
THE NewMDSX SERIES OF MULTIDIMENSIONAL 
SCALING PROGRAMS 

 
USERS’ MANUAL 

 
FOR WINDOWS 9x / NT / 2000/XP 

 

 
ished :  October 2001 

                ©  The NewMDSX Project 

 
                                           First publ
            Revised :             August  2004  
 
                                     



 
 
 
        
Background 
 
The original MDS(X) Project was funded (1974-1982) by the U.K. Social 

g m Library Unit of 
the University of Edinburgh. It grew out of the frustration of a research 

ma  was 

produce a utility for producing measures from raw data for input into 
(any) multidimensional

form ion d As
tp://www.mimas.ac.uk/]. Until recently its main use has been on PCs 
erating under MD-DOS. This manual describes a new version for use with 

, 2000, and XP. 

e Windows version now includes programs  for Correspondence Analysis 
ting data (MDSORT), and principal components 
ition to the routines originally available in 

about MDS(X) on MAC machines contact Wolfgang Otto:  
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Science Research Council in conjunction with the Pro ra

group at Edinburgh University trying to work out the similarities and 
s  differences in programs coming from different ources – particularly Bell

Laboratories and University of Michigan (Gutt n-Lingoes). The project
designed to:  
 
• Collect MDS and related programs in common use or of particular interest  
• rewrite the source-code up to Fortran77 specifications  
• replace the common subroutines by numerically efficient versions  

provide a common instruction set for running programs  • 
• 

 scaling programs.  
  

ve sion as wi ely a  For many years, a mainframe r w d vailable, and maintained
til recently by Manchester In at an sociated Services un
ht[
po
Windows 9x, NT
 
Th
(CORRESP) , analysis of sor
nalysis (PRINCOMP), in adda
MDS(X). 
 
or information F
[wotto@sozpsy.unizh.ch]. He has also operated NewMDSX for Windows 
successfully using the MAC PC emulator. 
 
A version of NewMDSX for Linux is in preparation. 
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INTRODUCTION 
 
 
Why scale to begin with ? 
 
 The purpose of scaling is to obtain a quantitative representation of 
a set of data. 
 
 How is such a representation obtained ?  The basic idea is that much 
data can be 
dissimilar things are to each other. Scaling models then take this idea 
seriously, and represent the objects as points in space. In this space, the 
more similar objects are, the closer they lie to each other. The pattern of 
points which
referred to as ‘the solution’ or ‘final configuration’. Some common uses of 
S a

 
 
1. to meas

thought of as giving information about how similar or 

 most accurately represent the information in the data is 

MD re:- 

ure an attitude, attribute or variable.  e.g. the subjective 
s of a series of tones, the degree of ethnocentrism, the 
ty of a particular sexual orientation, preference for a range 
ational policies, the utility of a set of goods, the prestige 

loudnes
intensi
f educo
of a group of occupations.  

 
 
2. to portray complex data in a simpler manner.  e.g. to represent the 

relationships between a set of objects in an easily assimilable, 
usually spatial, form. 

 
   
3. to infer latent dimensions or processes.  e.g. to identify the fac

involved in peoples’ judgements of the desirability of types of 
ho
how subjects' overall judgements of similarity relate to the known 

tors 

using, or the most likely historical sequence of a set of graves, or 

properties of the objects concerned. 
 
 
DATA THEORY AND MEASUREMENT 
 
     The main impetus towards developing MDS models came from the wish to 
develop distance models as a paradigm for the measurement and analysis of 
psychological and social science data, and to build such models without
being committed to the strong distributional or measurement assumption
usually made. This so-called “non-metric” orientation has been associated 
above all with Clyde Coombs (1964) who pioneered much early non-metric MDS 
modelling, and whose viewpoint might be summarised in the following 
propositions: 

 
i) Assumptions about the “level of measurement” of one’s 

assumptions involved in the scaling models used to analyse 
data, commit one to substantive hypotheses about human 
behaviour. 

 
ii) It is better to err on the side of conservatism in attributing 

metric properties to social science data, and to use weaker 
measurement structures to represent them. 

 
iii) Because most social science data have been eli

 
s 

data, and 

cited in non-
experimental settings, and often refer to diversified or non-



homogeneous populations, it is well to be especially sensitive
to individual or group differences, which may be crucial to the 
interpretation of the processes generating the data, but which 
are typically “washed out” in the usual aggregation procedures. 

 
     Coombs’ initial work lay in the analysis of preferential data and he 
evolved a distance model for their analysis. This model, which he term
“Unfolding Analysis” was especially sensitive to individual differenc
The failure to develop a workable algorithm for fallible data meant tha

 

ed 
es. 
t 

Unfolding Analysis was of little interest to the practising scientist, 
however attractive it was, or sensitive it was to representing individual 
differences. A tractable algorithm in fact awaited the development of 
multi-dimensional scaling procedures, which were equally committed to 
making use only of ordinal information to obtain a metric solution to the 
data.

N-METRIC MDS:  THE BASIC MODEL

 
 
 

NO
 

Developments in non-metric MDS procedures and models represent on
the most significant methodological advances of the last forty years. 
Stated simply, their purpose seems very pedestrian – namely to relax the 
assumption of linearity usually made about the kind of function linking th
dissimilarities (the data) and the distances in the solution. In this 
sense, it could b
rametric st tis

e of 

e 

e seen as analogous to the shift of interest to non-
a tics. The greatest pay-off from the use of non-metric MDS 

 to very different types 
 data, to different models (other than just the distance model) and it is 
eadil ppl
diverse as archaeology and electronics as well as the usual social science 
applications
assumptions about distributions rarely need to be made and the procedures 
in no way de
example, frequencies, probabilities, ratings, co-occurrences are quite as 
appropriate as measures of similarity as are composite indices like 
coefficients of correlation, covariance, association and overlap. Perhaps 
st importantly, however c DS solutions are “order-invariant”. 

s made use of in 
e ordering

pa
is that the same basic algorithm is easily extended
of
r y a ied in a wide variety of situations and in disciplines as 

. Moreover, unlike conventional multivariate models, 

pend upon the particular measures of similarity used. For 

mo , non-metri  M
That is to say that only the ordinal content of the data i

on, so that any set of data with the samobtaining a soluti  of 
ill generate the same metric solution.1(dis)similarities w

  
   The basic rationale of non-metric MDS is well discussed in Shepard 
(1962). He begins by considering the difficulty of achieving numerical 
representation when only a ranking of the objects is known. This stems from 
the fact that points representing the objects can be moved very extensively 
(i.e. can take on a large range of numerical values), whilst still 
satisfying such ordinal constraints. However, once the representation must 
in addition satisfy “ordered metric” constraints (i.e. once the data 
contain, in addition, information on the order of the inter point 
distances) the range of possible numerical values is greatly reduced: 

 
  “if non-metric constraints are imposed in sufficient 
  number they begin to act like metric constraints ... 
  As the points are forced to satisfy more and more 
  Inequalities on the inter-point distances ... the 
  Spacing tightens up until any but very small 
  Perturbations of the points will usually isolate  

one or more of the inequalities” (ibid. 288). 
 
 The notion that order relations on distances impose very severe 
constraints on the uniqueness of numerical representation is now 
ommonplace, but its convincing demonstratc
it

ion awaited the development of an 
erative algorithm to implement the set of constraints obtained from the 



data. The basic rationale for this non-metric MDS algorithm is given by 
Kruskal (1964) and this has formed the basis for almost all subsequent work 

1 Th empi

in this area.2   
 
2. e rical data are interpreted as follows 
 

i) There is a set C of objects (
objects will be represented a

often termed stimuli), and these 
s points in a multidimensional 

s between the 
 

space. Significant information about the relation
l measure ofobjects is contained in some empirica

dis/similarity, linking pairs of objects. Only the (possibly 
weak) ordering of these dissimilarity coefficients 

 
δ δ(ci , cj) = ij 

 
  will be preserved in obtaining the solution. 
  
 
In common terminology, the measures input to MDS are termed “proximities” 
or “dis/similarities”. This usage emphasizes the fact that such measures 
may be EITHE

 

R similarities OR dissimilarities; the only difference is that 
dissimilarities will be positively related to the distances of the solution 
whereas simi
solution. Thus if similarity measures (such as correlations, co-occurrences 
as well as actual similarity ratings)are input then the higher the 

 
 

larities will be related negatively to the distances of the 

similarity of two objects, the closer they will be made to be in the 
solution space, whereas if a dissimilarity measure (such as the Index of 
Dissimilarity, Euclidean distance or dissimilarity ratings)is input, the 
higher the dissimilarity of two objects, the more distant they will be made 
to be in the solution space. Users should be especially careful to check 
which of the two types their data measure is, as this is one of the most 
common mistakes made in MDS runs, and even if such a mistake is made, a 
program will still run to completion, giving high-stress “inverted”, 
meaningless  solutions.  
Because input measures are most commonly similarities, this is usually the 
default value in programs. However, in explaining MDS, it is often simpler 
to talk of data as dissimilarities, because they are semantically analogous 
to the dista nces of the Distance model.  

ii)   The solution, or configuration of points  xia 
  the coordinate of each point ci
 

 (corresponding to
 on dimension a) is embedded in a r-dimensional 

  metric space, and a distance function 
 
    d(ci , cj) = dij  
 
 r simplicity, this  

lidean. 
 

an o metric MDS procedure (at least for a  
o find a set of points (X) in a space 

 is defined n his space. Fo o t
distance is assumed to be Euc

ii) The goal of y n n-
distance model) is t
of minimum dimensionality such that the dissimilarities 
(data) are a monotone (ordinal) function of the distances, i.e. 
that whenever 
 
 δij  <  δkl 
then 
 
 dij  <  dkl  (Kruskal’s Weak Monotonicity Criterion) 



 

r-dimensional solution for the data. 

 Shepard (1962) first developed an algorithm to obtain such a solution 
 a two step iterative process consisting of: 

(i) determining the metric configuration that best reproduced the 
data, and (ii) emphasising or “flattening” the resulting configuration into 
as few dimen  
approach, he also showed that it was possible to recover the specific form

A configuration in r-space which satisfies this criterion is a 

   

as

sions as possible. Besides proving the viability of this 
 

of the  monotone function specified in the model. Thus, so long as the δ   
are any mono e 
recovered di

ij

tone function of the “genuine” distances, the plot of δij  by th
stances will reveal the form of that transformation. Non-metric 

MDS can incorporate any monotone function linking the δ   and d  . 
Kruska 96

as follows: 
 We iew multidimensional scaling as a problem of 
 

ij ij

l (1 4), starting from Shepard’s work, defined non-metric MDS 

“  v
statistical fitting – the dissimilarities are given 

 and we wish to find the configuration whose distances 
 fit them best.” 
 
This he did by explicitly introducing a “badness of fit” quantity to  

be minimized in the iterative process, namely STRESS, which is a normalized 
residual sum of sq
1969). 

                        
      
 Si =  
 
                Σi<j  d ij  
 

and he
-
n 
 

uares from monotone regression (see Carroll and Kruskal 

      [ Σ (d  – ˆd )i<j ij ij

___________________    

2

2 ]½  

 introduced the new fitting quantities  ˆdij  (known variously as 
“pseudo distances”, “disparities” or “discrepancies”), which are the least
squares fit to the distances (dij) and are as close as possible to being i
the same order as the data. (These quantities incidentally avoid performing
arithmetic on the data quantities (δij )  which is ex hypothesi excluded by 
the non-metric approach). These dij are obtained by a technique known as 
monotone or isotonic regression (see ibid, 126). 

ds as follows: 
 

The iterative procedure developed by Kruskal basically procee
 

i) an initial configuration in a user-determined
3

 

 
dimensionality is produced.

ii)   the configuration is normalised. 
  

iii) pairwise distances between the points in this space 
are then calculated. 
 

iv}   monotone regression: The distances are fitted by a best 
      fitting monotone function, giving a set of “disparities”. 
 
v) the stress (badness of fit) of the current configuration 

      is calculated from the distances and disparities. 
 

y low, the final configuration and 
ary data are output. Alternatively: 

 
is next calculated to move the 

 
 

vi) if stress is acceptabl
summ

vii) a correction factor 



configuration in the direction of lower stress. This 
moves the points in the direction giving a new 
configuration which has greater conformity with the data 

 to a configuration of lower stress). 
 

viii) If the gradient is zero, then a (possibly local) minimum 
has been reached in the sense that any further gradual 
change in the configuration will increase stress. 

 
 

is basic algorithm of Kruskal’s, often referred to as M-D-SCAL, 
differ

 
 of minimization using negative 

adients has now been replaced by more efficient methods in many programs. 

(i.e.

 

Th
s slightly from the approach implemented by MINISSA in the NewMDSX 

series: Roskam’s approach in MINISSA is to manipulate simultaneously the 
disparities and the distances. This is discussed at greater length in the
documentation of MINISSA. This process
gr
 
 
EXTENSIONS OF THE NONMETRIC MULTIDIMENSIONAL DISTANCE MODEL 
 

MDS procedures can be differentiated by three criteria: 
 
the form of the data to be analysed; 
 
the model which specifies the precise way in which the data are
represented in the space; and 
 
the transformation or function

 

 which is assumed to relate the 
riginal data to the solution. (This third criter

  
ion is often referred to 

h ement’). Thus the basic non-metric model, which may 
co adigm, provides for: 

o
as t e ‘level of measur
 nsidered as a parbe

 
(DATA) 
 
(1) the internal analysis of a 
(2) square 
(3) symmetric 
(4) two-way data matrix by a 
 
(MODEL) 
 
(5) Euclidean 
(6) distance model, involving 
 
(FUNCTION) 
 
(7) a monotonic transformation of the data. 
 
 
The restrictions implied by each emphasized qualifier in the p

Sentence have been successively relaxed allowing the extension of MD
very wide class of models for very different types of data: examples 
each generalisation are given below: 
 

revious  
S to a 
of 

3.1  Internal vs. External analysis 
  
 The basic MDS algorithm generates a configuration of points purely in 
accordance with the ordinal information in the data, i.e. the result is 
defined “internally” by the data matrix. 



 
 In some cases, however, the positions of the stimuli may be already 
known or assumed, and in this case so-called “external” analysis is 
perfo

 (external properties) are related to a known 

 

rmed, using additional external data information (often called 
“properties” and fitting  the new properties  within this frame. A 
particularly important example occurs in preference mapping where a set of 
preference judgements
configuration of stimulus points (see PREFMAP). 

3.2 Various matrices 
 

A very useful generalisation is the extension to conditional 
similarity data, where data are treated as comparable only within rows (or 
only within columns). Data relating two distinct sets of objects (e.g. 
subjects and stimuli) thus become analysable in the MDS framework. The most 
common example of this type is preference data (e.g. where a set of 
subjects judges, say, a set of alternative political policies in terms of 

on is that it 
 

et 

their desirability). The most obvious benefit of this extensi
provi es a tractable method of analysis for unfolding models.d

 
 Briefly, the Unfolding Model seeks mapping in the same space of a s

of points representing stimuli (usually the objects of choice or 
preference) and a distinct set of points representing the subjects (each 
point representing the most preferred or ‘ideal’ location of the subject 
concerned. In the resulting configuration, therefore, a more-preferred 
stimulus is closer to the subject’s ‘ideal’ point than a less-preferred 
point, and hence an individual’s preference order represents the rank order 
of that distance between his/her (fixed) ideal point and the locations of 
the s uli

ined 

et of st . im
 
 It is a relatively simple matter to adapt the non-metric MDS 

algorithm to deal with such data and produce procedures for 
‘multidimensional unfolding analysis’ where the final configuration 
represents a mapping of both ‘subject’ and ‘object’ points into a 
multidimensional space. (For a fuller discussion see MINIRSA). 

 
 A parallel move away from the paradigm case involves the analysis of 

square but asymmetric data matrices, such as might for instance be obta
from a sociometric experiment in which each of a set of subjects is asked 
to rank or rate the other members of the set in terms of, say, friendship. 
In this case the same set may be mapped twice, first as a set of judges a
secondly as stimuli. A possibility of external preference analysis is gi
in the present series by the PREMAP program (q.v.). 

nd 
ven 

 
NewMDSX also includes programs specifically written for thye direct 

analysis of special types of data, such as free-sortings (MDSORT), triadic 
judgments (TRISOSCAL), as well as frequency Tables (CONJOINT, CORRESP) and 
Profiles(PARAMAP).  

 
 

3.3 Extensions from the Euclidean distance model 
 
 

A Euclidean distance (djk) is defined as: 
 

djk   =   ⎧  ∑   | xja  -  xka
  |  2     ⎫   ½

                  ⎩   a                                                       ⎭ 
 

here x   is the co-ordinate of point j onw ja  the a’th distance. 
 
 
To date, the vast majority of MDS studies have used the Euclidean 



dist nce model, whether through convenia ence, beliefs about its robustness, 
 attachment to its substantive implications (Shepard 1969, Sherman 1970). 
clidean distance is, however, a special case of a more general family of 

Minko

n 
sable, 

the ‘city-block’ metric (r = 1) provides a better explanation of, and fit 
 

he 
-

wski parameter is allowed 
S SSA (City Block and Euclidean only). 

or
Eu

wski metrics, defined as: 
 

djk   =   ⎧  ∑   | xja  -  xka
  |  r     ⎫   1/r 

                 ⎩   a                                                       ⎭ 
 

where the so-called Minkowski parameter r can lie between 1 and infinity. 
 

 A good deal of psychological research (Attneave 1950) shows that whe
dimen ions of judgement are few and sufficiently salient or recognis

to, judgemental data. By contrast, the ‘dominance metric’ (r = infinity),
where the largest single dimensional difference dominates all others, 
should fit a good many complex stimuli. Arnold (1971) provides an 
interesting test of the behavioural assumptions of different metrics on t
ratings of similarities between pairs of words drawn from distinct word
class s. The possibility of varying the Minkoe
inMR CAL (q.v.) and MINI

 
 Lingoes (1972) and others have also developed non-metric analogues of 
factor analysis. Once again, the purpose is to provide a lowest-stress fit 
to a monotone transform of the symmetric data matrix of (dis)similarities. 
An example of a metric factor analysis (or vector) model is the MDPREF 
model, where, as in the distance model, stimuli are represented as points 
in a multidimensional space, but a subject’s preferences are represented in 
this space as a vector or line oriented to the region of his/her greatest 
preference. The order of projections of stimuli points on this line 
represents the subject’s order of preference. 

 
 A further instance of the generalisability of the non-metric MDS 
algorithm is its extension to an additive model, which regards the data as 
some additive combination of factors rather than of the complex distance 
function. This additive model is a special case of conjoint models 
implemented by the CONJOINT program (q.v.) and in effect provides a non-
metric version of analysis of variance. 
 
 
 
3.4 Metric and non-metric approaches 
 
 

Historically, the first MDS models were designed to preserve metric 
information in the data and assumed that the empirical (dis)similarities 
were some linear function of the model distances. The main metric program 
of the present set differs, however, in many ways from ‘classic’ metric 
MDS. As we have seen, the more recent approach used ordinal information, 
and hence the much broader class of monotonic functions is available. In 
MDS procedures, this distinction has basically been implemented by the form 
of regression used – usually linear regression of data upon distances in 
the metric case, and monotonic regression in the non-metric case. 

