
the correspondence between the justices and numbers differs from earlier
applications: 1:St; 2:Gi; 3:Oc; 4:Re; 5:Th; 6:Br; 7:So; 8:Ke; 9:Sc

6.1 Reordering Two-Mode Proximity Matrices

Given an na × nb two-mode proximity matrix, Q, defined between the two
distinct sets, SA and SB, it may be desirable to reorder separately the rows
and columns of Q to display some type of pattern that may be present in
its entries, or to obtain some joint permutation of the n (= na + nb) row
and column objects to effect some further type of simplified representation.
These kinds of reordering tasks will be approached with a variant of the
quadratic assignment heuristics of the earlier LUS discussion applied to a

53



square, (na + nb)× (na + nb), proximity matrix, P(tm), in which a two-mode
matrix, Q(dev) and its transpose (where Q(dev) is constructed from Q by devi-
ating its entries from the mean proximity), form the upper-right- and lower-
left-hand portions, respectively, with zeros placed elsewhere. (This use of zero
in the presence of deviated proximities, appears a reasonable choice generally
in identifying good reorderings of P(tm). Without this type of deviation strat-
egy, there would typically be no “mixing” of the row and column objects in
the permutations that we would identify for the combined [row and column]
object set.) Thus, for 0 denoting (an appropriately dimensioned) matrix of
all zeros,

P(tm) =

 0na×na
Q(dev)na×nb

Q′
(dev)nb×na

0nb×nb

 ,
is the (square) n× n proximity matrix subjected to a simultaneous row and
column reordering, which in turn will induce separate row and column re-
orderings for the original two-mode proximity matrix Q.

The M-file, ordertm.m, implements a quadratic assignment reordering
heuristic on the derived matrix P(tm), with usage

[outperm,rawindex,allperms,index,squareprox] = ...

ordertm(proxtm,targ,inperm,kblock)

where the two-mode proximity matrix proxtm (with its entries deviated from
the mean proximity within the use of the M-file) forms the upper-right-
and lower-left-hand portions of a defined square (n × n) proximity matrix
(squareprox) with a dissimilarity interpretation, and with zeros placed else-
where (n = number of rows + number of columns of proxtm = na+nb); three
separate local operations are used to permute the rows and columns of the
square proximity matrix to maximize the cross-product index with respect
to a square target matrix targ: (a) pairwise interchanges of objects in the
permutation defining the row and column order of the square proximity ma-
trix; (b) the insertion of from 1 to kblock (which is less than or equal to
n − 1) consecutive objects in the permutation defining the row and column
order of the data matrix; (c) the rotation of from 2 to kblock (which is less
than or equal to n − 1) consecutive objects in the permutation defining the
row and column order of the data matrix. The beginning input permutation

54



(a permutation of the first n integers) is inperm; proxtm is the two-mode
na × nb input proximity matrix; targ is the n× n input target matrix. The
final permutation of squareprox is outperm, having the cross-product index
rawindex with respect to targ; allperms is a cell array containing index

entries corresponding to all the permutations identified in the optimization
from allperms{1} = inperm to allperms{index} = outperm.

In the example to follow, ordertm.m, is used on the supreme_agree5x4

dissimilarity matrix. The square equally-spaced target matrix is obtained
from the LUS utility, targlin.m. The (reordered) matrix, squareprox (using
the permutation, outperm), shows clearly the unidimensional pattern for a
two-mode data matrix that will be explicitly fitted in the next section of this
chapter. The order of the justices is as expected in the new coding scheme,
except for the minor inversion of Th:5 and Sc:9 — St:1 ≻ Br:6 ≻ Gi:2 ≻ So:7
≻ Oc:3 ≻ Ke:8 ≻ Re:4 ≻ Th:5 ≻ Sc:9

>> load supreme_agree5x4.dat

>> supreme_agree5x4

supreme_agree5x4 =

0.3000 0.3700 0.6400 0.8600

0.2800 0.2200 0.5100 0.7200

0.4500 0.4500 0.3300 0.4600

0.5700 0.5600 0.2300 0.3400

0.7600 0.7100 0.4100 0.2100

>> [outperm,rawindex,allperms,index,squareprox] = ordertm(supreme_agree5x4,...

targlin(9),randperm(9),3)

outperm =

1 6 2 7 3 8 4 5 9

rawindex =

14.1420

index =

55



17

>> squareprox(outperm,outperm)

ans =

0 -0.1690 0 -0.0990 0 0.1710 0 0 0.3910

-0.1690 0 -0.1890 0 -0.0190 0 0.1010 0.2910 0

0 -0.1890 0 -0.2490 0 0.0410 0 0 0.2510

-0.0990 0 -0.2490 0 -0.0190 0 0.0910 0.2410 0

0 -0.0190 0 -0.0190 0 -0.1390 0 0 -0.0090

0.1710 0 0.0410 0 -0.1390 0 -0.2390 -0.0590 0

0 0.1010 0 0.0910 0 -0.2390 0 0 -0.1290

0 0.2910 0 0.2410 0 -0.0590 0 0 -0.2590

0.3910 0 0.2510 0 -0.0090 0 -0.1290 -0.2590 0

6.2 Fitting a Two-Mode Unidimensional Scale

It is possible to fit unidimensional scales to two-mode proximity data based on
a given permutation of the combined row and column object set. Specifically,
if ρ(·) denotes some given permutation of the first n integers (where the
first na integers denote row objects labeled 1, 2, . . . , na, and the remaining nb

integers denote column objects, labeled na+1, na+2, . . . , na+nb (= n)), we
seek a set of coordinates, x1 ≤ x2 ≤ · · · ≤ xn, such that using the reordered
square proximity matrix, P(tm)

ρ0
= {p(tm)

ρ0(i)ρ0(j)
}, the least-squares criterion

n∑
i,j=1

wρ0(i)ρ0(j)(p
(tm)
ρ0(i)ρ0(j)

− |xj − xi|)2,

is minimized, where wρ0(i)ρ0(j) = 0 if ρ0(i) and ρ0(j) are both row or both
column objects, and = 1 otherwise. The entries in the matrix fitted to P(tm)

ρ0

are based on the absolute coordinate differences (and which correspond to
nonzero values of the weight function wρ0(i)ρ0(j)), and thus satisfy certain linear
inequality constraints generated from how the row and column objects are
intermixed by the given permutation ρ0(·). To give a schematic representation
of how these constraints are generated, suppose r1 and r2 (c1 and c2) denote
two arbitrary row (column) objects, and suppose the following 2× 2 matrix
represents what is to be fitted to the four proximity values present between
r1, r2 and c1, c2:

56



c1 c2
r1 a b

r2 c d

Depending on how these four objects are ordered (and intermixed) by the
permutation ρ0(·), certain constraints must be satisfied by the entries a, b, c,
and d. The representative constraints are given schematically below according
to the types of intermixing that might be present:

(a) r1 ≺ r2 ≺ c1 ≺ c2 implies a+ d = b+ c;
(b) r1 ≺ c1 ≺ r2 ≺ c2 implies a+ c+ d = b;
(c) r1 ≺ c1 ≺ c2 ≺ r2 implies a+ c = b+ d;
(d) r1 ≺ r2 ≺ c1 implies c ≤ a;
(e) r1 ≺ c1 ≺ c2 implies a ≤ b.

The confirmatory unidimensional scaling of a two-mode proximity matrix
(based on iterative projection using a given permutation of the row and col-
umn objects) is carried out with the M-file, linfittm, with usage

[fit,diff,rowperm,colperm,coord] = linfittm(proxtm,inperm)

Here, proxtm is the two-mode proximity matrix, and inperm is the given or-
dering of the row and column objects pooled together; fit is an na×nb matrix
of absolute coordinate differences fitted to proxtm(rowperm,colperm), with
diff being the (least-squares criterion) sum of squared discrepancies between
fit and proxtm(rowperm,colperm); rowperm and colperm are the row and
column object orderings derived from inperm. The (na + nb) = n coordi-
nates (ordered with the smallest such coordinate value set at zero) are given
in coord. The example given below uses the permutation obtained from
ordertm.m on the data matrix supreme_agree5x4.

>> inperm = [1 6 2 7 3 8 4 5 9]

inperm =

1 6 2 7 3 8 4 5 9

>> [fit,diff,rowperm,colperm,coord] = linfittm(supreme_agree5x4,inperm)

fit =

57



0.1635 0.2895 0.6835 1.0335

0.0865 0.0395 0.4335 0.7835

0.4065 0.2805 0.1135 0.4635

0.6340 0.5080 0.1140 0.2360

0.7965 0.6705 0.2765 0.0735

diff =

0.2849

rowperm =

1

2

3

4

5

colperm =

1

2

3

4

coord =

0

0.1635

0.2500

0.2895

0.5700

0.6835

0.7975

0.9600

1.0335

In complete analogy with the LUS discussion (where the M-file, linfitac.m,
generalizes linfit.m by fitting an additive constant along with the absolute

58



coordinate differences), the more general unidimensional scaling model can
be fitted with an additive constant using the M-file, linfittmac.m. Specif-
ically, we now seek a set of coordinates, x1 ≤ x2 ≤ · · · ≤ xn, and an ad-
ditive constant, c, such that using the reordered square proximity matrix,
P(tm)

ρ0
= {p(tm)

ρ0(i)ρ0(j)
}, the least-squares criterion

n∑
i,j=1

wρ0(i)ρ0(j)(p
(tm)
ρ0(i)ρ0(j)

+ c− |xj − xi|)2,

is minimized, where again wρ0(i)ρ0(j) = 0 if ρ0(i) and ρ0(j) are both row or
both column objects, and = 1 otherwise. The M-file usage is

[fit,vaf,rowperm,colperm,addcon,coord] = ...

linfittmac(proxtm,inperm)

and does a confirmatory two-mode fitting of a given unidimensional ordering
of the row and column objects of a two-mode proximity matrix, proxtm, us-
ing the Dykstra-Kaczmarz iterative projection least-squares method. In com-
parison, the M-file linfittmac.m differs from linfittm.m by including the
estimation of an additive constant, and thus allowing vaf to be legitimately
given as the goodness-of-fit index (as opposed to just diff, as we did in
linfittm.m). Again, inperm is the given ordering of the row and column ob-
jects together; fit is an na (number of rows) by nb (number of columns) ma-
trix of absolute coordinate differences fitted to proxtm(rowperm,colperm);
rowperm and colperm are the row and column object orderings derived from
inperm. The estimated additive constant, addcon, can be interpreted as
being added to proxtm (or alternatively, subtracted from the fitted matrix,
fit).

The same exemplar permutation is used below (as for linfittm.m); follow-
ing the MATLAB output that now includes the additive constant of −.2132
and the vaf of .9911, the two unidimensional scalings (in their coordinate
forms) are provided in tabular form with an explicit indication of what is a
row object (R) and what is a column object (C).

>> [fit,vaf,rowperm,colperm,addcon,coord] = linfittmac(supreme_agree5x4,...

[1 6 2 7 3 8 4 5 9])

59



fit =

0.0974 0.1405 0.4469 0.6325

0.0431 0 0.3064 0.4920

0.2594 0.2163 0.0901 0.2757

0.3803 0.3372 0.0309 0.1548

0.5351 0.4920 0.1856 0

vaf =

0.9911

rowperm =

1

2

3

4

5

colperm =

1

2

3

4

addcon =

-0.2132

coord =

0

0.0974

0.1405

0.1405

0.3568

0.4469

0.4777

60



Table 6: The Two Unidimensional Scalings of the supreme agree5x4 Data Matrix.

justice number R or C no constant with constant
St 1 R .0000 .0000
Br 6 C .1635 .0974
Gi 2 R .2500 .1405
So 7 C .2895 .1405
Oc 3 R .5700 .3568
Ke 8 C .6835 .4469
Re 4 R .7975 .4777
Th 5 R .9600 .6325
Sc 9 C 1.0335 .6325

0.6325

0.6325

6.3 Increasing the Computational Speed of the M-file, linfittmac.m

Just as a computationally better (i.e., one that is faster) M-file was developed
for linfitac.m in the form of linfitac_altcomp, a computational alterna-
tive to linfittmac.m is available as linfittmac_altcomp.m. Also, a com-
plete two-mode unidimensional scaling routine incorporating linfitmac_altcomp.m
and ordertm.m, is given in uniscaltmac_altcomp.m, with syntax:

[find,vaf,outperm,rowperm,colperm,addcon,coord] = ...

uniscaltmac_altcomp(proxtm,inperm,kblock)

As the following output from using the supreme_agree5x4 data matrix shows
(and in contrast to what was obtained for linfittmac.m), the additive con-
stant is now given with the opposite sign, the coordinates are deviated from
the mean (so, they sum to 0.0), and the additive constant is included with the
identified fitted matrix. For larger data sets, the use of linfittmac_altcomp.m
and uniscaltmac_altcomp.m are almost mandatory. The original routines
can be very slow, and with some added numerical instability and convergence
difficulties when the matrices are big.

61



>> load supreme_agree5x4.dat

>> [find,vaf,outperm,rowperm,colperm,addcon,coord] = ...

uniscaltmac_altcomp(supreme_agree5x4,randperm(9),3)

find =

0.3106 0.3537 0.6600 0.8457

0.2563 0.2132 0.5196 0.7052

0.4726 0.4295 0.3033 0.4889

0.5935 0.5504 0.2441 0.3680

0.7483 0.7052 0.3988 0.2132

vaf =

0.9911

outperm =

9 5 4 8 3 7 2 6 1

rowperm =

5

4

3

2

1

colperm =

4

3

2

1

addcon =

0.2132

62



coord =

-0.3075

-0.3075

-0.1527

-0.1219

-0.0318

0.1845

0.1845

0.2275

0.3249

7 The Analysis of Skew-Symmetric Proximity Matri-

ces

Suppose the original proximity information given between the pairs of objects
in S = {O1, . . . , On} is nonsymmetric and in the form of an n×n nonnegative
matrix, say D = {dij}. This latter matrix will be decomposed into the sum
of its symmetric and skew-symmetric components as

D = [(D+D′)/2] + [(D−D′)/2] ,

and each of these components will always be addressed separately. The matrix
(D+D′)/2 is a nonnegative symmetric matrix (in our notation, P), and all
the methods appropriate for such a proximity measure can be applied. The
second component, (D−D′)/2, is an n× n matrix denoted by Pss = {pssij },
where pssij = (dij − dji)/2 for 1 ≤ i, j ≤ n, and the superscript “ss” signifies
“skew-symmetric,” i.e., pssij = −pssji for all 1 ≤ i, j ≤ n. Thus, there is
an explicit directionality to the (dominance) relationship specified between
any two objects depending on the order of the subscripts, i.e., pssij and pssji
are equal in absolute magnitude but differ in sign. It may also be worth
noting here that any skew-symmetric matrix {pssij } can itself be interpreted
as containing two separate sources of information: one is the directionality of
the dominance relationship given by {sign(pssij )}, where sign(y) = 1 if y > 0;
= 0 if y = 0; and = −1 if y < 0; the second is in the absolute magnitude
of dominance given by {| pssij |}. This latter matrix is symmetric and can be
viewed as a dissimilarity matrix and analyzed as such.

63



Measures of matrix patterning for a skew-symmetric matrix, Pss, that
might be derivable indirectly from the generation of some type of coordi-
nate representation, have an interestingly different status than they do for a
symmetric matrix P. In the skew-symmetric framework, closed-form least-
squares solutions are possible, thus eliminating the need for some auxiliary
optimization strategy. For example, suppose we wish to find a set of n coor-
dinate values, x1, . . . , xn, such that the least-squares criterion,∑

i<j

(pssij − (xj − xi))
2 ,

is minimized. An optimal set of coordinates can be obtained analytically
from the average proximity within column j, i.e., xj = (1/n)

∑
i p

ss
ij , with a

minimum loss value of ∑
i<j

(pssij )
2 − (1/n)

∑
j

(
∑
i

pssij )
2 .

Also, because the sum of the entries in Pss is zero, the variance-accounted-for
(vaf) can be given simply as:

vaf =
(1/n)

∑
j(

∑
i p

ss
ij )

2∑
i<j(pssij )

2
.

Thus, an optimal row/column reordering of Pss can be obtained just by
using the order of the optimal coordinates from smallest (most negative) to
largest (most positive). Similarly, if we consider an equally-spaced coordinate
representation obtained by minimizing the least-squares loss function:∑

i<j

(pssij − α(xj − xi))
2 ,

where x1, . . . , xn are the integers 1, . . . , n in some order, and α is some multi-
plicative constant to be estimated, the optimal row/column reordering of Pss

induced by the integer coordinates would again be generated by the ordering
of (1/n)

∑
i p

ss
ij for 1 ≤ j ≤ n.

The M-file we have written to carry-out these closed-form scaling proce-
dures on a skew-symmetric proximity matrix is skew_symmetric_scaling.m,
with syntax:

64



[coord,sort_coord,permut,prox_permut,vaf,...

alpha_multiplier,alpha_vaf,alpha_coord] = ...

skew_symmetric_scaling(prox)

Here, COORD contains the least-squares coordinates which are sorted from
smallest to largest in SORT_COORD; VAF is the variance they account for;
PERMUT is the object permutation corresponding to SORT_COORD with PROX_PERMUT
the reordered skew-symmetric proximity matrix. For equally-spaced coordi-
nates, ALPHA_MULTIPLIER defines the multiplicative constant on the integer-
valued coordinates; a collection of equally-spaced coordinates is given by
ALPHA_COORD with ALPHA_VAF the variance they account for.

The two Thurstone skew-symmetric matrices are used in the MATLAB
recording below. One can see the “gambler” offense moving from a fifth to
a seventh position in the “before” and “after” analyses. It does appear that
the movie has had an effect.

>> load thurstone_skew_symmetric_before.dat

>> load thurstone_skew_symmetric_after.dat

>> [coord,sort_coord,permut,prox_permut,vaf,alpha_multiplier,alpha_vaf,...

alpha_coord] = skew_symmetric_scaling(thurstone_skew_symmetric_before)

coord =

0.5708 -0.2292 -0.0215 -0.2569 0.2692 0.3185 -0.7785 0.5854 -0.8162 -0.3246 -0.1754 0.5677 0.2908

sort_coord =

-0.8162 -0.7785 -0.3246 -0.2569 -0.2292 -0.1754 -0.0215 0.2692 0.2908 0.3185 0.5677 0.5708 0.5854

permut =

9

7

10

4

2

11

3

5

13

6

12

1

8

prox_permut =

0 0.1600 0.8200 0.9400 0.9000 0.9400 0.9600 0.9600 1.0000 0.9800 0.9800 1.0000 0.9700

65



-0.1600 0 0.7200 0.9800 0.8600 0.9200 0.9600 0.9600 0.9800 1.0000 1.0000 0.9800 0.9200

-0.8200 -0.7200 0 0.2600 0.1800 0.1600 0.2200 0.7600 0.8400 0.8200 0.8000 0.8800 0.8400

-0.9400 -0.9800 -0.2600 0 -0.0400 0.2400 0.5000 0.6200 0.7400 0.9000 0.8200 0.9000 0.8400

-0.9000 -0.8600 -0.1800 0.0400 0 -0.0200 0.4200 0.5200 0.6200 0.8400 0.8000 0.8600 0.8400

-0.9400 -0.9200 -0.1600 -0.2400 0.0200 0 0.1600 0.5600 0.5600 0.4800 0.9600 0.9600 0.8400

-0.9600 -0.9600 -0.2200 -0.5000 -0.4200 -0.1600 0 0.3400 0.3600 0.5000 0.7400 0.8400 0.7200

-0.9600 -0.9600 -0.7600 -0.6200 -0.5200 -0.5600 -0.3400 0 0.1000 -0.0200 0.2800 0.4600 0.4000

-1.0000 -0.9800 -0.8400 -0.7400 -0.6200 -0.5600 -0.3600 -0.1000 0 0 0.4600 0.5800 0.3800

-0.9800 -1.0000 -0.8200 -0.9000 -0.8400 -0.4800 -0.5000 0.0200 0 0 0.3600 0.4200 0.5800

-0.9800 -1.0000 -0.8000 -0.8200 -0.8000 -0.9600 -0.7400 -0.2800 -0.4600 -0.3600 0 -0.4600 0.2800

-1.0000 -0.9800 -0.8800 -0.9000 -0.8600 -0.9600 -0.8400 -0.4600 -0.5800 -0.4200 0.4600 0 0

-0.9700 -0.9200 -0.8400 -0.8400 -0.8400 -0.8400 -0.7200 -0.4000 -0.3800 -0.5800 -0.2800 0 0

vaf =

0.9126

alpha_multiplier =

0.1205

alpha_vaf =

0.8690

alpha_coord =

-0.7231

-0.6026

-0.4821

-0.3616

-0.2410

-0.1205

0

0.1205

0.2410

0.3616

0.4821

0.6026

0.7231

>> [coord,sort_coord,permut,prox_permut,vaf,alpha_multiplier,alpha_vaf,...

alpha_coord] = skew_symmetric_scaling(thurstone_skew_symmetric_after)

coord =

0.5446 0.0200 -0.0492 -0.2569 0.2815 0.2677 -0.7446 0.5508 -0.8138 -0.3908 -0.2092 0.5138 0.2862

sort_coord =

-0.8138 -0.7446 -0.3908 -0.2569 -0.2092 -0.0492 0.0200 0.2677 0.2815 0.2862 0.5138 0.5446 0.5508

permut =

9

7

10

4

66



11

3

2

6

5

13

12

1

8

prox_permut =

0 0.2800 0.7400 0.9200 0.9000 0.9600 0.9200 0.9600 0.9800 0.9600 0.9800 1.0000 0.9800

-0.2800 0 0.5800 0.8800 0.8800 0.9400 0.9000 0.9600 0.9600 0.9600 0.9600 0.9600 0.9800

-0.7400 -0.5800 0 0.3400 0.2800 0.3600 0.4600 0.8000 0.7800 0.7800 0.8400 0.8800 0.8800

-0.9200 -0.8800 -0.3400 0 0.0600 0.4000 0.4000 0.7400 0.6800 0.6800 0.8400 0.9000 0.7800

-0.9000 -0.8800 -0.2800 -0.0600 0 0.2400 0.2800 0.5200 0.6200 0.5200 0.9400 0.9400 0.7800

-0.9600 -0.9400 -0.3600 -0.4000 -0.2400 0 0.0200 0.4000 0.4400 0.4000 0.6800 0.8600 0.7400

-0.9200 -0.9000 -0.4600 -0.4000 -0.2800 -0.0200 0 0.3800 0.2800 0.3800 0.4600 0.5800 0.6400

-0.9600 -0.9600 -0.8000 -0.7400 -0.5200 -0.4000 -0.3800 0 0 0.0200 0.4000 0.4000 0.4600

-0.9800 -0.9600 -0.7800 -0.6800 -0.6200 -0.4400 -0.2800 0 0 0.0800 0.3000 0.3400 0.3600

-0.9600 -0.9600 -0.7800 -0.6800 -0.5200 -0.4000 -0.3800 -0.0200 -0.0800 0 0.2800 0.4600 0.3200

-0.9800 -0.9600 -0.8400 -0.8400 -0.9400 -0.6800 -0.4600 -0.4000 -0.3000 -0.2800 0 -0.2400 0.2400

-1.0000 -0.9600 -0.8800 -0.9000 -0.9400 -0.8600 -0.5800 -0.4000 -0.3400 -0.4600 0.2400 0 0

-0.9800 -0.9800 -0.8800 -0.7800 -0.7800 -0.7400 -0.6400 -0.4600 -0.3600 -0.3200 -0.2400 0 0

vaf =

0.9340

alpha_multiplier =

0.1164

alpha_vaf =

0.8927

alpha_coord =

-0.6982

-0.5819

-0.4655

-0.3491

-0.2327

-0.1164

0

0.1164

0.2327

0.3491

0.4655

0.5819

0.6982

Given a skew-symmetric matrix {pssij } (or possibly, just {sign(pssij }), an
obvious class of measures for matrix pattern based on matrix reordering would

67



be the sum of the above-diagonal entries:∑
i<j

pssij (or
∑
i<j

sign(pssij )) .

In fact, because pssij = sign|pssij |, the index
∑

i<j p
ss
ij can be interpreted merely

as a weighted version of the one based just on sign(pssij ). We will assume
in our discussion below that

∑
i<j p

ss
ij is being considered, but the obvious

replacement of pssij by sign(pssij ) could incorporate the use of
∑

i<j sign(p
ss
ij )

directly.

A dynamic programming solution to the optimization task of reordering
the rows/columns of a matrix to maximize the sum of above-diagonal en-
tries, was first sketched by Lawler (1964) in identifying minimum feedback
arc sets in a directed graph. The M-file that we use below on the Thur-
stone skew-symmetric matrices, skew_symmetric_lawler_dp.m, implements
the dynamic programming recursion. The optimization task itself, however,
has several other distinct substantive incarnations, e.g., in maximum likeli-
hood paired comparison ranking (Flueck and Korsh, 1974), or to triangulat-
ing an input-output matrix (Korte and Oberhofer, 1971). For an extensive
review of the variety of possible applications up through the middle 1970’s,
the reader is referred to Hubert (1976).

The syntax of skew_symmetric_lawler_dp.m is as follows:

[permut,prox_permut,cumobfun] = skew_symmetric_lawler_dp(prox)

Here, PROX is the input skew-symmetric proximity matrix (with a zero main
diagonal); PERMUT is the order of the objects in the optimal permutation;
PROX_PERMUT is the reordered proximity matrix using PERMUT; CUMOBFUN gives
the cumulative values of the objective function for the successive placements
of the objects in the optimal permutation. The verbatim output below is
an implementation of skew_symmetric_lawler_dp.m on the two Thurstone
“before” and “after”’ skew-symmetric proximity matrices. The offense of
“gambler” (number 2) moves appropriately after the movie has been shown.

>> [permut,prox_permut,cumobfun] = skew_symmetric_lawler_dp(thurstone_skew_symmetric_before)

Elapsed time is 0.258336 seconds.

68



permut =

9

7

10

2

4

11

3

6

5

13

1

12

8

prox_permut =

0 0.1600 0.8200 0.9000 0.9400 0.9400 0.9600 0.9800 0.9600 1.0000 1.0000 0.9800 0.9700

-0.1600 0 0.7200 0.8600 0.9800 0.9200 0.9600 1.0000 0.9600 0.9800 0.9800 1.0000 0.9200

-0.8200 -0.7200 0 0.1800 0.2600 0.1600 0.2200 0.8200 0.7600 0.8400 0.8800 0.8000 0.8400

-0.9000 -0.8600 -0.1800 0 0.0400 -0.0200 0.4200 0.8400 0.5200 0.6200 0.8600 0.8000 0.8400

-0.9400 -0.9800 -0.2600 -0.0400 0 0.2400 0.5000 0.9000 0.6200 0.7400 0.9000 0.8200 0.8400

-0.9400 -0.9200 -0.1600 0.0200 -0.2400 0 0.1600 0.4800 0.5600 0.5600 0.9600 0.9600 0.8400

-0.9600 -0.9600 -0.2200 -0.4200 -0.5000 -0.1600 0 0.5000 0.3400 0.3600 0.8400 0.7400 0.7200

-0.9800 -1.0000 -0.8200 -0.8400 -0.9000 -0.4800 -0.5000 0 0.0200 0 0.4200 0.3600 0.5800

-0.9600 -0.9600 -0.7600 -0.5200 -0.6200 -0.5600 -0.3400 -0.0200 0 0.1000 0.4600 0.2800 0.4000

-1.0000 -0.9800 -0.8400 -0.6200 -0.7400 -0.5600 -0.3600 0 -0.1000 0 0.5800 0.4600 0.3800

-1.0000 -0.9800 -0.8800 -0.8600 -0.9000 -0.9600 -0.8400 -0.4200 -0.4600 -0.5800 0 0.4600 0

-0.9800 -1.0000 -0.8000 -0.8000 -0.8200 -0.9600 -0.7400 -0.3600 -0.2800 -0.4600 -0.4600 0 0.2800

-0.9700 -0.9200 -0.8400 -0.8400 -0.8400 -0.8400 -0.7200 -0.5800 -0.4000 -0.3800 0 -0.2800 0

cumobfun =

0

0.1600

1.7000

3.6400

5.8600

8.1000

11.3200

16.8400

21.5800

26.7800

34.6600

42.3200

49.9300

>> [permut,prox_permut,cumobfun] = skew_symmetric_lawler_dp(thurstone_skew_symmetric_after)

Elapsed time is 0.234843 seconds.

permut =

9

7

10

4

11

3

2

5

6

69



13

1

12

8

prox_permut =

0 0.2800 0.7400 0.9200 0.9000 0.9600 0.9200 0.9800 0.9600 0.9600 1.0000 0.9800 0.9800

-0.2800 0 0.5800 0.8800 0.8800 0.9400 0.9000 0.9600 0.9600 0.9600 0.9600 0.9600 0.9800

-0.7400 -0.5800 0 0.3400 0.2800 0.3600 0.4600 0.7800 0.8000 0.7800 0.8800 0.8400 0.8800

-0.9200 -0.8800 -0.3400 0 0.0600 0.4000 0.4000 0.6800 0.7400 0.6800 0.9000 0.8400 0.7800

-0.9000 -0.8800 -0.2800 -0.0600 0 0.2400 0.2800 0.6200 0.5200 0.5200 0.9400 0.9400 0.7800

-0.9600 -0.9400 -0.3600 -0.4000 -0.2400 0 0.0200 0.4400 0.4000 0.4000 0.8600 0.6800 0.7400

-0.9200 -0.9000 -0.4600 -0.4000 -0.2800 -0.0200 0 0.2800 0.3800 0.3800 0.5800 0.4600 0.6400

-0.9800 -0.9600 -0.7800 -0.6800 -0.6200 -0.4400 -0.2800 0 0 0.0800 0.3400 0.3000 0.3600

-0.9600 -0.9600 -0.8000 -0.7400 -0.5200 -0.4000 -0.3800 0 0 0.0200 0.4000 0.4000 0.4600

-0.9600 -0.9600 -0.7800 -0.6800 -0.5200 -0.4000 -0.3800 -0.0800 -0.0200 0 0.4600 0.2800 0.3200

-1.0000 -0.9600 -0.8800 -0.9000 -0.9400 -0.8600 -0.5800 -0.3400 -0.4000 -0.4600 0 0.2400 0

-0.9800 -0.9600 -0.8400 -0.8400 -0.9400 -0.6800 -0.4600 -0.3000 -0.4000 -0.2800 -0.2400 0 0.2400

-0.9800 -0.9800 -0.8800 -0.7800 -0.7800 -0.7400 -0.6400 -0.3600 -0.4600 -0.3200 0 -0.2400 0

cumobfun =

0

0.2800

1.6000

3.7400

5.8600

8.7600

11.7400

16.4800

21.2400

26.0200

33.3400

40.2600

47.4200

8 Order-Constrained Partition Construction

The classification task considered in the present section is one of constructing
an (optimal) ordered partition for a set of n objects, S = {O1, . . . , On},
defined by a collection of M mutually exclusive and exhaustive subsets of S,
denoted S1, S2, . . . , SM , for which an order is imposed on the placement of the
classes, S1 ≺ S2 ≺ · · · ≺ SM , and also a prior order is present for the objects
within classes. Again, the data available to guide this search are assumed to
be in the form of an n×n symmetric proximity matrix P = {pij}. In general,
the identification of an optimal ordered partition for S will be carried out
by the maximization of an index of merit intended to measure how well a
given ordered partition reflects the data in P. The initial constraining object

70



order will be constructed with the (heuristic) unidimensional scaling routine,
uniscalqa.m, discussed in Section 2.2.