 
 This class has been extended to allow Kruskal’s suggestion that 

multivariate linear regression or polynomial regression (of higher than 
degree) be exploited in some circumstances (Kruskal 1969), and 
ly Shepard and Carroll’s (1966) Parametric mapping

linear 
condse  model PARAMAP, 

which seeks to maximise an index of continuity which assures that the 
function will be at least locally monotone. 

 
 T3.5 hree-way scaling 

 



P
has been the extension to 3- or higher-way data matrices. To call a data 
matrix ‘two-way’ is in fact to say nothing more than that it is a matrix, 
i.e. i
we have seen, may or may not be identical. If the data are, say, adjudged 
ssimilarities on a set of stimuli by one individual at one time then the 

icit
indivi
The ba
aggreg
and systematic differences exist in subjects’ judgements, and hence whether 
e aggregate solution represents anything but a statistical artefact. 

indivi

erhaps the most far-reaching development in multidimensional scaling 

t is composed of some measure between two sets of objects which, as 

di
solution is simple. But in the case of a matrix of similarity judgements 
el ed from a number of subjects (usually, though not necessarily, 

duals)4  the third ‘way’ is the ‘stack’ of these two-way matrices. 
sis of the problem is that if data from a number of subjects are 
ated before analysis, there is no way of knowing whether important 

th
Conversely, however, even if a solution is obtained from each subject 

dually, there is no obvious way in which the degree of commonality 
n subjects’ ‘cognitive maps’ can be assessed. One attractive betwee

conceptualisation of the problem by Horan (1969) suggests that a “Normal 
tribute Space” be defined as the union of all dimensions used by 

subjects. This space, which is called the “Group Stimulus Space” in the 
INDSCAL program will usually be of high dimensionality (since it may very 
well include purely idiosyncratic dimensions) has the advantage that every

At

 
subject is using some subset of the dimensions. Carroll and Chang (1970) in 
their classic paper on three-way scaling go on to suggest that, rather than 
subjects’ use of dimensions being ‘all or nothing’, they rather attach  
weights (representing  differential salience or importance) to them. Thus, 
when an individual’s set of weights are applied to the Group Stimulus 
Space, the effect is to differentially stretch or contract the dimensions 
and yield an idiosyncratic, transformed, configuration of points (the so-
called “Private Space”). This general approach and specific method are more 
fully discussed in the section on INDSCAL. 

 
 
 
 

Notes 
 
1. See Lingoes (1966) and Sibson (1972) for an extended discussion of 

these points. 
 
2. See Shepard (1962), Guttman (1965), Lingoes and Roskam (1971) for 

basic contributions to the development of the algorithm. The 
technical issues involved will only be touched on here, but are fully 
discussed in Lingoes and Roskam, and in Green and Rao (1971). The 
most robust and near-optimal algorithms are represented by the 
Guttman-Lingoes-Roskam series (Lingoes and Roskam 1971 In the NewMDSX 
series, the program implemented is MINISSA (v.i.). 

 
3. Kruskal initially recommended the generation of a random or arbitrary 

starting configuration. It has subsequently been shown that this will 
considerably increase the probability of a process finishing in a 
local minimum. A “quasi-non-metric” initial configuration defined by 
Guttman-Lingoes or Torgerson is greatly preferable. See Lingoes and 
Roskam (1971). 

 
4. Subjects may be not only individuals but “pseudo-subjects”   groups, 

distinct times, places, replications,  or, indeed, in an interesting 
application, scaling solutions obtained from different MDS programs 
(see Green 1972).  
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HOW TO USE NewMDSX FOR WINDOWS  
 
1.1  Overview 
 
The main Editor/Interface appears automatically when the program is loaded, 
and is used to control the creation and editing of files and the execution 
of the various NewMDSX procedures. It consists of two resizeable panels, 
the upper for input and the lower(closed in the following)for output files. 
 
 

  
 
Before selecting an input file or entering new data, the name of the 
NewMDSX program to be used must first be selected in the pull-down window 
to the right of the toolbar. In the above illustration, this is MINISSA. 
 
A number of demonstration input (*.inp) files for the various NewMDSX 
procedures are automatically installed with the program. These can be 
loaded from the File menu or by using the open file button on the toolbar, 
after first selecting the name of an NewMDSX procedure from the pull-down 
menu to the right of the toolbar. In the above illustration, the file 
Test_MINISSA.inp has been selected. Besides offering to open or save files, 
the File menu also allows you to Reopen files you have recently used, 
without having to search for them again. Clicking on the Run button on the 
toolbar will execute the procedure selected in the pull-down menu, taking 
as input the file currently displayed in the editor window.  
 
The main window also serves as a fully-functional text editor, with the 
ability to change font types, sizes and colours, to search for strings in 
the file displayed, edit, annotate and save input and output files 
associated with the various NewMDSX procedures. When images have been  
saved, it can also be used to amend them, to outline and label features of 
interest as required.  
 
 



Clicking on the Data Entry button (or the  Tools|Data entry  menu item) 
calls the WOMBATS routine (Work Out Measures Before Attempting To Scale). 
This generates matrices of a wide variety of measures of (dis)similarity 
which can be stored for use by NewMDSX procedures or by other programs.  
 
Use the adjacent button (or  Tools|Matrix conversion ) to call a utility to 
convert between different matrix formats. 
 
New input files to the selected NewMDSX procedure can be created most 
conveniently with the help of the corresponding Input Wizard. This also 
offers a facility for data input in spreadsheet form, according to the 
parameters which the user has selected, and automatically initiate the 
corresponding analysis, displaying the results in the main window. 
 
Clicking on the Graphics button when output from one of the NewMDSX  
procedures is displayed will open a graphic display of the configuration  
or diagram following the current cursor position (see below, 1.4.).  
 
 
1.2. Data entry 
 
When using the input Wizard to create an input file for one of the NewMDSX  
routines, simply follow the prompts for the necessary commands, as they 
appear in the Wizard’s opening window, in the following example creating an 
input file to MINISSA: 
 

 
 
 
 
The data to be analysed are entered into the following spreadsheet, 
displayed after clicking on the button marked Next in the above window. 
This will invite a rectangular or lower-triangular data matrix of the 
dimensions specified by the user, according to the requirements of the 
procedure currently selected and the value of the DATA TYPE parameter. 
 
Note that it is also possible to enter your own row and column names in the 
spreadsheet, to help identify the stimuli in the output. This simply adds 
an appropriate LABELS specification (see p. 24) to the input file created 
by the input Wizard. 



 

 
 
 
 
After positioning the spreadsheet cursor in an appropriate starting 
location, you may also click on Read from file to load data in the 
appropriate order from a free format plain text file, which may have been 
exported directly from another program or created by cutting and pasting 
from a file in another format. Alternatively, click on Edit to paste data 
direct from the Windows clipboard. If the first line of data to be read, or 
pasted, in this way contains a series of variable labels,  
 
for example: 
 
   VAR1 VAR2 VAR3 VAR4 VAR5 
   99.0 51.1 71.4 63.0 58.6 
   51.1 99.0 75.8 52.7 52.7 
   71.4 75.8 99.0 36.9 40.8 
   63.0 52.7 36.9 99.0 32.3 
   58.6 57.7 40.8 32.3 99.0 
 
where a symmetric matrix of similarity values is headed by simple variable 
names, these will be inserted in the spreadsheet in the appropriate 
locations.  
 
For PINDIS (see pp124ff), which allows the input of labelled 
configurations, the format is as follows: 
 
   VAR1 -0.1358  0.2993 -0.7294  
   VAR2  0.2229 -0.6381  0.5729  
   VAR3  0.2679 -0.7446 -0.3938  
   VAR4 -1.1287  0.2396  0.2875  
   VAR5  0.7737  0.8437  0.2628  
 
These are the techniques to use to speed up importing and exporting data to 
and from NewMDSX. It is worth spending some time looking at them, in 
conjunction with the demonstration data provided with each routine, before 
attempting to enter your own data for analysis.  
 
Finally, click on Continue to close the spreadsheet window and create the 
corresponding input file. 
 
It is, of course, also always possible to use the main editor/interface to 
directly enter or modify input files as required. 
 
 
 



 
1.3 Matrix conversion 
 
A utility has been included in NewMDSX for Windows to facilitate conversion 
between the matrix formats commonly encountered in importing from and 
exporting to other programs, as well as between routines in NewMDSX.  
 
 

 
 
 
Clicking on Continue in the window shown above opens a spreadsheet window 
to create the input matrix, which may have been exported from another 
program and saved in a free format text file, or may have been placed in 
the Windows clipboard ready to be copied into the spreadsheet displayed: 
 
 
 

 
 
Click on Read from file to load numerical data from a text file, or on 
Edit, to paste data direct from the Windows clipboard. Click on Continue to 
close the spreadsheet window and display the resulting matrix in the input 
window, from where it can be saved or copied for further use. 
 
1.4. Graphics 
 
When a NewMDSX procedure has been executed and the results are displayed in 
the output window, clicking on the Graphics option invokes a graphic 
display of the first suitable data configuration or diagram which the 
program can locate in the listing following the current position of the 
editor cursor.  



 
1.4.1  When the results of a HICLUS cluster analysis are displayed in the 
editor window, this will show the cluster diagram (if any), immediately 
following the current cursor position, as a graphic dendrogram: 
 
 

 
 
 
 
1.4.2 When the results of the other NewMDSX procedures are displayed in 

the editor window, clicking on the Graphics button will show the 
configuration (if any) for which the data are listed following the 
current cursor position, in the form of a pseudo-3-dimensional 
display, as follows. Alternatively, click on the Graphics button 
when the cursor is inside one of the ‘line-printer’ output plots. 

 
 
 



 
 
 
 This display can be manipulated as follows:  
 
• click on the buttons on the toolbar, or use the short-cut keys indicated 

to rotate, zoom, or reflect the display. Click on any point to highlight 
its label. 

 
• Back and Forward change the combinations of dimensions displayed if the 

configuration selected in fact contains more than three dimensions  
 
• click on the axis end points to see the effect of incremental clockwise 

rotations of the configuration with respect to the selected axis (the 
numerical keys 1, 2, and 3 have the same result). Use Configuration to 
keep track of this process and save rotated configurations if required. 
Use the menu item Reflect to see the result of reflecting the display 
about the vertical or horizontal axes. To see reflection about dimension 
2, first rotate the display to two dimensions only. 

 
• hold down the right mouse button with the pointer on the display, move 

the pointer to another position and release the mouse button again, to 
drag the display to a different location in the window. 

 
• Click on the menu item Labels to adjust the maximum number of 

characters, the font and character size displayed in point labels. 
 
 
Clicking Draw allows you to draw on the display with the mouse, to 
highlight features of interest. Lines enables you to draw straight lines, 
from a point where the mouse button is depressed to a point where it it 
liftes again. Clicking Text causes a box to appear to enter text. On 



closing this box, move the mouse to the position required and press a mouse 
button to add the text to the image displayed. The image as amended must 
then be saved immediately on completion, as the additions will be lost when 
the display is further changed. Click on Refresh Display to clear and 
return to the original image.  
 
1.4.3  For graphical display of higher-dimensional configurations, Andrews 
plots are offered as an alternative to a series of pseudo-3-dimensional 
displays. 
 
If the data are k-dimensional, each point x' = (x1, x2 , . . . , xk) defines 
a function 
 
 fx(t) = x1/sqrt(2)+ x2.sin(t)+x3.cos(t)+x4.sin(2t)+x5.cos(2t)+  . . . 
 
which is plotted over the range -π < t < π. 
 
In these plots, points in a higher-dimensional configuration which are 
close together in Euclidean space are represented by functions which remain 
close together for all values of t. Outlying values on the other hand lead 
to a peak in the corresponding function for some t. This form of plot is 
useful to summarise higher-dimensional data when the number of individual 
stimuli in the MDS analysis remains relatively small, say less than 10. The 
plots become confusing, however, for larger numbers of stimuli/variables. 
 
 

 
 
 
 
 



See D.F.Andrews, "Plots of high-dimensional data" Biometrics,28, 1972, pp. 
125-136, for a full discussion of this plotting technique in the 
interpretation of data.  
1.4.4. The output from most NewMDSX procedures includes Shepard diagrams, 
relating values fitted by scaling to the original data. Placing the editor 
cursor in front of the words ‘SHEPARD PLOT’ (or ‘CORRELATION’, in the case 
of output from PROFIT, will open a graphic display of the diagram which 
follows. 

 
 
 
Click on the Save button in each of these displays to save them in a 
graphics file for later reference. Alternatively, you may use ALT+PrtScr to 
save the display to the Windows Clipboard for inclusion in other documents. 
 
Click on the Close button in the display window to close it and return to 
the main NewMDSX window. 
 
 
1.5.  THE NewMDSX COMMAND LANGUAGE 
 

The NewMDSX  procedures themselves employ a set of commands similar 
to, though not identical with, those originally used in SPSS.  Program-
specific parameters are set with the command PARAMETERS. (Consult the 
documentation for the individual procedures for full details of their 
particular commands and PARAMETERS).  
 

All commands in NewMDSX may be entered in UPPER or lower case letters 
and in free format. Spaces are ignored except in keywords, which must be 
typed in full. All input is expected to be in free format, separated only 
by spaces. In certain instances, where data are taken from other sources, 
it may not be possible to read them correctly in free format. In such cases 



a fixed format for the data can be specified, using the Fortran-style INPUT 
FORMAT statement (several of the example data sets supplied with the 
program illustrate how this is done). 
 
 The output commands PRINT, PLOT and PUNCH are retained in their 
original form, for compatibility with earlier versions of MDS(X) although 
they now have different functions. PRINTed and PLOTted output now all 
appears in the main output file generated by a NewMDSX procedure, while 
PUNCHed output is placed in a secondary output file and may be saved for 
separate use, as required. 
 
 
1.5.1  FORMAT OF COMMANDS 
     A command has two distinct parts: 
     i)   the command word itself,  and 
    ii)   an operand (or parameters) field which follows the command word,              
separated by any number of spaces. 
 
The operand field may be blank for some commands. 
 
The command word 
     All commands in NewMDSX may be entered in upper or lower case letters, 
but the spelling (and any spaces in the command) must conform to the 
specifications in section 1.5.2. 
 
The operand field 
     The operand (or parameters) field may also be in upper or lower case 
characters, and must follow the command word, separated from it by an 
arbitrary number of spaces. All spaces in the operand are ignored except in 
the spelling of keywords, which must be typed in full. 
 
     Commands must occupy one and only one line of input except for the 
PARAMETERS command, COMMENT, LABELS and the three output option commands 
PRINT, 
PLOT and PUNCH which may continue for as many lines as necessary, in free 
format.  
 
     Generally, there is no fixed order of precedence of commands. 
However, all data definition instructions (N OF SUBJECTS, N OF STIMULI, 
PARAMETERS, etc.)  must precede READ MATRIX. For compatibility with earlier 
versions of MDS(X), each READ MATRIX or READ CONFIG command may be preceded 
by an INPUT FORMAT specification, if one is used, although by default all 
data will be assumed to be in free format, with the values separated by 
spaces. It is therefore only necessary to consider using a fixed INPUT 
FORMAT specification when the data for some reason will not be correctly 
interpreted in this way.  

 
It should also be noted that the PRINT, PLOT and PUNCH commands must 

precede the COMPUTE command. 
 
     All commands are echoed in the output and all errors (up to the 
specified ERROR LIMIT) are flagged. If an error has occurred then the 
remaining input will be scanned for errors. 
 
1.5.2  NewMDSX COMMANDS  (obligatory commands are marked with an asterisk 
                     for ease of reference) 
 
1.    The RUN NAME 
------------------------------------------------------------------------ 
 
 RUN NAME     any descriptive title for the run 
----------------------------------------------------------------------- 
 Function  :  Provides a name for the run 



 Status    :  Optional 
 
 
 
 
 
 
2. The TASK NAME  
------------------------------------------------------------------------ 
 
      TASK NAME      any descriptive title for a subtask 
------------------------------------------------------------------------ 
 
       Function :  Provides a name for the task (Useful in runs 
                    where more than one task is performed) 
       Status   :  Optional 
       Notes    :  On encountering a second (and subsequent) 
                   TASK NAME, PARAMETERS will resume their 
                    default values. 
 
 
3. The COMMENT command  
-------------------------------------------------------------------------- 
 
       COMMENT           any comments 
-------------------------------------------------------------------------- 
 
        Function :  Allows the user to insert comments and notes at 
                    any point in the run.  Comments may be continued 
                    on subsequent lines in free format. 
        Status   :   Optional 
 
 
4.   The LABELS command 
-------------------------------------------------------------------------- 
 
      LABELS         plus a series of variable labels, on successive 
                     lines, beginning with the one containing the command 
-------------------------------------------------------------------------- 
 
        Function :  Available in most procedures to allow the 
                    association of labels to assist in identification 
                    of variables in tables and plots. 
        Status   :  Optional 
 
 
5.  The PRINT DATA command 
------------------------------------------------------------------------ 
    PRINT DATA        (YES) 
                   (or ) 
                   (NO ) 
----------------------------------------------------------------------- 
 
    Function :  Allows the user to have any input data echoed in 

output.  Can be useful if the system appears to be 
misreading your data. 

    Status   :  Optional 
    Notes    :  PRINT DATA is initially set to NO and will remain 
                in force until the end of the run or another 
                PRINT DATA is encountered. 
 
 
*6.  The # OF SUBJECTS instruction 



--------------------------------------------------------------------- 
    #  OF SUBJECTS   number of subjects in the analysis:  must 
           or          be an integer value 
    NO OF SUBJECTS 
           or 
    N  OF SUBJECTS 
--------------------------------------------------------------------- 
    Function :  Provides the system with the number of subjects 
                in the analysis. 
    Status   :  Obligatory for most procedures 
    Notes    :  Not applicable to some procedures:  see the 
             relevant program documentation. 
                  CORRESP uses N OF ROWS 
 
 
*7.  The #  OF STIMULI instruction 
--------------------------------------------------------------------- 
    #  OF STIMULI    number of stimuli in the analysis:  must 
           or          be an integer value 
    N0 OF STIMULI 
           or 
    N  OF STIMULI 
--------------------------------------------------------------------- 
    Function :  Provides the system with the number of stimuli 
                in the analysis 
    Status   :  Obligatory for most procedures 
    Notes    :  Not applicable to some procedures:  see the 
                relevant program documentation. 
                  CORRESP uses N OF COLUMNS 
 
*8.  The DIMENSIONS instruction 
---------------------------------------------------------------------- 
 
   DIMENSIONS        <number> 
                     <number list>         Not possible for all procedures: 
                     <number> TO <number>   consult program documentation 
--------------------------------------------------------------------------- 
     Function :  Sets the dimensionalities for the analysis 
     Status   :  Obligatory 
     Notes    :  Solutions are usually computed from the highest 
             dimensionality down to the lowest, whatever the 
             order specified in the command. 
 
 
9.  The PARAMETERS command 
--------------------------------------------------------------------------- 
 
   PARAMETERS        keyword (value), keyword (value) etc. 
 
--------------------------------------------------------------------------- 
   Function :  Allows the user to set program parameters to 
               control the analysis 
   Status   :  Optional 
   Notes    :  See the relevant program documentation for full 
             details of keywords and values. 
 