A merit measure can be developed directly based on a coordinate rep-
resentation for each of the M ordered classes, S1 ≺ S2 ≺ · · · ≺ SM , that
generalizes the use of the single term

∑
i(t

(ρ)
i )2 for a unidimensional scaling

discussed in Section 2. Here, M coordinates, x1 ≤ · · · ≤ xM , are to be
identified so that the residual sum-of-squares∑

k≤k′

∑
ik∈Sk, jk′∈Sk′

(pikjk′− | xk′ − xk |)2,

is minimized (the notation pikjk′ indicates those proximities in P defined be-
tween objects with subscripts ik ∈ Sk and jk′ ∈ Sk′). Define each of the
sets, Ω1, . . . ,ΩM , by the n subsets of S that contain the first i objects,
{O1, . . . , Oi}, for 1 ≤ i ≤ n; a transformation of an entity in Ωk−1 (say,
Ak−1) to one in Ωk (say, Ak) is possible if Ak−1 ⊂ Ak.

A direct extension of the argument that led to optimal coordinate repre-
sentation for single objects would require the maximization of

M∑
k=1

(
1

nk
)(G(Ak − Ak−1))

2, (10)

where G(Ak − Ak−1) =∑
k′∈Ak−Ak−1

∑
i′∈Ak−1

pk′i′ −
∑

k′∈Ak−Ak−1

∑
i′∈S−Ak

pk′i′,

and nk denotes the number of objects in Ak − Ak−1. If an optimal ordered
partition that maximizes (10) is denoted by S∗

1 ≺ · · · ≺ S∗
M , the optimal

coordinates for each of the M classes can be given as

x∗k = (
1

nnk
)G(S∗

k), (11)

where x∗1 ≤ · · · ≤ x∗M , and
∑

k nkx
∗
k = 0. The residual sum-of-squares has the

form ∑
i<j

p2ij − (
1

n
)
∑
k

(
1

nk
)(G(S∗

k))
2. (12)

71



8.1 The Dynamic Programming Implementation

Given the proximity matrix, P, suppose we have a constraining object order,
assumed without loss of generality, for now, to be the identity order, and
used to label the rows and columns of P. An order constrained clustering
consists of finding a set of M classes, S1, . . . , Sk, . . . , SM , having nk objects
in Sk and where the objects in Sk are consecutive:

{On1+···+nk−1+1, On1+···+nk−1+2, . . . , On1+···+nk−1+nk
}.

A recursive dynamic programming strategy can be used to solve this task that
we implement in the M-file, orderpartitionfnd.m. In the session recorded
below, we give the help information for this M-file (as well as in the Ap-
pendix) and run it on the supreme_agree data with a constraining identity
permutation on the objects obtained from the previous unidimensional scal-
ing. Generally, the class membership into from 1 to n ordered classes is given
by the two n× n matrices of membership and permmember with rows corre-
sponding to the number of ordered classes constructed and columns to the
objects. The identity permutation also labels the columns of membership;
the constraining object order labels the columns of permmember (in this ex-
ample, these two permutations happen to be the same). The two vectors
of objectives and residsumsq contain, respectively, the values maximized
in (10) and the corresponding residual sums-of-squares from (12). We will
continue with the interpretation after the verbatim output from the session
is provided.

>> load supreme_agree.dat

>> help orderpartitionfnd.m

ORDERPARTITIONFND uses dynamic programming to

construct a linearly constrained cluster analysis that

consists of a collection of partitions with from 1 to

n ordered classes.

syntax: [membership,objectives,permmember,clusmeasure,...

cluscoord,residsumsq] = orderpartitionfnd(prox,lincon)

PROX is the input proximity matrix (with a zero main diagonal

and a dissimilarity interpretation); LINCON is the given

72



constraining linear order (a permutation of the integers from

1 to n).

MEMBERSHIP is the n x n matrix indicating cluster membership,

where rows correspond to the number of ordered clusters,

and the columns are in the identity permutation input order

used for PROX. PERMMEMBER uses LINCON to reorder the columns

of MEMBERSHIP.

OBJECTIVES is the vector of merit values maximized in the

construction of the ordered partitions; RESIDSUMSQ is the

vector of residual sum of squares obtained for the ordered

partition construction. CLUSMEASURE is the n x n matrix

(upper-triangular) containing the cluster measures for contiguous

object sets; the appropriate values in CLUSMEASURE are added

to obtain the values optimized in OBJECTIVES; CLUSCOORD is also

an n x n (upper-triangular) matrix but now containing the coordinates

that would be would be used for all the (ordered)

objects within a class.

>> [membership,objectives,permmember,clusmeasure,...

cluscoord,residsumsq] = orderpartitionfnd(supreme_agree,[1 2 3 4 5 6 7 8 9])

membership =

1 1 1 1 1 1 1 1 1

2 2 2 2 1 1 1 1 1

3 3 3 3 2 2 2 1 1

4 3 3 3 2 2 2 1 1

5 4 4 4 3 2 2 1 1

6 5 5 4 3 2 2 1 1

7 6 6 5 4 3 2 1 1

8 7 6 5 4 3 2 1 1

9 8 7 6 5 4 3 2 1

objectives =

0

73.8432

83.2849

86.9479

88.1095

88.6861

89.0559

73



89.2241

89.3166

permmember =

1 1 1 1 1 1 1 1 1

2 2 2 2 1 1 1 1 1

3 3 3 3 2 2 2 1 1

4 3 3 3 2 2 2 1 1

5 4 4 4 3 2 2 1 1

6 5 5 4 3 2 2 1 1

7 6 6 5 4 3 2 1 1

8 7 6 5 4 3 2 1 1

9 8 7 6 5 4 3 2 1

clusmeasure =

23.6196 32.8860 38.7361 41.0240 30.0125 19.4400 10.2972 2.4865 0

0 10.5625 17.5232 21.0675 13.6530 7.0567 2.1961 0.0229 2.9524

0 0 7.1289 11.0450 5.7132 1.8090 0.0289 2.2204 9.3960

0 0 0 4.1209 1.0804 0.0001 1.3110 7.9885 19.3681

0 0 0 0 0.3136 2.0201 6.2208 17.4306 32.8192

0 0 0 0 0 2.1025 7.0688 20.2280 37.5156

0 0 0 0 0 0 5.3361 20.0978 38.8800

0 0 0 0 0 0 0 16.2409 36.0401

0 0 0 0 0 0 0 0 19.8916

cluscoord =

-0.5400 -0.4506 -0.3993 -0.3558 -0.2722 -0.2000 -0.1348 -0.0619 0

0 -0.3611 -0.3289 -0.2944 -0.2053 -0.1320 -0.0672 0.0063 0.0675

0 0 -0.2967 -0.2611 -0.1533 -0.0747 -0.0084 0.0676 0.1287

0 0 0 -0.2256 -0.0817 -0.0007 0.0636 0.1404 0.1996

0 0 0 0 0.0622 0.1117 0.1600 0.2319 0.2847

0 0 0 0 0 0.1611 0.2089 0.2885 0.3403

0 0 0 0 0 0 0.2567 0.3522 0.4000

0 0 0 0 0 0 0 0.4478 0.4717

0 0 0 0 0 0 0 0 0.4956

residsumsq =

74



10.3932

2.1884

1.1393

0.7323

0.6033

0.5392

0.4981

0.4794

0.4691

To interpret this example further, it appears that five ordered classes may
be a good “stopping point” for the clustering process — moving to four
gives a noticeable drop in the achievable objective function value. The fifth
row of membership is the vector 5 4 4 4 3 2 2 1 1, and thus the justice
partitioning of {{St},{Br, Gi, So},{Oc},{Ke,Re},{Sc,Th}}, clearly placing
O’Connor in a separate “swing” class. The objectives value for this par-
tition is 88.1095, and can be reconstructed from the values in clusmeasure

that delineate the extent of the various classes, i.e., the values in this ma-
trix at positions (1,1), (2,4), (5,5), (6,7), (8,9): 23.6196 + 21.0675 + .3136 +
7.0688 + 36.0401 = 88.1096 (≈ 88.1095 to rounding). The coordinates for the
classes are given in these same positions in the matrix cluscoord: −.5400;
−.2944; .0622; .2089; .4717. Weighting these by the class sizes of 1, 3, 1, 2, 2,
respectively, and then summing, gives the value (to rounding) of 0.0 (i.e., the
constraint

∑
k nkx

∗
k = 0 is satisfied). Finally, the residual sum-of-squares of

.6033 is reconstructible from (12) as 10.3932− (1/9)88.1096, where 10.3932 is∑
i<j p

2
ij, and is always given as the first entry in residsumsq corresponding

to only one class that must be placed at a coordinate value of 0.0 (because
of the constraint

∑
k nkx

∗
k = 0).

8.2 Two Utility Functions For Coordinate Estimation

When constructing ordered partitions through optimizing the measure in
(10), the coordinates were generated as a byproduct through the closed-form
expression in (11). For some extensions we contemplate, and particularly
to multiple dimensions and the imposition of ordered partitions on each,
it would be useful to have a fitting mechanism that would not depend on
the presence of nonnegative proximities. To this end we provide two util-

75



ity M-files, linfit_tied.m and linfitac_tied.m, that for a given ordered
partition and underlying constraining object order, will fit the M coordi-
nates, x1 ≤ · · · ≤ xM (and an additional additive constant c in the case of
linfitac_tied.m) by minimizing∑

k≤k′

∑
ik∈Sk, jk′∈Sk′

(pikjk′ − (| xk′ − xk | − c ))2.

The MATLAB session below includes the help comments for each M-
file and fits the five-class ordered partition found earlier. For both M-files,
the supreme_agree proximity matrix is used, along with a constraining or-
der in inperm (here, the identity), and the pattern of tied coordinates im-
posed in order along the continuum (given as the fifth row of permmember,
[5 4 4 4 2 2 1 1]).

>> load supreme_agree.dat

>> help linfit_tied.m

LINFIT_TIED does a confirmatory fitting of a given

unidimensional order using Dykstra’s

(Kaczmarz’s) iterative projection least-squares method. This

includes the possible imposition of tied coordinates.

syntax: [fit, diff, coord] = linfit_tied(prox,inperm,tiedcoord)

INPERM is the given order;

FIT is an $n \times n$ matrix that is fitted to

PROX(INPERM,INPERM) with least-squares value DIFF;

COORD gives the ordered coordinates whose absolute

differences could be used to reconstruct FIT; TIEDCOORD

is the tied pattern of coordinates imposed (in order)

along the continuum (using the integers from 1 up to n

to indicate the tied positions).

>> [fit,diff,coord] = linfit_tied(supreme_agree,[1 2 3 4 5 6 7 8 9],[5 4 4 4 3 2 2 1 1])

fit =

0 0.2456 0.2456 0.2456 0.6022 0.7489 0.7489 1.0117 1.0117

0.2456 0 0 0 0.3567 0.5033 0.5033 0.7661 0.7661

76



0.2456 0 0 0 0.3567 0.5033 0.5033 0.7661 0.7661

0.2456 0 0 0 0.3567 0.5033 0.5033 0.7661 0.7661

0.6022 0.3567 0.3567 0.3567 0 0.1467 0.1467 0.4094 0.4094

0.7489 0.5033 0.5033 0.5033 0.1467 0 0 0.2628 0.2628

0.7489 0.5033 0.5033 0.5033 0.1467 0 0 0.2628 0.2628

1.0117 0.7661 0.7661 0.7661 0.4094 0.2628 0.2628 0 0

1.0117 0.7661 0.7661 0.7661 0.4094 0.2628 0.2628 0 0

diff =

0.6032

coord =

-0.5400

-0.2944

-0.2944

-0.2944

0.0622

0.2089

0.2089

0.4717

0.4717

>> help linfitac_tied.m

LINFITAC_TIED does a confirmatory fitting of a given unidimensional order

using the Dykstra--Kaczmarz iterative projection

least-squares method, but differing from linfit_tied.m in

including the estimation of an additive constant. This also allows

the possible imposition of tied coordinates.

syntax: [fit, vaf, coord, addcon] = linfitac_tied(prox,inperm,tiedcoord)

INPERM is the given order;

FIT is an $n \times n$ matrix that is fitted to

PROX(INPERM,INPERM) with variance-accounted-for VAF;

COORD gives the ordered coordinates whose absolute differences

could be used to reconstruct FIT; ADDCON is the estimated

additive constant that can be interpreted as being added to PROX.

TIEDCOORD is the tied pattern of coordinates imposed (in order)

along the continuum (using the integers from 1 up to n

to indicate the tied positions).

77



>> [fit,vaf,coord,addcon] = ...

linfitac_tied(supreme_agree,[1 2 3 4 5 6 7 8 9],[5 4 4 4 3 2 2 1 1])

fit =

0 0.1435 0.1435 0.1435 0.3981 0.4682 0.4682 0.6289 0.6289

0.1435 0 0 0 0.2546 0.3247 0.3247 0.4854 0.4854

0.1435 0 0 0 0.2546 0.3247 0.3247 0.4854 0.4854

0.1435 0 0 0 0.2546 0.3247 0.3247 0.4854 0.4854

0.3981 0.2546 0.2546 0.2546 0 0.0701 0.0701 0.2308 0.2308

0.4682 0.3247 0.3247 0.3247 0.0701 0 0 0.1607 0.1607

0.4682 0.3247 0.3247 0.3247 0.0701 0 0 0.1607 0.1607

0.6289 0.4854 0.4854 0.4854 0.2308 0.1607 0.1607 0 0

0.6289 0.4854 0.4854 0.4854 0.2308 0.1607 0.1607 0 0

vaf =

0.9671

coord =

-0.3359

-0.1924

-0.1924

-0.1924

0.0622

0.1323

0.1323

0.2930

0.2930

addcon =

-0.2297

As can be seen in the preceding output, the coordinates given earlier for the
five-class ordered partition can be retrieved using linfit_tied.m along with
the least-squares loss value, diff, of 0.6032 (this is within a .0001 rounding

78



error of the previously given five-class residual sum-of-squares of 0.6033).
In incorporating the estimation of an additive constant, c, as part of the
model that is fitted with linfitac_tied, a legitimate variance-accounted-
for (V AF ) measure can be given and used in place of the unnormalized
least-squares loss value. Here, we would define the V AF measure as

V AF = 1−
∑

k≤k′
∑

ik∈Sk, jk′∈Sk′(pikjk′ − (| xk′ − xk | − c ))2∑
i<j(pij − p̄)2

, (13)

where p̄ is the mean of the off-diagonal proximities in P. The argument for
the legitimacy of a V AF measure follows the same logic as being able to
use a V AF measure only in a multiple regression that includes an additive
constant (and therefore, the least-squares structure is not forced to go through
the origin).

The normalized V AF measure may help in deciding when an unacceptable
drop is present when going from one ordered partition to another. Based on
running the MATLAB script given below, we can generate the following table:

Number of Ordered Classes Variance-Accounted-For

9 .9796
8 .9796
7 .9786
6 .9708
5 .9671
4 .9446
3 .8513
2 .6759
1 .0000

As can be seen, the five-class partition has a very high V AF of .9671, and
there is a somewhat precipitous drop of over 2% in going to one fewer; also,
in going the complete way from nine classes to five, we have a drop of only
slightly larger than 1%. So, based on this reasoning, the five-class ordered
partition might be considered the “stopping place” of choice.

>> load supreme_agree.dat

79



>> identityperm = [1 2 3 4 5 6 7 8 9];

>> [membership,objectives,permmember,clusmeasure,...

cluscoord,residsumsq] = orderpartitionfnd(supreme_agree,identityperm);

>> for i = 1:9

tiedcoord = permmember(10-i,:);

[fit,vaf,coord,addcon] = linfitac_tied(supreme_agree,identityperm,tiedcoord);

fits{i} = fit;

vafs{i} = vaf;

coords{i} = coord; addcons{i} = addcon;

end

>> for i = 1:9

vaf = vafs{i}

end

vaf =

0.9796

... (output deleted)

vaf =

0.6759

vaf =

0

80



8.3 Extensions to Generalized Ultrametrics

As we construct a collection of T ordered partitions of S into anywhere from
1 to n classes, and where each class within a partition defines a consecutive
set of objects with respect to some fixed ordering of the n objects, denote the
T partitions as P1,P2, . . . ,PT . Here, P1 is a partition containing n classes,
PT includes only a single class, and Pt−1 has more classes than Pt for t ≥ 2.
Based on P1,P2, . . . ,PT−1, if a corresponding collection of n × n 0/1 dis-
similarity matrices P1, . . . ,PT−1 is constructed, where a 0 in Pt indicates
an object pair defined within a class in Pt, and 1 otherwise, then for any
collection of nonnegative weights, α1, . . . , αT−1, the dissimilarity matrix, say,
Pα = {p(αij )} ≡ ∑T−1

t=1 αtPt, defines a metric on the objects (based on the ob-
servation that sums of metrics are metric [but with the possible extension that
allows some dissimilarities to be zero for nonidentical objects]). (We don’t
consider the partition, PT , defined by one class because the corresponding PT

would be identically zero and thus provides no contribution to the defining
sum of weights.) Depending on the constraints placed on P1,P2, . . . ,PT−1,
more restrictive forms for the metric defined by Pα ensue; and specific to
the restrictions made, it may be possible to retrieve P1,P2, . . . ,PT−1 and
α1, . . . , αT−1 given only Pα, provide convenient graphical representations for
the collection P1,P2, . . . ,PT−1, or somehow to approach the task of construct-
ing P1,P2, . . . ,PT−1 and α1, . . . , αT−1 from some given proximity matrix P
so that Pα approximates P in some explicitly defined sense.

The obvious prime exemplar for this type of structure just discussed would
be when Pt is formed from Pt−1 by uniting two or more classes in the
latter. The entries in Pα then satisfy the ultrametric inequality (p

(α)
ij ≤

max{p(α)ik , p
(α)
jk } for all Oi, Oj, Ok ∈ S), the partition hierarchy and the weights

are retrievable given only Pα, and a representation of the hierarchical clus-
tering can be given in the form of what is usually called a dendrogram.
In a more general context where P1,P2, . . . ,PT−1 are merely restricted to
be ordered partitions, each defined by classes contiguous with respect to
some given ordering for the objects in S, the entries in the matrix Pα sat-
isfy (at the least) the anti-Robinson condition (i.e., if Oi ≺ Oj ≺ Ok, then

p
(α)
ik ≥ max{p(α)ij , p

(α)
jk }, and can be constructed by sums of subsets of a collec-

81



tion of nonnegative weights α1, . . . , αT−1, just as in the more restrictive ultra-
metric context. Thus, although the same number of weights may be needed
to construct Pα as for an ultrametric, the structures definable through or-
dered partitions restricted only by the class contiguity constraint are broader
than those possible through the concept of an ultrametric.

To illustrate the fitting process for a collection of ordered partitions, we
use the membership matrix obtained from orderpartitionfnd.m as an input
argument to orderpartitionfit.m, where the latter provides a least-squares
approximation to a proximity matrix based on a given collection of partitions
with ordered classes. Note that we must remove the first row of membership
that is output from orderpartitionfnd.m before it is used as an input argu-
ment for orderpartitionfit.m. This removes the one-class ordered parti-
tion that adds nothing to the fitting but actually causes difficulty in our non-
negative least-squares routine. The latter M-file is based on the Wollan and
Dykstra (1987) Fortran subroutine code that we have rewritten and included
as an M-file called dykstra.m (this is called by orderpartitionfit.m).

The MATLAB session recorded below includes the help information for
orderpartitonfit.m and should be relatively self-explanatory. Because the
ordered partitions here happen to be hierarchically nested, the resulting fitted
matrix given is an ultrametric (with vaf of .7339), and built up from the
partition weights given in weights.

>> load supreme_agree.dat

>> [membership,objectives,permmember,clusmeasure,...

cluscoord,residsumsq] = orderpartitionfnd(supreme_agree,[1 2 3 4 5 6 7 8 9]);

>> membership = membership(2:9,:);

>> membership

membership =

2 2 2 2 1 1 1 1 1

3 3 3 3 2 2 2 1 1

4 3 3 3 2 2 2 1 1

5 4 4 4 3 2 2 1 1

6 5 5 4 3 2 2 1 1

7 6 6 5 4 3 2 1 1

8 7 6 5 4 3 2 1 1

9 8 7 6 5 4 3 2 1

82



>> help orderpartitionfit.m

ORDERPARTITIONFIT provides a least-squares approximation to a proximity

matrix based on a given collection of partitions with ordered classes.

syntax: [fit,weights,vaf] = orderpartitionfit(prox,lincon,membership)

PROX is the n x n input proximity matrix (with a zero main diagonal

and a dissimilarity interpretation); LINCON is the given constraining

linear order (a permutation of the integers from 1 to n).

MEMBERSHIP is the m x n matrix indicating cluster membership, where

each row corresponds to a specific ordered partition (there are

m partitions in general);

the columns are in the identity permutation input order used for PROX.

FIT is an n x n matrix fitted to PROX (through least-squares) constructed

from the nonnegative weights given in the m x 1 WEIGHTS vectors

corresponding to each of the ordered partitions. VAF is the variance-

accounted-for in the proximity matrix PROX by the fitted matrix FIT.

>> [fit,weights,vaf] = orderpartitionfit(supreme_agree,[1 2 3 4 5 6 7 8 9],membership)

fit =

0 0.3633 0.3633 0.3633 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0 0.2550 0.2550 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2550 0 0.2550 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2550 0.2550 0 0.6405 0.6405 0.6405 0.6405 0.6405

0.6405 0.6405 0.6405 0.6405 0 0.3100 0.3100 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0 0.2550 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0.2550 0 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0 0.2100

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0.2100 0

weights =

0.2388

0.0383

0.0533

0.0550

0

0

83



0.0450

0.2100

vaf =

0.7339

9 Some Possible LUS and CUS Generalizations

9.1 Additive Representation Through Multiple Structures

The use of multiple structures to represent additively a given proximity ma-
trix, whether they come from a LUS or CUS model, proceeds directly through
successive residualization and iteration. We restrict ourselves to the fitting
of two such structures but the same process would apply for any such num-
ber. Initially, a first matrix is fitted to a given proximity matrix and a first
residual matrix obtained; a second structure is then fitted to these first resid-
uals, producing a second residual matrix. Iterating, the second fitted matrix
is now subtracted from the original proximity matrix and a first (re)fitted
matrix obtained; this first (re)fitted matrix in turn is subtracted from the
original proximity matrix and a new second matrix (re)fitted. This process
continues until the vaf for the sum of both fitted matrices no longer changes
substantially.

The M-files, biscalqa.m and biscaltmac.m fit (additively) two LUS struc-
tures in the least-squares sense for, respectively, one and two-mode proximity
matrices; bicirac.m fits two CUS models. The explicit usages are

[outpermone,outpermtwo,coordone,coordtwo,fitone,fittwo,addconone,addcontwo,vaf] = ...

biscalqa(prox,targone,targtwo,inpermone,inpermtwo,kblock,nopt)

[find,vaf,targone,targtwo,outpermone,outpermtwo,rowpermone,colpermone,rowpermtwo, ...

colpermtwo,addconone,addcontwo,coordone,coordtwo,axes] = ...

biscaltmac(proxtm,inpermone,inpermtwo,kblock,nopt)

[find,vaf,targone,targtwo,outpermone,outpermtwo,addconone,addcontwo] = ...

bicirac(prox,inperm,kblock)

84



where (in biscalqa.m) prox is the input proximity matrix (with a zero
main diagonal and a dissimilarity interpretation); targone is the input tar-
get matrix for the first dimension (usually with a zero main diagonal and
a dissimilarity interpretation representing equally-spaced locations along a
continuum); targtwo is the input target matrix for the second dimension;
inpermone is the input beginning permutation for the first dimension (a
permutation of the first n integers); inpermtwo is the input beginning per-
mutation for the second dimension; the insertion and rotation routines use
from 1 to kblock (which is less than or equal to n−1) consecutive objects in
the permutation defining the row and column orders of the data matrix. The
switch variable, nopt, controls the confirmatory or exploratory fitting of the
unidimensional scales; a value of nopt = 0 will fit in a confirmatory manner
the two scales indicated by inpermone and inpermtwo; a value of nopt = 1

uses iterative QA to locate the better permutations to fit; outpermone is
the final object permutation for the first dimension; outpermtwo is the final
object permutation for the second dimension; coordone is the set of first
dimension coordinates in ascending order; coordtwo is the set of second di-
mension coordinates in ascending order; addconone is the additive constant
for the first dimension model; addcontwo is the additive constant for the
second dimension model; vaf is the variance-accounted-for in prox by the
bidimensional scaling.

In biscaltmac.m, proxtm is the input two-mode proximity matrix with
a dissimilarity interpretation; find is the least-squares optimal matrix (with
variance-accounted-for of vaf) to proxtm and is the sum of the two matri-
ces, targone and targtwo, based on the two row and column object order-
ings given by the ending permutations, outpermone and outpermtwo, and
in turn, rowpermone and rowpermtwo, and colpermone and colpermtwo.
The n × 2 matrix axes gives the plotting coordinates for the combined row
and column object set. For bicirac.m, inperm is the single starting per-
mutation for both circular structures. For biscaltmac.m, computationally
more efficient routines are available in biscaltmac_revision, which uses
uniscaltmac_altcomp.m and linfittmac_altcomp.m.

85



9.2 Individual Differences

One aspect of the given M-files introduced in earlier sections but not empha-
sized, is their possible use in the confirmatory context of fitting individual dif-
ferences. Explicitly, we begin with a collection of, say, N proximity matrices,
P1, . . . ,PN , obtained from N separate sources, and through some weighting
and averaging process, construct a single aggregate proximity matrix, PA.
On the basis of PA, suppose a LUS or CUS structure is constructed; we la-
bel the latter the “common space” consistent with what is usually done in
the (weighted) Euclidean model in multidimensional scaling. Each of the N

proximity matrices can then be used in a confirmatory fitting of a LUS (with,
say, linfitac.m) or a CUS (with, say, cirfitac.m). A very general “sub-
ject/private space” is generated for each source, and where the coordinates
are unique to that source, subject only to the order constraints of the group
space. In effect, we would be carrying out an individual differences analysis
by using a “deviation from the mean” philosophy. A group structure is first
identified in an exploratory manner from an aggregate proximity matrix; the
separate matrices that went into the aggregate are then fit in a confirmatory
way, one-by-one. There does not seem to be any particular a priori advan-
tage in trying to carry out this process “all at once”; to the contrary, the
simplicity of the deviation approach and its immediate generalizability to a
variety of possible structural representations, holds out the hope of greater
substantive interpretability.

9.3 Incorporating Transformations of the Proximities

In the use of either a one- or two-mode proximity matrix, the data were
assumed ‘as is’, and without any preliminary transformation. It was noted
that some analyses leading to negative values might be more pleasingly in-
terpretable if an additive constant could be fitted along with the LUS or
CUS structures. In other words, the structures fit to proximity matrices then
have an invariance with respect to linear transformations of the proximities.
A more general transformation will be discussed briefly in a later section
where a centroid (metric), fit as part of the whole representational structure,
has the effect of double-centering (i.e., making the rows and columns sum to

86



zero). Considering the input proximity matrix deviated from the centroid,
zero sums are present within rows or columns. The analysis methods could
iterate between fitting a LUS or CUS structure and a centroid, attempting
to squeeze out every last bit of VAF. A more direct strategy (and one that
would most likely not affect substantive interpretations materially) would be
to initially double-center (either a one- or two-mode matrix), and then treat
the later to the analyses we wish to carry out, without again revisiting the
double-centering operation during the iterative process.

A more serious consideration of proximity transformation would involve
monotonic functions of the type familiar in nonmetric multidimensional scal-
ing. We provide two utilities, proxmon.m and proxmontm.m, that will allow
the user a chance to experiment with these more general transformations for
both one- and two-mode proximity matrices (as we did briefly in Section 3.2).
The usage is similar for both M-files in providing a monotonically transformed
proximity matrix that is closest in a least-squares sense to a given (usually
the structurally fitted) matrix:

[monproxpermut,vaf,diff] = proxmon(proxpermut,fitted)

[monproxpermuttm,vaf,diff] = proxmontm(proxpermuttm,fittedtm)

Here, proxpermut (proxpermuttm) is the input proximity matrix (which may
have been subjected to an initial row/column permutation, hence the suffix
permut), and fitted (fittedtm) is a given target matrix (typically the rep-
resentational matrix such as the identified ultrametric); the output matrix,
monproxpermut (monproxpermuttm), is closest to fitted (fittedtm) in a
least-squares sense and obeys the order constraints obtained from each pair
of entries in (the upper-triangular portion of) proxpermut or proxpermuttm.
As usual, vaf denotes “variance-accounted-for” but here indicates how much
variance in monproxpermut (monproxpermuttm) can be accounted for by
fitted (fittedtm); finally, diff is the value of the least-squares loss func-
tion and is one-half the squared differences between the entries in fitted

(fittedtm) and monproxpermut (monproxpermuttm).

87



St So Br Gi Oc Ke Ro Sc Al Th
1 St .00 .28 .32 .31 .43 .62 .74 .70 .87 .76
2 So .28 .00 .17 .36 .14 .50 .61 .64 .64 .75
3 Br .32 .17 .00 .36 .29 .57 .56 .59 .65 .70
4 Gi .31 .36 .36 .00 .43 .47 .52 .61 .59 .72
5 Oc .43 .14 .29 .43 .00 .43 .33 .29 * .43
6 Ke .62 .50 .57 .47 .43 .00 .29 .35 .13 .41
7 Ro .74 .61 .56 .52 .33 .29 .00 .12 .09 .18
8 Sc .70 .64 .59 .61 .29 .35 .12 .00 .22 .16
9 Al .87 .64 .65 .59 * .13 .09 .22 .00 .17

10 Th .76 .75 .70 .72 .43 .41 .18 .16 .17 .00

Table 7: Dissimilarities Among Ten Supreme Court Justices for the 2005/6 Term. The
Missing Entry Between O’Connor and Alito is Represented With an Asterisk.

9.4 Finding and Fitting Best LUS Structures in the Presence of
Missing Proximities

The various M-files discussed thus far have required proximity matrices to
be complete in the sense of having all entries present. This was true even
for the two-mode case where the between-set proximities are assumed avail-
able although all within-set proximities were not. Two different M-files are
mentioned here (analogues of order.m and linfitac.m) allowing some of the
proximities in a symmetric matrix to be absent. The missing proximities are
identified in an input matrix, proxmiss, having the same size as the input
proximity matrix, prox, but otherwise the syntaxes are the same as earlier:

[outperm,rawindex,allperms,index] = ...

order_missing(prox,targ,inperm,kblock,proxmiss)

[fit,vaf,addcon] = linfitac_missing(prox,inperm,proxmiss)

The proxmissmatrix guides the search and fitting process so the missing data
are ignored whenever they should be considered in some kind of comparison.
Typically, there will be enough other data available that this really doesn’t
pose any difficulty.

As an illustration of the M-files just introduced, Table 7 provides data on
the ten supreme court justices present at some point during the 2005/6 term,

88



and the percentage of times justices disagreed in non-unanimous decisions
during the year. (These data were in the New York Times on July 2, 2006,
as part of a “first-page, above-the-fold” article bylined by Linda Greenhouse
entitled “Roberts Is at Court’s Helm, But He Isn’t Yet in Control.”) There
is a single missing value in the table between O’Connor (Oc) and Alito (Al)
because they shared a common seat for the term until Alito’s confirmation
by Congress. Roberts (Ro) served the full year as Chief Justice so no missing
data entries involve him. As can be seen in the verbatim output to follow,
an empirically obtained ordering (presumably from ‘left’ to ‘right’) using
order_missing.m is

1:St ≻ 4:Gi ≻ 3:Br ≻ 2:So ≻ 5:Oc ≻ 6:Ke ≻ 7:Ro ≻ 8:Sc ≻ 9:Al ≻ 10:Th

suggesting rather strongly that Kennedy will most likely now occupy the mid-
dle position (although possibly shifted somewhat to the right) once O’Connor
is removed from the court’s deliberations. The best-fitting LUS structure ob-
tained with linfitac_missing.m has VAF of 86.78%, and is given in Figure
7 plotted with linearplot. Notice that because of the missing values in fit,
the coordinates were entered ‘by hand’ in the vector coord before plotted with
linearplot.

>> load supreme_agree_2005_6.dat

>> load supreme_agree_2005_6_missing.dat

>> supreme_agree_2005_6

supreme_agree_2005_6 =

0 0.2800 0.3200 0.3100 0.4300 0.6200 0.7400 0.7000 0.8700 0.7600

0.2800 0 0.1700 0.3600 0.1400 0.5000 0.6100 0.6400 0.6400 0.7500

0.3200 0.1700 0 0.3600 0.2900 0.5700 0.5600 0.5900 0.6500 0.7000

0.3100 0.3600 0.3600 0 0.4300 0.4700 0.5200 0.6100 0.5900 0.7200

0.4300 0.1400 0.2900 0.4300 0 0.4300 0.3300 0.2900 0 0.4300

0.6200 0.5000 0.5700 0.4700 0.4300 0 0.2900 0.3500 0.1300 0.4100

0.7400 0.6100 0.5600 0.5200 0.3300 0.2900 0 0.1200 0.0900 0.1800

0.7000 0.6400 0.5900 0.6100 0.2900 0.3500 0.1200 0 0.2200 0.1600

0.8700 0.6400 0.6500 0.5900 0 0.1300 0.0900 0.2200 0 0.1700

0.7600 0.7500 0.7000 0.7200 0.4300 0.4100 0.1800 0.1600 0.1700 0

>> supreme_agree_2005_6_missing

supreme_agree_2005_6_missing =

0 1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 1

1 1 1 0 1 1 1 1 1 1

1 1 1 1 0 1 1 1 0 1

1 1 1 1 1 0 1 1 1 1

1 1 1 1 1 1 0 1 1 1

1 1 1 1 1 1 1 0 1 1

89



1 1 1 1 0 1 1 1 0 1

1 1 1 1 1 1 1 1 1 0

>> [outperm,rawindex,allperms,index] = ...

order_missing(supreme_agree_2005_6,targlin(10),randperm(10),3,supreme_agree_2005_6_missing);

>> outperm

outperm =

1 4 3 2 5 6 7 8 9 10

>> [fit, vaf, addcon] = linfitac_missing(supreme_agree_2005_6,outperm,supreme_agree_2005_6_missing)

fit =

0 0.0967 0.1553 0.1620 0.3146 0.4873 0.5783 0.5783 0.5983 0.6490

0.0967 0 0.0587 0.0653 0.2179 0.3906 0.4816 0.4816 0.5017 0.5523

0.1553 0.0587 0 0.0067 0.1593 0.3320 0.4230 0.4230 0.4430 0.4936

0.1620 0.0653 0.0067 0 0.1526 0.3253 0.4163 0.4163 0.4363 0.4870

0.3146 0.2179 0.1593 0.1526 0 0.1727 0.2637 0.2637 -0.1567 0.3343

0.4873 0.3906 0.3320 0.3253 0.1727 0 0.0910 0.0910 0.1110 0.1616

0.5783 0.4816 0.4230 0.4163 0.2637 0.0910 0 0 0.0200 0.0707

0.5783 0.4816 0.4230 0.4163 0.2637 0.0910 0 0 0.0200 0.0707

0.5983 0.5017 0.4430 0.4363 -0.1567 0.1110 0.0200 0.0200 0 0.0506

0.6490 0.5523 0.4936 0.4870 0.3343 0.1616 0.0707 0.0707 0.0506 0

vaf =

0.8678

addcon =

-0.1567

>> coord = [.0000,.0967,.1553,.1620,.3146,.4873,.5783,.5783,.5983,.6490]

coord =

0 0.0967 0.1553 0.1620 0.3146 0.4873 0.5783 0.5783 0.5983 0.6490

>> inperm = [1 4 3 2 5 6 7 8 9 10]

inperm =

1 4 3 2 5 6 7 8 9 10

>> [linearlength] = linearplot(coord,inperm)

linearlength =

0.6490

90



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1 4 32 5 6 78 9 10

Figure 7: The LUS Representation for the supreme agree 2005 6 Proximities Using lin-
earplot.m with the Coordinates Constructed from linfitac missing.m.

9.5 Obtaining Good Object Orders Through a Dynamic Program-
ming Strategy

We have relied on the QA optimization formulation (as in uniscalqa.m) to
obtain a basic LUS representation (or when necessary, a constraining order).
Usually, this usage is sufficient to generate a very good object ordering, es-
pecially when the routine is initiated a number of times randomly and the
best local optimum chosen. In those instances in which one may wish to
explore further the adequacy of a particular ordering in terms of the best
achievable (possibly when the proximity matrix is rather large), the M-file,
class_scaledp.m, is made available. Here, it is possible to form given classes
of the object set S to be sequenced (or possibly, to delete some of the ob-
jects from consideration altogether), and use a dynamic programming (DP)
strategy guaranteeing global optimality for the constructed ordering of the
classes. The optimization criterion is the same as in Section 2 (i.e.,

∑
i(t

ρ
i )

2),
but now the index is taken over the number of object classes formed. Given
the limitations on storage demanded by the implemented DP recursion, the
method is limited to, say, twenty or fewer object classes.

91



The syntax for this optimization strategy is

[permut,cumobfun] = class_scaledp(prox,numbclass,membclass)

Here, prox (as usual) is the n×n input proximity matrix with a dissimilarity
interpretation; numbclass is the number of object classes to be sequenced;
membclass is an n × 1 vector containing the input class membership and
includes all the integers from 1 to numbclass, with zeros when objects are
to be deleted from consideration. The output vectors are permut (the order
of the classes in the optimal permutation), and cumobfun (the cumulative
values of the objective function for the successive placements of the objects
in the optimal permutation).

In the example below on supreme_agree, the number of classes is cho-
sen to be nine, the same as the number of objects; the classes are num-
bered 1 to 9 just like the original objects, so the membclass vector is merely
[1 2 3 4 5 6 7 8 9]. What can be inferred from the identity permutation
being found for permut is that we have been using the globally optimum
result throughout.

>> load supreme_agree.dat

>> [permut,cumobfun] = class_scaledp(supreme_agree,9,[1 2 3 4 5 6 7 8 9])

permut =

1

2

3

4

5

6

7

8

9

cumobfun =

23.6196

34.1821

41.3110

45.4319

92



45.7455

47.8480

53.1841

69.4250

89.3166

9.6 Extending LUS and CUS Representations Through Additively
Imposed Centroid Matrices

In a companion Toolbox on Cluster Analysis (Hubert, Köhn, & Steinley,
2009), the notion of a matrix representing an additive tree was introduced and
characterized by a certain four-point condition that its entries must satisfy.
Alternatively, it was noted that any such matrix could be represented (in
many ways) as a sum of two matrices, say U = {uij} and C = {cij}, where
U is an ultrametric matrix (and whose entries satisfy a certain three-point
condition), and cij = gi + gj for 1 ≤ i ̸= j ≤ n, and cii = 0 for 1 ≤ i ≤ n,
based on some set of values, g1, . . . , gn. We will call C a centroid metric, for
convenience (and will continue to do so even though some entries in C may
be negative because of possible negative values for g1, . . . , gn).

Computationally, one can construct a best-fitting additive tree matrix by
using the sum of an ultrametric and centroid metric, and (through residual-
ization) carry out an iterative fitting strategy using the two structures. As
noted earlier, this would try to squeeze out every last bit of VAF we could.
The same type of approach could be implemented with a replacement of the
ultrametric structure by one based on LUS (or CUS). Whether all of this it-
erative fitting is really worth it from a substantive interpretation perspective,
is questionable. A simpler alternative would be to merely fit best centroid
metrics to either the given one- or two-mode proximity matrix; residualize
the matrix from the centroid structure; and then treat the residual matrix
to whatever representation device one would wish. The syntax for the two
centroid fitting M-files is as follows (both implement closed-form expressions
for the least-squares solutions):

[fit,vaf,lengths] = centfit(prox)

[fit,vaf,lengths] = centfittm(proxtm)

93



In both cases, fit is the least-squares approximation matrix with VAF given
by vaf. For centfit.m, the n values defining the centroid metric are given in
lengths; in centfittm.m, the row values are followed by the column values
for the defining centroid metric.

As examples in the output below on supreme_agree and supreme_agree5x4,
the residual matrix from the best-fitting centroid is subjected to a LUS. One
can still see in the results most of the previously given interpretations. We
might note that in the process of residualization, the matrices so produced
sum to zero within each row or column, so we have effectively double-centered
the matrices by the residualization process.

>> load supreme_agree.dat

>> load supreme_agree5x4.dat

>> [fit,vaf,lengths] = centfit(supreme_agree)

fit =

0 0.6186 0.6043 0.5871 0.5657 0.5557 0.5643 0.6814 0.6829

0.6186 0 0.4829 0.4657 0.4443 0.4343 0.4429 0.5600 0.5614

0.6043 0.4829 0 0.4514 0.4300 0.4200 0.4286 0.5457 0.5471

0.5871 0.4657 0.4514 0 0.4129 0.4029 0.4114 0.5286 0.5300

0.5657 0.4443 0.4300 0.4129 0 0.3814 0.3900 0.5071 0.5086

0.5557 0.4343 0.4200 0.4029 0.3814 0 0.3800 0.4971 0.4986

0.5643 0.4429 0.4286 0.4114 0.3900 0.3800 0 0.5057 0.5071

0.6814 0.5600 0.5457 0.5286 0.5071 0.4971 0.5057 0 0.6243

0.6829 0.5614 0.5471 0.5300 0.5086 0.4986 0.5071 0.6243 0

vaf =

0.1908

lengths =

0.3700 0.2486 0.2343 0.2171 0.1957 0.1857 0.1943 0.3114 0.3129

>> residual_supreme_agree = supreme_agree - fit

residual_supreme_agree =

94



0 -0.2386 -0.2643 -0.2171 0.1043 0.0843 0.1857 0.1786 0.1671

-0.2386 0 -0.2029 -0.1757 0.0057 0.0957 0.1271 0.1900 0.1986

-0.2643 -0.2029 0 -0.2314 0.1000 0.0900 0.1414 0.1743 0.1929

-0.2171 -0.1757 -0.2314 0 0.0371 0.0971 0.1486 0.1614 0.1800

0.1043 0.0057 0.1000 0.0371 0 -0.0514 -0.1000 -0.0471 -0.0486

0.0843 0.0957 0.0900 0.0971 -0.0514 0 -0.1500 -0.0771 -0.0886

0.1857 0.1271 0.1414 0.1486 -0.1000 -0.1500 0 -0.1657 -0.1871

0.1786 0.1900 0.1743 0.1614 -0.0471 -0.0771 -0.1657 0 -0.4143

0.1671 0.1986 0.1929 0.1800 -0.0486 -0.0886 -0.1871 -0.4143 0

>> [fit,vaf,lengths] = centfittm(supreme_agree5x4)

fit =

0.5455 0.5355 0.4975 0.5915

0.4355 0.4255 0.3875 0.4815

0.4255 0.4155 0.3775 0.4715

0.4280 0.4180 0.3800 0.4740

0.5255 0.5155 0.4775 0.5715

vaf =

0.1090

lengths =

0.3080

0.1980

0.1880

0.1905

0.2880

0.2375

0.2275

0.1895

0.2835

>> residual_supreme_agree5x4 = supreme_agree5x4 - fit

residual_supreme_agree5x4 =

-0.2455 -0.1655 0.1425 0.2685

-0.1555 -0.2055 0.1225 0.2385

95



0.0245 0.0345 -0.0475 -0.0115

0.1420 0.1420 -0.1500 -0.1340

0.2345 0.1945 -0.0675 -0.3615

>> [outperm,rawindex,allperms,index] = ...

order(residual_supreme_agree,targlin(9),randperm(9),3);

>> outperm

outperm =

9 8 7 6 5 2 4 3 1

>> [fit,vaf,coord,addcon] = linfitac(residual_supreme_agree,outperm)

fit =

0 0 0.0420 0.0999 0.1647 0.4064 0.4185 0.4226 0.4226

0 0 0.0420 0.0999 0.1647 0.4064 0.4185 0.4226 0.4226

0.0420 0.0420 0 0.0579 0.1227 0.3643 0.3765 0.3806 0.3806

0.0999 0.0999 0.0579 0 0.0648 0.3065 0.3186 0.3227 0.3227

0.1647 0.1647 0.1227 0.0648 0 0.2417 0.2538 0.2579 0.2579

0.4064 0.4064 0.3643 0.3065 0.2417 0 0.0121 0.0162 0.0162

0.4185 0.4185 0.3765 0.3186 0.2538 0.0121 0 0.0041 0.0041

0.4226 0.4226 0.3806 0.3227 0.2579 0.0162 0.0041 0 0

0.4226 0.4226 0.3806 0.3227 0.2579 0.0162 0.0041 0 0

vaf =

0.9288

coord =

-0.2196

-0.2196

-0.1776

-0.1198

-0.0549

0.1867

0.1989

0.2030

0.2030

96



addcon =

0.2232

>> [outperm,rawindex,allperms,index,squareprox] = ,,,

ordertm(residual_supreme_agree5x4,targlin(9),randperm(9),3);

>> outperm

outperm =

6 1 7 2 3 8 4 5 9

>> [fit,vaf,rowperm,colperm,addcon,coord] = linfittmac(residual_supreme_agree5x4,outperm)

fit =

0 0.0000 0.3363 0.4452

0.0000 0 0.3363 0.4452

0.2249 0.2249 0.1114 0.2204

0.3671 0.3671 0.0308 0.0782

0.4452 0.4452 0.1089 0

vaf =

0.9394

rowperm =

1

2

3

4

5

colperm =

1

2

3

4

97



addcon =

0.2094

coord =

0

0

0.0000

0.0000

0.2249

0.3363

0.3671

0.4452

0.4452

The two M-files, cent_linearfit.m and cent_linearfnd.m, illustrated
below are of the ‘squeezing as much VAF as possible’ variety for the sum
of a centroid and a LUS model for a symmetric proximity matrix. The M-
files differ in that cent_linearfnd.m finds a best order to use for the LUS
component; cent_linearfit.m allows one to be imposed. The syntax for
the two files are:

[find,vaf,outperm,targone,targtwo,lengthsone,coordtwo, ...

addcontwo] = cent_linearfnd(prox,inperm)

[find,vaf,outperm,targone,targtwo,lengthsone,coordtwo, ...

addcontwo] = cent_linearfit(prox,inperm)

Here, prox is obviously the input dissimilarity matrix; inperm is the given
constraining order in cent_linearfit.m, and the beginning input order (pos-
sibly random) for cent_linearfnd.m. For output, find is the found least-
squares approximation of prox with VAF of vaf; the found or given constrain-
ing order is outperm; targtwo is the linear unidimensional scaling component
of the decomposition defined by the coordinates in coordtwo with additive
constant addcontwo.

>> [find,vaf,outperm,targone,targtwo,lengthsone,coordtwo,addcontwo] = ...

98



cent_linearfnd(supreme_agree,randperm(9))

find =

0 0.2109 0.3292 0.4051 0.4736 0.7295 0.7064 0.8659 0.7302

0.2109 0 0.3307 0.4065 0.4750 0.7309 0.7078 0.8673 0.7317

0.3292 0.3307 0 0.2483 0.3168 0.5727 0.5496 0.7091 0.5734

0.4051 0.4065 0.2483 0 0.2745 0.5303 0.5072 0.6668 0.5311

0.4736 0.4750 0.3168 0.2745 0 0.4965 0.4734 0.6329 0.4972

0.7295 0.7309 0.5727 0.5303 0.4965 0 0.2555 0.4150 0.2794

0.7064 0.7078 0.5496 0.5072 0.4734 0.2555 0 0.3628 0.2271

0.8659 0.8673 0.7091 0.6668 0.6329 0.4150 0.3628 0 0.3398

0.7302 0.7317 0.5734 0.5311 0.4972 0.2794 0.2271 0.3398 0

vaf =

0.9856

outperm =

8 9 7 6 5 2 4 1 3

targone =

0 0.4720 0.4520 0.4688 0.4861 0.5051 0.4674 0.6035 0.4619

0.4720 0 0.4535 0.4702 0.4875 0.5066 0.4689 0.6050 0.4633

0.4520 0.4535 0 0.4503 0.4676 0.4866 0.4489 0.5850 0.4434

0.4688 0.4702 0.4503 0 0.4844 0.5034 0.4657 0.6018 0.4601

0.4861 0.4875 0.4676 0.4844 0 0.5207 0.4830 0.6191 0.4775

0.5051 0.5066 0.4866 0.5034 0.5207 0 0.5020 0.6381 0.4965

0.4674 0.4689 0.4489 0.4657 0.4830 0.5020 0 0.6004 0.4588

0.6035 0.6050 0.5850 0.6018 0.6191 0.6381 0.6004 0 0.5949

0.4619 0.4633 0.4434 0.4601 0.4775 0.4965 0.4588 0.5949 0

targtwo =

0 0 0.1383 0.1974 0.2486 0.4855 0.5000 0.5235 0.5295

0 0 0.1383 0.1974 0.2486 0.4855 0.5000 0.5235 0.5295

0.1383 0.1383 0 0.0591 0.1103 0.3472 0.3617 0.3852 0.3912

0.1974 0.1974 0.0591 0 0.0512 0.2881 0.3026 0.3261 0.3321

0.2486 0.2486 0.1103 0.0512 0 0.2369 0.2514 0.2749 0.2809

99



0.4855 0.4855 0.3472 0.2881 0.2369 0 0.0146 0.0380 0.0440

0.5000 0.5000 0.3617 0.3026 0.2514 0.0146 0 0.0234 0.0294

0.5235 0.5235 0.3852 0.3261 0.2749 0.0380 0.0234 0 0.0060

0.5295 0.5295 0.3912 0.3321 0.2809 0.0440 0.0294 0.0060 0

lengthsone =

0.2353 0.2367 0.2168 0.2335 0.2508 0.2699 0.2322 0.3683 0.2266

coordtwo =

-0.2914

-0.2914

-0.1531

-0.0940

-0.0428

0.1940

0.2086

0.2321

0.2380

addcontwo =

0.2611

>> [find,vaf,outperm,targone,targtwo,lengthsone,coordtwo,addcontwo] = ...

cent_linearfit(supreme_agree,[1 2 3 4 5 6 7 8 9])

find =

0 0.3798 0.3707 0.3793 0.6305 0.6644 0.7067 0.8635 0.8650

0.3798 0 0.2492 0.2578 0.5090 0.5429 0.5852 0.7420 0.7435

0.3707 0.2492 0 0.2427 0.4939 0.5278 0.5701 0.7269 0.7284

0.3793 0.2578 0.2427 0 0.4665 0.5003 0.5427 0.6995 0.7009

0.6305 0.5090 0.4939 0.4665 0 0.2745 0.3168 0.4736 0.4750

0.6644 0.5429 0.5278 0.5003 0.2745 0 0.2483 0.4051 0.4065

0.7067 0.5852 0.5701 0.5427 0.3168 0.2483 0 0.3292 0.3307

0.8635 0.7420 0.7269 0.6995 0.4736 0.4051 0.3292 0 0.2109

0.8650 0.7435 0.7284 0.7009 0.4750 0.4065 0.3307 0.2109 0

vaf =

100



0.9841

outperm =

1 2 3 4 5 6 7 8 9

targone =

0 0.6241 0.6120 0.6026 0.6153 0.5980 0.5812 0.5997 0.6012

0.6241 0 0.5035 0.4941 0.5068 0.4895 0.4727 0.4913 0.4927

0.6120 0.5035 0 0.4821 0.4947 0.4774 0.4606 0.4792 0.4806

0.6026 0.4941 0.4821 0 0.4853 0.4680 0.4512 0.4698 0.4712

0.6153 0.5068 0.4947 0.4853 0 0.4806 0.4639 0.4824 0.4838

0.5980 0.4895 0.4774 0.4680 0.4806 0 0.4466 0.4651 0.4665

0.5812 0.4727 0.4606 0.4512 0.4639 0.4466 0 0.4483 0.4498

0.5997 0.4913 0.4792 0.4698 0.4824 0.4651 0.4483 0 0.4683

0.6012 0.4927 0.4806 0.4712 0.4838 0.4665 0.4498 0.4683 0

targtwo =

0 0.0130 0.0160 0.0341 0.2726 0.3238 0.3829 0.5212 0.5212

0.0130 0 0.0030 0.0211 0.2596 0.3108 0.3699 0.5082 0.5082

0.0160 0.0030 0 0.0180 0.2566 0.3078 0.3669 0.5051 0.5051

0.0341 0.0211 0.0180 0 0.2385 0.2897 0.3488 0.4871 0.4871

0.2726 0.2596 0.2566 0.2385 0 0.0512 0.1103 0.2486 0.2486

0.3238 0.3108 0.3078 0.2897 0.0512 0 0.0591 0.1974 0.1974

0.3829 0.3699 0.3669 0.3488 0.1103 0.0591 0 0.1383 0.1383

0.5212 0.5082 0.5051 0.4871 0.2486 0.1974 0.1383 0 0

0.5212 0.5082 0.5051 0.4871 0.2486 0.1974 0.1383 0 0

lengthsone =

0.3663 0.2578 0.2457 0.2363 0.2490 0.2317 0.2149 0.2334 0.2349

coordtwo =

-0.2316

-0.2186

-0.2156

101



-0.1976

0.0410

0.0922

0.1513

0.2895

0.2895

addcontwo =

0.2574

9.7 Fitting the LUS Model Through Partitions Consistent With
a Given Object Order

To show there may be several ways to approach a particular (least-squares)
fitting task, a general M-file is available, partitionfit.m, that provides a
least-squares approximation to a proximity matrix based on a given collection
of partitions. In the syntax

[fitted,vaf,weights,end_condition] = partitionfit(prox,member)

the input dissimilarity matrix is prox; member is the m×n matrix indicating
cluster membership, where each row corresponds to a specific partition (there
are m partitions in general); the columns of member are in the same input
order used for prox. For output, fitted is an n × n matrix approximating
prox (through least-squares) constructed from the nonnegative weights vec-
tor corresponding to the partitions. The VAF value, vaf, is for the proximity
matrix, prox, compared to fitted. The end_condition flag should be zero
for a normal termination.

As an example below, the least-squares fitting of the identity permutation
on supreme_agree with linfitac.m is replicated with partitionfit.m. The
central matrix is member, where the first eight rows correspond to the eight
separations between the justices along the line (in the jargon of graph theory,
we have eight ‘cuts’ of a graph, each defined by two disjoint [and exhaustive]
subsets, and characterized by a 0/1 dissimilarity matrix with 1’s indicating
objects present across the two separate subsets). The last row of member is

102



the disjoint partition representing an additive constant, and producing a sin-
gle 0/1 dissimilarity matrix with all 1’s in the off-diagonal positions. Thus,
to move from one object to another along the continuum, the various ‘gaps’
must be traversed separating the two objects. To construct the approxima-
tion, the weights attached to the gaps are summed to produce the complete
path; an additional additive constant is then imposed. Because we are using
nonnegative least-squares to obtain that weights and the additive constant,
an obtained zero value for the additive constant (i.e., we have an estimation
at the boundary) suggests the need to augment the original proximities by a
positive value before partitionfit.m is used.

>> load supreme_agree.dat

>> [fit,vaf,coord,addcon] = linfitac(supreme_agree,1:9)

fit =

0 0.1304 0.1464 0.1691 0.4085 0.4589 0.5060 0.6483 0.6483

0.1304 0 0.0160 0.0387 0.2780 0.3285 0.3756 0.5179 0.5179

0.1464 0.0160 0 0.0227 0.2620 0.3124 0.3596 0.5019 0.5019

0.1691 0.0387 0.0227 0 0.2393 0.2898 0.3369 0.4792 0.4792

0.4085 0.2780 0.2620 0.2393 0 0.0504 0.0976 0.2399 0.2399

0.4589 0.3285 0.3124 0.2898 0.0504 0 0.0471 0.1894 0.1894

0.5060 0.3756 0.3596 0.3369 0.0976 0.0471 0 0.1423 0.1423

0.6483 0.5179 0.5019 0.4792 0.2399 0.1894 0.1423 0 0

0.6483 0.5179 0.5019 0.4792 0.2399 0.1894 0.1423 0 0

vaf =

0.9796

coord =

-0.3462

-0.2158

-0.1998

-0.1771

0.0622

0.1127

0.1598

103



0.3021

0.3021

addcon =

-0.2180

>> member = [1 9 9 9 9 9 9 9 9;1 1 9 9 9 9 9 9 9;1 1 1 9 9 9 9 9 9;...

1 1 1 1 9 9 9 9 9;1 1 1 1 1 9 9 9 9;

1 1 1 1 1 1 9 9 9;1 1 1 1 1 1 1 9 9;...

1 1 1 1 1 1 1 1 9;1 2 3 4 5 6 7 8 9]

member =

1 9 9 9 9 9 9 9 9

1 1 9 9 9 9 9 9 9

1 1 1 9 9 9 9 9 9

1 1 1 1 9 9 9 9 9

1 1 1 1 1 9 9 9 9

1 1 1 1 1 1 9 9 9

1 1 1 1 1 1 1 9 9

1 1 1 1 1 1 1 1 9

1 2 3 4 5 6 7 8 9

>> [fitted,vaf,weights,end_condition] = partitionfit(supreme_agree,member)

fitted =

0 0.3485 0.3645 0.3871 0.6264 0.6769 0.7240 0.8663 0.8663

0.3485 0 0.2340 0.2567 0.4960 0.5464 0.5936 0.7359 0.7359

0.3645 0.2340 0 0.2407 0.4800 0.5305 0.5776 0.7199 0.7199

0.3871 0.2567 0.2407 0 0.4574 0.5078 0.5549 0.6972 0.6972

0.6264 0.4960 0.4800 0.4574 0 0.2685 0.3156 0.4579 0.4579

0.6769 0.5464 0.5305 0.5078 0.2685 0 0.2651 0.4075 0.4075

0.7240 0.5936 0.5776 0.5549 0.3156 0.2651 0 0.3603 0.3603

0.8663 0.7359 0.7199 0.6972 0.4579 0.4075 0.3603 0 0.2180

0.8663 0.7359 0.7199 0.6972 0.4579 0.4075 0.3603 0.2180 0

vaf =

0.9796

104



weights =

0.1304

0.0160

0.0227

0.2393

0.0504

0.0471

0.1423

0

0.2180

end_condition =

0

In addition to partitionfit.m, an M-file is available, partitionfit_addcon.m,
that fits an additive constrant without subjecting it to a nonnegativity con-
straint. The syntax is similar to partitionfit.m, but it has one additional
output value, addcon, representing the unrestricted additive constant:

[fitted,vaf,weights,addcon,end_condition] = ...

partitionfit_addcon(prox,member)

For two-mode matrices, there are the M-files, partitionfit_twomode.m and
partitionfit_twomode_addcon.m, with self-explanatory syntaxes:

[fitted,vaf,weights,end_condition] = ...

partitionfit_twomode(proxtm,member)

[fitted,vaf,weights,addcon,end_condition] = ...

partitionfit_twomode_addcon(proxtm,member)

9.8 Concave and Convex Monotonic (Isotonic) Regression

This section gives four M-files that implement extensions to the monotonic
regression task by imposing additional convexity and/or concavity restrictions
on the regression function. The basic optimization problem involves two
n × 1 vectors, say x = {xi} (considered as an independent variable) and

105



y = {yi} (considered as a dependent variable). We wish to find an n × 1
vector ŷ = {ŷi}, such that the least-squares criterion,

n∑
i=1

(yi − ŷi)
2 ,

is minimized, subject to ŷ satisfying some particular set of constraints. For
convenience, and without-loss-of-any-generality, assume the entries in x are
indexed, so: xi ≤ xi+1 for i = 1, . . . , n− 1. (It is easier to specify the type of
additional constraints we wish to impose if this initial ordering is assumed.
In the various M-files introduced below, the input arguments are x and y,
but no preliminary ordering of the values in x is needed (or assumed).)

Monotonic Regression (A) if xi < xi+1, for i = 1, . . . , n− 1, then ŷi ≤ ŷi+1;

Convex Monotonic Regression (B) in addition to Condition (A), if xi−1 <

xi < xi+1, for i = 2, . . . , n− 1,

ŷi ≤ (
xi+1 − xi
xi+1 − xi−1

)ŷi−1 + (
xi − xi−1

xi+1 − xi−1
)ŷi+1 .

Condition (B) implies that the fitted value, ŷi, associated with xi, lies at or
below the line segment connecting (xi−1, ŷi−1) and (xi+1, ŷi+1). Or, equiva-
lently, the slope of the line segment connecting (xi−1, ŷi−1) and (xi, ŷi) is no
greater than that connecting (xi, ŷi) and (xi+1, ŷi+1).

Concave Monotonic Regression (C) in addition to Condition (A), if xi−1 <
xi < xi+1, for i = 2, . . . , n− 1,

ŷi ≥ (
xi+1 − xi
xi+1 − xi−1

)ŷi−1 + (
xi − xi−1

xi+1 − xi−1
)ŷi+1 .

As can be seen, Condition (C) merely changes the sense of the inequality in
(B), and implies that the fitted value, ŷi, associated with xi, lies at or above
the line segment connecting (xi−1, ŷi−1) and (xi+1, ŷi+1). Or, equivalently, the
slope of the line segment connecting (xi−1, ŷi−1) and (xi, ŷi) is no less than
that connecting (xi, ŷi) and (xi+1, ŷi+1).

106



Convex-Concave Monotonic Regression To define Condition (D), a monotonic
convex function is fit up to the median object (based on the assumed ordered
objects in x) and a concave monotonic function thereafter (so, an “ogive-like”
shape is given). Explicitly, an upper_limit is defined on the object triples
considered in fitting convexity, and a lower_limit on the triples considered
in fitting concavity. For n odd, upper_limit = (n + 3)/2; lower_limit =
(n− 1)/2; for n even, upper_limit = (n/2) + 1; lower_limit = n/2.