 
 
 
10.  The ITERATIONS instruction 
--------------------------------------------------------------------- 
 
    ITERATIONS       maximum number of iterations to be performed 



--------------------------------------------------------------------- 
    Function :  Sets the maximum number of iterations to be 
                 performed in the analysis 
    Status   :  Optional 
    Notes    :  Applicable only to those procedures which employ 
               an iterative procedure.  A maximum of 100 iterations 
               will be assumed if this instruction is not used. 
 
 
 
11.  The INPUT FORMAT instruction 
---------------------------------------------------------------------- 
 
      INPUT FORMAT     a FORTRAN format descriptor enclosed in brackets 
                      (excluding the word FORMAT) 
--------------------------------------------------------------------- 
 
     Function :  Describes the data to be read in 
     Status   :  Optional; free format input is assumed if not used. 

Notes    :  This is included for the sake of completeness. Most 
            users will probably be content to use free format input. 
            The format, if specified, must be suitable for reading 
            real numbers. Please consult the relevant program  

                  documentation.  
                  If in doubt, consult a FORTRAN programmer. 
 
 
12.  The READ MATRIX command 
------------------------------------------------------------------- 
  
     READ MATRIX       blank 
------------------------------------------------------------------- 
 
      Function :  Instructs the system to begin reading the data 
                  matrix (or matrices) from the selected INPUT 
                  MEDIUM (according to INPUT FORMAT, if used). 
      Status   :  Obligatory 
      Notes    :  READ MATRIX may be preceded by an INPUT FORMAT 
                  Command, and where applicable # OF SUBJECTS and  
                  # OF STIMULI instructions.  See relevant program 
                  documentation for the type of matrix expected.   

The data matrix must immediately follow  
      the READ MATRIX instruction. 
 
 

13.  The READ CONFIGURATI0N command 
----------------------------------------------------------------------- 
     
    READ CONFIG       blank 
----------------------------------------------------------------------- 
 
     Function :  Instructs the system to read in an initial 
                 configuration rather than generating its own. 
                 Use of this option can often cut the time taken 
                 to reach the solution. 
     Status   :  Optional 
     Notes    :  READ CONFIG, if used, may be preceded by its 
             own INPUT FORMAT instruction if free format input  

is not satisfactory and, where applicable,  
                 # OF SUBJECTS, # OF STIMULI, and DIMENSIONS  

instructions. 
                 See the relevant program documentation for the type  

of matrix expected. 



 
                  The configuration must immediately follow the  

READ CONFIG instruction. 
 
*14.  The COMPUTE command 
---------------------------------------------------------------------- 
     
     COMPUTE           blank 
------------------------------------------------------------------------ 
     Function :  Instructs the system to start the computation 
     Status   :  Obligatory 
     Notes    :  COMPUTE must be preceded by READ MATRIX. 
 
 
 
15.  The PRINT, PLOT and PUNCH commands 
----------------------------------------------------------------------- 
 
      PRINT              ALL 
       or 
      PL0T               ALLBUT 
       or 
      PUNCH              EXCEPT 
                       <matrix name (dimensions)> 
                       <matrix list> 
                       <null> 
----------------------------------------------------------------------- 
     Function :  Allows user control over the amount of output generated 
     Status   :  Optional 

Notes    :  These are retained for in their original form for 
compatibility with earlier versions of MDS(X). PRINTed 
and PLOTted selections appear in the main output file, 
and PUNCHed selections in a secondary output file. 
For convenience, specifying a PLOT option will 
automatically also PRINT the corresponding values in 
tabular form in the output file. 
See the relevant program documentation for details of 
options available in each procedure.   

 
 
16.  The ERROR LIMIT instruction 
--------------------------------------------------------------------- 
   
    ERROR LIMIT       <number> 
----------------------------------------------------------------------- 
 
     Function :  Sets the number of errors to be encountered in 
                reading the input file before processing ceases 
     Status   :  Optional 
     Notes    :  The default value allows for 20 errors. 
 
 
17.  The FINISH command 
----------------------------------------------------------------- 
   
     FINISH  
----------------------------------------------------------------- 
     Function :  Terminates the run 

Status   :  Obligatory (must be the last command in the run  
instructions) 

 
 
 



 
 
 
PROGRAMS WITHIN NEWMDSX 
 
2.   CANDECOMP (CANonical DECOMPosition) 
 
2.1  OVERVIEW 
 
Concisely:  CANDECOMP (CANonical DEC0MPosition)  
provides internal analysis of a 3- to 7-way data matrix of (dis)similarity 
matrices, by a weighted scalar product distance model using a linear 
transformation of the data. 
 
    Following the categorisation developed by Carroll and Arabie 
(1979) the program may be described as: 
 
    Data:  Three- to seven-way     Model:  Generalised Scalar products 
           Two- to seven-mode              Two to seven sets of points 
           Polyadic                        Internal or External 
           Linear 
           Complete 
 
2.1.1  ORIGIN, VERSIONS AND ACRONYMS 
     The present CANDECOMP program performs the analysis described 
in Carroll and Chang (1970) as “Canonical decomposition of N-way 
matrices”.  The original INDSCAL program performed both this N-way 
analysis and contained as a special case, the 3-way, 2-mode analysis which 
became known as the INDSCAL model. These two are now separated, and the 3-
way 2-mode model is implemented by INDSCAL-S. The CANDECOMP program is 
adapted from the original Bell Laboratories(1971) INDSCAL program. 
 
2.1.2  CANDECOMP IN BRIEF 
     CANDECOMP takes as input a table of data values with between 
three and seven "ways".  In the solution, each of these ways is 
represented by a configuration of points representing the elements of 
that particular way in a space of chosen dimensionality.  Each data 
value is regarded as being the scalar product between the relevant 
elements.  The program assumes that the data are at the interval 
level of measurement. 
 
2.1.3  RELATION OF CANDECOMP TO OTHER NewMDSX PROGRAMS 
     CANDECOMP may be used to perform individual differences analysis 
if there are more than three ways (e.g. if the study involves 
replications). 
     The present program is a modified version of Carroll and Chang's 
original INDSCAL program.  The so-called INDIFF option in that program 
(i.e. the special case when there were three ways and two modes in 
the data) became generally known, rather confusingly, as the INDSCAL 
model or, simply, "individual differences scaling".  This INDIFF option 
now forms the INDSCAL-S program in the NewMDSX series, while CANDECOMP 
provides the full range of options available in Carroll and Chang's 
original program. 
 
2.2.  DESCRIPTION OF INPUT 
 
2.2.1  DATA 
     There are two basic forms of data input to CANDECOMP, which 
we will refer to as being applicable to 
 
     1.   an "extended INDSCAL" analysis 
and  2.   the CANDECOMP analysis proper. 
 



     What we call the 'extended INDSCAL' analysis refers to the case  
Where two of the ways of the matrix refer to the same set of objects,  
that is, one of the matrices is square and the row- and column-elements 
refer to the same set of objects.  These objects will be represented 
by only one configuration in the output.  By contrast all the ways 
of the CANDECOMP analysis are regarded as distinct. 
 
2.2.1.1  The extended INDSCAL analysis 
     Users who wish to analyse three-way, two-mode data are referred 
to the INDSCAL-S program. 
 
     In an INDSCAL analysis of this sort we have a set of matrices 
obtained from a set of subjects.  Each matrix is a matrix (dis)similarity 
coefficients of some sort between a set of stimuli.  There will thus 
obviously be as many matrices as there are subjects and each matrix 
will have as many rows as there are stimuli.  The INDSCAL model analyses 
the way in which the subjects differentially perceive the stimuli. 
Suppose that we are interested in extending this analysis to take 
account of the effect of other factors.  We might, for instance, replicate 
a study, use different forms of data collection, split subjects into 
some rational groupings etc. etc., and wish to use the INDSCAL model 
to analyse the effects of these factors by the same model as we used 
to investigate the subjects in the original analysis. 
     If the user is analysing data of this type, then the parameter 
SET MATRICES should be given the value 1 in the PARAMETERS command. 
This tells the program that two of the ways of the matrix  -  those 
corresponding to the stimuli  -  are identical and should be set 
equal (see 2.2).     The DATA TYPE parameter should also be given a 
suitable value.  Users should read 2.1.3 for a description of the 
use of the SIZES parameter. 
 
2.2.1.2  The CANDECOMP analysis 
     As we have noted, this 'extended INDSCAL' analysis is a special 
case of the general CANDECOMP analysis where two of the ways are 
identical.  We now consider the general case, where all the ways are 
considered distinct.  (They need not, of course, actually be distinct 
sets of entities, they will merely be regarded as such by the program and 
be given a separate set of weights). 
 
     Consider the typical case where a set of subjects has given 
numerical ratings to a set of stimuli on a number of criteria. 
Since the procedure is linear, the use of rankings is not recommended. 
The data consist of a set of matrices, one for each criterion, each 
of which contains as many rows as there are subjects and as many 
columns as there are stimuli.  If such a study was replicated after a 
period of time, thus forming a fourth way, then the resulting data 
constitute another block of such matrices. 
 
     The default parameter values allow for this analysis. 
 
2.2.1.3  The presentation of data to CANDECOMP 
     Data are read by the READ matrix command in free format, or using an 
associated INPUT FORMAT specification if preferred. The dimensions of the 
input matrix are given to the program by means of the SIZES command which 
is peculiar to CANDECOMP.  This replaces the N OF SUBJECTS, N OF STIMULI 
commands which are not recognised by this program.  SIZES takes as operand 
up to seven numbers, separated by commas each of which is the number 
of objects in one of the ways of the matrix.  There are as many 
numbers as there are ways in the data. 
 
 
 
 



 
 
 
2.2.1.3.1  The order of the SIZES command 
 
NOTE: The order in which the ways are entered in SIZES is crucial. 
 
     The number of columns in the data matrix should be specified as 
the third number in the SIZES specification. 
 
     The number of rows in the basic matrix should be the second 
number on the command. 
 
     The number of matrices in the third way is the first number. 
 
     The number of elements in the fourth, fifth, sixth and seventh 
ways is given by the fourth, fifth, sixth and seventh numbers 
respectively. 
 
     In the case of the extended INDSCAL analysis, the first and second 
ways are identical, thus the second and third numbers in the SIZES 
specification must be equal. 
 
2.2.1.3.1.1  Example 
     suppose we are interested in assessing the sound-quality of 
stereo amplifiers*, and that we have ten different makes of equipment. 
We gather together say twenty listeners and proceed in the following way. 
A tape containing extracts of different types of music and speech is 
 
________________________________________________________________________ 
* 
 Thanks are due to S.P. Thomas and Q. Deane of the Consumers Association 
 for suggesting this application and describing the basic form of the 
 experiment. 
________________________________________________________________________ 
 
 
played to the listeners using each of the amplifiers in turn.  Before 
each of the amplifiers is used the tape is played through a 'reference' 
machine.  The listeners are asked to assess each of the sets on, say, 
five criteria (e.g. distortion, frequency response and channel separation.) 
 
 
     This assessment is done on a nine-point scale in comparison with 
the reference set which is scored as an arbitrary 5,  Thus, so far we 
have a three-way data matrix, listeners x amplifiers x criteria.  Since 
it is possible that some of the criteria may be influenced by the 
characteristics of, say, the speakers used in the reproduction of the 
tape, a further way might be added by playing the tape through each 
amplifier, say, four times, each time through a different set of 
speakers.  Replications in say, three rooms of different acoustic 
properties might constitute a fifth way, and if we were foolhardy 
and/or rich enough to repeat the whole procedure, without serious 
revolt from the listeners, we might add a sixth way.  Thus we have 20 
listeners, 10 sets, 5 criteria, 4 speakers, 3 rooms and 2 replications. 
 
     Arranging the data so that the sets (in which we are primarily 
interested form the rows of the matrix (see 2.2  )) our data look like 
this. 
 
     Each matrix has ten rows and five columns, this being the set of 
ratings given to each of the sets on each of the criteria by one of 
the listeners and there will be twenty such matrices corresponding to 



the twenty listeners.  (i.e. (20 x 10) = 200 lines in all, since the 
matrices follow each other without break).  There will then be another 
three such blocks of 200 lines (making four blocks, 800 lines in all) 
corresponding to the different speaker types.  Each of the three rooms 
will have provided 800 lines in this way, making 2400 lines and since 
there are two replications there will be in all 4800 lines, each of 
five columns in the data matrix.  The SIZES specification corresponding to 
this matrix would be 
           
          SIZES          20, 10, 5, 4, 3, 2 
 
2.2.2. THE MODEL 
     The CANDECOMP program generates one configuration for each way 
of the analysis and the number of points in each configuration will 
be the number of elements in the corresponding way of the matrix. 
In the extended INDSCAL analysis however (i.e. when SET MATRICES (1)) 
matrices two and three  -  those corresponding to the second and third 
numbers in SIZES  -  are set equal when the algorithm has converged.    
One more iteration is then performed and only one configuration then 
produced for this way of the data (see INDSCAL-S). 
     The axes of the solution space are identical in each configuration 
and the solution should be interpreted in relation to these axes which 
it has usually been found, yield readily to substantive interpretation. 
Each configuration then reflects the differential importance of the 
properties represented by the axes in the following way.  Each point 
in each configuration is properly considered as the terminus of a 
vector drawn from the origin of the space and for each vector the ratio 
between its coordinate on axis a and on axis b  reflects the differential 
importance of the properties represented by those axes in the judgement 
of that subject and analysis should focus on this patterning. 
     All the configuration are normed so that the sum of squares of 
the coordinates on each axis is unity except for matrix 1. This means 
that strictly speaking the patterning of weights (coordinates) is 
comparable across 'ways'.  It is not, however, clear how this is to 
be interpreted in the general case.  The first matrix, being un-normed, 
will tend to show greater dispersion among the vectors and it is 
recommended that the 'way' in which the user wishes to concentrate forms 
the first way of the data.  (i.e. the second element in the SIZES 
specification). 
 
2.2.2.1.  The algorithm 
1.   The input data matrices are converted into matrices of scalar 
     products. 
2.   The scalar products between the elements in the input configuration 
     input by the user or generated by the program are calculated 
     to serve as initial estimates of the solution. 
3.   Each scalar product is assumed to be the result of the vector 
     multiplication of as many vector coordinates as there are ways 
     in the data matrix.  At each iteration, all but one of  these 
     is held constant while the remaining parameter (coordinate) is 
     estimated (the alternating strategy, akin to Alternating Least 
Squares). 
4.   When this process has converged, the two matrices referring to 
     the symmetric matrix are set equal (if SET MATRICES (1)), the 
     appropriate normalisation performed (see 2.3.1) and the solution 
     output. 
 
2.2.3  FURTHER FEATURES 
2.2.3.1  Normalisation options 
     Two different questions of normalisation arise:  over the 
input data and over the solution. 
 
2.2.3.1.1  Normalisation of the data input 



     If the program is being used to perform a higher-way INDSCAL 
analysis, then the input matrices are normalised so that the influence 
of each subject is equalised in the analysis before the data are 
converted to scalar products.  When a set of covariances or correlations 
are input the program does not convert to scalar products (since both 
covariances and correlations are scalar products) and, in the case of 
correlations, neither does it normalise.  It is therefore important 
that data of this type be announced to the program by means of the 
relevant DATA TYPE parameter value. 
 
     In the case of the general CANDECOMP analysis the data are not 
normalised and differences in magnitude between subjects' judgements 
will affect the analysis.  It is recommended, however, that the data 
for  a CANDECOMP analysis be centred before the analysis proceeds both 
to provide a common origin for the various 'ways' and to eliminate 
consensual effects which often overwhelm fine structural detail. 
 
 
2.2.3.1.2  Normalisation of the solution 
     Each of the configurations except that referring to the subjects 
of the solution is normalised as noted above (2.2).   It is therefore 
recommended that the way in which the user wishes more variation to be 
concentrated form the first way (rows) of the input matrix. 
 
     It should, however, be noted that differences in the magnitude 
of scales needed by different subjects will affect the length of the 
vectors (the distance of a particular point from the origin) in 
this space and it is more than ever important to concentrate on the 
ratio between the coordinates on the respective axes. 
 
2.2.3.2  Initial configuration 
     An initial configuration, which provides the initial estimates 
for the iterative procedure, is normally generated by the program from 
a pseudo-random distribution.  CANDECOMP is prone to suboptimal solutions 
and users are recommended to make a number of runs with different starting 
configurations.  A series of similar (preferably identical) solutions 
will usually indicate that a global minimum has been found. 
 
2.2.3.2.1  Initial configuration for the extended INDSCAL option 
     If the CANDECOMP program is being used to perform the extended 
INDSCAL analysis (i.e. SET MATRICES(1)) then the user may choose to 
input an initial configuration of the points represented by the symmetric 
matrix (the stimulus matrix).  This may be an a priori guess at the 
solution or the result of a MINISSA analysis in which the averaged 
judgements have been analysed.  In this case the configuration is 
input after the READ CONFIG command.  It consists of the coordinates 
of the stimulus points in the maximum dimensionality requested.  These 
are read according to the associated INPUT FORMAT specification, if used. 
Otherwise data are assumed to be in free format. 
 
2.2.3.3  External analysis 
     Users may wish to use CANDECOMP to perform an "external" INDSCAL 
analysis by holding constant a known configuration and estimating the 
configurations of subjects etc.  This may be done only if SET MATRICES(1). 
A configuration is input by the user as described above and the FIX 
POINTS parameter is set to 1 in the PARAMETERS statement.  The program will 
then estimate only the remaining matrices. 
 
 
 
 
 
 



 
 
 
2.3.  INPUT COMMANDS 
 
Keyword  Operand    Function 
 
SIZES         up to seven numbers,       specify the numbers of 
              separated by commas        objects in each of the  
                                         ways of the matrix.There  

must be as many numbers as  
there are ways in the data. 

DIMENSIONS      <number>   The number of dimensions to 
               <number list>   be listed and plotted in 
             <number> TO <number>   detail 
READ MATRIX      Start reading input data, 
       according to DATA TYPE 
COMPUTE       Start computation 
FINISH       Final statement in the run 
 
2.3.1  LIST OF PARAMETERS 
 
The following values may be set, following the keyword PARAMETERS  
 
Keyword           Default                Function 
DATA TYPE            0          0:  An N-way table is input. 
                                1:  Lower triangle similarity matrix. 
                                2:  Lower triangle dissimilarity matrix. 
                                3:  Lower triangle matrix of distances. 
                                4:  Lower triangle correlation matrix. 
                                5:  Lower triangle covariance matrix. 
                                6:  Full symmetric similarity matrix. 
                                7:  Full symmetric dissimilarity matrix. 
RANDOM             12345        (Any positive integer) Seed for pseudo- 
                                random number generator. 
SET MATRICES         0          0:  The CANDECOMP analysis is performed. 
                                1:  The performed extended INDSCAL analysis 
                                    is performed (matrix 2 and 3 are set 
                                    equal. 
FIX POINTS           0          0:  Iterate and solve for all matrices. 
                                1:  One matrix is held constant (external 
                                    analysis). 
CRITERION          0.005        (values between 0 and 1) 
                                Sets improvement level for terminating 
                                iterations. 
CENTRE               0          0:  No action. 
                                1:  If an N-way table is input 
                                   (DATA TYPE (0)) it will be centred by 
                                    subtracting the 'row means' in each 
                                    of the N-ways (see section 2.3.1). 
 