The four M-files implementing these four fitting constraints have more or
less the same syntax, and are named:

Condition (A): monotonic_regression_dykstra.m
Condition (B): convex_monotonic_regression_dykstra.m
Condition (C): concave_monotonic_regression_dykstra.m
Condition (D): convex_concave_monotonic_regression_dykstra.m

For example, syntax for convex_concave_monotonic_regression_dykstra.m
is

[yhat,vaf_yhat] = convex_concave_monotonic_regression_dykstra(x,y)

with the vector of values in YHAT weakly monotonic with respect to the values
in the independent input vector X (which is not necessarily ordered); defining
a convex function up to the median observation in X and a concave function
thereafter; and which minimizes the least-squares loss measure,

∑
i(yi − ŷi)

2.
The variance-accounted-for in Y from YHAT is given by VAF_YHAT, and defined
as

1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
,

where ȳ is the mean value in y.

The least-squares optimization strategy implemented in the four M-files
of this section are all based on an iterative projection strategy developed by
Dykstra (1983). The first routine dealing with monotonic regression per se,
monotonic_regression_dykstra.m, is a direct competitor to one that would
implement a “pool adjacent violators” algorithm; the latter has been the stan-
dard strategy ever since implemented by Kruskal (1964a,b) in his approach to
nonmetric multidimensional scaling. For example, the MATLAB Statistical

107



Toolbox has an M-file for nonmetric multidimensional scaling, mdscale.m.
that relies on a (private) function, lsqisotonic.m, which is a least-squares
isotonic regression strategy built on the “pool adjacent violators” method. To
see how one of the four M-files of this section would work in mdscale.m, the
call to lsqisotonic.m could be replaced by one of these. In effect, we can
easily implement a nonmetric multidimensional scaling routine that would
allow constraints beyond monotonic to convex, concave, or a combination of
convex and concave. Generally, these further constraints seem to “smooth”
out the monotonic regression function quite dramatically; this has been the
goal of using monotonic splines in exactly this same context (e.g., see Ram-
say, 1988). In effect, we have solved with these mechanisms rather directly
and without splines, one of the major problems identified by Shepard (1974)
in the Psychometric Society Presidential Address:

The problem that remains, however, is to impose the desired condition of
smoothness in some general and nonarbitrary way without having to specify
a particular functional form — such as the polynomial (which can become
nonmonotonic) or the exponential (which is often too restrictive) (p. 398).

9.9 The Dykstra-Kaczmarz Method for Solving Linear (In)equality
Constrained Least-Squares Tasks

The Dykstra-Kaczmarz (DK) method for solving (in)equality constrained
least-squares tasks, can be characterized as a very general iterative projection
strategy that considers each linear constraint successively (and repeatedly),
until convergence. It serves as the method for all of our least-squares fitting
requirements in the present Toolbox. We first review very cryptically in
the section below, the basic argument for the iterative strategy; this then
serves as the template that must be specialized for a particular data analysis
context and followed in detail. For example, when fitting structures such
as ultrametrics, additive trees, anti-Robinson forms, and the like, the fitting
procedure reviewed is directly programmed into an M-file. A second section
discusses a general MATLAB M-file based on converting a Fortran subroutine
from Wollan and Dykstra (1987). This is a general optimization routine that
can be used in the spirit of other such M-files from the Optimization Toolbox.

108



It is written very generally, and not for just one particular application (as
we have done, for example, in fitting ultrametrics with the dedicated M-file,
ultrafit.m). It accepts general arguments to define the constrained least-
squares task, such as the characterizing constraint matrix, and produces a
solution. At times, a general implementation such as this may be problematic
if, say, the constraint matrix is too enormous in size. In these cases, there
may be no other choice than to program the specific application without
storing the constraint matrix.

9.9.1 A Review of the DK Strategy

The Kaczmarz (1937) method deals only with equality constraints; Dykstra’s
(1983) method generalizes the restrictions that can be handled by Kaczmarz’s
strategy to the use of inequality constraints.

Kaczmarz’s method can be characterized as follows:

Given A = {aij} of order m × n, x′ = {x1, . . . , xn}, b′ = {b1, . . . , bm},
and assuming the linear system Ax = b is consistent, define the set Ci =
{x | ∑n

j=1 aijxj = bi, 1 ≤ j ≤ n}, for 1 ≤ i ≤ m. The projection of any n× 1
vector y onto Ci is simply y− (a′iy− bi)ai(a

′
iai)

−1, where a′i = {ai1, . . . , ain}.
Beginning with a vector x0, and successively projecting x0 onto C1, and
that result onto C2, and so on, and cyclically and repeatedly reconsidering
projections onto the sets C1, . . . , Cm, leads at convergence to a vector x∗

0 that
is closest to x0 (in vector 2-norm, so that

∑n
j=1(x0j − x∗0j)

2 is minimized) and
Ax∗

0 = b. In short, Kaczmarz’s method iteratively solves least-squares tasks
subject to equality restrictions.

Dykstra’s method can be characterized as follows:

Given A = {aij} of order m × n, x′
0 = {x01, . . . , x0n}, b′ = {b1, . . . , bm},

and w′ = {w1, . . . , wn}, where wj > 0 for all j, find x∗
0 such that a′ix

∗
0 ≤ bi

for 1 ≤ i ≤ m and
∑n

j=1wj(x0j − x∗0j)
2 is minimized. Again, (re)define the

(closed convex) sets Ci = {x | ∑n
j=1 aijxj ≤ bi, 1 ≤ j ≤ n} and when a vector

y /∈ Ci, its projection onto Ci (in the metric defined by the weight vector
w) is y − (a′iy − bi)aiW

−1(a′iW
−1ai)

−1, where W−1 = diag{w−1
1 , . . . , w−1

n }.
We again initialize the process with the vector x0 and each set C1, . . . , Cm

is considered in turn. If the vector being carried forward to this point when

109



Ci is (re)considered does not satisfy the constraint defining Ci, a projection
onto Ci occurs. The sets C1, . . . , Cm are cyclically and repeatedly considered
but with one difference from the operation of Kaczmarz’s method — each
time a constraint set Ci is revisited, any changes from the previous time Ci

was reached are first “added back”. This last process ensures convergence to
a (globally) optimal solution x∗

0.

9.9.2 A General M-file for Solving Linear Inequality Constrained Least-Squares
Tasks

The Fortran subroutine that we have rewritten into an M-file from Wollan
and Dykstra (1987) is called least_squares_dykstra.m, and is meant to
find a solution to the following problem:

suppose g is a given n× 1 vector (the “dependent” vector); S a given n× n
positive-definite matrix (thus, it has an inverse; it may, for example, be a
variance-covariance matrix, in which case we are minimizing Mahalanobis
distances in the formulation below); A is a known m× n matrix where each
row of A defines one of m constraints; b is a known m× 1 vector giving the
right-hand-sides of the inequality constraints. The task: find an n× 1 vector
x, subject to Ax ≤ b, to minimize

(g − x)′S−1(g − x) . (14)

Commonly, S will be the identity, in which case we have unweighted least-
squares; if S is diagonal, weighted least-squares is obtained. We also note that
in the actual application of the M-file, equality constraints can be enforced
directly.

The syntax for the M-file, least_squares_dykstra.m, is as follows:

[solution,kuhn_tucker,iterations,end_condition] = ...

least_squares_dykstra(data,covariance,constraint_array, ...

constraint_constant,equality_flag)

Here, the input arguments are an n×1 vector, DATA; an n×n positive-definite
matrix, COVARIANCE; an m × n constraint matrix, CONSTRAINT_ARRAY; the
m×1 right-hand-side constraint vector, CONSTRAINT_CONSTANT; and an m×1

110



EQUALITY_FLAG vector with values of 0 when a corresponding constraint is
an inequality, and 1 if an equality. The weighted least-squares criterion (with
weights defined by the inverse of COVARIANCE) is minimized by a SOLUTION

that satisfies CONSTRAINT_ARRAY * SOLUTION being in EQUALITY_FLAG re-
lation to CONSTRAINT_CONSTANT. As additional output arguments, there is
a m × 1 KUHN_TUCKER vector (useful for some applications); the number of
ITERATIONS taken (maximum default value is ITERMAX = 1.0e+04, set in the
program), and an END_CONDITION flag: 0: no error; 1: ITERMAX exceeded; 2:
invalid constant; 3: invalid constraint function.

9.9.3 A Few Applications of least squares dykstra.m

There are a few very useful application of least_squares_dykstra.m that
we review briefly here:

(A) Consider the minimization of

(g − x)′S−1(g − x) , (15)

subject to

x =
m∑
i=1

αidi, αi ≥ 0 for 1 ≤ i ≤ m,

and the specified collection of n × 1 vectors, d1, . . . ,dk. To use the general
M-file for this task, define the constraint array to be,

A =


d′
1S

−1

...
d′
mS

−1

 .

Letting x∗ denote the solution of the original task in (17), the solution here
is given by g − x∗, with the αi’s being 1/2 the values in the Kuhn-Tucker
vector. We might note that these fitting ideas were implemented in the M-file,
partitionfit.m, used heavily in the Cluster Analysis Toolbox to generalize
the notion of an ultrametric.

(B) Consider the usual linear model formulation: y = Xβ + ϵ, where y is
the n × 1 vector of observations, X an n × m full-rank design matrix, and
ϵ contains n independent, N(0, σ2), random variables. If we wish to impose

111



linear inequality constraints on the least-squares estimate of the m×1 vector
β, say, β̂: Aβ̂ ≤ b, in our original problem formulation in (18), we can let
S−1 = X′X, g = (X′X)−1X′y, and use the given constraint array and vector,
A and b.

If we wish only nonnegativity of β̂, then (18) can be used with g = y,
S = I, and the d1, . . . ,dm given by the k columns of X. When halved, the
minimizing αi’s provide the desired nonnegative estimate, β̂ ≥ 0.

9.10 The L1 Fitting of Unidimensional Scales (with an Additive
Constant)

The linear unidimensional scaling task in the L1 norm can be phrased as one
of finding a set of coordinates, x1, . . . , xn, such that the L1 criterion,∑

i<j

|pij − (|xj − xi| − c)| , (16)

is minimized, where we now immediately include the possibility of an additive
constant in the model (in what follows, c can just be set to 0 for the more
elemental model without an additive constant). As an alternative reformula-
tion of the optimization task in (16) that will prove convenient as a point of
departure in our development of computational routines (much as what we
did within the L2 norm), we subdivide (16) into the two separate problems
of finding a set of n numbers, x1 ≤ · · · ≤ xn, and a permutation on the first
n integers, ρ(·) ≡ ρ, for which∑

i<j

|pρ(i)ρ(j) − ((xj − xi)− c)| (17)

is minimized. Again, we can impose the additional constraint that
∑n

i=1 xi =
0.

Assuming for now that the permutation ρ is given, the task of finding x1 ≤
· · · ≤ xn to minimize (17) is a linear programming problem. Without loss of
generality, we let ρ be the identity permutation and first rewrite

∑
i<j |pij −

(|xj − xi| − c)| as the loss criterion
∑

i<j(z
+
ij + z−ij), where

z+ij =
1

2
{|pij − (|xj − xi| − c)| − (pij − (|xj − xi| − c))};

112



z−ij =
1

2
{|pij − (|xj − xi| − c)|+ (pij − (|xj − xi| − c))},

for 1 ≤ i < j ≤ n. The unknowns are c, x1, . . . , xn, and for 1 ≤ i < j ≤ n,
z+ij , z

−
ij , and yij (≡ |xj − xi|). The constraints of the linear program take the

form:
−z+ij + z−ij + yij − c = pij;

−xj + xi + yij = 0;

z+ij ≥ 0, z−ij ≥ 0, yij ≥ 0,

for 1 ≤ i < j ≤ n, and
x1 + · · ·+ xn = 0.

The MATLAB Functions linfitl1.m and linfitl1ac.m Based on the linear pro-
gramming reformulation just given for finding a set of ordered coordinates for
a fixed object permutation, the M-functions, linfitl1.m and linfitl1ac.m,
where the latter includes an additive constant in the model and the former
does not, serve to setup the relevant (constraint) matrices for the associated
linear programming task; the actual linear programming optimization is car-
ried out by invoking linprog.m from the MATLAB Optimization Toolbox.

The syntax for linfitl1.m is

[fit diff coord exitflag] = linfitl1(prox,inperm)

where if we denote the given permutation as ρ0(·) (INPERM), we seek a set of
coordinates x1 ≤ · · · ≤ xn (COORD) to minimize (at a value of DIFF)∑

i<j

|pρ0(i)ρ0(j) − |xj − xi||;

FIT refers to the matrix {|xj − xi|}, and EXITFLAG describes the exit con-
dition of the linear program optimization (greater than 0 for convergence; 0
denotes the maximum number of function evaluations or iterations was ex-
ceeded; less than 0 indicates a failure of convergence to a solution). For using
linfitl1ac.m, the syntax is

[fit dev coord addcon exitflag] = linfitl1ac(prox,inperm)

113



Here, we minimize ∑
i<j

|pρ0(i)ρ0(j) − (|xj − xi| − c)|

where c is given by ADDCON and DEV refers to the deviance(-accounted-for)
defined by the normalized L1 loss value:

DEV = 1−
∑

i<j |pρ0(i)ρ0(j) − (|xj − xi| − c)|∑
i<j |pij − pmed|

,

where pmed is the median of the off-diagonal proximity values.

We illustrate the use of linfitl1.m and linfitl1ac.m on the supreme_agree
proximity matrix using the identity permutation as the input object order.

>> inperm = 1:9

inperm =

1 2 3 4 5 6 7 8 9

>> [fit,diff,coord,exitflag] = linfitl1(supreme_agree,inperm)

Optimization terminated.

fit =

0 0.1911 0.2582 0.3367 0.6198 0.7045 0.8119 1.0092 1.0727

0.1911 0 0.0671 0.1456 0.4287 0.5134 0.6207 0.8181 0.8816

0.2582 0.0671 0 0.0785 0.3616 0.4463 0.5537 0.7511 0.8145

0.3367 0.1456 0.0785 0 0.2831 0.3678 0.4752 0.6726 0.7360

0.6198 0.4287 0.3616 0.2831 0 0.0847 0.1921 0.3895 0.4529

0.7045 0.5134 0.4463 0.3678 0.0847 0 0.1073 0.3047 0.3681

0.8119 0.6207 0.5537 0.4752 0.1921 0.1073 0 0.1974 0.2608

1.0092 0.8181 0.7511 0.6726 0.3895 0.3047 0.1974 0 0.0634

1.0727 0.8816 0.8145 0.7360 0.4529 0.3681 0.2608 0.0634 0

diff =

3.4600

coord =

114



-0.5560

-0.3649

-0.2978

-0.2193

0.0638

0.1485

0.2559

0.4532

0.5167

exitflag =

1

>> [fit,dev,coord,addcon,exitflag] = linfitl1ac(supreme_agree,inperm)

Optimization terminated.

fit =

0 0.3239 0.3490 0.3664 0.6134 0.6588 0.7185 0.8649 0.8705

0.3239 0 0.2287 0.2461 0.4931 0.5385 0.5983 0.7446 0.7503

0.3490 0.2287 0 0.2211 0.4681 0.5135 0.5732 0.7196 0.7252

0.3664 0.2461 0.2211 0 0.4507 0.4961 0.5558 0.7022 0.7078

0.6134 0.4931 0.4681 0.4507 0 0.2490 0.3088 0.4551 0.4608

0.6588 0.5385 0.5135 0.4961 0.2490 0 0.2634 0.4098 0.4154

0.7185 0.5983 0.5732 0.5558 0.3088 0.2634 0 0.3500 0.3557

0.8649 0.7446 0.7196 0.7022 0.4551 0.4098 0.3500 0 0.2093

0.8705 0.7503 0.7252 0.7078 0.4608 0.4154 0.3557 0.2093 0

dev =

0.8763

coord =

-0.3484

-0.2282

-0.2031

-0.1857

0.0613

0.1067

0.1664

115



0.3128

0.3184

addcon =

-0.2037

exitflag =

1

9.10.1 Iterative Linear Programming

Given the availability of the two linear programming based M-functions for
fitting given unidimensional scales defined by specific input object permu-
tations, it is possible to embed these two routines in a search strategy for
actually finding the (at least hopefully) best such permutations in the first
place. This embedding is analogous to adopting iterative quadratic assign-
ment in uniscalqa.m and attempting to locate good unidimensional scalings
in the L2 norm. Here, we have an iterative use of linear programming in
uniscallp.m and uniscallpac.m to identify the good unidimensional scales
in the L1 norm, without and with, respectively, an additive constant in the
fitted model. The usage syntax of both M-functions are as follows:

[outperm coord diff fit] = uniscallp(prox,inperm)

[outperm coord dev fit addcon] = uniscallpac(prox,inperm)

Both M-functions begin with a given object ordering (INPERM) and evaluate
the effect of pairwise object interchanges on the current permutation carried
forward to that point. If an object interchange is identified that improves the
L1 loss value, that interchange is made and the changed permutation becomes
the current one. When no pairwise object interchange can reduce DIFF in
uniscallp.m, or increase DEV in uniscallpac.m over its current value, that
ending permutation is provided as OUTPERM along with its coordinates (COORD)
and the matrix FIT (the absolute differences of the ordered coordinates). In
uniscallpac.m, the additive constant (ADDCON) is also given.

116



The numerical example that follows relies on supreme_agree to provide
the proximity matrix, and initializes both the M-functions with the random
permutations. From other random starts that we have tried, the resulting
scales we give below are (almost undoubtedly) L1-norm optimal. We might
note that the (optimal) object orderings differ depending on whether or not
an additive constant is included in the model, and the one without an addi-
tive constant involves a small departure from the identity permutation (an
interchange of O’Connor (5) and Kennedy (6)).

>> load supreme_agree.dat

>> [outperm,coord,diff,fit] = uniscallp(supreme_agree,randperm(9))

outperm =

1 2 3 4 6 5 7 8 9

coord =

-0.5539

-0.3210

-0.2942

-0.2342

0.0803

0.1259

0.2638

0.4456

0.4875

diff =

3.4000

fit =

0 0.2329 0.2597 0.3197 0.6342 0.6798 0.8177 0.9995 1.0414

0.2329 0 0.0268 0.0868 0.4013 0.4469 0.5849 0.7666 0.8085

0.2597 0.0268 0 0.0600 0.3745 0.4201 0.5580 0.7398 0.7817

0.3197 0.0868 0.0600 0 0.3145 0.3601 0.4980 0.6798 0.7217

0.6342 0.4013 0.3745 0.3145 0 0.0456 0.1835 0.3653 0.4072

0.6798 0.4469 0.4201 0.3601 0.0456 0 0.1379 0.3197 0.3616

117



0.8177 0.5849 0.5580 0.4980 0.1835 0.1379 0 0.1818 0.2237

0.9995 0.7666 0.7398 0.6798 0.3653 0.3197 0.1818 0 0.0419

1.0414 0.8085 0.7817 0.7217 0.4072 0.3616 0.2237 0.0419 0

>> [outperm,coord,dev,fit,addcon] = uniscallpac(supreme_agree,randperm(9))

outperm =

9 8 7 6 5 4 3 2 1

coord =

-0.3184

-0.3128

-0.1664

-0.1067

-0.0613

0.1857

0.2031

0.2282

0.3484

dev =

0.8763

fit =

0 0.2093 0.3557 0.4154 0.4608 0.7078 0.7252 0.7503 0.8705

0.2093 0 0.3500 0.4098 0.4551 0.7022 0.7196 0.7446 0.8649

0.3557 0.3500 0 0.2634 0.3088 0.5558 0.5732 0.5983 0.7185

0.4154 0.4098 0.2634 0 0.2490 0.4961 0.5135 0.5385 0.6588

0.4608 0.4551 0.3088 0.2490 0 0.4507 0.4681 0.4931 0.6134

0.7078 0.7022 0.5558 0.4961 0.4507 0 0.2211 0.2461 0.3664

0.7252 0.7196 0.5732 0.5135 0.4681 0.2211 0 0.2287 0.3490

0.7503 0.7446 0.5983 0.5385 0.4931 0.2461 0.2287 0 0.3239

0.8705 0.8649 0.7185 0.6588 0.6134 0.3664 0.3490 0.3239 0

addcon =

-0.2037

118



Although the M-functions are provided to either fit or find the best unidi-
mensional scalings in the L1 norm, we do not suggest their routine use. The
finding of the best unidimensional scales in L1 is extremely expensive com-
putationally (given the use of the repetitive linear programming subtasks),
and without any obvious advantage over L2, it is not clear why the L1 ap-
proach should be pursued. This same set of conclusions exist as well for
the L1 finding and fitting of multidimensional unidimensional scales. (We
might also mention a possible issue with ill-conditioning for some uses of
linfitl1.m and linfitl1ac.m if the simplex option is chosen [and not the
default interior-point algorithm] for the optimization method implemented
in linprog.m. The end results appear generally to be fine, but the interme-
diate warnings in either the finding or fitting of these unidimensional scales
within L1 is disconcerting. So the use of the default interior-point strategy
is recommended whenever linprog.m is called.)

9.10.2 The L1 Finding and Fitting of Multiple Unidimensional Scales

In analogy to the L2 fitting of multiple unidimensional structures, the use
of the L1 norm can again be done by (repetitive) successive residualization,
but now with a reliance on the M-function, linfitl1ac.m, to fit each sep-
arate unidimensional structure with its additive constant. The M-function,
biscallp.m, is a two-(or bi-)dimensional scaling strategy for the L1 loss-
function ∑

i<j

|pij − [|xj1 − xi1| − c1]− [|xj2 − xi2| − c2]|, (18)

with syntax (and all variables) similar to biscalqa.m, including a provision
for the confirmatory fitting of two given input orders (by setting NOPT = 0).
As noted earlier, in principle one can use the L1 norm in city-block scaling,
but given the increased computational expense of doing so with no apparent
advantage over L2, it is suggested that the use of L1 generally be avoided in
favor of L2.

119



9.11 The Confirmatory Fitting of Tied Coordinate Patterns in
Bidimensional City-Block Scaling

One of the options in the M-file, biscalqa.m, allows the confirmatory fitting
of two given input permutations by setting the nopt switch to zero. An
extension of this M-file to biscalqa_tied.m is presented here that further
allows the imposition of given patterns of tied coordinates along the two axes.
Equal integer values that are present in tiedcoordone and tiedcoordtwo

impose equal coordinate values in the optimization process.

We give two examples below of using biscalqa_tied.m on the Hampshire
proximities. The first illustration does a confirmatory fitting of the two object
permutations that led to the best VAF identified earlier of .9499 and with no
imposed tied coordinates (so both tiedcoordone and tiedcoordtwo consist
of the integers from 1 to 27). The exact same VAF is obtained in the confirma-
tory fit, but interestingly, there are slight variations in the additive constants
and the coordinates at the level of the third or fourth decimal places. So we
have small variations that apparently “cancel” and lead to the same best VAF
as before. The second illustration imposes tied coordinates along both axes in
groups of threes, so tiedcoordone and tiedcoordtwo both have the pattern
of [1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9]. There
is an expected drop in the VAF to .8734 (but not too severe given the major
reduction in model complexity). The resulting configuration of Hampshire
towns with these tied coordinate structures imposed is given in Figure 8.

load hampshire_proximities.dat

inpermone = [2 6 12 19 22 1 11 4 5 23 21 18 3 27 20 24 17 10 25 9 26 13 8 16 7 15 14];

inpermtwo = [18 4 19 16 3 11 15 17 5 14 27 7 8 13 12 21 20 6 2 22 9 10 25 23 1 26 24];

[outpermone,outpermtwo,coordone,coordtwo,fitone,fittwo,addconone,addcontwo,vaf] = ...

biscalqa_tied(hampshire_proximities,targlin(27),targlin(27),...

inpermone,inpermtwo,1:27,1:27,3,0)

tiedcoordone = [1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9];

tiedcoordtwo = [1 1 1 2 2 2 3 3 3 4 4 4 5 5 5 6 6 6 7 7 7 8 8 8 9 9 9];

[outpermone,outpermtwo,coordone,coordtwo,fitone,fittwo,addconone,addcontwo,vaf] = ...

biscalqa_tied(hampshire_proximities,targlin(27),targlin(27),inpermone,inpermtwo,...

tiedcoordone,tiedcoordtwo,3,0)

axes = zeros(27,2);

for i = 1:27

120



axes(outpermone(i),1) = coordone(i);

axes(outpermtwo(i),2) = coordtwo(i);

end

plot(axes(1:27,1),axes(1:27,2),’ko’)

hold on

for i = 1:27

objectlabels{i,1} = int2str(i);

end

text(axes(1:27,1),axes(1:27,2),objectlabels,’fontsize’,10,...

’verticalalignment’,’bottom’)

>> script_tied_coordinates_biscalqa

outpermone =

Columns 1 through 26

2 6 12 19 22 1 11 4 5 23 21 18 3 27 20 24 17 10 25 9 26 13 8 16 7 15

Column 27

14

outpermtwo =

Columns 1 through 26

18 4 19 16 3 11 15 17 5 14 27 7 8 13 12 21 20 6 2 22 9 10 25 23 1 26

Column 27

24

coordone =

-18.7759

-14.5533

-13.3525

-12.7337

-10.7167

-10.4930

-9.1591

-7.5284

-6.3342

-5.0568

-4.5961

-3.9200

-0.5998

-0.5998

1.0959

2.9431

4.1361

4.3892

5.0837

6.1704

121



6.7689

7.1508

12.0935

13.8611

15.3806

17.2922

22.0538

coordtwo =

-7.1706

-5.9026

-5.3941

-4.9316

-4.9034

-4.3384

-3.5486

-3.5486

-2.3517

-2.1241

-1.8610

-0.8060

-0.7654

-0.6970

-0.0768

0.8199

0.9487

1.8872

2.3601

2.7219

3.3431

3.5634

4.0580

5.9584

6.8936

7.4461

8.4196

addconone =

-6.4555

addcontwo =

5.0634

vaf =

0.9499

outpermone =

Columns 1 through 26

2 6 12 19 22 1 11 4 5 23 21 18 3 27 20 24 17 10 25 9 26 13 8 16 7 15

Column 27

122



14

outpermtwo =

Columns 1 through 26

18 4 19 16 3 11 15 17 5 14 27 7 8 13 12 21 20 6 2 22 9 10 25 23 1 26

Column 27

24

coordone =

-14.9857

-14.9857

-14.9857

-10.6768

-10.6768

-10.6768

-7.2769

-7.2769

-7.2769

-4.6149

-4.6149

-4.6149

-0.0553

-0.0553

-0.0553

3.6327

3.6327

3.6327

5.6893

5.6893

5.6893

10.6332

10.6332

10.6332

17.6544

17.6544

17.6544

coordtwo =

-6.1101

-6.1101

-6.1101

-4.9751

-4.9751

-4.9751

-2.6275

-2.6275

-2.6275

-1.5461

-1.5461

-1.5461

-0.2714

-0.2714

-0.2714

0.9779

123



0.9779

0.9779

3.0910

3.0910

3.0910

4.2537

4.2537

4.2537

7.2075

7.2075

7.2075

addconone =

-7.1024

addcontwo =

4.8676

vaf =

0.8734

9.12 Matrix Color Coding and Presentation

A current method of data presentation is through the use of color, where a
collection of varying numerical values is mapped into a corresponding col-
lection of colors that can then be displayed. A colormap is an m × 3 ma-
trix of real numbers between 0.0 and 1.0, with each row giving an RGB
(Red/Green/Blue) vector defining a single color. For example, if map is the
name of the m×3 matrix, then the kth row, map(k,:) = [r(k) g(k) b(k)],
provides the intensities of red, green, and blue components for the kth color.

A number of built-in colormaps are available in MATLAB (or, alterna-
tively, custom colormaps can be constructed by a user, possibly through the
MATLAB GUI, colormapeditor); all of these ready-made colormaps accept
a value of m for the number of rows (number of colors) of the colormap. For
example, the command, colormap(bone(256)), produces a (built-in) bone

colormap with 256 colors; the latter is a grayscale with a higher value of the
blue component, adding an “electronic” look to the grayscale images. Asking
for MATLAB help on “colormap” will produce the collection of supported
colormaps (e.g., bone, gray, copper, spring, among many others).

124



−15 −10 −5 0 5 10 15 20
−8

−6

−4

−2

0

2

4

6

8
1

2

3

4

5

6

7

8

9

10

11

12 13

14

15

16

17

1819

2021

22

23

24

25

26

27

Figure 8: The City-Block Scaling of the Hampshire Towns Based on the Given Tied Coor-
dinate Patterns (in Groups of Three) Obtained with biscalqa tied.m.

125



The MATLAB function, pcolor, is used to produce our checkerboard
colorcoded plot of the entries in a given matrix. The minimum and maximum
matrix entries are assigned the first and last colors in the colormap, with the
remaining entries determined by a linear mapping from the numerical values
to the colormap elements. The MATLAB command, colorbar, reproduces
a legend giving a visual correspondence between color and numerical value.
Also, the MATLAB command, axis ij, puts the representation into “matrix
axes mode”, where the coordinate system origin is at the upper-left corner.
As is standard for a matrix, the i axis is vertical and numbered from top to
bottom; the j axis is horizontal and numbered from left to right.

The M-file we have written, matrix_colorcode.m, has syntax:

matrix_colorcode(datamatrix,rowperm,colperm,cmap)

Here, a color representation is constructed for the values in an n × m ma-
trix, DATAMATRIX. The rows and columns of DATAMATRIX are permuted by
ROWPERM and COLPERM, respectively, with CMAP the input colormap for the
representation (e.g., bone(256)).

There are several other uses of the pcolor command that are interesting
from a data analytic perspective. One is to produce a movie that traces the
course of some optimization method. For example, the quadratic assignment
routine, order.m, produces a cell array of permutations that transform a
symmetric data matrix to be as close as possible to a given target matrix.
To show the effects of these permutations in a color-coded manner, we have
the M-file, matrix_movie.m, with the syntax:

matrix_movie(datamatrix,perms,numperms,cmap)

A color movie is constructed of the effects of a series of permutations on
an n × n symmetric proximity matrix, DATAMATRIX; PERMS is a cell array
containing NUMPERMS permutations; CMAP is the input colormap used for the
representation. The actual movie is produced and played based on the MAT-
LAB commands of getframe (for capturing the movie frames) and movie

(for replaying the recorded frames).

126



10 Comparing Categorical (Ultrametric) and Continu-

ous (LUS) Representations for a Proximity Matrix

One of the basic tasks of data analysis for proximity matrices lies in the
choice of representation, and in particular, whether it should be “continu-
ous,” as reflected in LUS, or “categorical,” as in the construction of a best-
fitting ultrametric. These latter discrete or categorical models are the main
topic of a companion Cluster Analysis Toolbox, and the reader is referred
to this source for specifics. Here, we demonstrate the use of imposing a
constraining object order on the analysis performed that is either given (in
cat_vs_con_orderfit.m), or is found (in cat_vs_con_orderfnd.m). In ei-
ther case, a best-fitting anti-Robinson (AR) matrix is first identified based on
the constraining order (either given or found), recalling that an AR matrix
is characterized by its entries never decreasing (and usually increasing) as
we move away from the main diagonal within a row or a column. Treating
this latter AR matrix as if it were the input proximity matrix, both a best-
fitting LUS and ultrametric structure is then identified, respecting the given
or found constraining order. We note, in particular, that the AR constraints
imposed are weaker than those for a LUS or ultrametric model, and the AR
defining inequalities are actually implicit in those for the stricter represen-
tations. This implies that one can proceed, without loss of any generality,
to obtain a LUS or ultrametric structures from the best-fitting AR matrix
treated as the input proximity matrix. The ‘successive averaging’ necessary
for a least-squares AR matrix is also part of and is needed to generate best
LUS or ultrametric approximations.