2.3.2  NOTES 
1.   The control statement SIZES is obligatory for CANDECOMP. 
 
                    (N )    (SUBJECTS) 
2.   The commands   (# ) OF (        ) are not valid with CANDECOMP. 
                    (NO)    (STIMULI ) 
 
3.   When DATA TYPE takes values 1 through 5 no diagonal is input. 
     For values 6 and 7 the diagonals are input but ignored. 
 
4.   In the parameters SET MATRICES and FIX POINTS the spaces are 
     significant characters. 



 
 
 
5.   Program Limits 
           Maximum no. of dimensions        =   10 
           Maximum no. of elements per way  =  100 
           Way 1 x Way 2 x Way 3             < 1800 
       
The general format for PRINTing, PLOTting and PUNCHing  options 
is as follows.  n  denotes the number of ways in the analysis 
(3 < n < 7),  m  the number of modes  (2 < m < 7). 
 
2.3.3.1 PRINT options 
 
Option               Form                        Description 
INITIAL            n matrices           The initial estimates of the 
                   will be listed.      configurations are listed.  Each 
                                        matrix contains the coordinates of  

                                  the points on the required  
                                  dimension. 

                                        If the user has input an initial 
                                        configuration, then the second two 
                                        matrices will be identical. 
FINAL              m matrices           The solution configurations are 

listed. Each matrix contains the 
coordinates of the relevant number 
of points on the axes of the space.  
These are followed by the 
correlations between each 
subject's data and solution                     
The matrix of cross-products 
between the dimensions is listed. 

HISTORY                                 The overall correlation at each 
iteration is listed. The 
unnormalised matrices at 
convergence are also listed 

                                        (there will be n of these). 
 
     By default only the FINAL matrices and the overall correlation at 
convergence are listed. 
 
2.3.3.2 PLOT options 
Option                                           Description 
INITIAL                                   The initial configuration may be 
                                          plotted as r(r-1)/2 plots only if 
                                          one has been input by the user. 
 
CORRELATIONS                              The overall correlation at each 

iteration is plotted in the form 
of a histogram. 

 
WAY1                                      r(r-1)/2 plots are produced for 
WAY2                                      each way specified. 
WAY3 
WAY4 
WAY5 
WAY6 
WAY7 
 
 
 
 
 



 
 
 
2.4.   EXAMPLE 
 
    RUN NAME             EXAMPLE FROM SEC. 2.1 
    TASK NAME            LISTENING TESTS AD NAUSEAM 
    DIMENSIONS           4 TO 2 
    SIZES                20,10,5,4,3,2 
    PRINT DATA           YES 
    READ MATRIX 
       <all the data follow here> 
    COMPUTE 
    PRINT                ALL 
    FINISH 
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APPENDIX  
 
 No other known programs perform the CANDECOMP type of analysis, 
though it is akin to both the PARAFAC model and Tucker’s 3-mode Factor 
Analysis. See also P.M.Kroonenberg’s three-mode web site at 
http://www.leidenuniv.nl/fsw/three-mode/index.html. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
3.  CONJOINT (unidimensional CONJOINT measurement) 
 
Concisely:   CONJOINT (unidimensional CONJOINT measurement) analyses 
DATA: data in the form of a rectangular N-way array of integers 
TRANSFORM:  using a monotonic transformation of the data 
MODEL: by means of any of a family of simple composition functions  
 
     Being a conjoint measurement model, CONJOINT is not easily or 
helpfully described in terms of the Carroll and Arabie classification. 
 
3.1.1  ORIGIN, VERSIONS AND ACRONYMS OF CONJOINT 
     CONJOINT is a product of the Nijmegen stable (Roskam 1974), previously 
known as UNICON (Unidimensional Conjoint Analysis), and is a general 
version of the earlier ADDIT program, which in turn developed from the 
Guttman-Lingoes CM (for conjoint measurement) programs (see Lingoes, 1967, 
1968; also Lingoes, 1978). 
 
3.1.2  BRIEF DESCRIPTION OF CONJOINT 
     The CONJOINT program provides the common analysis which takes a 
dependent variable and a set of independent variables and then estimates 
for a given simple composition function, that monotone transformation 
which will best fit that function.  By a 'simple composition function' 
we mean an expression linking the independent variables by means of the 
operators +, - and x. 
 
The most common application of CONJOINT is to use the additive ( + ) model, 
when the model becomes identical to Kruskal’s MONANOVA (Monotonic Analysis 
of Variance) <ref>. Several applications have shown that by employing a 
monotonic transformation, interactions shown by the linear ANOVA model can 
be eliminated and hence shown to be artefacts of the level of measurement 
chosen. 
 
The program implements the conjoint measurement models developed by Luce 
and others <Krantz et al 1971 & other refs> as a form of fundamental 
measurement. 
 
3.1.3  RELATION TO OTHER NewMDSX PROCEDURES 
     CONJOINT, like HICLUS (q.v) is unusual in the NewMDSX series in that 
it does not seek representation of the data in terms of distance, but 
rather seeks that monotone transformation of the data which best accords 
with the form of the model specified.Moreover, it is inherently uni-variate 
in the sense that each way is represented as a unidimensional variable.  
 
 
3.2.  DESCRIPTION OF THE PROGRAM 
 
3.2.1  DATA 
     The user must supply two things for a run of CONJOINT: 
 
           i)  the data 
          ii)  the form of the composition model 
 
and the program then estimates the best fit to the model by monotonically 
transforming the data. 
     The data are presented to the program as a rectangular N-way 
array of integers, whose "facets" or "ways" (these terms are used 
interchangeably) will be the number of categories contained in each of 
the variables. 
 
 



 
 
 
3.2.1.1  Example 
     Suppose a researcher is investigating the determinants of support 
for the Official Irish Republican Army, (measured, say, in terms of 
a Likert rating scale), and also has information on the gender, Left-Right 
political allegiance, and religious affiliation of his subjects: 
 
Let 
     Q   represent the dependent variable  (in this case, Attitude to 
                                              the Official IRA) 
and 
     A ⎫                                ⌠ Sex      =  {Male, Female}  
       │                                │ 
     B │  represent the independent     │ Politics =  {Left, Centre, Right}  
       │  variables (or "facets")       │ 
     C ⌡                                │ Religion =  {Catholic, Anglican, 
                                        ⎩             Protestant, Other} 
 
  
     In this case the data for input to CONJOINT will consist of a 
3-way ("cube") of data whose characteristic entry δjkl  gives the 
average attitude scale value for the subjects who are in the jth category 
of Sex, the kth category of Politics and the lth category of Religion: 
                                             
e.g 
     δ     contains the average attitude score for those who are 
      111 
           Male (j = 1),  Left (k = 1)  and Catholic ( l = 1) 
 
     The cube will consist of four matrices, (one for each denomination) 
each with three rows and two columns (NB. not two rows and three columns), 
corresponding to the facets of religion, politics and sex respectively. 
(For details of input format see Section 3.3.2). 
 
3.2.1.2  The form of the composition function 
     The user is also asked to supply the form of the composition 
function postulated to underlie the data.  In the case of the above 
example, an additive composition function might be chosen, where 
dependent score (Attitude to the IRA) is considered to be a monotonically 
rescaled, additive composition of the three facets of Sex, Politics and 
Religion, i.e: 
 
     q     ≈   m(a  + b  + c ) 
      jkl         j    k   l 
 
     Here  ≈  stands for a least-squares fit and 'm' is a monotone 
function. 
 
     Any more complex model which can be expressed by means of a 
combination of addition, subtraction and multiplication of the facets 
is acceptable to the program.  Bracketing is allowed subject to the 
restriction that a multiplication may not be followed directly by a 
left parenthesis.  (This problem may usually be overcome by permuting 
the facets). 
 
3.2.1.2.1  The input of composition functions 
     The user must specify two things: 
 
           i)  the form of the model 
          ii)  the number of categories in the facets 



 
3.2.1.2.1.1  The coding of models 
     CONJOINT makes use of a control statement peculiar to it for the 
coding of the model.  The command is MODEL and it contains in the 
parameter field a specification in ordinary notation of the model to 
be fitted.  For example, for the study with three facets mentioned 
above, we might use the simple additive model.  In this case the 
command would be 
 

    MODEL           A + B + C 
 
      Spaces in the parameter field are not significant, and no INPUT 
FORMAT is required.  It may be the case that one facet is a subset 
of another (or indeed may be identical).  In this case the name of 
the first facet can be repeated.  Thus for a study for three facets when 
the third is a subset of the second and the model is multiplicative, then 
 

    MODEL           A * B * B 
 
     Note that the asterisk (*) is used to denote multiplication when 
encoding a model. 
 
3.2.1.2.1.2  The coding of categories 
     The numbers of categories in each of the facets (and thus the 
dimensions of the input array) are given by the parameter A-FACET, 
B-FACET, C-FACET, D-FACET and E-FACET in the PARAMETERS command.  No 
more than five facets are allowed.  The argument to each of these 
parameters is the number of categories in each of the facets, thus 
in our example (2.1.1) above: 
 

PARAMETERS     A-FACET(2), B-FACET(3), C-FACET(4) 
 
     Note that the hyphen is a significant character and the shortening 
of B-FACET to its significant length. 
 
     If sub-setting is involved, then A-FACET refers to the first facet, 
B-FACET to the second etc., regardless of the actual names given in the 
MODEL specification. 
 
     For example, consider the example given above where 
 

   MODEL      A * B * B 
 
where the third facet is a subset of B, and suppose further that A 
consists of three categories, B of ten and the 'subset' is a recoding 
of the ten categories into two. 
 
     The PARAMETERS command in this case would then be 
 

 PARAMETERS    A-FACET(2), B-FACET(10), C-FACET(2) 
 
 
3.2.2  THE MODEL 
                                                                   
     The program finds that monotone transformation of the data (δ) 
which is as close as possible (in a least squares sense) to a set of 
values (d) which conform to the requirements of the composition function 
specified.  This is analogous in the basic model of MDS to the set 
of fitting values which approximate the actual distances in the solution 
space. 
 
3.2.2.1  The Algorithm 



 
1.   A set of initial estimates of the independent variables is 
     generated by a pseudo-random number device. 
 
2.   These are combined in the manner specified by the MODEL 
     statement. 
 
3.   Fitting values are calculated. 
 
4.   The measure of departure in the trial solution from 
     monotonicity (STRESS) is calculated. 
 
5.   A number of tests are performed: e.g. 
 
           Is the STRESS sufficiently low ? 
           Has the improvement in STRESS in the last 
             iteration been so small as to be not 
             worth proceeding ? 
           Has a maximum number of iterations been 
             performed ? 
 
     If the answer to any of these is YES, then the current estimates 
     are output as solution. 
 
6.   The direction in which each value has to be moved to bring it 
     into closer accordance with the fitting values and the 
     approximate magnitude of the move are calculated. 
 
7.   The values are moved in accordance with the information 
     calculated in 6 and the program returns to step 2. 
 
3.2.3  FURTHER OPTIONS 
 
3.2.3.1  Missing data 
     The program allows the user to specify, by means of the MISSING 
DATA parameter a code which instructs the program to ignore that entry 
in its calculation of STRESS.  This may also help the user in coding 
of fractional replications (v.i.). 
 
3.2.3.2  Ties in the data 
     Two ways of treating tied data values are recognised in the 
CONJOINT program:  the so-called primary and secondary approaches.  The 
user is given the option by means of the TIES parameter in the 
PARAMETERS command. 
 
3.2.3.2.1  The primary approach (TIES(1)) 
     In the primary approach, ties in the data are broken in the 
fitting values, if, in so doing, STRESS is made less.  This option 
places little or no importance on the appearance of ties. 
 
3.2.3.2.2  The secondary approach (TIES(2)) 
     By contrast, the secondary approach regards the information on 
ties as important and requires that tied data values are fit by 
equal fitting values. 
 
3.2.3.3  Levels of measurement in the data 
     CONJOINT treats each facet as being a nominal scale, and estimates 
an interval level weight for each category of each facet.  If the 
categories happen to be ordered (say, High, Medium and Low Status) 
there is nothing in the procedure which will guarantee the category 
weights will be similarly ordered. 
 
3.2.3.4  Replications 



     Users may wish to analyse by the same model a number of 
replications of the same study.  Such a study is signalled to the 
program by means of the REPLICATIONS parameter.  This parameter sets 
the number of sets of data not the number of replications, i.e. if 
you have an original study and two follow-ups then the correct coding 
is REPLICATIONS (3). 
 
     If a replicatory study provides data on only a subset of the 
original variables, then it is suggested that the study be coded as a 
replication with MISSING DATA values inserted at the appropriate places 
in the data matrix. 
 
     In the case of replica studies the program will obviously estimate 
only one set of averaged fitting values but as many sets of distinct 
fitting values as there are data sets. 
 
3.2.3.5  The CRITERION parameter 
     At step 5 of the algorithm the program calculates the improvement 
in STRESS between the values of this iteration and those at the previous 
one.  If this improvement is less than the value specified on the CRITERION 
parameter then the process is stopped and the current values output as 
solution. 
 
     It is recommended that in exploratory studies or when a number of 
models is being tested on a set of data that this value be increased in 
order to save on machine time. 
 
3.2.3.6  Local minima 
     The program begins the iterative process by assigning to each of the 
parameters a randomly-generated value.  The starting 'seed' for the 
random number generator is specified as RANDOM in the PARAMETERS command.  
The values so produced are statistically random, in the sense that each 
value has a known and equal probability of occurrence.  They are not, 
however, random inasmuch as the same series of numbers will emerge 
from the same starting value. 
 
     The procedure minimises STRESS by manipulating these initial, 
pseudo-random numbers.  It has been noted (Roskam, 1969) that random 
starts are prone to the problem of local minima.  A local minimum 
occurs when, although in the 'local' environment STRESS is at a 
minimum, inasmuch as to change any of the values only slightly, would 
be to increase its value, there nevertheless exists a set of numbers 
outside of that 'local environment' which generate a lower 'globally' 
minimum STRESS value. 
 
     It is suggested that the user make a number of runs using the 
same data but using different starting values.  This is done automatically 
within one run of CONJOINT by means of the keyword RESTARTS in the 
PARAMETERS command.  The number specified by this parameter should be the 
number of different starts required. 
 
     The appearance of a number of highly similar (or identical) solutions 
is inductive proof of a global minimum. 
 
 
3.3. INPUT COMMANDS 
 
Keyword      Function 
MODEL     letters for each specifies the form of the composition 
          facet in the data function postulated to underly the data. 
          with operators +  See the detailed description above. 

    or * 
READ MATRIX    read the data according to the facets 



     specified 
COMPUTE    start computation 
FINISH    final statement in the run 
 
  
3.3.1 LIST OF PARAMETERS 
 
The following values may be specified following the keyword PARAMETERS 
 
Keyword           Default Value                 Function 
TIES                   1             1:  Primary approach 
                                     2:  Secondary approach 
REPLICATIONS           1             Sets number of data-sets for 

 replicated studies. 
RANDOM              12345            Seed for pseudo-random-number 

 generator 
MISSING                0             Sets value to be regarded as missing 
                                      datum. 
RESTARTS               1             Sets number of times the program 
                                     will restart analysis using different 
                                     random starts. 
A-FACET                1             Sets the number of categories in 
B-FACET                              each facet. 
C-FACET 
D-FACET 
E-FACET 
CRITERION           0.00001          Sets stopping value for stress. 
 
3.3.2  NOTES 
1.   The control statement MODEL is obligatory for CONJOINT. 
 
2.   The following commands are not valid: 
 
          READ CONFIG 
          LABELS 
          ITERATIONS 
          #  ⎫ 
          N  ⎬  OF STIMULI 
          No ⎭ 
          #  ⎫ 
          N  ⎬ OF SUBJECTS 
          No ⎭ 
 
3.   The program accepts as input integer (I-type) variables. An 
     INPUT FORMAT specification, if used, should take account of this 
     and should read one row of the data. 
4.   The data for CONJOINT are input as a rectangular array of 
     integers in which the first facet is that associated with 
     the fastest-running subscript.  Consider first the two-facet 
     case.  If facet A has 5 categories and facet B has three 
     then the input array will have five columns and three rows. 
     (NOT five rows and three columns).  If a third facet C were 
     added, which had two categories, then two such 3 x 5 arrays 
     would be input (six rows in all, each of five columns). 
     A fourth facet with four categories would result in four 
     such blocks, i.e. twenty four rows in all.  The data follow 
     without separation. 
 
 
 
 
3.3.3  PRINT, PLOT AND PUNCH OPTIONS 



     The general format for PRINTing, PLOTting and PUNCHing output 
is described in the Overview.  In the case of CONJOINT the options are 
as follows: 
 
3.3.3.1  PRINT options 
Option                                      Description 
TABLES                              Two matrices are listed: 
                                    1.  the matrix of fitting-values 
                                    2.  the solution matrix. 
                                    Both will, of course, be of the same 
                                    order as the input data. 
HISTORY                             An extended history of the iterative 
                                    process.  For details see Appendix 3. 
SOLUTION 
 
     By default, only the SOLUTION will be listed, along with the 
final STRESS value. 
 
14.3.3.2  PLOT options 
Option                                         Description 
STRESS                              A Histogram of STRESS at each iteration 
                                    is produced. 
SHEPARD                             A Shepard diagram plotting data against 
                                    solution is plotted and the fitting 
                                    values indicated. 
RESIDUALS                           A histogram of residual values with 
                                    both natural and logarithmic values 
                                    is produced. 
 
     A Shepard diagram is produced by default. 
 
3.3.3.3  PUNCH options 
Option                                          Description 
SPSS                               The following values are output. 
                                   I, J, K, L, M (being indices of the 
                                   five possible facets)  DATA, FITTING, 
                                   SOLUTION, RESIDUALS, being the 
                                   corresponding values in a fixed format. 
FINAL                              The solution is saved. 
STRESS                             A listing of STRESS values at each 
                                   iteration is produced in a fixed format. 
 
     By default, no secondary output is produced. 
 
3.3.4  PROGRAM LIMITS 
Maximum number of facets  =  5. 
Maximum number of categories  =  not specified. 
Maximum(number of elements x number of replications)  =  2500 
Maximum number of scale values  =  500. 
 
3.4.   EXAMPLE 
 
   RUN NAME                  FERTILITY BY PRESENT HUSBAND'S ORIGIN & STATUS 
   TASK NAME                 * * * TWO WAYS DISTINCT * * * 
   COMMENT                   DATA FROM HOPE 1972, TABLE 1. 
   INPUT FORMAT              (4I5) 
   PRINT DATA                YES 
   MODEL                     A + B 
   PARAMETERS                A-FACET(4), B-FACET(4), CRIT(0.005), TIES(2) 
   PRINT                     HISTORY 
   PLOT                      SHEPARD, RESIDUALS 
   READ MATRIX 
    1.74 1.79 1.96 2.00 



    2.05 2.14 2.51 2.97 
    1.87 2.01 2.67 3.69 
    2.40 3.20 3.22 3.68 
   COMPUTE 
   FINISH 
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APPENDIX 1:  RELATION OF CONJOINT TO OTHER PROGRAMS NOT IN NewMDSX 
     The additive option in CONJOINT is exactly analogous to the 
ADDIT program which in turn derives from the MONANOVA (monotonic 
analysis of variance) procedure of Kruskal (see above). 
 
 
APPENDIX 2:  OUTPUT FROM CONJOINT 
     The output of CONJOINT consists of two parts:  each part is 
preceded by a program identification heading, and printing of the 
problem TITLE and the measurement MODEL as it was specified by the 
user at input. 
 
     The first part of the output, consists of a summary or extensive 
history of the iterations, depending upon the PRINT option chosen. 
 
     The second part of the output contains the scaling solution, 



                                       ^ 
the values of z      and the values of z 
               jk ..                    jk ... 
 
 
1.   Following the printing of the problem TITLE, the MODEL is printed 
in the form of a sequence  A B C D E  referring to the facets of the 
design, each letter preceded by the algebraic operation.  For instance, 
when the model is  z    = (a  - b ) x c   and the facets are defined 
                    jk      j    k 
 
as being different from each other, the program will print: 
 
           MODEL  ( +A - B ) x C 
 
2.   Next, the program will print which facets are identical, if any. 
For instance, when  z    = a  b  + a , the program will print: 
                     jk     j   k 
 
          MODEL  ( +A ) x  B - C          C = A 
 
Note the introduction of parenthesis and of + r symbol, which is redundant 
in this example. 
 
3.   After this, the program will write the scaling SOLUTION with the 
following form: 
     S O L U T I O N 
           A     a   a   a   a   a   a   a   a   a   a   a   a   a   etc. 
                  1   2   3   4   5   6   7   8   9   10  11  12  13 
 
           B     b   b   b   b   b   b   b   b   b   b    etc. 
                  1   2   3   4   5   6   7   8   9   10 
 
           C     c   c   c     etc 
                  1   2   3 
 
         etc.   etc. 
 
Note that identical values will be printed when facets are identical. 
So, if for instance, facets B and A are the same, the program will 
write B followed by the same values as it printed with A. 
 
4.   Next, the program prints a table of ZHAT values.  These values 
 
 ^ 
(z        ) match the values  z      = f(a ,b ,c ,..) in the least 
  jk ..(h)                     jk ..      j  k 
 
squares sense and are weakly monotonic with the data. 
 
Each entry in this table consists of 
 
                     ^ 
     x   j k   ....  z 
                      jk ..(h) 
 
where x is a consecutive number, indexing the elements in this table, 
and j,k, ,.. refer to the levels or categories of the facets A,B,C,.. 
The entries in this table appear in the order of replications, that is: 
 
 
 
             ^                                                     ^ 



first appear z          (j=1,..., k=1,....;  =1,...; etc) then all z 
              lk ..(1)                                              jk 
..(2)' 
etc. 
 
Within each replication, the entries appear in increasing order of r 
                                                                    jk 
..(h)'                                     ^ 
which is also the non-decreasing order of  z 
                                           jk ...(h) 
 
Missing data are omitted in this table'  So, x runs up to the total number 
of elements actually present in the data. (Since this table is ordered 
according to the ordinal information in the data, the user can also use it 
to check for any errors in his input). 
 
Following this table, the program prints the numbers of distinct values 
 
                                                        ^ 
in the data, the number of distinct values in ZHAT ( =  z          ) and 
                                                         jk ...(h) 
 
the number of distinct values in Z (=  z         ).  This count goes 
                                        jk ..(h) 
 
through all replications, bypassing missing data elements.  Ideally, 
there should be no ties in Z;  when there are, this means degeneracy of 
the solution (except in those cases where the model calls for equal 
values, e.g.  z   = z   = a  + a );  in other words, the number of distinct 
               jk    kj    j    k 
 
values in Z should be equal to the number of elements in Q=AxBxCx.. 
(except of course when some elements from Q are absent in all 
replications). 
 
When the secondary approach to ties is used, tied data will be tied in 
ZHAT, and should be also in Z if the stress is low.  In general, the 
number of distinct elements in ZHAT wiil be less than the number of 
distinct elements in the data, and the more so when the stress is high. 
In the output, the number of distinct elements is labelled:  NUMBER OF 
EQUIVALENCE CLASSES. 
 
5.   Finally, the program prints a matrix of Z.  Unlike the table of 
ZHAT, whose entries are different for each replication, the elements 
in Z are the same for all replications, and the matrix of Z is of 
course printed only once.  The order in which the elements of Z are 
printed is the same as the input order of the data. 
The category labels A1, A2, A3, etc. are printed at the top line. 
At the right of each line, the pertinent indices of other facets are 
printed, headed by 'B', 'C' etc. at the top line. 
 
     For instance:     A1     A2     A3     B     C 
                      z      z      z       1     1 
                       111    211    311 
                      z      z      z       2     1 
                       121    221    321 
                      z      z      z       1     2 
                       112    212    312 
                      z      z      z       2     2 
                       122    222    322 
6.   Output items 1 through 5 are repeated for every problem submitted 
to the program. 
 



 
 
 
4.   CORRESP (CORRESPondence analysis) 
 
4.1.  OVERVIEW 
 
Concisely: CORRESP provides internal analysis of two-way or multi-way data 
of a variety of kinds, and represents them as two sets of “points”  (“row” 
points and “column points”) in the same space. It can be classified as 
follows: 
 
DATA: N-way, n-mode Table  
 
TRANSFORMATION: Linear  
 
MODEL: Chi-square distance  
 
     Simple correspondence analysis has typically been applied to represent 
row and column categories of a two-way contingency table in a two 
dimensional map. But the same procedure can be applied, at least 
descriptively, to any matrix which can plausibly be regarded as consisting 
of 'pseudo-frequencies'. 
 
     It can also be applied descriptively to non-frequency data such as 
rankings or profiles, or data representing the intensity of responses to 
stimuli, or any of a variety of indices of proximity. 
 
 
4.1.1  ORIGINS, VERSIONS AND ACRONYMS 
 
     Correspondence analysis is a translation of the French ‘analyse des 
correspondances’, developed by Benzécri et al.(1973) and made popular by 
its adoption by Pierre Bourdieu in Distinction (1979). It was then by no 
means a new technique, having been described and differently named and 
applied in a number of unrelated fields, since Hirschfield(1935). It is 
closely related to canonical correlation and discriminant analysis and has 
been called, among other names, the method of reciprocal averages, and dual 
scaling, as well as l’analyse factorielle des correspondances. 
Correspondence analysis is also one way of implementing unfolding as 
introduced by Coombs(1964). Not only have different names been used for the 
same techniques in different fields. It is also not always realized that 
different computational procedures lead to the same results. Developed by 
the Gifi group in the Department of Data Theory at the University of Leiden 
for use with relatively large and sparse matrices representing multi-way 
categorical data, the HOMALS procedure (Analysis of homogeneity by 
alternating least squares) available with SPSS uses an iterative procedure 
to achieve the equivalent of multiple correspondence analysis. (see Van de 
Geer (1993) Vol.2, Ch.2). CORRESP directly calculates the singular value 
decomposition by finding the eigenvalues and eigenvectors of the matrix of 
cross-products of the input data matrix, after it has been normalized by 
dividing each row entry by the square root of the product of the 
corresponding row and column totals. In this it is markedly similar to 
PRINCOMP, and especially to MDPREF and differs from the latter only in the 
pre-treatment of the data and the form of normalisation (See, in 
particular, Weller and Romney(1990)).  
 
     The first paper containing a fully worked-out numerical example 
corresponding to current definitions is by R.A.Fisher(1940). Canonical 
analysis in its classical form is traced to two articles by Hotelling 
(1935, 1936) using Lagrange multipliers and eigen-analysis. Psychological 
literature most frequently refers to the “Eckart-Young decomposition 



theorem”, from an early paper (1936) that clarified how a matrix could be 
decomposed into its basic structure of rows and columns.  
 
4.1.2  FURTHER SPECIFICATION 
 
     The CORRESP program provides internal analysis of categorical data 
which can be input as a series of rows, representing individual subjects or 
observations with their values according to a series of column categories. 
 
     The classical application is to a two-way, 2-mode contingency table, 
where the frequencies represent the numbers of observations classified 
according to two sets of categories. In this case, and where data can 
properly regarded as frequencies of a similar kind (and expected 
frequencies are not too small) it is possible to apply the chi-squared 
statistic to test the significance of the canonical dimensions extracted. 
Application to other kinds of data can be only descriptive and exploratory.   

 
     Input of multi-way indicator matrices, or Burt matrices (obtained by 
multiplying an indicator matrix by its transpose) is one form of multiple 
correspondence analysis, as is Guttman scaling. Stacking of a series of 
two-way tables is another. See the Appendix, below, for further details. 
 
     Correspondence analysis is increasingly popular in analyzing 
Contingency Tables and in exploring the relationships between frequencies 
of artefacts found at different archaeological sites or levels of 
excavation ('seriation'), and of animals or plants and habitats ('gradient 
analysis'). 
 
 
4.1.3 RELATION OF CORRESP TO OTHER PROCEDURES IN NewMDSX 
 
     CORRESP uses a direct singular value decomposition of pre-standardized 
data to produce canonical scores for rows and columns which can be plotted 
as points in the same space. MDPREF also represents row and column 
variables in the same space, but instead fits the row variables as vectors 
to the configuration derived from the column variables. For this reason, 
MDPREF is sometimes referred to as a "vector" model and CORRESP as a 
"point" model. CORRESP examines only interactive factors by neglecting the 
magnitude effect after decomposition, but so can MDPREF when treating data 
as row-conditional. The main reason for MDPREF projecting one set of points 
onto a unit circle/sphere, however, is to remove them from the location of 
the set; to facilitate projection interpretation and to discourage inter-
set point distance interpretation, which is otherwise tempting when using 
correspondence analysis.  
 
     If separate PRINcipal COMPonents analyses are performed on the row and 
column correlation matrices of data which have also been standardized by 
rows and columns, these produce equivalent sets of results. 
 
     If the preference data are expressed as quasi-frequencies that may be 
seen as the quantity of choice received by each column item, MDPREF for 
column standardized and double-centred data provides similar results to 
those obtained by CORRESP and PRINCOMP. 
 
 
 
 
 
4.2.  DESCRIPTION 
 
4.2.1 INPUT DATA 
     CORRESP accepts as input data a set of frequencies forming a 
rectangular matrix. This can be a simple two-way contingency table of 



categorical data, or more generally an indicator matrix of rows 
representing subjects and columns representing presence and absence of a 
series of binary attributes for each subject. The indicator matrix can be 
condensed by adding together identical rows, and will produce the same 
scores for equivalent data. 
 
     When using correspondence analysis descriptively for data other than 
strict frequencies, there are five restrictions to be observed. For some, 
CORRESP will report an error if they are violated; for others, it is up to 
the user to examine the data to avoid misinterpretation. 
 
1. Inferential tests such as Chi-square are not valid for non-frequencies 
(or when expected frequencies are too small). 
 
2. The data must be in the form of 'similarities', i.e. if they are ranks, 
they should be ordered from highest to lowest preference (compare DATA 
TYPE(4)for MDPREF). If the data are distances, they should be reflected by 
subtraction from a number larger than the largest distance, so that they 
can be regarded as similarities. 
 
3. When analysing symmetric square matrices, it is essential that the 
diagonal from top left to bottom right contain large positive values (see 
the Appendix below for an example using stacked matrices. 
 
4. All values in the matrix must be positive, or the results will not be 
valid.  
 
5. In the analysis of sparse matrices, consider the possibility that the 
data may contain disjoint sets, which should be separated prior to 
analysis. It may also be necessary to submit the data to a succession of 
analyses, if interpretation is hindered by the presence of obvious 
outliers, which should be removed before contining. When deleting outliers, 
it is important to remember this may require deletion of both rows and 
columns, according to the type of matrix.   
 
 
4.2.2 THE MODEL 
 
4.2.2.1  Description of the Algorithm 
 
1. The input matrix is first normalized by dividing each row entry by the 
square root of the product of the corresponding row and column totals. 
 
2. The cross-products matrix of the columns of the resulting matrix A is 
formed. 
 
3. The next step finds the basic structure of A, producing summary row and 
column vectors (U and V) and a diagonal matrix of singular values d 
corresponding to the columns of A, so that A = Ud(VT). The matrices U and V 
are the eigenvectors of the matrices of column (or row) cross-products of 
A, and the d values are related to the corresponding eigenvalues 
(d=sqrt(D*(n-1)), where D is the diagonal of eigenvalues and n is the 
number of rows in A).   
 
4. The canonical or ‘optimal’ scores are calculated for the number of 
dimensions requested. These form the configuration output and plotted as 
the solution. 
 
4.2.2.2  Interpretation of the solution 
 
     The default CORRESP output indicates the number of non-negative 
eigenvalues of the matrix of cross-products of the normalized input matrix. 
This indicates the rank of the matrix, irrespective of the number of 



dimensions the user has requested to be output. They may be inspected in 
full by including the PRINT option ROOTS. The largest root will always be 
first and the others will follow in decreasing order. Some may be very 
small. An appropriate dimensionality may be chosen by means of the familiar 
scree-test. 
 
     The basic structure (singular value decomposition) of the matrix is 
always listed in full. The singular value (otherwise known as  latent or 
characteristic root or eigenvalue) corresponding to the first, or ‘trivial’ 
dimension is always 1.0 and is disregarded, while the remainder are termed 
the ‘inertia’. Their relative magnitude gives an indication of the amount 
of variation in the data accounted for by the corresponding dimension. 
Where appropriate, reference can be made to the chi-squared contributions 
of each dimension of ‘inertia’ and to the overall chi-squared value for the 
analysis.  
 
     To assist interpretation of the dimensions, the contributions of the 
individual row and column points to ‘inertia’ are listed, followed by the 
corresponding canonical, or ‘optimal’, scores, which are conventionally 
plotted in reporting the results of correspondence analysis. In the graphic 
displays of these results, note that an additional menu item Vectors 
enables you optionally to represent the rows of the table as vectors, if 
preferred.  
   
      The identification of 'outliers' amongst the subjects by visual 
inspection is straightforward. It may help to clarify the plotted solution 
if these are removed, before repeated the analysis. Note that in removing 
an outlier, it is necessary to delete both the row and column of the input 
indicator matrix.  
 
4.3.  INPUT COMMANDS 
 
     CORRESP requires an input matrix of r rows and c columns, where r may 
be equal to c. The optional LABELS command allows the column and row 
categories to be identified as appropriate; the first 6 characters of these 
input values appear in the graphic plots which can be requested in NewMDSX 
for Windows. 
   
     The DIMENSIONS command is used here only to limit the number of 
dimensions for which details are listed in the output. There is no 
PARAMETERS instruction for CORRESP.  
 
Keyword     Function 
 
N OF COLUMNS  c  Number of columns in  
      the input matrix      
N OF ROWS   r  Number of rows in the 
      input matrix 
DIMENSIONS   n  Number of dimensions to 
      list and plot in detail. 
LABELS   followed by a series  Identify the column and 
    of labels (<= 65 char) labels, in order, from 
    each on a separate line right to left and top down.                
 
READ MATRIX     Start reading input data 
COMPUTE      Start computation 
FINISH      Final statement in the run 
 
4.3.1 NOTES 
1. N OF COLUMNS, 
   N OF ROWS  and 
   DIMENSIONS  are obligatory. 



2. READ CONFIG is not valid with CORRESP. 
3. LABELS are optional. 
 
4.3.2  PRINT, PLOT AND PUNCH OPTIONS 
     The general format for PRINTing, PLOTting and PUNCHing output 
is described in the Overview.  In the case of CORRESP, the options are as 
follows: 
 
4.3.2.1 PRINT options 
Option  Form   Description 
FIRST   r x c  The input matrix, rows by columns 
CROSS-PRODUCTS r x r, Cross-products of the rows and columns 
   c x c  of the normalized input matrix. 
CORRELATIONS r x r, The correlation matrices of rows and 
   c x c  columns of the normalized input matrix. 
ROOTS     The eigenvalues of the cross-products of 
     the normalized input matrix. 
FINAL     All of the output described above, in 
     the chosen dimensionality. 
CHISQUARE    The total chisquared value, with degrees 
     of freedom, and the contributions of 
     the individual factors of "inertia". 
 
By default the FINAL output is produced. 
 
4.3.2.2 PLOT options 
Option     Description 
ROWS     The n(n-1)/2 plots of the canonical 
     ("optimal") row scores in the chosen 
     dimensionality. 
COLUMNS    The n(n-1)/2 plots of the canonical 
     ("optimal") column scores in the chosen 
      dimensionality. 
JOINT     Both the above. 
ROOTS     A scree diagram of the latent roots. 
 
By default, the first two dimensions of the joint space only are plotted. 
 
4.3.2.3 PUNCH options    (to secondary output file) 
No secondary output file is produced by CORRESP 
 
4.3.3 PROGRAM LIMITS 
      Maximum no. of rows  =  100 

Maximum no. of columns  =   60 
 
 
4.4.   EXAMPLES 
4.4.1  EXAMPLE OF A SIMPLE RUN 
 
RUN NAME  CORRESPONDENCE ANALYSIS EXAMPLE - Weller & Romney(1990) p.60 
COMMENT   1660 subjects are classified by parental socio-economic  
          status (columns) and categories of mental health (rows). 
          Data from Srole et al. (1962). 
N OF COLUMNS    4 
N OF ROWS       3 
LABELS     A+B 
           C+D 
           E 
           F 
           WELL 
           MILD+MODERATE 
           IMPAIRED  
PRINT FIRST FINAL CHISQ 



DIMENSIONS      2 
READ MATRIX 
 121 129  36  21 
 300 388 151 125 
  86 154  78  71 
COMPUTE 
FINISH 
 
...... 
 
produces the following output  
 NORMALIZED INPUT MATRIX (A) 
 ROWS        COLUMNS 
           1          2          3          4      
   1     0.3067     0.2842     0.1262     0.0814 
   2     0.4291     0.4824     0.2988     0.2733 
   3     0.1937     0.3014     0.2429     0.2444 
  
 
 THE CROSS-PRODUCTS MATRIX HAS 3 EIGENVALUES GREATER THAN ZERO 
 
 CORRESPONDENCE ANALYSIS EXAMPLE - WELLER & ROMNEY(1990) P.60      
 TASK NUMBER  1                                                    
 ROOTS OF THE CROSS-PRODUCTS MATRIX 
 
 **** SOLUTION IN  2 DIMENSIONS **** 
 EXPLAINED VARIANCE = 100.00% 
 
 BASIC STRUCTURE (SINGULAR VALUE DECOMPOSITION) 
 
 ROW VECTORS (U MATRIX) 
           1          2          3      
   1     0.4300    -0.7017    -0.5680 
   2     0.7621    -0.0552     0.6452 
   3     0.4841     0.7103    -0.5110 
  
 
 COLUMN VECTORS (V MATRIX) 
           1          2          3      
   1     0.5526    -0.6378     0.4449 
   2     0.6358    -0.0754    -0.5119 
   3     0.3995     0.4247    -0.3735 
   4     0.3616     0.6381     0.6329 
  
 
 SINGULAR VALUES - DIMENSIONS 
           0          1          2 
         1.0000     0.1589     0.0083 
 
 PROPORTION OF TOTAL VARIANCE 
         0.9753     0.0246     0.0001     TOTAL   1.0000 
 
 EXPLAINED "INERTIA" 
                    0.9973     0.0027     TOTAL   1.0000 
 
 CHI-SQUARED       41.9222     0.1136 
 CONTRIBUTIONS 
 TOTAL CHI-SQUARED=    42.0358 (DF=  6) 
 
 CANONICAL ("OPTIMAL") SCORES 
 ROWS       DIMENSIONS 
           1          2      
   1  WELL                                                              



        -1.6317    -1.3209 
   2  MILD+MODERATE                                                     
        -0.0725     0.8466 
   3  IMPAIRED                                                          
         1.4674    -1.0556 
 