Generally, LUS and ultrametric structures can themselves be put into AR
forms. So, in this sense, both continuous and discrete representations are
part of a broader representational device that places an upper-bound on how
well a given proximity matrix can be represented by either a continuous or
discrete structure. For example, in its use below on the supreme_agree

data matrix, cat_vs_con_orderfnd.m finds the identity permutation as the
constraining permutation and gives a VAF of 99.55% for the best-fitting AR
matrix. The LUS model VAF of 97.96% is trivially less than that for the
AR form; in contrast, the ultrametric VAF of 73.69% is quite a drop. Given

127



these comparisons, one might argue that a continuous representation does
much better than a categorical one, at least for this particular proximity
matrix.

The syntax for the two M-files is very similar:

[findultra,vafultra,vafarob,arobprox,fitlinear,vaflinear,...

coord,addcon] = cat_vs_con_orderfit(prox,inperm,conperm)

[findultra,vafultra,conperm,vafarob,arobprox,fitlinear,...

vaflinear,coord,addcon] = cat_vs_con_orderfnd(prox,inperm)

As usual, prox is the input dissimilarity matrix and inperm is a start-
ing permutation for how the ultrametric constraints are searched for; in
cat_vs_con_orderfnd.m, inperm also initializes the search for a constraining
order. The permutation, conperm, in cat_vs_con_orderfit.m is the given
constraining order. As output, findultra is the best ultrametric found with
VAF of vafultra; arobprox is the best AR form identified with a VAF of
vafarob; fitlinear is the best LUS model with VAF of vaflinear with
coord containing the coordinates and addcon the additive constant. For
cat_vs_con_orderfnd.m, the identified constraining order, conperm, is also
given as an output vector.

>> load supreme_agree.dat

>> [findultra,vafultra,conperm,vafarob,arobprox,fitlinear,vaflinear, ...

coord,addcon] = cat_vs_con_orderfnd(supreme_agree,randperm(9))

findultra =

0 0.3633 0.3633 0.3633 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0 0.2850 0.2850 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0 0.2200 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0.2200 0 0.6405 0.6405 0.6405 0.6405 0.6405

0.6405 0.6405 0.6405 0.6405 0 0.3100 0.3100 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0 0.2300 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0.2300 0 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0 0.2100

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0.2100 0

vafultra =

0.7369

conperm =

1 2 3 4 5 6 7 8 9

128



vafarob =

0.9955

arobprox =

0 0.3600 0.3600 0.3700 0.6550 0.6550 0.7500 0.8550 0.8550

0.3600 0 0.2800 0.2900 0.4900 0.5300 0.5700 0.7500 0.7600

0.3600 0.2800 0 0.2200 0.4900 0.5100 0.5700 0.7200 0.7400

0.3700 0.2900 0.2200 0 0.4500 0.5000 0.5600 0.6900 0.7100

0.6550 0.4900 0.4900 0.4500 0 0.3100 0.3100 0.4600 0.4600

0.6550 0.5300 0.5100 0.5000 0.3100 0 0.2300 0.4150 0.4150

0.7500 0.5700 0.5700 0.5600 0.3100 0.2300 0 0.3300 0.3300

0.8550 0.7500 0.7200 0.6900 0.4600 0.4150 0.3300 0 0.2100

0.8550 0.7600 0.7400 0.7100 0.4600 0.4150 0.3300 0.2100 0

fitlinear =

0 0.1304 0.1464 0.1691 0.4085 0.4589 0.5060 0.6483 0.6483

0.1304 0 0.0160 0.0387 0.2780 0.3285 0.3756 0.5179 0.5179

0.1464 0.0160 0 0.0227 0.2620 0.3124 0.3596 0.5019 0.5019

0.1691 0.0387 0.0227 0 0.2393 0.2898 0.3369 0.4792 0.4792

0.4085 0.2780 0.2620 0.2393 0 0.0504 0.0976 0.2399 0.2399

0.4589 0.3285 0.3124 0.2898 0.0504 0 0.0471 0.1894 0.1894

0.5060 0.3756 0.3596 0.3369 0.0976 0.0471 0 0.1423 0.1423

0.6483 0.5179 0.5019 0.4792 0.2399 0.1894 0.1423 0 0

0.6483 0.5179 0.5019 0.4792 0.2399 0.1894 0.1423 0 0

vaflinear =

0.9796

coord =

-0.3462

-0.2158

-0.1998

-0.1771

0.0622

0.1127

0.1598

0.3021

0.3021

addcon =

-0.2180

There is one somewhat unresolved issue as to whether the LUS and ul-
trametric representations incorporate the same number of “weights,’ because
otherwise, direct comparison of VAF values may be considered problematic.
We argue that, indeed, the number of weights are the same; there are n− 1
distinct values in an ultrametric matrix and n− 1 separations along a line in

129



a LUS model. The one additional additive constant for LUS that is needed
to insure invariance to linear transformations of the proximities, should not
count against the representation. The ultrametric model automatically has
such invariance, and should not be given an inherent advantage just because
of this.

10.1 Comparing Equally-Spaced Versus Unrestricted Representa-
tions for a Proximity Matrix

The fitting strategies offered by linfitac.m and cirfitac.m (as well as
ultrafit.m from a companion Cluster Analysis Toolbox – Hubert, Köhn,
and Steinley, 2009), all allow unequal spacings to generate the least-squares
approximations. This, in effect, requires multiple weights to be constructed.
At times, it may be of interest to see how a much simpler model might fair,
based only on one ‘free weight’. In LUS, we would have equal spacings along
a line; for CUS, there would be equal spacings around a circular structure;
and for an ultrametric, only multiples of the integer-valued levels (typically, n
minus the number of classes in a partition) at which new subsets are formed.
In the examples below of eqspace_linfitac.m, eqspace_cirfitac.m, and
eqspace_ultrafit.m, the addition of the prefix “eq” shows the vaf, fit, or
addcon for the equally-spaced alternatives. (All of the latter, we might add,
are based on simple regression, rather than on any iterative fitting strategy.)
The usual non-equally-spaced alternatives are also given for comparison. We
found the high VAF of 83.83% interesting for the equally-spaced LUS model;
it is remarkable that only one weight is necessary to generate such a value.

>> load supreme_agree.dat

>> [fit, vaf, coord, addcon, eqfit, eqvaf, eqaddcon] = ...

eqspace_linfitac(supreme_agree,1:9)

fit =

0 0.1304 0.1464 0.1691 0.4085 0.4589 0.5060 0.6483 0.6483

0.1304 0 0.0160 0.0387 0.2780 0.3285 0.3756 0.5179 0.5179

0.1464 0.0160 0 0.0227 0.2620 0.3124 0.3596 0.5019 0.5019

0.1691 0.0387 0.0227 0 0.2393 0.2898 0.3369 0.4792 0.4792

0.4085 0.2780 0.2620 0.2393 0 0.0504 0.0976 0.2399 0.2399

0.4589 0.3285 0.3124 0.2898 0.0504 0 0.0471 0.1894 0.1894

130



0.5060 0.3756 0.3596 0.3369 0.0976 0.0471 0 0.1423 0.1423

0.6483 0.5179 0.5019 0.4792 0.2399 0.1894 0.1423 0 0

0.6483 0.5179 0.5019 0.4792 0.2399 0.1894 0.1423 0 0

vaf =

0.9796

coord =

-0.3462

-0.2158

-0.1998

-0.1771

0.0622

0.1127

0.1598

0.3021

0.3021

addcon =

-0.2180

eqfit =

0 0.0859 0.1718 0.2577 0.3436 0.4295 0.5154 0.6013 0.6872

0.0859 0 0.0859 0.1718 0.2577 0.3436 0.4295 0.5154 0.6013

0.1718 0.0859 0 0.0859 0.1718 0.2577 0.3436 0.4295 0.5154

0.2577 0.1718 0.0859 0 0.0859 0.1718 0.2577 0.3436 0.4295

0.3436 0.2577 0.1718 0.0859 0 0.0859 0.1718 0.2577 0.3436

0.4295 0.3436 0.2577 0.1718 0.0859 0 0.0859 0.1718 0.2577

0.5154 0.4295 0.3436 0.2577 0.1718 0.0859 0 0.0859 0.1718

0.6013 0.5154 0.4295 0.3436 0.2577 0.1718 0.0859 0 0.0859

0.6872 0.6013 0.5154 0.4295 0.3436 0.2577 0.1718 0.0859 0

eqvaf =

0.8383

131



eqaddcon =

-0.2181

>> load morse_digits.dat

>> [fit, vaf, addcon, eqfit, eqvaf, eqaddcon] = ...

eqspace_cirfitac(morse_digits,[4 5 6 7 8 9 10 1 2 3])

fit =

0 0.0247 0.3620 0.6413 0.9605 1.1581 1.1581 1.0358 0.7396 0.3883

0.0247 0 0.3373 0.6165 0.9358 1.1334 1.1334 1.0606 0.7643 0.4131

0.3620 0.3373 0 0.2793 0.5985 0.7961 0.7961 1.0148 1.1016 0.7503

0.6413 0.6165 0.2793 0 0.3193 0.5169 0.5169 0.7355 1.0318 1.0296

0.9605 0.9358 0.5985 0.3193 0 0.1976 0.1976 0.4163 0.7125 1.0638

1.1581 1.1334 0.7961 0.5169 0.1976 0 0.0000 0.2187 0.5149 0.8662

1.1581 1.1334 0.7961 0.5169 0.1976 0.0000 0 0.2187 0.5149 0.8662

1.0358 1.0606 1.0148 0.7355 0.4163 0.2187 0.2187 0 0.2963 0.6475

0.7396 0.7643 1.1016 1.0318 0.7125 0.5149 0.5149 0.2963 0 0.3513

0.3883 0.4131 0.7503 1.0296 1.0638 0.8662 0.8662 0.6475 0.3513 0

vaf =

0.7190

addcon =

-0.7964

eqfit =

0 0.2208 0.4416 0.6624 0.8833 1.1041 0.8833 0.6624 0.4416 0.2208

0.2208 0 0.2208 0.4416 0.6624 0.8833 1.1041 0.8833 0.6624 0.4416

0.4416 0.2208 0 0.2208 0.4416 0.6624 0.8833 1.1041 0.8833 0.6624

0.6624 0.4416 0.2208 0 0.2208 0.4416 0.6624 0.8833 1.1041 0.8833

0.8833 0.6624 0.4416 0.2208 0 0.2208 0.4416 0.6624 0.8833 1.1041

1.1041 0.8833 0.6624 0.4416 0.2208 0 0.2208 0.4416 0.6624 0.8833

0.8833 1.1041 0.8833 0.6624 0.4416 0.2208 0 0.2208 0.4416 0.6624

0.6624 0.8833 1.1041 0.8833 0.6624 0.4416 0.2208 0 0.2208 0.4416

0.4416 0.6624 0.8833 1.1041 0.8833 0.6624 0.4416 0.2208 0 0.2208

0.2208 0.4416 0.6624 0.8833 1.1041 0.8833 0.6624 0.4416 0.2208 0

132



eqvaf =

0.5518

eqaddcon =

-0.8371

>> load sc_completelink_integertarget.dat

>> sc_completelink_integertarget

sc_completelink_integertarget =

0 6 6 6 8 8 8 8 8

6 0 4 4 8 8 8 8 8

6 4 0 2 8 8 8 8 8

6 4 2 0 8 8 8 8 8

8 8 8 8 0 5 5 7 7

8 8 8 8 5 0 3 7 7

8 8 8 8 5 3 0 7 7

8 8 8 8 7 7 7 0 1

8 8 8 8 7 7 7 1 0

>> [fit,vaf,eqfit,eqvaf] = eqspace_ultrafit(supreme_agree,sc_completelink_integertarget)

fit =

0 0.3633 0.3633 0.3633 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0 0.2850 0.2850 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0 0.2200 0.6405 0.6405 0.6405 0.6405 0.6405

0.3633 0.2850 0.2200 0 0.6405 0.6405 0.6405 0.6405 0.6405

0.6405 0.6405 0.6405 0.6405 0 0.3100 0.3100 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0 0.2300 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.3100 0.2300 0 0.4017 0.4017

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0 0.2100

0.6405 0.6405 0.6405 0.6405 0.4017 0.4017 0.4017 0.2100 0

vaf =

0.7369

133



eqfit =

0 0.4601 0.4601 0.4601 0.6135 0.6135 0.6135 0.6135 0.6135

0.4601 0 0.3067 0.3067 0.6135 0.6135 0.6135 0.6135 0.6135

0.4601 0.3067 0 0.1534 0.6135 0.6135 0.6135 0.6135 0.6135

0.4601 0.3067 0.1534 0 0.6135 0.6135 0.6135 0.6135 0.6135

0.6135 0.6135 0.6135 0.6135 0 0.3834 0.3834 0.5368 0.5368

0.6135 0.6135 0.6135 0.6135 0.3834 0 0.2300 0.5368 0.5368

0.6135 0.6135 0.6135 0.6135 0.3834 0.2300 0 0.5368 0.5368

0.6135 0.6135 0.6135 0.6135 0.5368 0.5368 0.5368 0 0.0767

0.6135 0.6135 0.6135 0.6135 0.5368 0.5368 0.5368 0.0767 0

eqvaf =

0.5927

10.2 Representing an Order-Constrained LUS and an Ultrametric
on the Same Graph

Whenever the same constraining object order is used to generate both a LUS
and ultrametric structure, it is possible to represent them jointly within the
same graphical display. The usual dendrogram showing when the new groups
form in the hierarchical clustering is given for the ultrametric, but the latter
also has its terminal nodes separated according to the coordinates constructed
for the LUS. An example is given in Figure 9 using the supreme_agree data
and the earlier analyses given with cat_vs_con_orderfnd. We believe this
provides a very nice combined representation for both the discrete and con-
tinuous models found for a proximity matrix.

11 The Representation of Proximity Matrices by Struc-

tures Dependent on Order (Only)

This section concentrates on an alternative approach to understanding what
a given proximity matrix may be depicting about the objects on which it was
constructed, and one that does not require a prior commitment to the sole use
of either some form of dimensional model (as in nonmetric multidimensional

134



Figure 9: A Joint Order-Constrained LUS and Ultrametric Representation for the
supreme agree Proximity Matrix

St BGSo Oc Ke Re Sc/Th

i iii i i i i

y
y
y

y
y

y

y

~

-.21 -.22 -.23

-.29
-.31

-.36

-.40

-.64

135



scaling (NMDS)), or one that is strictly classificatory (as in the use of a par-
tition hierarchy and the implicit fitting of an ultrametric that serves as the
representational mechanism for the hierarchical clustering). The method of
analysis is based on approximating a given proximity matrix additively by a
sum of matrices, where each component in the sum is subject to specific pat-
terning restrictions on its entries. The restrictions imposed on each compo-
nent of the decomposition (to be referred to as matrices with AR, SAR, CAR,
or CSAR forms) are very general and encompass interpretations that might
be dimensional, or classificatory, or some combination of both (e.g., through
object classes that are themselves placed dimensionally in some space). Thus,
as one special case — and particularly when an (optimal) transformation of
the proximities is also permitted (as we will generally allow), proximity ma-
trices that are well interpretable through NMDS should also be interpretable
through an additive decomposition of the (transformed) proximity matrix.
Alternatively, when classificatory structures of various kinds might underlie
a set of proximities (and the direct use of NMDS could possibly lead to a
degeneracy), additive decompositions may still provide an analysis strategy
for elucidating the structure.

11.1 Anti-Robinson (AR) Matrices for Symmetric Proximity Data

Denoting an arbitrary symmetric n×n matrix by A = {aij}, where the main
diagonal entries are considered irrelevant and assumed to be zero (i.e., aii = 0
for 1 ≤ i ≤ n), A is said to have an anti-Robinson (AR) form if after some
reordering of the rows and columns of A, the entries within each row and
column have a distinctive pattern: moving away from the zero main diagonal
entry within any row or any column, the entries never decrease. Generally,
matrices having AR forms can appear both in spatial representations for a
set of proximities as functions of the absolute differences in coordinate values
along some axis, or for classificatory structures that are characterized through
an ultrametric.

To illustrate, we first let P = {pij} be a given n×n proximity (dissimilar-
ity) matrix among the distinct pairs of n objects in a set S = {O1, O2, . . . , On}
(where pii = 0 for 1 ≤ i ≤ n). Then, suppose, for example, a two-dimensional

136



Euclidean representation is possible for P and its entries are very well repre-
sentable by the distances in this space, so

pij ≈
√
(x1i − x1j)2 + (x2i − x2j)2 ,

where xki and xkj are the coordinates on the kth axis (for k = 1 and 2)
for objects Oi and Oj (and the symbol ≈ is used to indicate approximation).
Here, a simple monotonic transformation (squaring) of the proximities should
then be fitted well by the sum of two matrices both having AR forms, i.e.,

{p2ij} ≈ {(x1i − x1j)
2}+ {(x2i − x2j)

2}.

In a classificatory framework, if {pij} were well representable, say, as a sum

of two matrices, A1 = {a(1)ij } and A2 = {a(2)ij }, each satisfying the ultrametric

inequality, i.e., a
(k)
ij ≤ max{a(k)ih , a

(k)
hj } for k = 1 and 2, then

{pij} ≈ {a(1)ij }+ {a(2)ij },

and each of the constituent matrices can be reordered to display an AR form.
As shown in the Cluster Analysis Toolbox, any matrix whose entries satisfy
the ultrametric inequality can be represented by a sequence of partitions that
are hierarchically related.

Given some proximity matrix P, the task of approximating it as a sum
of matrices each having an AR form is implemented through an iterative
optimization strategy based on a least-squares loss criterion that is discussed
in detail by Hubert and Arabie (1994). Given the manner in which the
optimization process is carried out sequentially, each successive AR matrix
in any decomposition generally accounts for less and less of the patterning of
the original proximity information (and very analogous to what is typically
observed in a principal component decomposition of a covariance matrix).
In fact, it has been found empirically that for the many data sets we have
analyzed, only a very small number of such AR matrices are ever necessary to
represent almost all of the patterning in the given proximities. As a succinct
summary that we could give to this empirical experience: no more than three
AR matrices are ever necessary; two are usually sufficient; and sometimes
one will suffice.

137



The substantive challenge that remains, once a well-fitting decomposition
is found for a given proximity matrix, is to interpret substantively what each
term in the decomposition might be depicting. The strategy that could be
followed would approximate each separate AR matrix by ones having a more
restrictive form, and usually those representing some type of unidimensional
scale (a dimensional interpretation) or partition hierarchy (a classificatory
interpretation).

11.1.1 Interpreting the Structure of an AR matrix

In representing a proximity matrix P as a sum, A1+· · ·+AK , the interpretive
task remains to explain substantively what each term of the decomposition
might be depicting. We suggest four possible strategies below, with the first
two attempting to understand the structure of an AR matrix directly and
without much loss of detail; the last two require the imposition of strictly
parameterized approximations in the form of either an ultrametric or a uni-
dimensional scale. In the discussion below, A = {aij} will be assumed to
have an AR form that is displayed by the given row and column order.

(A) Complete representation and reconstruction through a collection of
subsets and associated subset diameters:

The entries in any AR matrix A can be reconstructed exactly through a
collection of M subsets of the original object set S = {O1, . . . , On}, denoted
by S1, . . . , SM , and where M is determined by the particular pattern of tied
entries, if any, in A. These M subsets have the following characteristics:

(i) each Sm, 1 ≤ m ≤ M , consists of a sequence of (two or more) consecu-
tive integers so that M ≤ n(n−1)/2. (This bound holds because the number
of different subsets having consecutive integers for any given fixed ordering
is n(n− 1)/2, and will be achieved if all the entries in the AR matrix A are
distinct).

(ii) each Sm, 1 ≤ m ≤ M , has a diameter, denoted by d(Sm), so that for
all object pairs within Sm, the corresponding entries in A are less than or
equal to the diameter. The subsets, S1, . . . , SM , can be assumed ordered as
d(S1) ≤ d(S2) ≤ · · · ≤ d(SM), and if Sm ⊆ Sm′, d(Sm) ≤ d(Sm′).

138



(iii) each entry in A can be reconstructed from d(S1), . . . , d(SM), i.e., for
1 ≤ i, j ≤ n,

aij = min
1≤m≤M

{d(Sm) | Oi, Oj ∈ Sm},

so that the minimum diameter for subsets containing an object pair Oi, Oj ∈
S is equal to aij. Given A, the collection of subsets S1, . . . , SM and their
diameters can be identified by inspection through the use of an increasing
threshold that starts from the smallest entry in A, and observing which sub-
sets containing contiguous objects emerge from this process. The substantive
interpretation of what A is depicting reduces to explaining why those subsets
with the smallest diameters are so homogenous. For convenience of reference,
the subsets S1, . . . , SM could be referred to as the set of AR reconstructive
subsets.

(B) Representation by a strongly anti-Robinson matrix:

If the matrix A has a somewhat more restrictive form than just being AR,
and is also strongly anti-Robinson (SAR), a convenient graphical representa-
tion can be given to the collection of AR reconstructive subsets S1, . . . , SM

and their diameters, and how they can serve to retrieve A. Specifically,
A is said to be strongly anti-Robinson (SAR) if (considering the above-
diagonal entries of A) whenever two entries in adjacent columns are equal
(aij = ai(j+1)), those in the same two adjacent columns in the previous row
are also equal (a(i−1)j = a(i−1)(j+1) for 1 ≤ i− 1 < j ≤ n− 1); also, whenever
two entries in adjacent rows are equal (aij = a(i+1)j), those in the same two
adjacent rows in the succeeding column are also equal (ai(j+1) = a(i+1)(j+1)

for 2 ≤ i+ 1 < j ≤ n− 1).

WhenA is SAR, the collection of subsets, S1, . . . , SM , and their diameters,
and how these serve to reconstruct A can be modeled graphically. The inter-
nal nodes (represented by solid circles) in each of these figures are at a height
equal to the diameter of the respective subset; the consecutive objects form-
ing that subset are identifiable by downward paths from the internal nodes
to the terminal nodes corresponding to the objects in S = {O1, . . . , On} (rep-
resented by labeled open circles). An entry aij in A can be reconstructed as
the minimum node height of a subset for which a path can be constructed
from Oi up to that internal node and then back down to Oj. (To prevent un-

139



due graphical “clutter”, only the most homogenous subsets from S1, . . . , SM

having the smallest diameters should actually be included in the graphical
representation of an SAR matrix; each figure would explicitly show only how
the smallest entries in A can be reconstructed, although each could be easily
extended to include all of A. The calibrated vertical axis in such figures
could routinely include the heights at which the additional internal nodes
would have to be placed to effect such a complete reconstruction.)

Given an arbitrary AR matrix A, a least-squares SAR approximating ma-
trix to A can be found using the heuristic optimization search strategy de-
veloped in Hubert, Arabie, and Meulman (1998), and illustrated in a section
to follow. This latter source also discusses in detail (through counterexam-
ple) why strongly AR conditions need to be imposed to obtain a consistent
graphical representation.

(C) Representation by a unidimensional scale:

To obtain greater graphical simplicity for an eventual substantive inter-
pretation than offered by an SAR matrix, one possibility is to use approx-
imating unidimensional scales. To be explicit, one very simple form that
an AR matrix A may assume is interpretable by a single dimension and
through a unidimensional scale in which the entries have the parameterized
form, A = {aij} = {| xj − xi | + c}, where the coordinates are ordered as
x1 ≤ x2 ≤ · · · ≤ xn and c is an estimated constant. Given any proximity
matrix, a least-squares approximating unidimensional scale can be obtained
through the optimization strategies discussed in earlier chapters, and would
be one (dimensional) method that could be followed in attempting to inter-
pret what a particular AR component of a decomposition might be revealing.

(D) Representation by an ultrametric:

A second simple form that an AR matrix A could have is strictly clas-
sificatory in which the entries in A satisfy the ultrametric condition: aij ≤
max{aik, ajk} for all Oi, Oj, Ok ∈ S. As a threshold is increased from the
smallest entry in A, a sequence of partitions of S is identified in which each
partition is constructed from the previous one by uniting pairs of subsets
from the latter. A partition identified at a given threshold level has equal
values in A between each given pair of subsets, and all the within subset

140



values are not greater than the between subset values. The reconstructive
subsets S1, . . . , SM that would represent the AR matrix A are now the new
subsets that are formed in the sequence of partitions, and have the property
that if d(Sm) ≤ d(Sm′), then Sm ⊆ Sm′ or Sm∩Sm′ = ⊘. Given any proximity
matrix, a least-squares approximating ultrametric can be constructed by the
heuristic optimization routines developed in the Cluster Analysis Toolbox,
and would be another (classificatory) strategy for interpreting what a par-
ticular AR component of a decomposition might be depicting. As might be
noted, there are generally n− 1 subsets (each of size greater than one) in the
collection of reconstructive subsets for any ultrametric, and thus n−1 values
need to be estimated in finding the least-squares approximation (which is the
same number needed for a least-squares approximating unidimensional scale,
based on obtaining the n− 1 non-negative separation values between xi and
xi+1 for 1 ≤ i ≤ n− 1).

11.2 Fitting a Given AR Matrix in the L2-Norm

The function M-file, arobfit.m, fits an anti-Robinson matrix using iterative
projection to a symmetric proximity matrix in the L2-norm. The usage syntax
is of the form

[fit,vaf] = arobfit(prox,inperm)

where PROX is the input proximity matrix (n × n with a zero main diag-
onal and a dissimilarity interpretation); INPERM is a given permutation of
the first n integers; FIT is the least-squares optimal matrix (with variance-
accounted-for of VAF) to PROX having an anti-Robinson form for the row and
column object ordering given by INPERM. A recording of a MATLAB session
using the supreme_agree data file and object ordering given by the identity
permutation follows:

>> load supreme_agree.dat

>> inperm = 1:9;

>> [fit,vaf] = arobfit(supreme_agree,inperm)

fit =

0 0.3600 0.3600 0.3700 0.6550 0.6550 0.7500 0.8550 0.8550

141



0.3600 0 0.2800 0.2900 0.4900 0.5300 0.5700 0.7500 0.7600

0.3600 0.2800 0 0.2200 0.4900 0.5100 0.5700 0.7200 0.7400

0.3700 0.2900 0.2200 0 0.4500 0.5000 0.5600 0.6900 0.7100

0.6550 0.4900 0.4900 0.4500 0 0.3100 0.3100 0.4600 0.4600

0.6550 0.5300 0.5100 0.5000 0.3100 0 0.2300 0.4150 0.4150

0.7500 0.5700 0.5700 0.5600 0.3100 0.2300 0 0.3300 0.3300

0.8550 0.7500 0.7200 0.6900 0.4600 0.4150 0.3300 0 0.2100

0.8550 0.7600 0.7400 0.7100 0.4600 0.4150 0.3300 0.2100 0

vaf =

0.9955

11.3 Finding an AR Matrix in the L2-Norm

The fitting of a given AR matrix by the M-function, arobfit.m, requires the
presence of an initial permutation to direct the optimization process. Thus,
the finding of a best-fitting AR matrix reduces to the identification of an
appropriate object permutation to use ab initio. We suggest the adoption of
order.m, which carries out an iterative Quadratic Assignment (QA) maxi-
mization task using a given square, n × n, proximity matrix PROX (with a
zero main diagonal and a dissimilarity interpretation). Three separate local
operations are used to permute the rows and columns of the proximity matrix
to maximize the cross-product index with respect to a given square target
matrix TARG: (a) pairwise interchanges of objects in the permutation defining
the row and column order of the square proximity matrix; (b) the insertion
of from 1 to KBLOCK (which is less than or equal to n− 1) consecutive objects
in the permutation defining the row and column order of the data matrix;
and (c) the rotation of from 2 to KBLOCK (which is less than or equal to n−1)
consecutive objects in the permutation defining the row and column order of
the data matrix. The usage syntax has the form

[outperm,rawindex,allperms,index] = ...

order(prox,targ,inperm,kblock)

where INPERM is the input beginning permutation (a permutation of the first
n integers); OUTPERM is the final permutation of PROX with the cross-product
index RAWINDEX with respect to TARG. The cell array ALLPERMS contains INDEX

142



entries corresponding to all the permutations identified in the optimization
from ALLPERMS{1} = INPERM to ALLPERMS{INDEX} = OUTPERM.

A recording of a MATLAB session using order.m is listed below with the
beginning INPERM given as the identity permutation, TARG by an equally-
spaced object placement along a line, and KBLOCK = 3. Using the generated
OUTPERM, arobfit.m is then invoked to fit an AR form having final VAF of
.9955.

>> load supreme_agree.dat

>> [outperm,rawindex,allperms,index] = order(supreme_agree, targlin(9),randperm(9),3);

outperm =

9 8 7 6 5 4 3 2 1

>> [fit,vaf] = arobfit(supreme_agree,outperm)

fit =

0 0.2100 0.3300 0.4150 0.4600 0.7100 0.7400 0.7600 0.8550

0.2100 0 0.3300 0.4150 0.4600 0.6900 0.7200 0.7500 0.8550

0.3300 0.3300 0 0.2300 0.3100 0.5600 0.5700 0.5700 0.7500

0.4150 0.4150 0.2300 0 0.3100 0.5000 0.5100 0.5300 0.6550

0.4600 0.4600 0.3100 0.3100 0 0.4500 0.4900 0.4900 0.6550

0.7100 0.6900 0.5600 0.5000 0.4500 0 0.2200 0.2900 0.3700

0.7400 0.7200 0.5700 0.5100 0.4900 0.2200 0 0.2800 0.3600

0.7600 0.7500 0.5700 0.5300 0.4900 0.2900 0.2800 0 0.3600

0.8550 0.8550 0.7500 0.6550 0.6550 0.3700 0.3600 0.3600 0

vaf =

0.9955

The M-file, arobfnd.m is our preferred method for actually identifying a
single AR form, and incorporates an initial equally-spaced target and uses
the iterative QA routine of order.m to generate better permutations; the
obtained AR forms are then used as new targets against which possibly even
better permutations might be identified, until convergence (i.e., the identified
permutations remain the same). The syntax is as follows:

[find, vaf, outperm] = arobfnd(prox, inperm, kblock)

143



where PROX is the input proximity matrix (n × n with a zero main diagonal
and a dissimilarity interpretation); INPERM is a given starting permutation of
the first n integers; FIND is the least-squares optimal matrix (with variance-
accounted-for of VAF) to PROX having an anti-Robinson form for the row and
column object ordering given by the ending permutation OUTPERM; KBLOCK
defines the block size in the use the iterative quadratic assignment routine.

As seen from the example below, and starting from a random initial per-
mutation, the same AR form is found as with just one application of order.m
reported above.