 CANONICAL ("OPTIMAL") SCORES 
 COLUMNS    DIMENSIONS 
           1          2      
   1  A+B                                                               
        -1.1541     0.8050 
   2  C+D                                                               
        -0.1185    -0.8052 
   3  E                                                                 
         1.0631    -0.9347 
   4  F                                                                 
         1.7647     1.7504 
 
 
The canonical scores are plotted as follows, showing the relationship 
between patients‘ parents‘ social class categories and diagonses of the 
severity of mental illness: 

 
 
 
 
 
 
 
 
4.4.2 EXAMPLE 2 : REACTIONS TO STIMULI 
 
RUN NAME  Marks's receptor cone colour sensitivity data 
COMMENT  CA analysis, as discussed in Weller & Romney, Metric  



         Scaling, pp.9ff. The values represent the amount of 
         light absorbed by each type of receptor cone in goldfish. 
         Rows are eye receptor cones 1-11,  
         columns are light stimuli.  
LABELS Green 
       Yellow 
       Red 
       Blue-I 
       Bl-Gr 
       Blue 
       Green 
       Orange 
       Violet 
N OF ROWS      11 
N OF COLUMNS    9 
DIMENSIONS      2 
READ MATRIX 
  12.0   0.0   0.0 153.0  57.0  89.0   4.0   0.0 147.0 
  32.0  23.0   0.0 154.0  75.0 110.0  24.0  17.0 153.0 
  14.0   0.0   0.0 152.0 100.0 125.0   0.0   0.0 145.0 
 154.0  93.0   0.0 101.0 140.0 122.0 153.0  44.0  99.0 
 152.0 116.0  26.0  85.0 127.0 103.0 148.0  75.0  46.0 
 151.0 109.0   0.0  78.0 121.0  85.0 174.0  57.0  73.0 
  97.0 137.0  45.0   2.0  52.0  46.0 106.0  92.0  14.0 
  84.0 151.0 120.0  65.0  73.0  77.0 102.0 154.0  44.0 
  86.0 139.0 146.0  59.0  52.0  58.0  79.0 163.0  87.0 
  55.0 120.0 132.0   0.0  39.0  40.0  62.0 147.0   0.0 
  56.0 136.0 111.0  27.0  24.0  23.0  72.0 144.0  60.0 
PLOT        JOINT 
COMPUTE 
FINISH 
 
The resulting plotted values show the sensitivity of the different receptor 
cones to the different colours. The stimuli are located in a horseshoe 
shape according to the wavelength of light involved (the row label Row2 is 
overwritten by stimulus label BLUE-I):  
 



 
 
 
4.4.3  AN EXAMPLE OF MULTIPLE CORRESPONDENCE ANALYSIS 
 
 
The data used here are for "Hartigans Hardware" from GIFI(1990),pp.128ff. A 
series of items are coded according to characteristics of their shape, 
length, whether they are threaded, etc. and presented in a full indicator 
matrix. The columns are a series of 0,1 codes for presence/absence of the 
recorded characteristics and the rows represent the objects.                            
 
 
RUN NAME  Hartigans Hardware example 
TASK NAME Outlier Object 10 removed  
N OF COLUMNS   18 
N OF ROWS      23 
DIMENSIONS     2 
LABELS  THREADN 
THREADY 
FLAT 
CONE 
ROUND 
..... 
..... 
BOLT6 
TACK1 
TACK2 
NAILB 
SCREWB 
READ MATRIX 
 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 
 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 
 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 
 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 
 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 
 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 
 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 
 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 
 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 
 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 
 0.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 
 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 
 0.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 
 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 
 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 
 0.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 
 0.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 
 0.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 
 0.0 1.0 0.0 0.0 0.0 0.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 
 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 
 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 
 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 
 0.0 1.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 
PRINT       FINAL 
PLOT        ROWS JOINT 
COMPUTE 
FINISH 
 
 
The resulting plot of the rows scores clearly recovers the classification 
of the items, identified by descriptive names: 
 



 
 

 
 
 
APPENDIX : FORMS OF DATA INPUT FOR CORRESPONDENCE ANALYSIS 
 
It is often helpful to represent categorical data in the form of an 
‘indicator’ matrix. In general, for a variable zj  with kj categories, the 
indicator matrix is a table with kj columns and n rows, where n is the 
number of objects. The cells of the matrix Gj contain a 1 if the column 
category applies to the row object, and a zero if it does not. In each row, 
therefore, there is only one element 1, and the rest are all zero (assuming 
the categories are exhaustive and mutually exclusive). A matrix of this 
kind is called a complete indicator matrix.  
 
Indicator matrices Gj can be combined in a super indicator matrix G, with n 
rows and ∑kj columns. As each row of Gj contains only one element 1, the 
rows of G will add up to the number of variables. Matrices of this kind 
containing categories for three or more variables provide a means of 
presenting data for multiple correspondence analysis, as in the third 
example above.  
 
If the transpose of an indicator matrix G is multiplied by the original 
indicator matrix, the resultant symmetric matrix, with rows and columns 
corresponding to the column categories, in correspondence analysis is 
sometimes called a Burt matrix. On the diagonal of this matrix are a series 
of two-by-two matrices with counts of the ‘presence’ of an item in the 
upper left corner and its ‘absence’ in the lower right corner, the other 
elements being zero. This kind of matrix offers another alternative in 
generalizing correspondence analysis to multi-way data. 
  



The first example shown above inputs a simple contingency table for 
correspondence analysis. This could instead have been arranged into a very 
large binary (‘indicator’) matrix of 1660 rows, each representing a 
subject, and seven columns, three representing the categories of the row 
variables and four those of the row variables. 
 
It is frequently the case that a number of rows of the complete indicator 
matrix are identical, representing observed items with identical profiles 
in terms of the column categories. Nishisato and Sheu (1980) have shown 
that the results are equivalent if it is condensed by adding together any 
identical rows. For the data of the first example above, this would yield 
the following matrix: 
 

Row categories | Column categories  
 1    2    3   | 1     2     3     4 
121   0    0    121    0     0     0 
0   300    0    300    0     0     0 
0     0   86     86    0     0     0 
129   0    0      0  129     0     0 
0   388    0      0  388     0     0  
0     0  154      0  154     0     0 
36    0    0      0    0    36     0  
0   151    0      0    0   151     0 
0     0   78      0    0    78     0 
21    0    0      0    0     0    21 
0    125   0      0    0     0   125 
0     0   71      0    0     0    71 

  
Readers may verify that this produces the same optimal scores. (see Weller 
& Romney, p.67).  
 
As a final example, Weller and Romney demonstrate multiple comparisons 
using “stacked” matrices. They combine together, vertically, a series of 
symmetric tables of judged similarities between English kinship terms, 
drawn from different sources, from which the following is an extract (the 
rows and columns of each table represent the terms “Grandfather”, 
“Grandson”, “Father”, “Son”, “Brother”, “Uncle”, “Nephew”, and “Cousin”): 
 

GrFa GrSo  Fa   So   Br   Un   Ne   Co 
6.00 4.10 4.00 1.43 1.00 1.56 0.81 0.62 
4.10 6.00 1.62 3.17 1.55 0.77 1.68 1.10 
4.00 1.62 6.00 3.80 2.32 1.95 0.61 0.55 
1.43 3.17 3.80 6.00 3.68 0.63 1.23 1.43 
1.00 1.55 2.32 3.68 6.00 1.61 1.56 1.75 
1.56 0.77 1.95 0.63 1.61 6.00 3.71 3.48 
0.81 1.68 0.61 1.23 1.56 3.71 6.00 4.24 
0.62 1.10 0.55 1.43 1.75 3.48 4.24 6.00 

 
........ 

 
6.00 4.25 4.50 2.31 1.01 0.92 0.31 0.27 
4.25 6.00 1.88 4.04 1.36 0.20 1.38 0.81 
4.50 1.88 6.00 4.02 2.31 2.13 0.26 0.25 
2.31 4.04 4.02 6.00 3.01 0.32 1.02 0.75 
1.01 1.36 2.31 3.01 6.00 2.47 1.63 1.75 
0.92 0.20 2.13 0.32 2.47 6.00 4.27 3.86 
0.31 1.38 0.26 1.02 1.63 4.27 6.00 4.71 
0.27 0.81 0.25 0.75 1.75 3.86 4.71 6.00 

 
The value 6.0 has been placed on the diagonal of each matrix as this was 
the largest possible similarity score in the data, and has been used to 
represent identity. 
 



A correspondence analysis of the combined table provides a visual 
representation of the similarities among the different kin terms and the 
different data sources simultaneously.  
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5.   HICLUS (HIerarchical CLUStering) 
 
5.1 OVERVIEW 
 
Concisely:  HICLUS (HIerarchical CLUStering) provides internal analysis of 
two-way one-mode (dis)similarity data by means of a hierarchical clustering 
scheme using a monotonic transformation of the data. 
 
DATA: 2-way, 1-mode dis/similarity matrix 
 
TRANSFORM: Monotonic 
 
MODEL: Ultra-metric distance 
 
     Since HICLUS does not employ a spatial representation, the 
Carroll-Arabie (1979) classification is not useful in describing the 
program. 
 
Unlike most other programs in NewMDSX, HICLUS is not an iterative 
algorithm. Nor is it strictly speaking a monotonic transform. It is the 
HICLUS representation of the solution-- a “stacked” series of increasingly 
fine partitions -- that remains invariant under monotonic transformation 
and not (for instance) the dendogram solution.  
 
 
5.1.1  ORIGIN, VERSIONS AND ACRONYMS 
     HICLUS was originally programmed by Johnson (1967) following 



work by Ward (1963). The present program is based on the original 
Bell Laboratories version of the program. 
 
5.1.2  HICLUS IN BRIEF 
     The method of hierarchical clustering implemented in HICLUS is 
often used as an alternative or as a supplementary technique to the 
basic model of MDS and takes the same form of data. 
 
     The matrix of (dis)similarities between a set of objects is used 
to define a set of non-overlapping clusters such that the more similar 
objects are joined together before less similar objects.  The scheme 
consists of a series of clustering (levels).  In the initial level each 
object forms a cluster, whilst at the highest level all the objects 
form a single cluster.  In a hierarchical clustering scheme (HCS) there 
are exactly (p-1) levels where there are p objects. 
 
     The clustering scheme is hierarchical in the sense that once two 
objects have been joined together at a lower level of the scheme, they 
may not be split at a higher level. 
 
5.1.3  RELATION OF HICLUS TO OTHER PROCEDURES IN NewMDSX 
     HICLUS is commonly used as an interpretative aid in analysing 
configurations of points resulting from MDS analyses. 
 
 
5.2.  DESCRIPTION 
5.2.1  DATA 
     HICLUS expects data in the form of a lower triangle matrix of 
(dis)similarity measures between a set of objects (stimuli).  Any of 
the types of data suitable for input to MINISSA are suitable (q.v.)' 
 
     It is often tempting to submit to HICLUS the solution distances 
from (say) a MINISSA run.  This is not recommended since a MINISSA 
solution will be globally stable, but locally unstable in the following 
sense.  The location 
of the stimulus points in the space is not uniquely defined, since 
each may be moved within a fixed region without affecting the goodness- 
of-fit.  It is precisely the small distances affected by such movements 
which are crucial in the early stages of the HICLUS analysis.  Users 
are therefore advised to submit the original data to HICLUS. 
 
5.2.2  THE MODEL 
     A hierarchical clustering scheme (HCS) consists of a set of 
clusterings of a set of objects at increasing levels of generality.  At 
the lowest level, each object is considered a separate cluster.  At the 
next level the two most similar objects are merged to form a cluster. 
At each subsequent stage either the most similar individual objects 
remaining are joined together to form a new cluster or an object (or 
indeed cluster) is joined to the cluster to which it is most similar.  At 
the highest level objects fall into one large, undifferentiated cluster. 
 
5.2.2.0.1  A simple example 
                             Objects: 
                      C   B   E   D   F   A 
          Level:  0   .   .   .   .   .   . 
                  1   .   XXXXX   .   .   . 
                  2   .   XXXXX   .   XXXXX 
                  3   XXXXXXXXX   .   XXXXX 
                  4   XXXXXXXXX   XXXXXXXXX 
                  5   XXXXXXXXXXXXXXXXXXXXX 
 
     In this example, B and E are merged at level 1,  F and A are 
merged at level 2,   C is merged with the cluster (B,E) at level 3, 



D is merged with (F,A) at level 4, and finally (C,B,E) and (D,F,A) 
are merged into a single cluster at the fifth level. 
 
     Notice that once an object has been assigned to a cluster it may 
not "leave" that cluster.  This is the defining characteristic of a 
hierarchical scheme. 
 
     The crucial question when defining a HCS is one which asks how we 
are to calculate the (dis)similarity between an object and an existing 
cluster. 
 
     Consider three objects, a, b and c.  If b and c have been joined to 
form a cluster (b,c) then the question arises, how are we to find the 
dissimilarity of  a  to (b,c).  We might take it to be equal to the 
dissimilarity between  a and b  or to that between  a and c  or some 
average of the two.  Since we are committed to using only the ordinal 
information in the data we disregard the averaging approach and are left 
in the general case, where a cluster may consist of more than two objects, 
with two options, which mark the full range of possible options in defining 
“the” distance between a cluster and another point: choosing the minimum 
distance, and the maximum distance. Clearly, any aggregate measure for 
defining “the” distance, such as the mean , the median or the mode will lie 
between these extremes. 
 
5.2.2.0.2  The "minimum" method 
     Also known as the "connectedness" or "single-link" method, this 
approach defines the dissimilarity between a point and a cluster as the 
smallest of the dissimilarities between the external point and the 
constituent points in the cluster.  This method tends to join single points 
to existing clusters (“chaining”) and schemes resulting from it are often 
not easily 
amenable to substantive interpretation.  The "level" value in this approach 
gives the length of the longest chain joining any two points in the 
cluster. This approach is chosen by specifying METHOD(1) in the PARAMETERS 
statement. 
 
5.2.2.0.3  The "maximum" method 
     Also known as the 'diameter' or 'complete link' method, this approach 
defines the dissimilarity between a point and a cluster to be the 
largest (maximum) of the dissimilarities between it and the points 
constituting 
the cluster.  In this case the " level" gives the size of the diameter 
of the largest at that level.  This method is chosen by 
specifying METHOD(2) in the PARAMETERS.  The default option 
METHOD(3) allows for both methods to be used sequentially. 
 
With perfect data, both methods will give rise to the sameclustering.   
5.2.2.1  The Algorithm 
     At each level: 
1.   The smallest dissimilarity (greatest similarity) coefficient 
     in the data matrix is identified. 
 
2.   The row- and column-element corresponding to this coefficient 
     are then merged to form a cluster (i.e. one row and one column are 
     effectively removed from the matrix). 
 
3.   The (dis)similarity coefficients between the new cluster and 
     each of the remaining elements (points or clusters) are 
     calculated according to the METHOD chosen. 
 
4.   The matrix is reduced by one row and column and the program 
     returns to step 1. 
 



5.   When all the points are thus merged the solution is output 
     in the form of a histogram (the so-called Hierarchical Clustering 
Scheme). 
 
 
5.3.  INPUT COMMANDS 
 
Keyword      Function 
N OF STIMULI     <integer>    The number of variables in 
      input matrix.  
LABELS   followed by a series  Identify the variables 
    of labels (<= 65 char) in plotting dendrograms. 
    each on a separate line Labels should contain text 
      characters only, without 
      punctuation. 
READ MATRIX          read the data according to the 
      DATA TYPE specified 
COMPUTE     start computation 
FINISH     final statement in the run 
 
 
5.3.1 LIST OF PARAMETERS 
 
The following values may be specified, following the keyword PARAMETERS 
 
Keyword           Default                   Function 
DATA TYPE            0      0:  The data are similarities – input is 
       lower triangle without diagonal  
             1:  The data are dissimilarities – input 
       lower triangle without diagonal 

    2:  The data are similarities – input is 
       full symmetric matrix    
                 3:  The data are dissimilarities – input 
       full symmetric matrix 
METHODS              3      1:  Only the minimum method is used. 
                            2:  Only the maximum method is used. 
                            3:  Both methods are used (independently). 
 
5.3.2  NOTES 
 
1.   The following commands are not valid with HICLUS. 
      ( #  ) 
      ( N  ) OF SUBJECTS 
      ( NO ) 
     DIMENSIONS 
     ITERATIONS 
     PLOT 
     PUNCH 
 
2.    ( #  )              may be replaced with  ( #  ) 
      ( N  ) OF STIMULI                         ( N  ) OF POINTS 
      ( NO )                                    ( NO ) 
 
3.   The input should be specified as floating-point (F type) numbers 
     and should be presented as a lower-triangle matrix without 
     diagonal. 
 
5.3.3  PROGRAM LIMITS 
     Maximum number of stimuli =  80 
 
 
5.3.4  PRINT, PLOT AND PUNCH OPTIONS 
 



The general format for PRINTing, PLOTting and PUNCHing output 
is described in the Overview.  In the case of HICLUS the options are 
as follows: 
 
5.3.4.1  PRINT options 
Option                                       Description 
HISTORY                             A detailed history of the clustering 
                                    is produced. 
 
5.3.4.2  PLOT and PUNCH options 
     There are no plotting or secondary output options in HICLUS. 
 
5.4.  EXAMPLE 
 
  RUN NAME           HICLUS TEST DATA 
  N OF POINTS       10 
  INPUT FORMAT      (10F4.0) 
  PARAMETERS        DATA TYPE(1), METHODS(2) 
  READ MATRIX 
     <data> 
  COMPUTE 
  FINISH 
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APPENDIX :  RELATION OF HICLUS TO PROGRAMS NOT IN NewMDSX 
 
     For a full range of options regarding hierarchical and other 
clustering schemes, users are referred to the CLUSTAN package. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6.   INDSCAL-S (INDividual Differences SCALing) 
 
6.1.  OVERVIEW 
     
Concisely:  INDSCAL-S (INDividual Differences SCALing: Symmetric or short 
version) provides internal analysis of a three-way data matrix consisting 
of a set of (dis)similarity matrices, by a weighted distance model using a 
linear transformation of the data. 
 
Following the categorisation developed by Carroll & Arabie (1979) 
the program may be described as: 
 
DATA: Three-way, two mode dis/similarities or correlations 
 
TRANSFORMATION: Linear 
 
MODEL Weighted Euclidean Distance or Scalar Products 
 
 
6.1.1  ORIGIN, VERSIONS AND ACRONYMS 
     INDSCAL was developed by J.D. Carroll and J.J. Chang of Bell 
Telephone Laboratories.  The original INDSCAL program performed two types 
of analysis:  INDIFF, which is the most commonly used part of the program 
and often referred to simply as INDSCAL, and CANDECOMP.  It is this former 
analysis (the INDIFF option) which comprises the present program (INDSCAL-



S).  The CANDECOMP option appears as a separate program within NewMDSX.  
The present program is specially adapted from the 1972 version of INDSCAL. 
 
     A quasi non-metric INDSCAL known as N-INDSCAL exists but is  known to 
be unstable. 
 
     In what follows we shall follow the convention of referring to the 
model as INDSCAL and this program as INDSCAL-S. 
 
6.1.2  INDSCAL IN BRIEF 
     INDSCAL was originally developed to explain the relationship 
between subjects' differential cognition of a set of stimuli.  Suppose that 
there are N subjects and p stimuli. The program takes as input a set of N 
matrices each of which is a square symmetric matrix (of order p) of 
(dis)similarity judgments/measures between the p stimuli. 
 
The model explains differences between subjects' cognitions by a variant of 
the distance model.  The stimuli are thought of as points positioned in a 
'group' or 'master' space.  This space is perceived differentially by the 
subjects in that each of them affords a different salience or weight to 
each of the dimensions of the space. In the graphic displays of these 
results, note that an additional menu item Vectors enables you optionally 
to plot the subjects as vectors, if preferred. The trans-formation which is 
assumed to take the data into the solution is a linear one.  
 
 
6.1.3  RELATION TO OTHER NewMDSX PROGRAMS 
 
     INDSCAL is  a special case of CANDECOMP where the second and 
third 'way' of the data matrix are identical.  In the Carroll-Wish 
terminology INDSCAL is three way, two mode;  CANDECOMP three way, three 
mode (actually N-way, N-mode where 3 ≤ N ≤ 7). 
 
INDSCAL  can also be thought of as a generalisation (to a third Way) of the 
metric distance program MRSCAL. 
 
The INDSCAL model is also analogous to P1 (the dimensionally-weighted 
distance model) of the PINDIS hierarchy of models. However, the input data 
are quite different, as INDSCAL takes original measures of dis/similarity 
and PINDIS takes the co-ordinates of a set of previously scaled solutions)              
 
6.2.  DESCRIPTION 
6.2.1  DATA 
     Imagine that a group of subjects is asked to assess the 
dissimilarity between a set of objects.  It is inevitable that these 
judgments will differ.  The problem then arises of the relationship 
between the sets of judgments.  The INDSCAL model assumes that subjects can 
be thought of as  systematically distorting a shared space in arriving at 
their judgments and it seeks to reconstruct both the individual private 
(distorted) spaces and the aggregate "group" space. 
 
     There is no reason why the judgments of (dis)similarity should 
come from "real" individuals.  They may be different occasions, methods, 
places, groups etc., in which case they are often referred to as 'pseudo-
subjects'. 
 
     The mode of distortion which the INDSCAL model proposes is this. 
The basic, shared configuration (known as the Group Space in INDSCAL) 
has a given number of fixed  dimensions.  In making their dissimilarity 
estimates different subjects are thought of as attaching different salience 
or importance to different dimensions.  Thus, for instance, in judging the 
differences between two houses an architect might primarily distinguish 



between them in terms of style, whereas a prospective buyer might attach 
relatively little weight to that aspect but a great deal to the difference 
in price. 
 
6.2.1.1  Example 
     Suppose we were interested in how people perceive the distances 
between 6 different areas of a city, and asked them to give their estimates 
of the distance between each of the pairs of areas (fifteen in all). These 
estimates we collect into three lower-triangle matrices as follows: 
 
 
3.6                              Subject 1 
6.7  9.2 
7.0  3.1  3.1 
6.0  4.1  3.0  3.1 
4.1  5.0  3.6  6.7  4 
5.7                              Subject 2 
7.3  9.4 
7.1  3.3  4.3 
6.0  4.2  4.2  3.3 
5.7  6.4  4.6  7.3  4 
7.3                              Subject 3 
9.0 12.0 
9.9  4.3  3.3 
8.4  5.7  3.0  4.3 
4.2  5.8  4.1  9.0  5.6 
 
      
     The fifteen judgments of each subject are collected into the 
lower triangle of a square symmetric matrix which would be submitted 
to INDSCAL-S as shown in section 4.4.1 
 
6.2.2  MODEL AND ALGORITHM 
     The INDSCAL model interprets 'individual differences' in terms of 
subjects applying individual sets of weights to the dimension of a common 
'group' or 'master' space.  Hence the main output of an INDSCAL analysis is 
a 'Group Space' in which the stimuli (in our example, the area locations) 
are located as points.  The configuration of stimuli in this Group Space is 
in effect a compromise between different individuals' configurations, and 
it may conceivably describe the configuration of no single individual (i.e. 
one that weights the dimensions equally). 
     Complementing the Group Space is a 'Subject Space'.  This space has 
the same dimensions as the Group Space but in it each individual (or data-
source)is represented as a vector, whose end-point is located by the set of 
co-ordinates which are the values of the numerical 'weights' which he 
assigns to each dimension. These individual weights or saliences are solved 
for by the program and 
are its next most important output. 
 
     Thus the subject whose individual cognition corresponds exactly 
with the "group space configuration" - if that subject exists - would 
be situated in a two-space on a line at 45  between the axes, whereas 
someone who paid no attention to one of the axes would be situated at 
zero on that axis. 
 
     Having obtained the 'Group Space' and an individual's set of weights, 
it is often useful to take the Group Space Configuration of stimuli points 
and transform it into that individual's 'Private Space'.  A Private Space 
is simply the Group Space with its dimensions stretched or contracted by 
the square-root of the weights which that subject has assigned to them. 
 
6.2.2.1.1  Some properties of the INDSCAL model 



     It should be noted that INDSCAL produces a unique orientation of the 
axes of the Group Space, in the sense that any rotation will destroy the 
optimality of the solution and will change the values of the subject 
weights.  Moreover, the distances in the Group Space are weighted 
Euclidean, whereas those in the private spaces are simple Euclidean.  
Because of  this, it is not legitimate to rotate the axes of a Group Space 
to a more 'meaningful' orientation, as is commonly done both in factor 
analysis and in the basic multidimensional scaling model.  It has generally 
been found that the recovered dimensions yield readily to interpretation. 
 
     Secondly, each point in the Subject Space should be interpreted 
as a vector drawn from the origin.  The length of this vector is 
roughly interpretable as the proportion of the variance in that 
subject's data accounted for by the INDSCAL solution.  All subjects 
whose weights are in the same ratio will have vectors oriented 
in the same direction.  Consequently, the appropriate measure for 
comparing subjects' weights is the angle of separation between 
their vectors and not the simple distance between them. For this reason, 
clustering procedures which depend on distance should not be used to 
analyse the Subject Space. 
 
 
 
 
6.2.2.2  The Algorithm 
1.   The program begins by converting each subject's dissimilarities 
     into estimates of Euclidean distances by estimating the additive 
     constant (see Torgerson 1958; Kruskal 1972). 
 
2.   These distance estimates are then double-centred to form a 
     scalar-product matrix. 
 
3.   These scalar-products may be considered as the product of three 
     numbers.  The first of these will come to be considered as the 
     subject weight.  The other two give at this stage two distinct 
     estimates of the value of the stimulus co-ordinates. 
 
4.   An initial configuration is input by the user or generated by 
     the program (see 6.2.3.3). 
 
5.   The scalar-products between the points in this configuration are 
     calculated and serve as an initial estimate of the solution 
     parameters. 
 
6.   For each scalar-product at each iteration a pair of these three 
     numbers is held constant in turn and the value of the other is 
     estimated. 
 
7.   When maximum conformity to the data is reached by this iterative 
     process, the two estimates of the stimulus coordinates are set 
     equal and one more iteration is performed. 
 
8.   The matrices are normalised and output as solution. 
 
 
6.2.3  FURTHER OPTIONS 
 
6.2.3.1  Data 
     Consider again the example given above (section 6.2.1.1). In it we had 
three subjects judging six stimuli.  Thus each subject generates a lower 
triangle matrix of five rows if the diagonals are omitted.  These are input 
to the program after the READ MATRIX command sequentially, i.e. the matrix 



of subject I is followed by that of subject II which is followed by that of 
subject III, without break, fifteen lines in all. 
 
     The program will also analyse other types of data including 
correlation or covariance matrices.  In this case the 'stimuli' will 
be the variables which are correlated and the 'subjects' perhaps 
replicative studies. 
 
     At the beginning of an INDSCAL analysis each input matrix of 
similarities, dissimilarities, or distances is converted into a matrix of 
scalar products.  To equalize each subject's influence on the analysis 
these data are normalized by scaling each scalar products matrix so that 
its sum of squares equals one.  Data input as covariances or correlations 
are not converted to scalar products and are not normalized in this way, 
thus it is essential to signal this type of input by means of the DATA TYPE 
parameter (see Section 6.3). 
 
6.2.3.2  Number of dimensions 
     Some experimentation is generally needed to determine how many 
dimensions are appropriate for a given set of data.  This involves 
analysing the data in spaces of different dimensionality.  For each space 
of r dimensions the program uses as a starting configuration the solution 
in (r + 1) dimensions less the dimension accounting for the least variance. 
Usually between two and four dimensional solutions will be adequate for any 
reasonable data set. 
 
6.2.3.3  Starting configuration 
 
     The analysis begins with an initial configuration of stimulus 
points. This may be supplied by the user and read under a READ CONFIG 
command. This configuration should contain stimuli coordinates in the 
maximum dimensionality required. 
 
     Alternatively the program can generate a configuration either by 
a method similar to that used in IDIOSCAL or by picking pseudo-random 
numbers from a rectangular distribution. If the value of the 
parameter RANDOM is 0 then the IDIOSCAL procedure is used otherwise the 
value is used as a seed to generate the random numbers. Since sub-optimal 
solutions are not uncommon with this method users are strongly recommended 
to make several runs with different starting configurations. A series of 
similar (or identical) solutions may be taken to indicate that a true 
'global' solution has been found. 
 
     Alternatively, the user may wish to overcome this particular 
difficulty by submitting, as an initial configuration one obtained from, 
say, a MINISSA run in which the averaged judgements have been analysed. 
This method will also reduce the amount of machine time taken to reach a 
solution. 
 
6.2.3.4  External analysis 
 
     On occasion a user may wish to determine only subject weights for some 
previously determined stimulus configuration, such as a previous INDSCAL 
solution, or, some known configuration (as in our notional example the 
actual geographical location of the city areas).   This option requires 
that an input configuration be supplied under the READ CONFIG command. The 
full set of data should be read in under the READ MATRIX command but FIX 
POINTS should be set to 1 in the PARAMETERS command and the program will 
then solve only for the subject weights. 
 
6.2.3.4.1  Large data sets 
   



   The FIX POINTS  option is particularly useful when the user has more 
data than the program is capable of handling (see 3.2).  The user can use 
the configuration obtained either from a MINISSA analysis of averaged 
judgments or from an INDSCAL analysis of some random or judiciously 
selected subset of subjects and fit to it any number of subjects' weights. 
 
6.2.3.5  The SOLUTIONS parameters 
 
     The axes of the solution correspond to the major direction of 
variation in the subjects' data.  They will not usually correspond to 
the principal axes of the configuration, in which, the coordinates on 
the axes are uncorrelated.  In the INDSCAL solutions, by contrast, 
the coordinates will usually be correlated and these correlations are 
output as the scalar-products matrix for the stimulus configuration. 
A similar scalar-products matrix is output for the subject space.  In 
this however, it is a dispersion matrix whose diagonal entries are 
variances, representing the degree to which subject variation is 
concentrated in that dimension, and whose off-diagonal entries represent 
the co-variation between dimensions in the subject weights. 
 
     If the user wishes to constrain the solution as closely as possible to 
orthogonality (i.e. in the sense that the correlation between the 
coordinates is zero) then the parameter SOLUTIONS should be set to 1 in the 
PARAMETERS command.  Users are warned that this will necessarily produce a 
suboptimal solution. 
 
6.2.3.6  Negative weights in INDSCAL solutions 
   
   There is no interpretation of a negative subject weight in an 
INDSCAL solution.  Nevertheless, from time to time negative values do 
occur in the subject matrix.  If these are close to zero, then the 
occurrence is likely to be due to rounding error and should be regarded as 
zero in interpreting the solutions.  Large negative values on the other 
hand suggest a more substantial error or that the model is not appropriate 
to the data. 
 
6.2.3.7  Individual correlations as a measure of goodness-of-fit 
   
   Being a 'metric' procedure the index of goodness-of-fit of model 
to data is the correlation between the scalar products formed from the 
subject's data and those implied by the model.  The program outputs a 
correlation coefficient for each subject and also the average correlation 
for all subjects and a root-mean-square coefficient which indicates the 
proportion of variance explained. 
 
6.2.3.8  The stopping criterion 
   
   At step 7 of the algorithm the improvement in correlation is 
computed.  If this is less than the value specified on the CRITERION 
parameter in the PARAMETERS command, then the iterations are ended.  Users 
should make this value larger if they wish to essay a number of 
exploratory analyses or to test a number of starting configurations. 
 
 
6.3. INPUT COMMANDS 
 
Keyword       Function 
N OF STIMULI   n    Number of stimuli for 

analysis 
N OF SUBJECTS      m   Number of subjects for 

which data are to be input 
DIMENSIONS  [number] 



[number list]    Dimensions for analysis 
[number] TO [number] 

LABELS       followed by a series   Optionally identify  
           of labels (<= 65 characters), the stimuli in the  
            each on a separate line  output 
READ CONFIG  n x max.dimensions Read optional initial 
                  Matrix   configuration 
READ MATRIX  m x n matrix  Read the data according 
       to the DATA TYPE 
COMPUTE      Start computation 
FINISH      Last statement in run 
 
 
 
6.3.1  LIST OF PARAMETERS 
 
The following values may be specified following the keyword PARAMETERS 
 
Keyword          Default Value                  Function 
SOLUTIONS             0             0:  Compute all dimensions  

 simultaneously 
                                    1:  Compute separate one                            
                                          dimensional solutions. 
FIX POINTS            0             0:  Iterate and solve for all 

 matrices. 
                                    1:  Solve for subject weights  
                                          only 
RANDOM                0             Random number seed for 
                                    generating the initial  

configuration.  (Used when the       
user does not provide the initial 
configuration by use of READ CONFIG) 

                                    0:  IDIOSCAL starting 
                                        configuration 
 
DATA TYPE             1             1:  Lower half similarity   
                                         matrix (without diagonals)                     
                                    2:  Lower half dissimilarity  
                                         matrix (without diagonals)                     
                                    3:  Lower half Euclidean 
                                         distances (without               
                                         diagonals) 
                                    4:  Lower half correlation 
                                         (without diagonals). 
                                    5:  Lower half covariance 
                                         matrix 
                                         (without diagonals). 
                                    6:  Full symmetric similarity 
                                         matrix 
                                         (diagonals ignored). 
                                    7:  Full symmetric 
                                         dissimilarity matrix 
                                         (diagonals ignored). 
CRITERION             0.005           Sets criterion value for 
                                      termination of iterations. 
 
MATFORM                0            0:  Input configuration saved 
                                        Stimuli(rows) by dimensions  
                                        (columns). 
                                    1:  Input configuration saved 
                                        dimensions (rows) by stimuli 
                                        (columns). 
                                        Only valid with READ CONFIG. 



 
6.3.2 NOTES 
1.  Program limits 
        Maximum number of dimensions          =      5 
        Maximum number of stimuli             =     30 
        Maximum number of subjects            =     60 
        N OF SUBJECTS x (N OF STIMULI)        =  18000 
        max (N OF SUBJECTS, N OF STIMULI) 
          x maximum no. of dimensions x 3     =   2500 
2.  Labels should contain text characters only, without punctuation. 
3.  The program expects input in the form of real (F-type numbers), 

and an INPUT FORMAT, if it is necessary to use one should allow for 
this. The INPUT FORMAT specification, if used, should read the longest 
line of the input matrices. 

 
6.3.3  PRINT, PLOT AND PUNCH OPTIONS 
     The general format for PRINTing, PLOTting and PUNCHing output 
is described in the Overview.  In the case of INDSCAL, the available 
options are as follows: 
 
6.3.3.1.  PRINT options  (to main output file) 
 
Option               Form                   Description 
INITIAL             N x r          Three matrices are listed: 
                    p x r          1. the initial estimates of the 
                                      subject weights 
                    p x r          2. & 3. separate estimates of the 
                                      stimulus configuration. 
 
FINAL               N x r          Two matrices are listed being the 
                    p x r          matrix of subject weights and the 
                                   coordinates of the group space. 
                                   These are followed by the 
                                   correlation 
                    N              between each subject's data and 
                                   solution and the matrix of cross- 
                    r x r          products between the dimensions. 
HISTORY                            An iteration by iteration history 
                                   of the overall correlation.   
                                   (The final (3) matrices at 
                                   convergence are also listed) 
SUMMARY                            Summary of results produced at end 
                                   of each analysis. 
                                                                              
     By default only the solution matrices and the final overall 
correlation are listed. 
 
6.3.3.2  PLOT options  (to main output file) 
Option                                      Description 
INITIAL                        The initial configuration may be 
                               plotted only if one is input by the 
                               user. 
CORRELATIONS                   The correlations at each iteration are 

 plotted. 
GROUP                          Up to r(r-1)/2 plots of the p stimulus 
                               points. 
SUBJECTS                       Up to r(r-1)/2 plots of the Subject 
                               Space 
                                        
     By default the Subject and Group Spaces will be plotted. 
 
6.3.3.3  PUNCH options (to secondary output file) 



Option                                       Description 
FINAL                           Outputs the final configuration 
                                and the subject correlations in 
                                the following order: 
                                   - each subject is followed by the 
                                     coordinates of its weight on 
                                     each dimension; 
                                   - each stimulus point is followed 
                                     by its coordinates  on each 
                                     dimension. 
CORRELATIONS                    The overall correlation at each 
                                iteration is output in a fixed 
                                format. 
 
SCALAR PRODUCTS                 the scalar product matrix is output. 
 
     By default, no secondary output is produced. 
 
 
 
6.4. EXAMPLE 
 
   RUN NAME                   INDSCAL TEST DATA 
   TASK NAME                  ...FROM EXAMPLE IN 2.1.1 
   N OF SUBJECTS              3 
   N OF STIMULI               6 
   DIMENSIONS                 2 
   PARAMETERS                 CORRELATIONS(1),RANDOM(34551) 
   COMMENT                    THIS IS THE SET-UP FOR THE EXAMPLE  
                              GIVEN. 
                              NOTICE THE USE OF THE SHORTENED 
                              PARAMETER 
                              DESIGNATION AS IN 'DATA(2)' 
   INPUT FORMAT               (5F3.0) 
   READ MATRIX 
    36 
    23 92  
    70 31 31 
    60 41 30 31 
    41 50 36 67 40 
    57 
    73 94 
    71 33 43 
    60 42 42 33 
    57 64 46 73 40 
    73 
    90120 
    99 43 33 
    84 57 30 43 
    42 58 41 90 56 
   PRINT                      FINAL, HISTORY 
   PLOT                       ALL 
   COMPUTE 
   FINISH 
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7.   MDPREF (MultiDimensional PREFerence Scaling) 
 
7.1.  OVERVIEW 
 
     Concisely:  MDPREF (MultiDimensional PREFerence Scaling) provides 
internal analysis of two-way data of either a set of paired comparisons 
matrices or a rectangular, row-conditional matrix by means of a vector 
model, using a linear transformation of the data. 
 