>> [find,vaf,outperm] = arobfnd(supreme_agree, randperm(9),2)

find =

0 0.3600 0.3600 0.3700 0.6550 0.6550 0.7500 0.8550 0.8550

0.3600 0 0.2800 0.2900 0.4900 0.5300 0.5700 0.7500 0.7600

0.3600 0.2800 0 0.2200 0.4900 0.5100 0.5700 0.7200 0.7400

0.3700 0.2900 0.2200 0 0.4500 0.5000 0.5600 0.6900 0.7100

0.6550 0.4900 0.4900 0.4500 0 0.3100 0.3100 0.4600 0.4600

0.6550 0.5300 0.5100 0.5000 0.3100 0 0.2300 0.4150 0.4150

0.7500 0.5700 0.5700 0.5600 0.3100 0.2300 0 0.3300 0.3300

0.8550 0.7500 0.7200 0.6900 0.4600 0.4150 0.3300 0 0.2100

0.8550 0.7600 0.7400 0.7100 0.4600 0.4150 0.3300 0.2100 0

vaf =

0.9955

outperm =

1 2 3 4 5 6 7 8 9

11.4 Fitting and Finding a Strongly Anti-Robinson (SAR) Matrix
in the L2-Norm

The M-functions, sarobfit.m and sarobfnd.m, are direct analogues of arobfit.m
and arobfnd.m, respectively, but are concerned with fitting and finding
strongly anti-Robinson forms. The syntax for sarobfit.m, which fits a

144



strongly anti-Robinson matrix using iterative projection to a symmetric prox-
imity matrix in the L2-norm, is

[fit, vaf] = sarobfit(prox, inperm)

where, again, PROX is the input proximity matrix (n × n with a zero main
diagonal and a dissimilarity interpretation); INPERM is a given permutation
of the first n integers; FIT is the least-squares optimal matrix (with variance-
accounted-for of VAF) to PROX having a strongly anti-Robinson form for the
row and column object ordering given by INPERM.

An example follows using the same identity permutation as was imple-
mented in fitting an AR form with arobfit.m; as might be expected from
using the more restrictive strongly anti-Robinson form, the VAF drops to .9862
from .9955.

>> load supreme_agree.dat

>> [fit,vaf] = sarobfit(supreme_agree,1:9)

fit =

0 0.3600 0.3600 0.3700 0.6550 0.7025 0.7025 0.8550 0.8550

0.3600 0 0.2800 0.2900 0.4900 0.5450 0.5450 0.7425 0.7425

0.3600 0.2800 0 0.2200 0.4900 0.5450 0.5450 0.7425 0.7425

0.3700 0.2900 0.2200 0 0.4500 0.5300 0.5300 0.7000 0.7000

0.6550 0.4900 0.4900 0.4500 0 0.3100 0.3100 0.4600 0.4600

0.7025 0.5450 0.5450 0.5300 0.3100 0 0.2300 0.4150 0.4150

0.7025 0.5450 0.5450 0.5300 0.3100 0.2300 0 0.3300 0.3300

0.8550 0.7425 0.7425 0.7000 0.4600 0.4150 0.3300 0 0.2100

0.8550 0.7425 0.7425 0.7000 0.4600 0.4150 0.3300 0.2100 0

vaf =

0.9862

The M-function, sarobfnd.m, finds and fits a strongly anti-Robinson ma-
trix using iterative projection to a symmetric proximity matrix in the L2-norm
based on a permutation identified through the use of iterative quadratic as-
signment. The function has the expected syntax

[find, vaf, outperm] = sarobfnd(prox, inperm, kblock)

145



where, again, PROX is the input proximity matrix (n × n with a zero main
diagonal and a dissimilarity interpretation); INPERM is a given starting per-
mutation of the first n integers; FIND is the least-squares optimal matrix (with
variance-accounted-for of VAF) to PROX having a strongly anti-Robinson form
for the row and column object ordering given by the ending permutation
OUTPERM. As usual, KBLOCK defines the block size in the use the iterative
quadratic assignment routine.

In the MATLAB recording below, and starting from a random permuta-
tion, the same strongly anti-Robinson form is found with a VAF of .9862.

>> [find,vaf,outperm] = sarobfnd(supreme_agree,randperm(9),2)

find =

0 0.3600 0.3600 0.3700 0.6550 0.7025 0.7025 0.8550 0.8550

0.3600 0 0.2800 0.2900 0.4900 0.5450 0.5450 0.7425 0.7425

0.3600 0.2800 0 0.2200 0.4900 0.5450 0.5450 0.7425 0.7425

0.3700 0.2900 0.2200 0 0.4500 0.5300 0.5300 0.7000 0.7000

0.6550 0.4900 0.4900 0.4500 0 0.3100 0.3100 0.4600 0.4600

0.7025 0.5450 0.5450 0.5300 0.3100 0 0.2300 0.4150 0.4150

0.7025 0.5450 0.5450 0.5300 0.3100 0.2300 0 0.3300 0.3300

0.8550 0.7425 0.7425 0.7000 0.4600 0.4150 0.3300 0 0.2100

0.8550 0.7425 0.7425 0.7000 0.4600 0.4150 0.3300 0.2100 0

vaf =

0.9862

outperm =

1 2 3 4 5 6 7 8 9

11.5 Representation Through Multiple (Strongly) AR Matrices

The representation of a proximity matrix by a single anti-Robinson struc-
ture extends easily to the additive use of multiple matrices. The M-function,
biarobfnd.m, fits the sum of two anti-Robinson matrices using iterative pro-
jection to a symmetric proximity matrix in the L2-norm based on permuta-

146



tions identified through the use of iterative quadratic assignment. The usage
syntax is

[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...

biarobfnd(prox,inperm,kblock)

where, as before, PROX is the input proximity matrix (n × n with a zero
main diagonal and a dissimilarity interpretation); INPERM is a given start-
ing permutation of the first n integers; FIND is the least-squares optimal
matrix (with variance-accounted-for of VAF) to PROX and is the sum of the
two anti-Robinson matrices TARGONE and TARGTWO based on the two row and
column object orderings given by the ending permutations OUTPERMONE and
OUTPERMTWO. As before, KBLOCK defines the block size in the use of the itera-
tive quadratic assignment routine.

For finding multiple SAR forms, bisarobfnd.m has usage syntax

[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...

bisarobfnd(prox,inperm,kblock)

with all the various terms the same as for biarobfnd.m but now for strongly
AR (SAR) structures.

11.6 lp Fitted Distance Metrics Based on Given Object Orders

The emphasis in this Toolbox has been on obtaining object orders along a
continuum, and secondarily, in generating explicit coordinates for a city-block
representation. The object orders are primary with the coordinates coming
along more or less automatically. To generalize, it is possible to fit to the
given proximities, a Minkowski distance function of the form:∑

i<j

(|xi − xj|p + |yi − yj|p)
1
p ,

where x1, . . . , xn and y1, . . . , yn are coordinates along a first and second axes,
respectively; both sets of coordinates are constrained to represent the given
object orders that are given as input.

The M-function, lpfit.m, provides the two-dimensional coordinates to
construct lp distances fit (in a confirmatory manner) to the given proximities.
The syntax is as follows:

147



[fitted, coordone,coordtwo,addcon,fval,vaf,exitflag] = ...

lpfit(prox,permone,permtwo,start_vector,p)

As input, there is the n × n symmetric dissimilarity matrix PROX with zero
main diagonal entries; two fixed permutations, PERMONE and PERMTWO, of the
objects along the two dimensions; the value of p to obtain the lp distances (p
= 1: city-block distances; p = 2: Euclidean distances; large p: dominance dis-
tances). As outputs, the values fitted to the proximity matrix are in FITTED;
the object coordinates along the two dimensions, COORDONE and COORDTWO;
the additive constant, ADDCON; the value of the least-squares criterion, FVAL,
obtained in finding the coordinates; the variance-accounted-for measure, VAF;
the exit condition, EXITFLAG, from using the MATLAB optimization routine,
fmincon.m.

To give an example, the reader is advised to run the script file, script_lpfit.m.
It fits a Euclidean distance function for the morse_digit data based on the
city-block solution obtained with biscalqa.m. It also shows how a start vec-
tor may be generated rationally using the given input orders even though an
all-zero start vector is then used in calling lpfit.m. Note that in lpfit.m,
an option file is defined:

options = optimset(’Algorithm’,’interior-point’)

which calls an interior-point solver in fmincon.m. Other optimization op-
tions would be an active-set method (default), ’active-set’, or a sequential
quadratic programming method, ’sqp’.

12 Circular-Anti-Robinson (CAR) Matrices for Sym-

metric Proximity Data

In the approximation of a proximity matrix P by one that is row/column
reorderable to an AR form, the interpretation of the fitted matrix in general
had to be carried out by identifying a set of subsets through an increasing
threshold variable; each of the subsets contained objects that were contigu-
ous with respect to a given linear ordering along a continuum, and had a
diameter defined by the maximum fitted value within the subset. To provide

148



a further representation depicting the fitted values as lengths of paths in a
graph, an approximation was sought that satisfied the additional constraints
of an SAR matrix; still, the subsets thus identified had to contain objects
contiguous with respect to a linear ordering. As one possible generalization
of both the AR and SAR constraints, we can define what will be called circu-
lar anti-Robinson (CAR) and circular strongly-anti-Robinson (CSAR) forms
that allow the subsets identified from increasing a threshold variable to be
contiguous with respect to a circular ordering of the objects around a closed
continuum. Approximation matrices that are row/column reorderable to dis-
play an AR or SAR form, respectively, will also be (trivially) row/column
reorderable to display what is formally characterized below as a CAR or a
CSAR form, but not conversely. (Historically, there is a large literature on
the possibility of circular structures emerging from and being identifiable in
a given proximity matrix. For a variety of references, the reader is referred to
the American Psychological Association sponsored volume edited by Plutchik
and Conte (1997). The extension of CAR forms to those that are also CSAR,
however, has apparently not been a topic discussed in the literature before
the appearance of Hubert, Arabie, and Meulman [1998]; this latter source
forms the basis for much of the present section.)

To be explicit, an arbitrary symmetric matrix Q = {qij}, where qii = 0
for 1 ≤ i, j ≤ n, is said to be row/column reorderable to a circular anti-
Robinson form (or, for short, Q is a circular anti-Robinson (CAR) matrix) if
there exists a permutation, ρ(·), on the first n integers such that the reordered
matrix Qρ = {qρ(i)ρ(j)} satisfies the conditions given in (II):

(II): for 1 ≤ i ≤ n− 3, and i+ 1 < j ≤ n− 1,

if qρ(i+1)ρ(j) ≤ qρ(i)ρ(j+1), then
qρ(i+1)ρ(j) ≤ qρ(i)ρ(j) and qρ(i+1)ρ(j) ≤ qρ(i+1)ρ(j+1);

if qρ(i+1)ρ(j) ≥ qρ(i)ρ(j+1), then
qρ(i)ρ(j) ≥ qρ(i)ρ(j+1) and qρ(i+1)ρ(j+1) ≥ qρ(i)ρ(j+1),

and, for 2 ≤ i ≤ n− 2,

if qρ(i+1)ρ(n) ≤ qρ(i)ρ(1), then
qρ(i+1)ρ(n) ≤ qρ(i)ρ(n) and qρ(i+1)ρ(n) ≤ qρ(i+1)ρ(1);

if qρ(i+1)ρ(n) ≥ qρ(i)ρ(1), then

149



qρ(i)ρ(n) ≥ qρ(i)ρ(1) and qρ(i+1)ρ(1) ≥ qρ(i)ρ(1).

Interpretatively, within each row of Qρ moving to the right from the main
diagonal and then wrapping back around to re-enter the same row from the
left, the entries never decrease until a maximum is reached and then never
increase moving away from the maximum until the main diagonal is again
reached. Given the symmetry of P, a similar pattern of entries would be
present within each column as well. As noted above, any AR matrix is CAR
but not conversely.

In analogy to the SAR conditions that permit graphical representation,
a symmetric matrix Q is said to be row/column reorderable to a circular
strongly-anti-Robinson form (or, for short, Q is a circular strongly-anti-
Robinson (CSAR) matrix) if there exists a permutation, ρ(·), on the first
n integers such that the reordered matrix Qρ = {qρ(i)ρ(j)} satisfies the condi-
tions given by (II), and

for 1 ≤ i ≤ n− 3, and i+ 1 < j ≤ n− 1,

if qρ(i+1)ρ(j) ≤ qρ(i)ρ(j+1),
then qρ(i+1)ρ(j) = qρ(i)ρ(j) implies qρ(i+1)ρ(j+1) = qρ(i)ρ(j+1), and qρ(i+1)ρ(j) =

qρ(i+1)ρ(j+1) implies qρ(i)ρ(j) = qρ(i)ρ(j+1);

if qρ(i+1)ρ(j) ≥ qρ(i)ρ(j+1),
then qρ(i)ρ(j+1) = qρ(i+1)ρ(j+1) implies qρ(i)ρ(j) = qρ(i+1)ρ(j), and qρ(i)ρ(j) =

qρ(i)ρ(j+1) implies qρ(i+1)ρ(j) = qρ(i+1)ρ(j+1),

and for 2 ≤ i ≤ n− 2,

if qρ(i+1)ρ(n) ≤ qρ(i)ρ(1), then qρ(i+1)ρ(n) = qρ(i)ρ(n) implies qρ(i+1)ρ(1) = qρ(i)ρ(1),
and qρ(i+1)ρ(n) = qρ(i+1)ρ(1) implies qρ(i)ρ(n) = qρ(i)ρ(1);

if qρ(i+1)ρ(n) ≥ qρ(i)ρ(1), then qρ(i)ρ(1) = qρ(i+1)ρ(1) implies qρ(i)ρ(n) = qρ(i+1)ρ(n),
and qρ(i)ρ(n) = qρ(i)ρ(1) implies qρ(i+1)ρ(n) = qρ(i+1)ρ(1).

Again, the imposition of the stronger CSAR conditions avoids graphical
anomalies, i.e., when two fitted values that are adjacent within a row are
equal, the fitted values in the same two adjacent columns must also be equal
for a row that is either its immediate predecessor (if qρ(i+1)ρ(j) ≤ qρ(i)ρ(j+1)),
or successor (if qρ(i+1)ρ(j) ≥ qρ(i)ρ(j+1)); a similar condition is imposed when

150



two fitted values that are adjacent within a column are equal. As noted, any
SAR matrix is CSAR but not conversely.

The computational strategy we suggest for identifying a best-fitting CAR
or CSAR approximation matrix is based on an initial circular unidimensional
scaling obtained through the optimization strategy developed by Hubert,
Arabie, and Meulman (1997). Specifically, we first institute a combination
of combinatorial search for good matrix reorderings and heuristic iterative
projection to locate the points of inflection when minimum distance calcula-
tions change directionality around a closed circular structure. Approximation
matrices to P are found through a least-squares loss criterion, and they have
the parameterized form

Qρ = {min(| xρ(j) − xρ(i) |, x0− | xρ(j) − xρ(i) |) + c},

where c is an estimated additive constant, xρ(1) ≤ xρ(2) ≤ · · · ≤ xρ(n) ≤ x0,
and the last coordinate, x0, is the circumference of the circular structure.
Based on the inequality constraints implied by such a collection of coordi-
nates, a CAR approximation matrix can be fitted to P directly; then, begin-
ning with this latter CAR approximation, the identification and imposition of
CSAR constraints proceeds through the heuristic use of iterative projection,
directly analogous to the way SAR constraints in the linear ordering con-
text were identified and fitted, beginning with a best approximation matrix
satisfying just the AR restrictions.

12.1 Fitting a Given CAR Matrix in the L2-Norm

The function M-file, cirarobfit.m, fits a circular anti-Robinson (CAR) ma-
trix using iterative projection to a symmetric proximity matrix in the L2-
norm. Usage syntax is

[fit, vaf] = cirarobfit(prox,inperm,targ)

where PROX is the input proximity matrix (n×n with a zero main diagonal and
a dissimilarity interpretation); INPERM is a given permutation of the first n

integers (around a circle); TARG is a given n×nmatrix having the circular anti-
Robinson form that guides the direction in which distances are taken around

151



the circle. The matrix FIT is the least-squares optimal approximation (with
variance-accounted-for of VAF) to PROX having an circular anti-Robinson form
for the row and column object ordering given by INPERM.

12.2 Finding a CAR Matrix in the L2-Norm

The M-file, cirarobfnd.m, is our suggested strategy for identifying a best-
fitting CARmatrix for a symmetric proximity matrix in the L2-norm based on
a permutation that is initially identified through the use of iterative quadratic
assignment. Based on an equally-spaced circular target matrix, order.m is
first invoked to obtain a good (circular) permutation, which in turn is then
used to construct a new circular target matrix with cirfit.m. (We will
mention here but not illustrate with an example, an alternative to the use of
cirarobfnd.m called cirarobfnd_ac.m; the latter M-file has the same syntax
as cirarobfnd.m but uses cirfitac.m rather than cirfit.m internally to
obtain the new circular target matrices.) The final output is generated from
cirarobfit.m. The usage syntax for cirarobfnd.m is as follows:

[find, vaf, outperm] = cirarobfnd(prox, inperm, kblock)

where PROX is the input proximity matrix (n × n with a zero main diagonal
and a dissimilarity interpretation); INPERM is a given starting permutation
(assumed to be around the circle) of the first n integers; FIND is the least-
squares optimal matrix (with variance-accounted-for of VAF) to PROX having
a circular anti-Robinson form for the row and column object ordering given
by the concluding permutation OUTPERM. Again, KBLOCK defines the block size
in the use of the iterative quadratic assignment routine.

12.3 Representation Through Multiple (Strongly) CAR Matrices

Just as we discussed representing of proximity matrices through multiple
(strongly) ARmatrices, the analysis of a proximity matrix by a single (strongly)
circular-anti-Robinson structure extends easily to the additive use of multiple
matrices. The M-function, bicirarobfnd.m, fits the sum of two circular-anti-
Robinson matrices using iterative projection to a symmetric proximity matrix

152



in the L2-norm based on permutations identified through the use of iterative
quadratic assignment. The syntax usage is

[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...

bicirarobfnd(prox,inperm,kblock)

where, as before, PROX is the input proximity matrix (n × n with a zero
main diagonal and a dissimilarity interpretation); INPERM is a given initial
permutation of the first n integers; FIND is the least-squares optimal ma-
trix (with variance-accounted-for of VAF) to PROX and is the sum of the two
circular-anti-Robinson matrices TARGONE and TARGTWO based on the two row
and column object orderings given by the final permutations OUTPERMONE

and OUTPERMTWO. As before, KBLOCK defines the block size in the use of the
iterative quadratic assignment routine.

For finding multiple CSAR forms, bicirsarobfnd.m has usage syntax

[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...

bicirsarobfnd(prox,inperm,kblock)

with all the various terms the same as for bicirarobfnd.m but now for
strongly CAR (CSAR) structures.

13 Anti-Robinson (AR) Matrices for Two-Mode Prox-

imity Data

In direct analogy to the extensions of Linear Unidimensional Scaling (LUS),
it is possible to find and fit (more general) anti-Robinson (AR) forms to two-
mode proximity matrices. The same type of reordering strategy implemented
by ordertm.m would be used, but the more general AR form would be fitted to
the reordered square proximity matrix, P(tm)

ρ0
= {p(tm)

ρ0(i)ρ0(j)
}; the least-squares

criterion
n∑

i,j=1

wρ0(i)ρ0(j)(p
(tm)
ρ0(i)ρ0(j)

− p̂ij)
2,

is minimized, where wρ0(i)ρ0(j) = 0 if ρ0(i) and ρ0(j) are both row or both
column objects, and = 1 otherwise. The entries in the matrix {p̂ij} fitted to
P(tm)

ρ0
are AR in form (and which correspond to nonzero values of the weight

153



function wρ0(i)ρ0(j)), and thus satisfy certain linear inequality constraints gen-
erated from how the row and column objects are intermixed by the given
permutation ρ0(·). We note here and discuss this more completely in the
section to follow that the patterning of entries in {p̂ij} fitted to the original
two-mode proximity matrix, with appropriate row and column permutations
extracted from ρ0, is called an anti-Q-form.

13.1 Fitting and Finding Two-Mode AR Matrices

The M-file arobfittm.m does a confirmatory two-mode anti-Robinson fit-
ting of a given ordering of the row and column objects of a two-mode prox-
imity matrix using the Dykstra-Kaczmarz iterative projection least-squares
method. The usage syntax has the form

[fit,vaf,rowperm,colperm] = arobfittm(proxtm,inperm)

where PROXTM is the input two-mode proximity matrix; INPERM is the given
ordering of the row and column objects together; FIT is an na×nb (number of
rows by number of columns) matrix fitted to PROXTM(ROWPERM,COLPERM) with
VAF being the variance-accounted-for based on the (least-squares criterion)
sum of squared discrepancies between PROXTM(ROWPERM,COLMEAN) and FIT;
ROWPERM and COLPERM are the row and column object orderings derived from
INPERM.

The matrix given by FIT that is intended to approximate the row and
column permuted two-mode proximity matrix, PROXTM(ROWPERM,COLPERM),
displays a particularly important patterning of its entries called an anti-Q-
form in the literature (see Hubert and Arabie, 1995, for an extended dis-
cussion of this type of patterning for a two-mode matrix). Specifically, a
matrix is said to have the anti-Q-form (for rows and columns) if within each
row and column the entries are nonincreasing to a minimum and thereafter
nondecreasing. Matrices satisfying the anti-Q-form have a convenient inter-
pretation presuming an underlying unidimensional scale that jointly repre-
sents both the row and column objects. Explicitly, suppose a matrix has been
appropriately row-ordered to display the anti-Q-form for columns. Any di-
chotomization of the entries within a column at some threshold value (using

154



0 for entries below the threshold and 1 if at or above), produces a matrix
that has the consecutive zeros property within each column, that is, all zeros
within a column occur consecutively, uninterrupted by intervening ones. In
turn, any matrix with the consecutive zeros property for columns suggests
the existence of a perfect scale (error-free), where row objects can be ordered
along a continuum (using the same row order for the matrix that actually re-
flects the anti-Q-form for columns), and each column object is representable
as an interval along the continuum (encompassing those consecutive row ob-
jects corresponding to zeros). Historically, the type of pattern represented by
the anti-Q-form has played a major role in the literature of (unidimensional)
unfolding, and for example, is the basis of a Coombs (1964, Chapter 4) par-
allelogram structure for a two-mode proximity matrix. The reader is referred
to Hubert (1974) for a review of some of these connections.

13.2 Multiple Two-Mode AR Reorderings and Fittings

The M-file, biarobfndtm.m, finds and fits the sum of two anti-Q-forms (ex-
tracted from fitting two anti-Robinson matrices) using iterative projection to
a two-mode proximity matrix in the L2-norm based on permutations identi-
fied through the use of iterative quadratic assignment. In the usage

[find,vaf,targone,targtwo,outpermone,outpermtwo, ...

rowpermone,colpermone,rowpermtwo,colpermtwo] = ...

biarobfndtm(proxtm,inpermone,inpermtwo,kblock)

PROXTM is the usual input two-mode proximity matrix (na × nb) with a dis-
similarity interpretation, and FIND is the least-squares optimal matrix (with
variance-accounted-for of VAF) to PROXTM. The latter matrix PROXTM is the
sum of the two matrices TARGONE and TARGTWO based on the two row and
column object orderings given by the ending permutations OUTPERMONE and
OUTPERMTWO. The two ending permutations of OUTPERMONE and OUTPERMTWO

contain the ending row and column object orderings of ROWPERMONE and
ROWPERMTWO and COLPERMONE and COLPERMTWO. KBLOCK defines the block size
in the use the iterative quadratic assignment routine; the input permutations
are INPERMONE and INPERMTWO.

155



14 Some Bibliographic Comments

There are a number of book-length presentations of (multi)dimensional scal-
ing methods available (encompassing differing collections of subtopics within
the field). We list several of the better ones to consult in the reference section
to follow, and note these here in chronological order: Kruskal & Wish (1978);
Shiffman, Reynolds, & Young (1981); Everitt & Rabe-Hesketh (1997); Car-
roll & Arabie (1998); Cox & Cox (2001); Lattin, Carroll, & Green (2003);
Hand (2004); Borg & Groenen (2005). The items that would be closest to
the approaches taken here with MATLAB and the emphasis on least-squares,
would be the monograph by Hubert, Arabie, and Meulman (2006), and the
reviews by Hubert, Arabie, & Meulman (1997; 2001; 2002); Hubert, Köhn,
& Steinley (2009, 2010); and Steinley & Hubert (2005).

156



References

[1] Borg, I., & Gronenen, P. J. F. (2005). Modern multidimensional scaling
(2nd Ed.). New York: Springer.

[2] Carroll, J. D., & Arabie, P. (1998). Multidimensional scaling. In M. H.
Birnbaum (Ed.), Handbook of perception and cognition, Vol. 3 (pp. 179–
250). San Diego: Academic Press.

[3] Coombs, C. H. (1964). A theory of data. New York: Wiley.

[4] Cox, T. F., & Cox, M. A. A. (2001). Multidimensional scaling (2nd Ed.).
Boca Raton, FL: Chapman and Hall/CRC.

[5] Dykstra, R. L. (1983). An algorithm for restricted least squares regres-
sion. Journal of the American Statistical Association, 78, 837–842.

[6] Everitt, B. S., & Rabe-Hesketh, S. (1997). The analysis of proximity
data. New York: Wiley.

[7] Flueck, J. A., & Korsh, J. F. (1974). A branch search algorithm for
maximum likelihood paired comparison ranking. Biometrika, 61, 621–
626.

[8] Hand, D. J. (2004). Measurement theory and practice. New York: Oxford
University Press.

[9] Hubert, L. J. (1974). Problems of seriation using a subject by item re-
sponse matrix. Psychological Bulletin, 81, 976–983.

[10] Hubert, L. J. (1976). Seriation using asymmetric proximity meaures.
British Journal of Mathematical and Statistical Psychology, 29, 32–52.

[11] Hubert, L. J., & Arabie, P. (1994). The analysis of proximity matrices
through sums of matrices having (anti-)Robinson forms. British Journal
of Mathematical and Statistical Psychology, 47, 1–40.

[12] Hubert, L. J., & Arabie, P. (1995). The approximation of two-mode prox-
imity matrices by sums of order-constrained matrices. Psychometrika, 60,
573–605.

157



[13] Hubert, L. J., Arabie, P., & Meulman, J. J. (1997). Linear and circular
unidimensional scaling for symmetric proximity matrices. British Journal
of Mathematical and Statistical Psychology, 50, 253–284.

[14] Hubert, L. J., Arabie, P., & Meulman, J. J. (1998) Graph-theoretic
representations for proximity matrices through strongly-anti-Robinson
or circular strongly-anti-Robinson matrices. Psychometrika, 63, 341–358.

[15] Hubert, L., Arabie, P., & Meulman, J. (2001). Combinatorial data anal-
ysis: Optimization by dynamic programming. SIAM Monographs on Dis-
crete Mathematics and Applications. Philadelphia: SIAM.

[16] Hubert, L. J., Arabie, P., & Meulman, J. J. (2002). Linear unidimen-
sional scaling in the L2-norm: Basic optimization methods using MAT-
LAB. Journal of Classification, 19, 303–328.

[17] Hubert, L., Arabie, P., & Meulman, J. (2006). The structural repre-
sentation of proximity matrices with MATLAB. ASA-SIAM Series on
Statistics and Applied Probability. Philadelphia: SIAM.

[18] Hubert, L., Köhn, H.-F., & Steinley, D. (2009). Cluster Analysis: A Tool-
box for MATLAB. In R. Millsap & A. Maydeu-Olivares (Eds.), Hand-
book of quantitative methods in psychology (pp. 444–512). Riverside, CA:
Sage.

[19] Hubert, L., Köhn, H.-F., & Steinley, D. (2010). Order-constrained
proximity matrix representations: Ultrametric generalizations and con-
structions with MATLAB. In S. Kolenikov, D. Steinley, & L. Thombs
(Eds.), Current methodological developments of statistics in the social
sciences(pp. 81–112). New York: Wiley.

[20] Hubert, L., & Steinley, D. (2005). Agreement among Supreme Court
justices: Categorical vs. continuous representation. SIAM News, 38(8),
4–7.

[21] Johnson, E. C., & Tversky, A. (1984). Representations of perceptions of
risk. Journal of Experimental Psychology: General, 113, 55–70.

158



[22] Kaczmarz, S. (1937). Angenäherte Auflösung von Systemen linearer Gle-
ichungen. Bulletin of the Polish Academy of Sciences, A35, 355–357.

[23] Korte, B., & Oberhofer, W. (1971). Triangularizing input-output ma-
trices and the structures of production. European Economic Review, 2,
493–522.

[24] Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness
of fit to a nonmetric hypothesis. Psychometrika, 29, 1–27.

[25] Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: A numerical
method. Psychometrika, 29, 115–129.

[26] Lattin, J., Carroll, J. D., & Green, P. E. (2003). Analyzing multivariate
data. Pacific Grove, CA: Brooks/Cole.

[27] Lawler, E. L. (1964). A comment on minimum feedback are sets. IEEE
Transactions on Circuit Theory, 11, 296–297.

[28] Kruskal, J. B., & Wish, M. (1978). Multidimensional scaling. Newbury
Park, CA: Sage.

[29] Osgood, C. E., & Luria, Z. (1954). A blind analysis of a case of multiple
personality. Journal of Abnormal and Social Psychology, 49, 579–591.

[30] Plutchik, R. & Conte, H. R. (Eds.). (1997). Circumplex models of per-
sonality and emotions. Washington, DC: American Psychological Asso-
ciation.

[31] Ramsay, J. O. (1988). Monotone regression splines in action. Statistical
Science, 3, 425–441.

[32] Rothkopf, E. Z. (1957). A measure of stimulus similarity and errors in
some paired-associate learning tasks. Journal of Experimental Psychol-
ogy, 53, 94–101.

[33] Schiffman, S. S., Reynolds, M. L., & Young, F. W. (1981). Introduction
to multidimensional scaling. New York: Academic Press.

[34] Shepard, R. N. (1974). Representation of structure in similarity data:
Problems and prospects. Psychometrika, 39, 373–421.

159



[35] Thurstone, L. L. (1959). The measurement of values. Chicago: The Uni-
versity of Chicago Press.

[36] Wollan, P. C., & Dykstra, R. L. (1987). Minimizing linear inequality
constrained Mahalanobis distances. Applied Statistics, 36, 234–240.

160



A Header Comments for the M-files Mentioned in the

Text or Used Internally by Other M-files; Given in

Alphabetical Order

arobfit.m

% AROBFIT fits an anti-Robinson matrix using iterative projection to

% a symmetric proximity matrix in the $L_{2}$-norm.

%

% syntax: [fit, vaf] = arobfit(prox, inperm)

%

% PROX is the input proximity matrix ($n \times n$ with a zero main

% diagonal and a dissimilarity interpretation);

% INPERM is a given permutation of the first $n$ integers;

% FIT is the least-squares optimal matrix (with variance-

% accounted-for of VAF) to PROX having an anti-Robinson form for

% the row and column object ordering given by INPERM.

arobfnd.m

% AROBFND finds and fits an anti-Robinson

% matrix using iterative projection to

% a symmetric proximity matrix in the $L_{2}$-norm based on a

% permutation identified through the use of iterative quadratic

% assignment.

%

% syntax: [find, vaf, outperm] = arobfnd(prox, inperm, kblock)

%

% PROX is the input proximity matrix ($n \times n$ with a zero main

% diagonal and a dissimilarity interpretation);

% INPERM is a given starting permutation of the first $n$ integers;

% FIND is the least-squares optimal matrix (with

% variance-accounted-for of VAF) to PROX having an anti-Robinson

% form for the row and column object ordering given by the ending

% permutation OUTPERM. KBLOCK defines the block size in the use of the

% iterative quadratic assignment routine.

arobfittm.m

% AROBFITTM does a confirmatory two-mode anti-Robinson fitting of a

% given ordering of the row and column objects of a two-mode

% proximity matrix PROXTM using Dykstra’s (Kaczmarz’s)

161



% iterative projection least-squares method.

%

% syntax: [fit,vaf,rowperm,colperm] = arobfittm(proxtm,inperm)

%

% INPERM is the given ordering of the row and column objects

% together; FIT is an nrow (number of rows) by ncol (number of

% columns) matrix fitted to PROXTM(ROWPERM,COLPERM)

% with VAF being the variance-accounted for and

% based on the (least-squares criterion) sum of

% squared discrepancies between FIT and PROXTM(ROWPERM,COLMEAN);

% ROWPERM and COLPERM are the row and column object orderings

% derived from INPERM.

arobfndtm.m

% AROBFNDTM finds and fits an anti-Robinson

% form using iterative projection to

% a two-mode proximity matrix in the $L_{2}$-norm based on a

% permutation identified through the use of iterative quadratic

% assignment.

%

% syntax: [find, vaf, outperm, rowperm, colperm] = ...

% arobfndtm(proxtm, inperm, kblock)

%

% PROXTM is the input two-mode proximity matrix

% ($n_{a} \times n_{b}$ with a dissimilarity interpretation);

% INPERM is a given starting permutation

% of the first $n = n_{a} + n_{b}$ integers;

% FIND is the least-squares optimal matrix (with

% variance-accounted-for of VAF) to PROXTM having the anti-Robinson

% form for the row and column

% object ordering given by the ending permutation OUTPERM. KBLOCK

% defines the block size in the use of the iterative quadratic

% assignment routine. ROWPERM and COLPERM are the resulting

% row and column permutations for the objects.

biarobfnd.m

% BIAROBFND finds and fits the sum of two

% anti-Robinson matrices using iterative projection to

% a symmetric proximity matrix in the $L_{2}$-norm

% based on permutations identified through

% the use of iterative quadratic assignment.

%

162



% syntax: [find,vaf,targone,targtwo,outpermone, ...

% outpermtwo] = biarobfnd(prox,inperm,kblock)

%

% PROX is the input proximity matrix ($n \times n$ with a zero

% main diagonal and a dissimilarity interpretation);

% INPERM is a given starting permutation of the first $n$ integers;

% FIND is the least-squares optimal matrix (with

% variance-accounted-for of VAF)

% to PROX and is the sum of the two anti-Robinson matrices

% TARGONE and TARGTWO based on the two row and column

% object orderings given by the ending permutations OUTPERMONE

% and OUTPERMTWO. KBLOCK defines the block size in the use of the

% iterative quadratic assignment routine.

bisarobfnd.m

% BISAROBFND finds and fits the sum of two

% strongly anti-Robinson matrices using iterative

% projection to a symmetric proximity matrix in

% the $L_{2}$-norm based on permutations

% identified through the use of iterative quadratic assignment.

%

% syntax: [find,vaf,targone,targtwo,outpermone,outpermtwo] = ...

% bisarobfnd(prox,inperm,kblock)

%

% PROX is the input proximity matrix ($n \times n$ with a zero

% main diagonal and a dissimilarity interpretation);

% INPERM is a given starting permutation of the first $n$ integers;

% FIND is the least-squares optimal matrix (with

% variance-accounted-for of VAF) to PROX and is the sum of the two

% strongly anti-Robinson matrices;

% TARGONE and TARGTWO are based on the two row and column

% object orderings given by the ending permutations OUTPERMONE

% and OUTPERMTWO. KBLOCK defines the block size in the use the

% iterative quadratic assignment routine.

biarobfndtm.m

% BIAROBFNDTM finds and fits the sum of

% two anti-Robinson matrices using iterative projection to

% a two-mode proximity matrix in the $L_{2}$-norm based on

% permutations identified through the use of

% iterative quadratic assignment.

%

163



% syntax: [find,vaf,targone,targtwo,outpermone,outpermtwo, ...

% rowpermone,colpermone,rowpermtwo,colpermtwo] = ...

% biarobfndtm(proxtm,inpermone,inpermtwo,kblock)

%

% PROXTM is the input two-mode proximity matrix ($nrow \times ncol$)

% with a dissimilarity interpretation);

% FIND is the least-squares optimal matrix (with variance-

% accounted-for of VAF) to PROXTM and is the sum of the two matrices

% TARGONE and TARGTWO based on the two row and column

% object orderings given by the ending permutations OUTPERMONE

% and OUTPERMTWO, and in turn ROWPERMONE and ROWPERMTWO and

% COLPERMONE and COLPERMTWO. KBLOCK defines the block size

% in the use of the iterative quadratic assignment routine;

% the input permutations are INPERMONE and INPERMTWO.

bicirarobfnd.m

% BICIRAROBFND finds and fits the sum of two circular

% anti-Robinson matrices using iterative projection to

% a symmetric proximity matrix in the $L_{2}$-norm based on

% permutations identified through the use of

% iterative quadratic assignment.

%

% syntax: [find,vaf,targone,targtwo,outpermone,outpermtwo] = ...

% bicirarobfnd(prox,inperm,kblock)

%

% PROX is the input proximity matrix ($n \times n$ with a

% zero main diagonal and a dissimilarity interpretation);

% INPERM is a given starting permutation of the first $n$ integers;

% FIND is the least-squares optimal matrix (with

% variance-accounted-for of VAF) to PROX and is the sum of the

% two circular anti-Robinson matrices;

% TARGONE and TARGTWO are based on the two row and column

% object orderings given by the ending permutations OUTPERMONE

% and OUTPERMTWO.

bicirsarobfnd.m

% BICIRSAROBFND fits the sum of two strongly circular anti-Robinson

% matrices using iterative projection to a symmetric proximity

% matrix in the $L_{2}$-norm based on permutations

% identified through the use of iterative quadratic assignment.

%

% syntax: [find,vaf,targone,targtwo,outpermone,outpermtwo] = ...

164



% bicirsarobfnd(prox,inperm,kblock)

%

% PROX is the input proximity matrix ($n \times n$ with a zero main

% diagonal and a dissimilarity interpretation);

% INPERM is a given starting permutation of the first $n$ integers;

% FIND is the least-squares optimal matrix (with variance-

% accounted-for of VAF) to PROX and is the

% sum of the two strongly circular anti-Robinson matrices;

% TARGONE and TARGTWO are based on the two row and column

% object orderings given by the ending permutations OUTPERMONE

% and OUTPERMTWO. KBLOCK defines the block size in the use of the

% iterative quadratic assignment routine.

bicirac.m

% BICIRAC finds and fits the sum of two circular

% unidimensional scales using iterative projection to

% a symmetric proximity matrix in the $L_{2}$-norm based on

% permutations identified through the use

% of iterative quadratic assignment.

%

% syntax: [find,vaf,targone,targtwo,outpermone,outpermtwo, ...

% addconone,addcontwo] = bicirac(prox,inperm,kblock)

%

% PROX is the input proximity matrix ($n \times n$ with a zero

% main diagonal and a dissimilarity interpretation);

% INPERM is a given starting permutation of the first $n$ integers;

% FIND is the least-squares optimal matrix (with variance-

% accounted-for of VAF) to PROX and is the sum of the two

% circular anti-Robinson matrices;

% TARGONE and TARGTWO are based on the two row and column

% object orderings given by the ending permutations OUTPERMONE

% and OUTPERMTWO. KBLOCK defines the block size in the use of the

% iterative quadratic assignment routine and ADDCONONE and ADDCONTWO

% are the two additive constants for the two model components.

biscallp.m

%BISCALLP carries out a bidimensional scaling of a symmetric proximity

% matrix using iterative linear programming.

% PROX is the input proximity matrix (with a zero main diagonal and a

% dissimilarity interpretation);

% INPERMONE is the input beginning permutation for the first dimension

165



% (a permuation of the first $n$ integers); INPERMTWO is the input beginning

% permutation for the second dimension;

% NOPT controls the confirmatory or exploratory fitting of the unidimensional

% scales; a value of NOPT = 0 will fit in a confirmatory manner the two scales

% indicated by INPERMONE and INPERMTWO; a value of NOPT = 1 uses iterative LP

% to locate the better permutations to fit;

% OUTPERMONE is the final object permutation for the first dimension;

% OUTPERMTWO is the final object permutation for the second dimension;

% COORDONE is the set of first dimension coordinates in ascending order;

% COORDTWO is the set of second dimension coordinates in ascending order;

% ADDCONONE is the additive constant for the first dimensional model;

% ADDCONTWO is the additive constant for the second dimensional model;

% DEV is the variance-accounted-for in PROX by the bidimensional scaling.

biscalqa.m

% BISCALQA carries out a bidimensional scaling of a symmetric

% proximity matrix using iterative quadratic assignment.

%

% syntax: [outpermone,outpermtwo,coordone,coordtwo,fitone,fittwo,...

% addconone,addcontwo,vaf] = ...

% biscalqa(prox,targone,targtwo,inpermone,inpermtwo,kblock,nopt)

%

% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation);

% TARGONE is the input target matrix for the first dimension

% (usually with a zero main diagonal and a dissimilarity

% interpretation representing equally spaced locations along

% a continuum); TARGTWO is the input target

% matrix for the second dimension;

% INPERMONE is the input beginning permutation for the first

% dimension (a permutation of the first $n$ integers);

% INPERMTWO is the input beginning

% permutation for the second dimension;

% the insertion and rotation routines use from 1 to KBLOCK

% (which is less than or equal to $n-1$) consecutive objects in

% the permutation defining the row and column orders of the data

% matrix. NOPT controls the confirmatory or exploratory fitting

% of the unidimensional scales; a value of NOPT = 0 will fit in a

% confirmatory manner the two scales

% indicated by INPERMONE and INPERMTWO;

% a value of NOPT = 1 uses iterative QA

% to locate the better permutations to fit;

% OUTPERMONE is the final object permutation for the

166



% first dimension; OUTPERMTWO is the final object permutation

% for the second dimension;

% COORDONE is the set of first dimension coordinates

% in ascending order; COORDTWO is the set of second dimension

% coordinates in ascending order;

% ADDCONONE is the additive constant for the first

% dimensional model; ADDCONTWO is the additive constant for

% the second dimensional model;

% VAF is the variance-accounted-for in PROX by

% the bidimensional scaling.

biscal tied.m

% BISCALQA_TIED carries out a bidimensional scaling of a symmetric

% proximity matrix using iterative quadratic assignment.

%

% syntax: [outpermone,outpermtwo,coordone,coordtwo,fitone,fittwo,...

% addconone,addcontwo,vaf] = ...

% biscalqa_tied(prox,targone,targtwo,inpermone,inpermtwo, ...

% tiedcoordone,tiedcoordtwo,kblock,nopt)

%

% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation);

% TARGONE is the input target matrix for the first dimension

% (usually with a zero main diagonal and a dissimilarity

% interpretation representing equally spaced locations along

% a continuum); TARGTWO is the input target

% matrix for the second dimension;

% INPERMONE is the input beginning permutation for the first

% dimension (a permutation of the first $n$ integers);

% INPERMTWO is the input beginning

% permutation for the second dimension;

% the insertion and rotation routines use from 1 to KBLOCK

% (which is less than or equal to $n-1$) consecutive objects in

% the permutation defining the row and column orders of the data

% matrix. NOPT controls the confirmatory or exploratory fitting

% of the unidimensional scales; a value of NOPT = 0 will fit in a

% confirmatory manner the two scales

% indicated by INPERMONE and INPERMTWO;

% a value of NOPT = 1 uses iterative QA

% to locate the better permutations to fit;

% TIEDCOORDONE and TIEDCOORDTWO specify the pattern of

% tied coordinates (using integers from 1 up to n);

% OUTPERMONE is the final object permutation for the

167



% first dimension; OUTPERMTWO is the final object permutation

% for the second dimension;

% COORDONE is the set of first dimension coordinates

% in ascending order; COORDTWO is the set of second dimension

% coordinates in ascending order;

% ADDCONONE is the additive constant for the first

% dimensional model; ADDCONTWO is the additive constant for

% the second dimensional model;

% VAF is the variance-accounted-for in PROX by

% the bidimensional scaling.

biscaltmac.m

% BISCALTMAC finds and fits the sum of two linear

% unidimensional scales using iterative projection to

% a two-mode proximity matrix in the $L_{2}$-norm based on

% permutations identified through the use of iterative quadratic

% assignment.

%

% syntax: [find,vaf,targone,targtwo,outpermone,outpermtwo, ...

% rowpermone,colpermone,rowpermtwo,colpermtwo,addconone,...

% addcontwo,coordone,coordtwo,axes] = ...

% biscaltmac(proxtm,inpermone,inpermtwo,kblock,nopt)

%

% PROXTM is the input two-mode proximity matrix ($nrow \times ncol$

% with a dissimilarity interpretation);

% FIND is the least-squares optimal matrix (with variance-accounted-

% for of VAF) to PROXTM and is the sum of the two matrices

% TARGONE and TARGTWO based on the two row and column

% object orderings given by the ending permutations OUTPERMONE

% and OUTPERMTWO, and in turn ROWPERMONE and ROWPERMTWO and

% COLPERMONE and COLPERMTWO. KBLOCK defines the block size

% in the use of the iterative quadratic assignment routine and

% ADDCONONE and ADDCONTWO are

% the two additive constants for the two model components;

% The $n$ coordinates

% are in COORDONE and COORDTWO. The input permutations are INPERMONE

% and INPERMTWO. The $n \times 2$ matrix AXES gives the

% plotting coordinates for the

% combined row and column object set.

% NOPT controls the confirmatory or

% exploratory fitting of the unidimensional

% scales; a value of NOPT = 0 will

% fit in a confirmatory manner the two scales

168



% indicated by INPERMONE and INPERMTWO;

% a value of NOPT = 1 uses iterative QA

% to locate the better permutations to fit.

cat vs con orderfit.m

% CAT_VS_CON_ORDERFIT uses a constraining order to fit a best

% ultrametric, anti-Robinson form, and linear unidimensional scale; all

% three of these representations conform to this order.

%

% syntax: [findultra,vafultra,vafarob,arobprox,fitlinear,vaflinear,...

% coord,addcon] = cat_vs_con_orderfit(prox,inperm,conperm)

%

% PROX is the input dissimilarity matrix and INPERM is

% a starting permutation for how the ultrametric constraints are searched.

% The permutation CONPERM is a given constraining order.

% As output, FINDULTRA is the best ultrametric found with VAF of

% VAFULTRA; AROBPROX is the best AR form identified with VAF of

% VAFAROB; FITLINEAR is the best LUS model with VAF of VAFLINEAR with

% COORD constraining the coordinates and ADDCON the additive constant.

cat vs con orderfnd.m

% CAT_VS_CON_ORDERFND finds a constraining order to fit a best

% ultrametric, anti-Robinson form, and linear unidimensional scale; all

% three of these representations conform to this order.

%

% syntax: [findultra,vafultra,conperm,vafarob,arobprox,fitlinear,vaflinear,...

% coord,addcon] = cat_vs_con_orderfnd(prox,inperm)

%

% PROX is the input dissimilarity matrix and INPERM is

% a starting permutation for how the ultrametric constraints are searched.

% The permutation CONPERM is a given order found and used to

% constrain the various representations. FINDULTRA is the best ultrametric

% found with VAF of VAFULTRA; AROBPROX is the best AR form identified

% with VAF of VAFAROB; FITLINEAR is the best LUS model with VAF of VAFLINEAR

% with COORD constraining the coordinates and ADDCON the additive constant.

cent linearfit

% CENT_LINEARFIT fits a structure to a proximity matrix by first fitting

% a centroid metric and secondly a linear unidimensional scale

% to the residual matrix where the latter is constrained by a given object order.

169



%

% syntax: [find,vaf,outperm,targone,targtwo,lengthsone,coordtwo,addcontwo] = ...

% cent_linearfit(prox,inperm)

%

% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation); INPERM is the given

% input constraining order (permutation) which is also given

% as the output vector OUTPERM;

% FIND is the found least-squares matrix (with variance-accounted-for

% of VAF) to PROX. TARGTWO is the linear unidimensional scaling

% component of the decomposition defined by the coordinates in COORDTWO

% with additive constant ADDCONTWO;

% TARGONE is the centroid metric component defined by the

% lengths in LENGTHSONE.

cent linearfnd

% CENT_LINEARFND finds fits a structure to a proximity matrix by first fitting

% a centroid metric and secondly a linear unidimensional scale

% to the residual matrix.

%

% syntax: [find,vaf,outperm,targone,targtwo,lengthsone,coordtwo,addcontwo] = ...

% cent_linearfnd(prox,inperm)

%

% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation); INPERM is the given

% input beginnining order (permutation); the found output vector is OUTPERM;

% FIND is the found least-squares matrix (with variance-accounted-for

% of VAF) to PROX. TARGTWO is the linear unidimensional scaling

% component of the decomposition defined by the coordinates in COORDTWO

% with addtive constant ADDCONTWO;

% TARGONE is the centroid metric component defined by the

% lengths in LENGTHSONE.

centfit.m

% CENTFIT finds the least-squares fitted centroid metric (FIT) to

% PROX, the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation).

%

% syntax: [fit,vaf,lengths] = centfit(prox)

%

% The $n$ values that serve to define the approximating sums,

% $g_{i} + g_{j}$, are given in the vector LENGTHS of size $n \times 1$.

170



centfittm.m

% CENTFITTM finds the least-squares fitted two-mode centroid metric

% (FIT) to PROXTM, the two-mode rectangular input proximity matrix

% (with a dissimilarity interpretation).

%

% syntax: [fit,vaf,lengths] = centfittm(proxtm)

%

% The $n$ values (where $n$ = number of rows + number of columns)

% serve to define the approximating sums,

% $u_{i} + v_{j}$, where the $u_{i}$ are for the rows and the $v_{j}$

% are for the columns; these are given in the vector LENGTHS of size

% $n \times 1$, with row values first followed by the column values.

cirarobfit.m

% CIRAROBFIT fits a circular anti-Robinson matrix using iterative

% projection to a symmetric proximity matrix in the $L_{2}$-norm.

%

% syntax: [fit, vaf] = cirarobfit(prox,inperm,targ)

%

% PROX is the input proximity matrix ($n \times n$ with a zero

% main diagonal and a dissimilarity interpretation);

% INPERM is a given permutation of the first $n$ integers (around

% a circle); TARG is a given $n \times n$ matrix having the

% circular anti-Robinson form that guides the direction in which

% distances are taken around the circle.

% FIT is the least-squares optimal matrix (with variance-

% accounted-for of VAF) to PROX having a circular anti-Robinson

% form for the row and column object ordering given by INPERM.

cirarobfnd.m

% CIRAROBFND finds and fits a circular

% anti-Robinson matrix using iterative projection to

% a symmetric proximity matrix in the $L_{2}$-norm based on a

% permutation identified through the use of iterative

% quadratic assignment.

%

% syntax: [find, vaf, outperm] = cirarobfnd(prox, inperm, kblock)

%

% PROX is the input proximity matrix ($n \times n$ with a zero

% main diagonal and a dissimilarity interpretation);

% INPERM is a given starting permutation (assumed to be around the

171



% circle) of the first $n$ integers; FIT is the least-squares optimal

% matrix (with variance-accounted-for of VAF) to PROX having a

% circular anti-Robinson form for the row and column

% object ordering given by the ending permutation OUTPERM.

% KBLOCK defines the block size in the use of the iterative

% quadratic assignment routine.

cirsarobfit.m

% CIRSAROBFIT fits a strongly circular anti-Robinson matrix

% using iterative projection to

% a symmetric proximity matrix in the $L_{2}$-norm.

%

% syntax: [fit, vaf] = cirsarobfit(prox,inperm,target)

%

% PROX is the input proximity matrix ($n \times n$ with a zero

% main diagonal and a dissimilarity interpretation);

% INPERM is a given permutation of the first $n$ integers

% (around a circle);

% TARGET is a given $n \times n$ matrix having the circular

% anti-Robinson form that guides the direction in which distances

% are taken around the circle.

% FIT is the least-squares optimal matrix (with variance-

% accounted-for of VAF) to PROX having a strongly circular

% anti-Robinson form for the row and column object ordering

% given by INPERM.

cirsarobfnd.m

% CIRSAROBFND finds and fits a strongly circular

% anti-Robinson matrix using iterative projection to

% a symmetric proximity matrix in the $L_{2}$-norm based on a

% permutation identified through the use of

% iterative quadratic assignment.

%

% syntax: [find, vaf, outperm] = cirsarobfnd(prox, inperm, kblock)

%

% PROX is the input proximity matrix ($n \times n$ with a zero

% main diagonal and a dissimilarity interpretation);

% INPERM is a given starting permutation (assumed to be around the

% circle) of the first $n$ integers;

% FIT is the least-squares optimal matrix (with variance-

% accounted-for of VAF) to PROX having a strongly

% circular anti-Robinson form for the row and column

172



% object ordering given by the ending permutation OUTPERM. KBLOCK

% defines the block size in the use of the iterative

% quadratic assignment routine.

circularplot.m

% CIRCULARPLOT plots the object set using the coordinates

% around a circular structure derived from the $n \times n$

% interpoint distance matrix around a circle given by CIRC.

% The positions are labeled by the order of objects

% given in INPERM.

%

% syntax: [circum,radius,coord,degrees,cumdegrees] = ...

% circularplot(circ,inperm)

%

% The output consists of a plot, the circumference of the

% circle (CIRCUM) and radius (RADIUS); the coordinates of

% the plot positions (COORD), and the degrees and cumulative

% degrees induced between the plot positions

% (in DEGREES and CUMDEGREES).

% The positions around the circle are numbered from 1

% (at the "noon" position) to $n$, moving

% clockwise around the circular structure.

cirfit.m

% CIRFIT does a confirmatory fitting of a given order

% (assumed to reflect a circular ordering around a closed

% unidimensional structure) using Dykstra’s

% (Kaczmarz’s) iterative projection least-squares method.

%

% syntax: [fit, diff] = cirfit(prox,inperm)

%

% INPERM is the given order; FIT is an $n \times n$ matrix that

% is fitted to PROX(INPERM,INPERM) with least-squares value DIFF.

cirfitac.m

% CIRFITAC does a confirmatory fitting (including

% the estimation of an additive constant) for a given order

% (assumed to reflect a circular ordering around a closed

% unidimensional structure) using the Dykstra--Kaczmarz

% iterative projection least-squares method.

173



%

% syntax: [fit, vaf, addcon] = cirfitac(prox,inperm)

%

% INPERM is the given order; FIT is an $n \times n$ matrix that

% is fitted to PROX(INPERM,INPERM) with variance-accounted-for of

% VAF; ADDCON is the estimated additive constant.

class scaledp.m

% CLASS_SCALEDP carries out a unidimensional seriation or

% scaling of a set of object classes defined for a symmetric proximity

% matrix using dynamic programming.

%

% syntax: [permut,cumobfun] = class_scaledp(prox,numbclass,membclass)

%

% PROX is the ($n \times n$) input proximity matrix (with a zero

% main diagonal and a dissimilarity interpretation);

% NUMBCLASS (= $n_{c}$) is the number of object classes to be

% sequenced;

% MEMBCLASS is an $n \times 1$ vector containing the input class

% membership and includes all the integers from 1 to NUMBCLASS and

% zeros when objects are to be deleted from consideration;

% PERMUT is the order of the classes in the optimal permutation (say,

% $\rho^{*}$);

% CUMOBFUN gives the cumulative values of the objective function for

% the successive placements of the objects in the optimal permutation:

% $\sum_{i=1}^{k} (t_{i}^{(\rho^{*})})^{2}$ for $k = 1, \ldots, n_{c}$.

%

% Initializations: The vectors VALSTORE and IDXSTORE store the

% results of the recursion for the $(2^n_{c})-1$ nonempty subsets of the

% set of classes. The integer positions in these vectors correspond to

% subsets whose binary number equivalents are equal to those integer positions.

concave monotonic regression dykstra.m

% CONCAVE_MONOTONIC_REGRESSION_DYKSTRA returns a vector of values in YHAT that are

% weakly monotonic with respect to the values in an independent input

% vector X, define a concave function, and minimize the least-squares

% loss to the values in the dependent input vector Y. The

% variance-accounted-for in Y from YHAT is given by VAF_YHAT.

%

% syntax: [yhat,vaf_yhat] = concave_monotonic_regression_dykstra(x,y)

%

% The least-squares optimization is carried out through Dykstra’s method of

174



% iterative projection.

convex concave monotonic regression dykstra.m

% CONVEX_CONCAVE_MONOTONIC_REGRESSION_DYKSTRA returns a vector of values

% in YHAT that are weakly monotonic with respect to the values in an

% independent input vector X, define a convex function up to the median

% observation in X and a concave function thereafter, and minimize the

% least-squares loss to the values in the dependent input vector Y. The

% variance-accounted-for in Y from YHAT is given by VAF_YHAT.

%

% syntax: [yhat,vaf_yhat] = convex_concave_monotonic_regression_dykstra(x,y)

%

% The least-squares optimization is carried out through Dykstra’s method of

% iterative projection.

convex monotonic regression dykstra.m

% CONVEX_MONOTONIC_REGRESSION_DYKSTRA returns a vector of values in YHAT that are

% weakly monotonic with respect to the values in an independent input

% vector X, define a convex function, and minimize the least-squares

% loss to the values in the dependent input vector Y. The

% variance-accounted-for in Y from YHAT is given by VAF_YHAT.

%

% syntax: [yhat,vaf_yhat] = convex_monotonic_regression_dykstra(x,y)

%

% The least-squares optimization is carried out through Dykstra’s method of

% iterative projection.

eqspace cirfitac.m

% EQSPACE_CIRFITAC does a confirmatory fitting (including

% the estimation of an additive constant) for a given order

% (assumed to reflect a circular ordering around a closed

% unidimensional structure) using the Dykstra--Kaczmarz

% iterative projection least-squares method. Also, an equally-spaced

% confirmatory fitting alternative is carried out.

%

% syntax: [fit, vaf, addcon, eqfit, eqvaf, eqaddcon] = ...

% eqspace_cirfitac(prox,inperm)

%

% INPERM is the given order; FIT is an $n \times n$ matrix that

% is fitted to PROX(INPERM,INPERM) with variance-accounted-for of

175



% VAF; ADDCON is the estimated additive constant. The equally-spaced

% output alternatives are prefixed with an EQ.

eqspace linfitac.m

% EQSPACE_LINFITAC does a confirmatory fitting of a given unidimensional order

% using the Dykstra--Kaczmarz iterative projection

% least-squares method, but differing from linfit.m in

% including the estimation of an additive constant. Also

% an equally-spaced confirmatory fitting alternative is carried out.

%

% syntax: [fit, vaf, coord, addcon, eqfit, eqvaf, eqaddcon] = ...

% eqspace_linfitac(prox,inperm)

%

% INPERM is the given order;

% FIT is an $n \times n$ matrix that is fitted to

% PROX(INPERM,INPERM) with variance-accounted-for VAF;

% COORD gives the ordered coordinates whose absolute differences

% could be used to reconstruct FIT; ADDCON is the estimated

% additive constant that can be interpreted as being added to PROX.

% The equally-spaced output alternatives are prefixed with an EQ.

eqspace ultrafit.m

% EQSPACE_ULTRAFIT fits a given ultrametric using iterative projection to

% a symmetric proximity matrix in the $L_{2}$-norm. Also, an

% equally-spaced confirmatory fitting alternative is carried out using the

% entries in TARG (assumed to be integer-valued reflecting the level at

% which the clusters are formed).

%

% syntax: [fit,vaf,eqfit,eqvaf,eqaddcon] = eqspace_ultrafit(prox,targ)

%

% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation);

% TARG is an ultrametric matrix of the same size as PROX;

% FIT is the least-squares optimal matrix (with

% variance-accounted-for of VAF) to PROX satisfying the ultrametric

% constraints implicit in TARG. The equally-spaced output alternatives are

% prefixed with an EQ.

least squares dykstra.m

% LEAST_SQUARES_DYKSTRA carries out an inequality constrained least-squares

176



% task using iterative projection.

%

% syntax: [solution, kuhn_tucker, iterations, end_condition] = ...

% least_squares_dykstra(data,covariance,constraint_array, ...

% constraint_constant,equality_flag)

%

% The input arguments are an $n \times 1$ vector, DATA; an $n \times n$

% positive-definite matrix, COVARIANCE; a $k \times n$ constraint matrix,

% CONSTRAINT_ARRAY; the $k \times 1$ right-hand-side constraint vector,

% CONSTRAINT_CONSTANT; and a $k \times 1$ EQUALITY_FLAG vector with

% values of 0 when a corresponding constraint is an inequality; and 1 if

% an equality.

% The weighted least-squares criterion (with weights defined by the

% inverse of COVARIANCE) is minimized by a SOLUTION that satisfies

% CONSTRAINT_ARRAY * SOLUTION being in EQUALITY_FLAG relation to

% CONSTRAINT_CONSTANT. As additional output arguments, there is a $k

% \times 1$ KUHN_TUCKER vector (useful for some applications); the number

% of ITERATIONS taken (maximum default value is ITERMAX = 1.0e+04 set in

% the program), and an END_CONDITION flag: 0: no error; 1: itermax

% exceeded; 2: invalid constant; 3: invalid constraint function.

linear order member.m

% LINEAR_ORDER_MEMBER provides an (n-1) x n partition membership matrix

% called MEMBER based on the input permutation INPERM of size n. MEMBER

% defines (with values of 1 and 2) those objects before and after each of

% the n-1 separations in INPERM. MEMBER is used in the various

% PARTITIONFIT routines.

%

% syntax: [member] = linear_order_member(inperm)

linearplot.m

% LINEARPLOT plots the object set using the ordered coordinates in COORD

% and labels the positions by the order of the objects given in INPERM.

%

% syntax: [linearlength] = linearplot(coord,inperm)

%

% The output value LINEARLENGTH is the sum of the interpoint distances from

% COORD.

177



linfit.m

% LINFIT does a confirmatory fitting of a given

% unidimensional order using Dykstra’s

% (Kaczmarz’s) iterative projection least-squares method.

%

% syntax: [fit, diff, coord] = linfit(prox,inperm)

%

% INPERM is the given order;

% FIT is an $n \times n$ matrix that is fitted to

% PROX(INPERM,INPERM) with least-squares value DIFF;

% COORD gives the ordered coordinates whose absolute

% differences could be used to reconstruct FIT.

linfit tied.m

% LINFIT_TIED does a confirmatory fitting of a given

% unidimensional order using Dykstra’s

% (Kaczmarz’s) iterative projection least-squares method. This

% includes the possible imposition of tied coordinates.

%

% syntax: [fit, diff, coord] = linfit_tied(prox,inperm,tiedcoord)

%

% INPERM is the given order;

% FIT is an $n \times n$ matrix that is fitted to

% PROX(INPERM,INPERM) with least-squares value DIFF;

% COORD gives the ordered coordinates whose absolute

% differences could be used to reconstruct FIT; TIEDCOORD

% is the tied pattern of coordinates imposed (in order)

% along the continuum (using the integers from 1 up to n

% to indicate the tied positions).

linfitac.m

% LINFITAC does a confirmatory fitting of a given unidimensional order

% using the Dykstra--Kaczmarz iterative projection

% least-squares method, but differing from linfit.m in

% including the estimation of an additive constant.

%

% syntax: [fit, vaf, coord, addcon] = linfitac(prox,inperm)

%

% INPERM is the given order;

% FIT is an $n \times n$ matrix that is fitted to

% PROX(INPERM,INPERM) with variance-accounted-for VAF;

178



% COORD gives the ordered coordinates whose absolute differences

% could be used to reconstruct FIT; ADDCON is the estimated

% additive constant that can be interpreted as being added to PROX.

linfitac altcomp.m

% LINFITAC_ALTCOMP does a confirmatory fitting of a given unidimensional order

% using the Dykstra--Kaczmarz iterative projection

% least-squares method, but differing from linfit.m in

% including the estimation of an additive constant.

%

% syntax: [fit, vaf, coord, addcon] = linfitac_altcomp(prox,inperm)

%

% INPERM is the given order;

% FIT is an $n \times n$ matrix that is fitted to

% PROX(INPERM,INPERM) with variance-accounted-for VAF;

% COORD gives the ordered coordinates whose absolute differences

% could be used to reconstruct FIT; ADDCON is the estimated

% additive constant that can be interpreted as being added to PROX. Note

% that in comparison with linfitac.m, ADDCON here has the opposite sign.

linfitac missing.m

% LINFITAC_MISSING does a confirmatory fitting of a given unidimensional order

% using the Dykstra--Kaczmarz iterative projection

% least-squares method, but differing from linfit.m in

% including the estimation of an additive constant;also, missing entries

% in the input proximity matrix PROX are given values of zero.

%

% syntax: [fit, vaf, addcon] = ...

% linfitac_missing(prox,inperm,proxmiss)

%

% INPERM is the given order;

% FIT is an $n \times n$ matrix that is fitted to

% PROX(INPERM,INPERM) with variance-accounted-for VAF;

% ADDCON is the estimated additive constant that can be interpreted

% as being added to PROX. PROXMISS is the same size as PROX (with main

% diagonal entries all zero); an off-diagonal entry of 1.0 denotes an

% entry in PROX that is present and 0.0 if it is absent.

linfitac tied.m

% LINFITAC_TIED does a confirmatory fitting of a given unidimensional order

179



% using the Dykstra--Kaczmarz iterative projection

% least-squares method, but differing from linfit_tied.m in

% including the estimation of an additive constant. This also allows

% the possible imposition of tied coordinates.

%

% syntax: [fit, vaf, coord, addcon] = linfitac_tied(prox,inperm,tiedcoord)

%

% INPERM is the given order;

% FIT is an $n \times n$ matrix that is fitted to

% PROX(INPERM,INPERM) with variance-accounted-for VAF;

% COORD gives the ordered coordinates whose absolute differences

% could be used to reconstruct FIT; ADDCON is the estimated

% additive constant that can be interpreted as being added to PROX.

% TIEDCOORD is the tied pattern of coordinates imposed (in order)

% along the continuum (using the integers from 1 up to n

% to indicate the tied positions).

linfitl1.m

%LINFITL1 does a confimatory fitting in the $L_{1}$ norm of a given unidimensional

% order using linear programming.

% INPERM is the given order; FIT is an $n \times n$ matrix that is fitted to

% PROX(INPERM,INPERM) with $L_{1}$ value DIFF; COORD gives the ordered coordinates

% whose absolute differences could be used to reconstruct FIT.

% EXITFLAG indicates the success of the optimization ( > 0 indicates convergence;

% 0 indicates that the maximum number of function evaluations or iterations were

% reached; and < 0 denotes nonconvergence).

linfitl1ac.m

%LINFITL1AC does a confimatory fitting in the $L_{1}$ norm of a given unidimensional

% order using linear programming, with the estimation of

% an additive constant (ADDCON).

% INPERM is the given order; FIT is an $n \times n$ matrix that is fitted to

% PROX(INPERM,INPERM) with deviance DEV; COORD gives the ordered coordinates

% whose absolute differences could be used to reconstruct FIT.

% EXITFLAG indicates the success of the optimization ( > 0 indicates convergence;

% 0 indicates that the maximum number of function evaluations or iterations were

% reached; and < 0 denotes nonconvergence).

linfittm.m

% LINFITTM does a confirmatory two-mode fitting of a given

180



% unidimensional ordering of the row and column objects of

% a two-mode proximity matrix PROXTM using Dykstra’s (Kaczmarz’s)

% iterative projection least-squares method.

%

% syntax: [fit,diff,rowperm,colperm,coord] = linfittm(proxtm,inperm)

%

% INPERM is the given ordering of the row and column objects

% together; FIT is an nrow (number of rows) by ncol (number

% of columns) matrix of absolute coordinate differences that

% is fitted to PROXTM(ROWPERM,COLPERM) with DIFF being the

% (least-squares criterion) sum of squared discrepancies

% between FIT and PROXTM(ROWPERM,COLMEAN);

% ROWPERM and COLPERM are the row and column object orderings

% derived from INPERM. The nrow + ncol coordinates

% (ordered with the smallest

% set at a value of zero) are given in COORD.

linfittmac.m

% LINFITTMAC does a confirmatory two-mode fitting of a given

% unidimensional ordering of the row and column objects of

% a two-mode proximity matrix PROXTM using Dykstra’s (Kaczmarz’s)

% iterative projection least-squares method;

% it differs from linfittm.m by including the estimation of an

% additive constant.

%

% syntax: [fit,vaf,rowperm,colperm,addcon,coord] = ...

% linfittmac(proxtm,inperm)

%

% INPERM is the given ordering of the row and column objects

% together; FIT is an nrow (number of rows) by ncol (number

% of columns) matrix of absolute coordinate differences that

% is fitted to PROXTM(ROWPERM,COLPERM) with VAF being the

% variance-accounted-for. ROWPERM and COLPERM are the row and

% column object orderings derived from INPERM. ADDCON is the

% estimated additive constant that can be interpreted as being

% added to PROXTM (or, alternatively, subtracted

% from the fitted matrix FIT). The nrow + ncol coordinates

% (ordered with the smallest

% set at a value of zero) are given in COORD.

linfittmac altcomp.m

% LINFITTMAC_ALTCOMP does a confirmatory two-mode fitting of a given

181



% unidimensional ordering of the row and column objects of

% a two-mode proximity matrix PROXTM using Dykstra’s (Kaczmarz’s)

% iterative projection least-squares method;

% it differs from linfittm.m by including the estimation of an

% additive constant.

%

% syntax: [fit,vaf,rowperm,colperm,addcon,coord] = ...

% linfittmac_altcomp(proxtm,inperm)

%

% INPERM is the given ordering of the row and column objects

% together; FIT is an nrow (number of rows) by ncol (number

% of columns) matrix of absolute coordinate differences that

% is fitted to PROXTM(ROWPERM,COLPERM) with VAF being the

% variance-accounted-for. ROWPERM and COLPERM are the row and

% column object orderings derived from INPERM. ADDCON is the

% estimated additive constant that can be interpreted as being

% added to PROXTM (or, alternatively, subtracted

% from the fitted matrix FIT). The nrow + ncol coordinates

% (ordered with the smallest

% set at a value of zero) are given in COORD. Note that in comparison

% with linfittmac.m, ADDCON here has the opposite sign.

lpfit.m

%lpfit.m provides the two-dimensional coordinates used to construct lp

%distances fit (in a confirmatory manner) to the given proximities.

%The inputs:

%

%the n x n symmetric dissimilarity matrix with zero main diagonal entries;

%two fixed permutations, PERMONE and PERMTWO, of the objects along the

%two dimensions;

% the value of p to obtain the p distances (p = 1: city-block distances; p

% = 2: Euclidean distances; large p: dominance distances).

%The outputs:

%

%the values fitted to the proximity matrix are in FITTED;

%the object coordinates along the two dimensions, COORDONE and COORDTWO;

%the additive constant, ADDCON;

%the values of the least-squares criterion, FVAL, in finding the

%coordinates;

%the variance-accounted-for measure, VAF;

%the exit condition, EXITFLAG, from using the MATLAB optimization routine,

182



%fmincon.m.

%

% syntax: [fitted, coordone,coordtwo,addcon,fval,vaf,exitflag] = ...

% lpfit(prox,permone,permtwo,start_vector,p)

lsqisotonic.m – from the MATLAB Statistics Toolbox

%LSQISOTONIC Isotonic least squares.

% YHAT = LSQISOTONIC(X,Y) returns a vector of values that minimize the

% sum of squares (Y - YHAT).^2 under the monotonicity constraint that

% X(I) > X(J) => YHAT(I) >= YHAT(J), i.e., the values in YHAT are

% monotonically non-decreasing with respect to X (sometimes referred

% to as "weak monotonicity"). LSQISOTONIC uses the "pool adjacent

% violators" algorithm.

%

% If X(I) == X(J), then YHAT(I) may be <, ==, or > YHAT(J) (sometimes

% referred to as the "primary approach"). If ties do occur in X, a plot

% of YHAT vs. X may appear to be non-monotonic at those points. In fact,

% the above monotonicity constraint is not violated, and a reordering

% within each group of ties, by ascending YHAT, will produce the desired

% appearance in the plot.

%

% YHAT = LSQISOTONIC(X,Y,W) performs weighted isotonic regression using

% the non-negative weights in W.

% Copyright 2003-2006 The MathWorks, Inc.

% $Revision: 1.1.6.5 $ $Date: 2006/06/20 20:51:42 $

% References:

% [1] Kruskal, J.B. (1964) "Nonmetric multidimensional scaling: a

% numerical method", Psychometrika 29:115-129.

% [2] Cox, R.F. and Cox, M.A.A. (1994) Multidimensional Scaling,

% Chapman&Hall.

matrix colorcode.m

% MATRIX_COLORCODE constructs a color representation for the values in an

% $n \times m$ matrix, DATAMATRIX. The rows and columns of DATAMATRIX are

% permuted by ROWPERM and COLPERM, respectively. CMAP is the input

% colormap for the representation (e.g., bone(256)).

183



matrix movie.m

% MATRIX_MOVIE constructs a color movie of the effects of a series

% of permutations on a proximity matrix.

% DATAMATRIX is an n by n symmetric proximity matrix; PERMS is

% a cell array containing NUMPERMS permutations; CMAP

% is the input colormap used for the representation (e.g.,

% bone(256)).

monotonic regression dykstra.m

% MONOTONIC_REGRESSION_DYKSTRA returns a vector of values in YHAT that are

% weakly monotonic with respect to the values in an independent input

% vector X, and minimize the least-squares loss to the values in the

% dependent input vector Y. The variance-accounted-for in Y from YHAT is

% given by VAF_YHAT.

%

% syntax: [yhat,vaf_yhat] = monotonic_regression_dykstra(x,y)

%

% The least-squares optimization is carried out through Dykstra’s method of

% iterative projection.

order.m

% ORDER carries out an iterative Quadratic Assignment maximization

% task using a given square ($n x n$) proximity matrix PROX (with

% a zero main diagonal and a dissimilarity interpretation).

%

% syntax: [outperm,rawindex,allperms,index] = ...

% order(prox,targ,inperm,kblock)

%

% Three separate local operations are used to permute

% the rows and columns of the proximity matrix to maximize the

% cross-product index with respect to a given square target matrix

% TARG: pairwise interchanges of objects in the permutation defining

% the row and column order of the square proximity matrix;

% the insertion of from 1 to KBLOCK

% (which is less than or equal to $n-1$) consecutive objects in

% the permutation defining the row and column order of the data

% matrix; the rotation of from 2 to KBLOCK

% (which is less than or equal to $n-1$) consecutive objects in

% the permutation defining the row and column order of the data

% matrix. INPERM is the input beginning permutation (a permutation

% of the first $n$ integers).

184



% OUTPERM is the final permutation of PROX with the

% cross-product index RAWINDEX

% with respect to TARG. ALLPERMS is a cell array containing INDEX

% entries corresponding to all the

% permutations identified in the optimization from ALLPERMS{1} =

% INPERM to ALLPERMS{INDEX} = OUTPERM.

order missing.m

% ORDER_MISSING carries out an iterative Quadratic Assignment maximization

% task using a given square ($n x n$) proximity matrix PROX (with

% a zero main diagonal and a dissimilarity interpretation; missing entries

% PROX are given values of zero).

%

% syntax: [outperm,rawindex,allperms,index] = ...

% order_missing(prox,targ,inperm,kblock,proxmiss)

%

% Three separate local operations are used to permute

% the rows and columns of the proximity matrix to maximize the

% cross-product index with respect to a given square target matrix

% TARG: pairwise interchanges of objects in the permutation defining

% the row and column order of the square proximity matrix;

% the insertion of from 1 to KBLOCK

% (which is less than or equal to $n-1$) consecutive objects in

% the permutation defining the row and column order of the data

% matrix; the rotation of from 2 to KBLOCK

% (which is less than or equal to $n-1$) consecutive objects in

% the permutation defining the row and column order of the data

% matrix. INPERM is the input beginning permutation (a permutation

% of the first $n$ integers). PROXMISS is the same size as PROX (with

% main diagonal entries all zero); an off-diagonal entry of 1.0 denotes an

% entry in PROX that is present and 0.0 if it is absent.

% OUTPERM is the final permutation of PROX with the

% cross-product index RAWINDEX

% with respect to TARG. ALLPERMS is a cell array containing INDEX

% entries corresponding to all the

% permutations identified in the optimization from ALLPERMS{1} =

% INPERM to ALLPERMS{INDEX} = OUTPERM.

orderpartitionfit.m

% ORDERPARTITIONFIT provides a least-squares approximation to a proximity

% matrix based on a given collection of partitions with ordered classes.

%

185



% syntax: [fit,weights,vaf] = orderpartitionfit(prox,lincon,membership)

%

% PROX is the n x n input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation); LINCON is the given constraining

% linear order (a permutation of the integers from 1 to n).

% MEMBERSHIP is the m x n matrix indicating cluster membership, where

% each row corresponds to a specific ordered partition (there are

% m partitions in general);

% the columns are in the identity permutation input order used for PROX.

% FIT is an n x n matrix fitted to PROX (through least-squares) constructed

% from the nonnegative weights given in the m x 1 WEIGHTS vectors

% corresponding to each of the ordered partitions. VAF is the variance-

% accounted-for in the proximity matrix PROX by the fitted matrix FIT.

orderpartitionfnd.m

% ORDERPARTITIONFND uses dynamic programming to

% construct a linearly constrained cluster analysis that

% consists of a collection of partitions with from 1 to

% n ordered classes.

%

% syntax: [membership,objectives,permmember,clusmeasure,...

% cluscoord,residsumsq] = orderpartitionfnd(prox,lincon)

%

% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation); LINCON is the given

% constraining linear order (a permutation of the integers from

% 1 to n).

% MEMBERSHIP is the n x n matrix indicating cluster membership,

% where rows correspond to the number of ordered clusters,

% and the columns are in the identity permutation input order

% used for PROX. PERMMEMBER uses LINCON to reorder the columns

% of MEMBERSHIP.

% OBJECTIVES is the vector of merit values maximized in the

% construction of the ordered partitions; RESIDSUMSQ is the

% vector of residual sum of squares obtained for the ordered

% partition construction. CLUSMEASURE is the n x n matrix

% (upper-triangular) containing the cluster measures for contiguous

% object sets; the appropriate values in CLUSMEASURE are added

% to obtain the values optimized in OBJECTIVES; CLUSCOORD is also

% an n x n (upper-triangular) matrix but now containing the coordinates

% that would be would be used for all the (ordered)

% objects within a class.

186



ordertm.m

% ORDERTM carries out an iterative

% quadratic assignment maximization task using the

% two-mode proximity matrix PROXTM

% (with entries deviated from the mean proximity)

% in the upper-right- and lower-left-hand portions of

% a defined square ($n x n$) proximity matrix

% (called SQUAREPROX with a dissimilarity interpretation)

% with zeros placed elsewhere ($n$ = number of rows +

% number of columns of PROXTM = nrow + ncol).

%

% syntax: [outperm, rawindex, allperms, index, squareprox] = ...

% ordertm(proxtm, targ, inperm, kblock)

%

% Three separate local operations are used to permute

% the rows and columns of the square

% proximity matrix to maximize the cross-product

% index with respect to a square target matrix TARG:

% pairwise interchanges of objects in the

% permutation defining the row and column

% order of the square proximity matrix; the insertion of from 1 to

% KBLOCK (which is less than or equal to $n-1$) consecutive objects

% in the permutation defining the row and column order of the

% data matrix; the rotation of from 2 to KBLOCK (which is less than

% or equal to $n-1$) consecutive objects in

% the permutation defining the row and column order of the data

% matrix. INPERM is the input beginning permutation (a permutation

% of the first $n$ integers).

% PROXTM is the two-mode $nrow x ncol$ input proximity matrix.

% TARG is the $n x n$ input target matrix.

% OUTPERM is the final permutation of SQUAREPROX with the

% cross-product index RAWINDEX

% with respect to TARG. ALLPERMS is a cell array containing INDEX

% entries corresponding to all the

% permutations identified in the optimization from ALLPERMS{1}

% = INPERM to ALLPERMS{INDEX} = OUTPERM.

partitionfit.m

% PARTITIONFIT provides a least-squares approximation to a proximity

% matrix based on a given collection of partitions.

%

% syntax: [fitted,vaf,weights,end_condition] = partitionfit(prox,member)

187



%

% PROX is the n x n input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation); MEMBER is the m x n matrix

% indicating cluster membership, where each row corresponds to a specific

% partition (there are m partitions in general); the columns of MEMBER

% are in the same input order used for PROX.

% FITTED is an n x n matrix fitted to PROX (through least-squares)

% constructed from the nonnegative weights given in the m x 1 WEIGHTS

% vector corresponding to each of the partitions. VAF is the variance-

% accounted-for in the proximity matrix PROX by the fitted matrix FITTED.

% END_CONDITION should be zero for a normal termination of the optimization

% process.

partitionfit addcon.m

% PARTITIONFIT provides a least-squares approximation to a proximity

% matrix based on a given collection of partitions.

%

% syntax: [fitted,vaf,weights,end_condition] = partitionfit_addcon(prox,member)

%

% PROX is the n x n input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation); MEMBER is the m x n matrix

% indicating cluster membership, where each row corresponds to a specific

% partition (there are m partitions in general); the columns of MEMBER

% are in the same input order used for PROX.

% FITTED is an n x n matrix fitted to PROX (through least-squares)

% constructed from the nonnegative weights given in the m x 1 WEIGHTS

% vector corresponding to each of the partitions. VAF is the variance-

% accounted-for in the proximity matrix PROX by the fitted matrix FITTED.

% END_CONDITION should be zero for a normal termination of the optimization

% process. ADDCON is an automatically estimated additive constrant.

partitionfit twomode.m

% PARTITIONFIT_TWOMODE provides a least-squares approximation to a two-mode

% proximity matrix based on a given collection of partitions.

%

% syntax: [fitted,vaf,weights,end_condition] = partitionfit_twomode(prox,member)

%

% PROXTM is the nrow x ncol two-mode input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation); MEMBER is the m x n (n = nrow+ ncol) matrix

% indicating cluster membership, where each row corresponds to a specific

% partition (there are m partitions in general); the columns of MEMBER

% are in the same order used for PROXTM, with rows first and columns to follow.

188



% FITTED is an nrow x ncol matrix fitted to PROXTM (through least-squares)

% constructed from the nonnegative weights given in the m x 1 WEIGHTS

% vector corresponding to each of the partitions. VAF is the variance-

% accounted-for in the proximity matrix PROXTM by the fitted matrix FITTED.

% END_CONDITION should be zero for a normal termination of the optimization

% process.

partitionfit twomode addcon

% PARTITIONFIT_TWOMODE_ADDCON provides a least-squares approximation to a two-mode

% proximity matrix based on a given collection of partitions.

%

% syntax: [fitted,vaf,weights,end_condition] = partitionfit_twomode_addcon(prox,member)

%

% PROXTM is the nrow x ncol two-mode input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation); MEMBER is the m x n (n = nrow+ ncol) matrix

% indicating cluster membership, where each row corresponds to a specific

% partition (there are m partitions in general); the columns of MEMBER

% are in the same order used for PROXTM, with rows first and columns to follow.

% FITTED is an nrow x ncol matrix fitted to PROXTM (through least-squares)

% constructed from the nonnegative weights given in the m x 1 WEIGHTS

% vector corresponding to each of the partitions. VAF is the variance-

% accounted-for in the proximity matrix PROXTM by the fitted matrix FITTED.

% END_CONDITION should be zero for a normal termination of the optimization

% process. ADDCON is an automatically estimated additive constant.

proxmon.m

% PROXMON produces a monotonically transformed proximity matrix

% (MONPROXPERMUT) from the order constraints obtained from each

% pair of entries in the input proximity matrix PROXPERMUT

% (symmetric with a zero main diagonal and a dissimilarity

% interpretation).

%

% syntax: [monproxpermut, vaf, diff] = proxmon(proxpermut, fitted)

%

% MONPROXPERMUT is close to the

% $n \times n$ matrix FITTED in the least-squares sense;

% the variance accounted for (VAF) is how

% much variance in MONPROXPERMUT can be accounted for by

% FITTED; DIFF is the value of the least-squares criterion.

189



proxmontm.m

% PROXMONTM produces a monotonically transformed

% two-mode proximity matrix (MONPROXPERMUTTM)

% from the order constraints obtained

% from each pair of entries in the input two-mode

% proximity matrix PROXPERMUTTM (with a dissimilarity

% interpretation).

%

% syntax: [monproxpermuttm, vaf, diff] = ...

% proxmontm(proxpermuttm, fittedtm)

%

% MONPROXPERMUTTM is close to the $nrow \times ncol$

% matrix FITTEDTM in the least-squares sense;

% The variance accounted for (VAF) is how much variance

% in MONPROXPERMUTTM can be accounted for by FITTEDTM;

% DIFF is the value of the least-squares criterion.

proxstd.m

% PROXSTD produces a standardized proximity matrix (STANPROX)

% from the input $n \times n$ proximity matrix

% (PROX) with zero main diagonal and a dissimilarity

% interpretation.

%

% syntax: [stanprox, stanproxmult] = proxstd(prox,mean)

%

% STANPROX entries have unit variance (standard deviation of one)

% with a mean of MEAN given as an input number;

% STANPROXMULT (upper-triangular) entries have a sum of

% squares equal to $n(n-1)/2$.

sarobfit.m

% SAROBFIT fits a strongly anti-Robinson matrix using

% iterative projection to a symmetric proximity matrix

% in the $L_{2}$-norm.

% PROX is the input proximity matrix ($n \times n$ with a

% zero main diagonal and a dissimilarity interpretation).

%

% syntax: [fit, vaf] = sarobfit(prox, inperm)

%

% INPERM is a given permutation of the first $n$ integers;

% FIT is the least-squares optimal matrix (with

190



% variance-accounted-for of VAF) to PROX having a strongly

% anti-Robinson form for the row and column

% object ordering given by INPERM.

sarobfnd.m

% SAROBFND finds and fits a strongly

% anti-Robinson matrix using iterative projection to

% a symmetric proximity matrix in the $L_{2}$-norm based on a

% permutation identified through the use of iterative

% quadratic assignment.

%

% syntax: [find, vaf, outperm] = sarobfnd(prox, inperm, kblock)

%

% PROX is the input proximity matrix ($n \times n$ with a zero

% main diagonal and a dissimilarity interpretation);

% INPERM is a given starting permutation of the first $n$ integers;

% FIND is the least-squares optimal matrix (with

% variance-accounted-for of VAF) to PROX having a strongly

% anti-Robinson form for the row and column

% object ordering given by the ending permutation OUTPERM. KBLOCK

% defines the block size in the use of the iterative

% quadratic assignment routine.

skew symmetric lawler dp.m

% SKEW_SYMMETRIC_LAWLER_DP carries out a reordering of a skew-symmetric proximity

% matrix using dynamic programming, and by maximizing the above-diagonal

% sum of proximities.

% PROX is the input skew-symmetric proximity matrix (with a zero main

% diagonal);

% PERMUT is the order of the objects in the optimal permutation;

% PROX_PERMUT is the reordered proximity matrix using PERMUT;

% CUMOBFUN gives the cumulative values of the objective function for

% the successive placements of the objects in the optimal permutation.

% Initializations. The vectors VALSTORE and IDXSTORE store the results of

% of the recursion for the $(2^n)-1$ nonempty subsets of $S$. The integer

% positions in these vectors correspond to subsets whose binary

% number equivalents are equal those integer positions.

191



skew symmetric scaling.m

% SKEW_SYMMETRIC_SCALING performs a closed-form least squares scaling of a

% skew-symmetric proximity matrix.

%

% syntax: [coord,sort_coord,permut,prox_permut,vaf,...

% alpha_multiplier,alpha_vaf,alpha_coord] = skew_symmetric_scaling(prox)

%

% COORD contains the least-squares coordinates which are sorted from

% smallest to largest in SORT_COORD; VAF is the variance they account for;

% PERMUT is the object permutation

% corresponding to SORT_COORD with PROX_PERMUT the reordered skew-symmetric

% proximity matrix. For equally-spaced coordinates, ALPHA_MULTIPLIER

% defines the multiplicative constant on the integer-valued coordinates; a

% collection of equally-spaced coordinates is given by ALPHA_COORD with

% ALPHA_VAF the variance they account for.

targcir.m

% TARGCIR produces a symmetric proximity matrix of size

% $n \times n$, containing distances

% between equally and unit-spaced positions

% around a circle: targcircular(i,j) = min(abs(i-j),n-abs(i-j)).

%

% syntax: [targcircular] = targcir(n)

targlin.m

% TARGLIN produces a symmetric proximity matrix of size

% $n \times n$, containing distances

% between equally and unit-spaced positions

% along a line: targlinear(i,j) = abs(i-j).

%

% syntax: [targlinear] = targlin(n)

ultrafit.m

% ULTRAFIT fits a given ultrametric using iterative projection to

% a symmetric proximity matrix in the $L_{2}$-norm.

%

% syntax: [fit,vaf] = ultrafit(prox,targ)

%

% PROX is the input proximity matrix (with a zero main diagonal

192



% and a dissimilarity interpretation);

% TARG is an ultrametric matrix of the same size as PROX;

% FIT is the least-squares optimal matrix (with

% variance-accounted-for of VAF) to PROX satisfying the ultrametric

% constraints implicit in TARG.

unicirac.m

% UNICIRAC finds and fits a circular

% unidimensional scale using iterative projection to

% a symmetric proximity matrix in the $L_{2}$-norm based on a

% permutation identified through the use of iterative

% quadratic assignment.

%

% syntax: [find, vaf, outperm, addcon] = unicirac(prox, inperm, kblock)

%

% PROX is the input proximity matrix ($n \times n$ with a

% zero main diagonal and a dissimilarity interpretation);

% INPERM is a given starting permutation (assumed to be around the

% circle) of the first $n$ integers;

% FIND is the least-squares optimal matrix (with

% variance-accounted-for of VAF) to PROX having a circular

% anti-Robinson form for the row and column

% object ordering given by the ending permutation OUTPERM.

% The spacings among the objects are given by the diagonal entries

% in FIND (and the extreme (1,n) entry in FIND). KBLOCK

% defines the block size in the use of the iterative quadratic

% assignment routine. The additive constant for the model is

% given by ADDCON.

uniscallp.m

%UNISCALLP carries out a unidimensional scaling of a symmetric proximity

% matrix using iterative linear programming.

% PROX is the input proximity matrix (with a zero main diagonal and a

% dissimilarity interpretation);

% INPERM is the input beginning permutation (a permuation of the first $n$ integers).

% OUTPERM is the final permutation of PROX.

% COORD is the set of coordinates of the unidimensional scaling

% in ascending order;

% DIFF is the value of the l1 loss function for the

% coordinates and object permutation; and FIT is the matrix of absolute

% coordinate differences being fit to PROX(OUTPERM,OUTPERM).

193



uniscallpac.m

%UNISCALLPAC carries out a unidimensional scaling of a symmetric proximity

% matrix using iterative linear programming, with the inclusion of an

% additive constant (ADDCON) in the model.

% PROX is the input proximity matrix (with a zero main diagonal and a

% dissimilarity interpretation);

% INPERM is the input beginning permutation (a permuation of the first $n$ integers).

% OUTPERM is the final permutation of PROX.

% COORD is the set of coordinates of the unidimensional scaling

% in ascending order;

% DEV is the value of deviance (the normalized $L_{1}$ loss function) for the

% coordinates and object permutation; and FIT is the matrix being fit to

% PROX(OUTPERM,OUTPERM) with the given deviance.

uniscaltmac altcomp.m

% UNISCALTMAC finds and fits a linear

% unidimensional scale using iterative projection to

% a two-mode proximity matrix in the $L_{2}$-norm based on a

% permutation identified through the use of iterative

% quadratic assignment.

%

% syntax: [find,vaf,outperm,rowperm,colperm,addcon,coord] = ...

% uniscaltmac_altcomp(proxtm,inperm,kblock)

%

% PROXTM is the input two-mode proximity matrix

% ($n_{a} \times n_{b}$ with a zero main diagonal

% and a dissimilarity interpretation);

% INPERM is a given starting permutation of the

% first $n = n_{a} + n_{b}$ integers;

% FIND is the least-squares optimal matrix (with

% variance-accounted-for of VAF) to PROXTM having a linear

% unidimensional form for the row and column

% object ordering given by the ending permutation OUTPERM.

% The spacings among the objects are given by the entries in FIND.

% KBLOCK defines the block size in the use of the iterative

% quadratic assignment routine.

% The additive constant for the model is given by ADDCON.

% ROWPERM and COLPERM are the resulting row and column

% permutations for the objects. The nrow + ncol coordinates

% (ordered with the smallest set at a value of zero)

% are given in COORD.

194



uniscalqa.m

% UNISCALQA carries out a unidimensional scaling of a symmetric

% proximity matrix using iterative quadratic assignment.

%

% syntax: [outperm, rawindex, allperms, index, coord, diff] = ...

% uniscalqa(prox, targ, inperm, kblock)

%

% PROX is the input proximity matrix (with a zero main diagonal

% and a dissimilarity interpretation);

% TARG is the input target matrix (usually with a zero main

% diagonal and a dissimilarity interpretation representing

% equally spaced locations along a continuum);

% INPERM is the input beginning permutation (a permutation of the

% first $n$ integers). OUTPERM is the final permutation of PROX

% with the cross-product index RAWINDEX

% with respect to TARG redefined as

% $ = \{abs(coord(i) - coord(j))\}$;

% ALLPERMS is a cell array containing INDEX entries corresponding

% to all the permutations identified in the optimization from

% ALLPERMS{1} = INPERM to ALLPERMS{INDEX} = OUTPERM.

% The insertion and rotation routines use from 1 to KBLOCK

% (which is less than or equal to $n-1$) consecutive objects in

% the permutation defining the row and column order of the data

% matrix. COORD is the set of coordinates of the unidimensional

% scaling in ascending order;

% DIFF is the value of the least-squares loss function for the

% coordinates and object permutation.

195