DATA: 2-way 2-mode dis/similarity or preference data (alternatively, a set 
of (0,1) dominance matrices of [pairwise preference) 
TRANSFORMATION: Linear 
MODEL: Scalar Products or Vector  
 
     In the terminology developed by Carroll and Arabie (1979) MDPREF 
may be described as: 
 
     Data:  Two mode                Model:  Scalar-product 
            Two- or three-way               Two sets of "points" 
            Interval level                  One space 
            Row-conditional                 Internal 
            Complete or incomplete 
 
7.1.1  ORIGINS, VERSIONS AND ACRONYMS 
 
     MDPREF is based on a model developed at Bell Laboratories by 
J.D. Carroll and J.J. Chang (see Carroll , 1973).  In this paper they 
develop two types of solution, one iterative and the other analytical, 
making use of the Eckart-Young decomposition theorem (1936).  The 
MDPREF program implements this latter type, since the solutions obtained 
were virtually identical.  A quasi-non-metric version (N-MDPREF) has 
been developed, but is not currently available.  The NewMDSX version of 
MDPREF additionally includes the option for the User to divide the subjects 
into groups,and perform an analysis of variance of the subject vectors (as 
directional statistics). This was programmed by Charles Jones. 
 
7.1.2  FURTHER SPECIFICATION 
 
     The MDPREF program provides internal analysis of preference data.  
This involves a set of subjects making preference or any similar sort of 
judgment about a set of stimuli (objects).  From the data the program 
positions the stimuli as points in a Euclidean space, and represents each 
subject by a vector or line directed towards the region where that 
subject's highest preference lies.  In the case of perfect fit, the 
projections of the stimuli on this line correlate perfectly with the 
subject's preference scores. 
 
7.1.3 RELATION OF MDPREF TO OTHER PROCEDURES IN NewMDSX 
 
     MDPREF analyses 'preference' data by means of a point vector 
or "ideal vector" model.  Each subject or judge is represented in the 
space as a vector directed (which indicates the direction of increasing 
preference.  The stimuli are represented as points in the same space, so 
that the projections of the stimuli onto a given subject's vector 
maximally reproduce his(her) preferences. 
 
     The same point vector model is implemented both in phase IV of 
PREFMAP and in PROFIT, although in these cases the scaling is 'external' 
in the sense that the configuration of stimulus points is known beforehand 
and the subjects are fitted into this space as vectors.  In MDPREF 
by contrast both subject vectors  and stimulus points are positioned 
simultaneously from the information in the data, a so-called 'internal' 



analysis.  (Note however that PREFMAP phase IV does allow a quasi 
internal analysis q.v.) 
 
    CORRESP also uses a direct singular value decomposition of pre-
transformed data to produce canonical scores for rows and columns which can 
be plotted as points in the same space. CORRESP examines only interactive 
factors by explicitly removing the magnitude effect prior to decomposition, 
but so can MDPREF when treating data as row-conditional. The difference 
between the two lies in the transformations applied to the data before 
processing, so that the results, while similar in appearance, are not the 
same.  
 
     The same data as used in MDPREF may also be internally scaled 
by the non-metric distance model ('unfolding analysis') implemented in 
NewMDSX as MINIRSA.  In this case, both subjects and stimuli are 
represented as points in the same space. 
 
 
7.2.  DESCRIPTION 
 
7.2.1  INPUT DATA 
          MDPREF accepts input data in either of two main forms: 
as a set of pair-comparisons matrices (see David (1963), Ross (1934)) 
or as a set of rankings or ratings forming a rectangular, so-called 
"first-score" matrix.  Options within the program differ with different 
data input and the type of input is chosen by the DATA TYPE parameter 
in the PARAMETERS command.  In the following the "first-score" input is 
dealt with in sections 7.2.1.1 and 7.2.1.1.1 and the method of pair-
comparisons and its associated options in sections 7.2.1.2 to 7.2.1.2.1.1. 
Further options are discussed in section 7.2.3. 
 
7.2.1.1  The first-score matrix (DATA TYPE 1-4) 
     Suppose a set of N subjects is asked to rank in order of, say, 
preference, or give a rating to the set of p stimuli.  The resultant data 
forms a rectangular 'row-conditional' matrix with N rows (subjects) and p 
columns (stimuli), called the "first score matrix" in the program. 
Each row of the matrix represents the preference rank or score assigned 
by that subject to the stimuli. 
 
     Such a matrix can also be obtained by taking the pair comparison 
matrix for a given subject and summing each row.  The resultant column of 
scores gives that subject's rank order of preference for the stimuli and 
these may be collected to form the "first-score matrix". 
 
7.2.1.1.1  Ranks or Scores ? 
     Preference judgments may be represented for MDPREF (as in MINIRSA 
and other procedures) in four distinct ways.  The major distinction is that 
between a rank and a score.  If a subject is asked to write down in his 
order of preference for five stimuli, he might respond with: 
 
          ACDEB 
 
*The program in fact converts pair-comparison input into "first-score" 
 form in this way before proceeding with the analysis. 
 
If these letters (or stimulus names) are given numeric values this 
becomes: 
 
          13452 
 
This is the rank-ordering method (analogous to Coombs's I-scales) and 
means that stimulus 1 is preferred to 3 which is preferred to 4 etc. 
 



     Data may be input to MDPREF in this form by specifying DATA TYPE(1). 
In various data-collection techniques it may be that the ordering 
obtained begins with the least-preferred stimulus so that the previous 
example would in this case be written as:  BEDCA, signifying that B 
is least preferred, followed by E, and so forth.  If this is the case 
then the data should be specified as:  DATA TYPE(2). 
 
     A different way of representing such data is by the 'score' 
method.  In this method each column represents a particular stimulus 
and the entry in that column gives the score or rating of that stimulus 
(for that subject) in his 'scale of preference'.  Thus, in our original 
example the I-scale ACDEB (where A is preferred to C, which is preferred 
to D etc.) would in this method be represented as follows: 
 
 
                       A B C D E 
           subject  i  1 5 2 3 4 
 
In this instance, the lowest number ('1') is used to denote the most 
preferred stimulus and the highest ('5') to represent the least preferred. 
This option is chosen by:  DATA TYPE(3).  Alternatively, the highest 
number might have been used to represent the most preferred stimulus 
and if this is so,  DATA TYPE(4) should be specified. 
 
     (Although in illustrating the score method we have used the number 
1 to 5, the data might equally well have been numerical ratings). 
 
     For an example see 5.2.1.2.1.1 
 
     Figure 1 provides a simple means of identifying the appropriate 
DATA TYPE value. 
 
                              Figure 1. 
   
                            Are the data      ----- Yes -----  DATA TYPE(O) 
                           pair comparisons ? 
                                 │ 
                                 No 
        │ 
                            Are the data 
                           ranks or scores? 
      /                \ 
                     ranks                  scores 
                    /                              \ 
    Is the first                                      Does the highest 
    stimulus the                                      value mean most   
    most preferred?                                   preferred? 
    /              \                                /            \ 
 yes                no                           yes             no 
DATA TYPE (1)    DATA TYPE(2)                 DATA TYPE(3)   DATA TYPE(4) 
 
 
7.2.1.2  The pair-comparisons matrices (DATA TYPE(0)) 
     Suppose a subject is asked to consider all possible pairs of p 
stimuli and for each pair to indicate which stimulus (s)he prefers (or 
which stimulus possesses more of a given attribute).  (S)he is asked 
to make p (p-1)/2 judgments of preference.  (Since this increases 
approximately as p-squared, with a large number of stimuli this number of 
pairs becomes prohibitively large. Consequently, strategies 
exist to reduce the number of judgments (see 5.2.3.1)).  The data thus 
obtained may be collected into a square, asymmetric matrix whose 
rows and columns each represent the p stimulus points, whose entries 
aij take the value 1 if the subject prefers stimulus i to stimulus j, 



and aji will normally be 0, meaning that the subject does not 
prefer stimulus j to stimulus i (but see 5.2.3.1).  The subject may be 
allowed to express indifference between the stimuli, or leave blank a 
particular pair comparison.  Allowance is made for these options in the 
program, and the relevant coding conventions are described in section 
5.2.3. 
     If there are N subjects performing this test of preference, then 
there will be N such matrices.  These are input to MDPREF by specifying 
in the PARAMETERS command the value DATA TYPE(0), which is the default 
value. 
 

7.2.1.2.1 Coding of paired comparisons matrices 

     In the example above the entry '1' was taken to stand for preference 
by the particular subject for the row-stimulus over the column stimulus, 
and the value ' ' for its converse.  Further values are required to 
represent indifference between stimuli and missing data.  Since coding 
conventions vary, the program allows the users to specify their own. 
This is done by means of the command READ CODES (which has no operand 
field and if required may have associated with it its own INPUT FORMAT 
specification).  READ CODES instructs the program to read in four values 
for the codes, the first of which will represent preference, the second its 
opposite ("anti-preference"), the third indifference and the fourth a 
missing data value. 
  
 
7.2.1.2.1  Example 
           . 
           INPUT FORMAT        (4I2) 
           READ CODES 
           1 0 8 9 
           . 
           . 
            
      It will be noted that the codes must be specified as integer 
(I-type) variables. Thus our example has the program read 
 
          1   as the code for preference 
          0   as the code for "anti-preference" 
          8   as the code for indifference 
          9   as the code for a missing datum 
 
Note also that even if, in a particular analysis, fewer than four codes 
are used, four values should nevertheless be specified and read under 
READ CODES. 
 
The N paired-comparisons matrices are read by the READ MATRIX command, 
according to an optional INPUT FORMAT, if the data are not in free format. 
If used, this should specify the format of one row of the input matrices, 
and the individual matrices should follow each other without separation.  
(For example, see 5.5.1). Also note that if there are missing data then 
MISSING(1) should be specified in the PARAMETERS command. 
 
7.2.1.3  Example of data types 
 
     When eliciting judgments by means of pair comparisons we need 
three things:  (i) a set of subjects who will evaluate (ii) a set of 
stimuli (iii) on a given criterion. 
   
Each subject vector will then represent the direction in which that subject 
sees the criterion increasing over the configuration of stimulus points.  
Suppose we were interested in the 'user-friendliness' of the accompanying 



documentation of various computer packages.  We might ask Computing Centre 
advisers to fill in the following: 
 
      ... Taking each pair in turn please indicate by ticking in 
      the box provided, which of each pair of packages is more 
      "user friendly" ... 
          SPSS        [ ]3              GENSTAT   [ ]1 
          GENSTAT     [ ]1              CLUSTAN   [ ]4 
          NewMDS(X)   [ ]2              SPSS      [ ]3 
          SAS         [ ]5              NewMDS(X) [ ]5 
          ....                            .... 
 
And we would go on to list (probably in random order) all twenty pairs 
of these five programs.  For each adviser we would then construct a matrix 
similar to this: 
 
 
        Subject 32                     G     N           C 
                                       E     e           L 
                                       N     w           U 
                                       S     M     S     S     G 
                                       T     D     P     T     L 
                                       A     S     S     A     I 
                                       T     X     S     N     M 
                                    ----------------------------- 
                           GENSTAT  |        1     1     1     1 
                           NewMDSX  |  0           9     1     1 
                           SPSS     |  0     9           1     8 
                           CLUSTAN  |  0     0     0           1 
                           GLIM     |  0     0     8     0 
 
This subject believes that GENSTAT is more 'user-friendly' than all 
the other packages, NewMDSX than CLUSTAN and GLIM, and CLUSTAN than 
GLIM.  Furthermore,(s)he left the pair SPSS/NewMDSX blank (hence code 9) 
and decided that there was No difference between BMDP and CLUSTAN (code 8). 
 
7.2.1.3.1  Data for 'First-score' 
     In the example above, five stimuli were presented in pairs, 
twenty in all.  If we were concerned with more than that number of 
stimuli we might feel that the number of pairs was too large for the 
subject to manage without boredom, error or bloody mindedness taking 
its toll.  We might then decide to abandon the pair comparison method 
(which is, of course,  sensitive to intransitivities in a subject's data) 
and use instead a method of ranking or rating.  For instance, we might ask: 
 
            Please place the letters corresponding to the 
       packages listed in the box provided so that the first 
       letter represents the program which you feel to be most 
       'user-friendly' and the last the one you feel to be 
       least 'user-friendly'. 
 
       A:  GENSTAT 
       B:  NewMDSX         (Most)      User-friendly          (Least) 
       C:  SPSS     [    ][    ][    ][    ][    ][    ][    ] 
       D:  CLUSTAN 
       E:  GLIM 
       F: 
       G: 
 
     This method is obviously less time-consuming but less sensitive than 
the method of pair comparison.  In this case we simply take each subject's 
list of letters (I-Scale) and collect them into instruction lines with the 
subject numbers: 



                         . 
                         . 
                        S023    ABCDEFG 
                        S024    GFEDCBA 
                        S025    ACEGBDF 
                         . 
                         . 
 
     Here we would specify DATA TYPE(1) to MDPREF to denote the fact 
that our data are ranked (I-Scales) with the highest 'preference' first. 
 
 
7.2.2  THE MODEL 
     The MDPREF model represents the preferences of a subject for a 
group of stimuli as a vector through the configuration of stimulus points. 
This vector indicates the direction in which his (her) preference 
increases over the space.  Substantively this makes strong assumption 
about the nature of preference, in that the model implies an "ideal" 
point - i.e. a point of maximum preference - at infinity (which is 
similar to the classic econometric assumption of insatiability.  In MDPREF, 
where the point of maximum preference is at infinity, the contours are 
perpendicular to the vector).  There is no reason to cavil, for instance 
at the idea of seriousness (Coxon 1980)  or, as in our earlier example, 
"user friendliness" increasing uniformly over the space. 
 
     MDPREF is a linear (or metric) procedure and the measure of goodness- 
of-fit of the model to the data is a product-moment correlation.  Consider 
one subject vector passing through a configuration of stimulus points 
with the projections (perpendicular lines drawn from the points onto the 
vector). It is the values given to the points at which these perpendicular 
lines meet the vector which are maximally correlated with that subject's 
data.  (This is guaranteed by the Eckart-Young decomposition). 
      
     The subject vectors are normalised (for convenience only) to 
the same length, i.e. so that their ends lie at a common distance from 
the origin of the space, forming a circle, sphere or hypersphere depending 
on the dimensionality chosen for analysis.  Thus when a solution of more 
than 3 dimensions is represented as a set of 2-dimensional plots, some of 
the vectors will not, in fact, lie on the boundary circle since they will 
have been projected down from the higher dimensions.  The length of the 
vector in the sub-space is related to the amount of variation in that 
subject's data explained by those two dimensions of the solution space. 
In the graphic displays of these results, an additional menu item Vectors 
enables you to plot or suppress the subject vectors if these are becoming 
too cluttered.  
 
 
7.2.2.1  Description of the Algorithm 
1.   If the input is in the form of pair comparisons matrices, these 
     are converted into a "first-score" matrix. Optionally, these may be 
     centred and/or normalised. 
 
2.   The major and minor product-moment matrices are formed. 
 
3.   The inter-subject and inter-stimuli correlations are calculated. 
 
4.   The p-m matrices are factored by the Eckart-Young procedure to 
     provide coordinates of the stimulus space and of the subject 
     vector ends. 
 
5.   The first r columns of the relevant factor matrices are taken. 
     These form the two configurations output as solution. 
 



7.2.3 FURTHER OPTI0NS 
 
7.2.3.1  Dimensionality 
     The program lists the latent roots of the matrices.  The number 
of positive roots will be not greater than the number of stimuli or the 
number of subjects, whichever is the smaller.  The magnitude of the roots 
gives an indication of the amount of variation in the data accounted for by 
that dimension.  The largest root will always be first and the others will 
follow in decreasing order.  Some may be zero.  An appropriate dimension-
ality may be chosen by means of the familiar scree-test. 
 
 
 
7.2.3.2.  Normalising and Centring 
     With the data in the form of a first score matrix the user may 
choose how the matrix is to be centred and normalised using the 
parameters CENTRE and NORMALISE. The default for these parameters is 
0 and means no action. 
 
     Other options allow various courses. CENT(1) instructs the program 
simply to subtract the row means. This will, in a rating exercise, 
remove any effect due to differences in the actual values used by 
particular subjects.  NORM(1) allows the program not only to subtract 
the row means but also to take out any effect due to differences in the 
range or spread of scores involved by normalising each row by dividing it 
by its standard deviation. 
 
     CENT(2) and NORM(2) perform the same operation on the column elements, 
i.e. subtracting column means and column normalising respectively. This 
latter option has the effect of taking out the unanimity effect in 
subjects judgements and leaving only the significant differences in 
judgements (see Forgas (1979)).   CENT(3) instructs the program to double 
centre the matrix by subtracting both row and column means.   NORM(3) does 
this, and normalises the entire matrix. 
 
7.2.3.3  Weighting of pair comparison matrices 
 
     Since pair-wise judgements are often difficult to make, the user may 
sometimes wish to accord to each judgement a 'weight'.   This might 
represent the degree of confidence which the subject attaches to his 
judgement, or perhaps the reliability which the researcher ascribes to 
each judgement. 
 
     If weights are input then there must be one weights matrix per 
subject. The weights matrix immediately follows its associated pair 
comparisons matrix.  This may optionally be read according to a WEIGHTS 
FORMAT statement, which should be suitable for real (F-type) numbers.(For 
an example see Section 4.2.) If there is no WEIGHTS FORMAT provided, free 
format input is assumed. 
 
 
7.2.3.3.1  The SAME PATTERN parameter 
     If, as often happens, there is more than one identical weights 
matrix, then the number of such matrices should be specified as the 
SAME PATTERN parameter.  In this case, the weights matrix follows 
the first pair comparisons matrix and is read according to an optional 
WEIGHTS FORMAT statement, if it is not in free format.  Those pair 
comparisons matrices having the same pattern of weights then follow each 
other without separation. 
 
 
7.2.3.4  Blocking of pair-comparisons data 
     If the number of pair-comparisons judgements has been thought too 



great then the researcher may resort to the use of incomplete data, i.e. 
certain element-pairs may not be presented to the subjects (see Burton & 
Nerlove, 1971).  The resulting data-matrix will have 'blocks' missing. 
If one of these strategies is used and the data are arranged in blocks 
then BLOCK(1) must be specified in the PARAMETERS command so that allowance 
can be made in the calculation of row- and column-sums. 
 
 
7.2.3.5  Interpretation of the solution 
     The MDPREF program positions the N subject vectors and the p stimulus 
points in a space of user-specified dimensionality.  Interpretation of 
the stimulus configuration should proceed as for any MDS configuration, 
although it should be borne in mind that since this is an interval 
scaling model, the stimulus points have been positioned to secure maximum 
agreement with the subject's vectors.  Consequently, interpretation of 
the position of stimulus points should be made with regard to the principal 
direction(s) and spread of the subject vector ends. 
 
     The identification of 'outliers' amongst the subjects by visual 
inspection is straightforward.   
 
7.2.3.5.1 ANOVA of Subject Vectors. 
 
Often the subjects belong to a range of groups, and the User is interested 
in whether they differ from each other in terms of their subject vectors. 
If this is so, the user mustprovide a group-number identification AFTER the 
last value in each subject’s line. (These numbers need to be sequential and 
start with 1) and signify this by the presence of GROUPS(m) in the 
Parameter list (where m is the number of groups). Certain one-, two- and 
multi-sample 
tests for mean direction are available  and give  
directional analogues to the analysis of variance.  Appendix 2 gives 
a brief summary of statistics available in MDPREF and fuller description 
may be found in Pearson and Hartley (1972) and Mardia (1972).  (See also 
Stephens (1962; 1969)).  
 
 
7.3.  INPUT PARAMETERS 
     MDPREF allows data to be input in two forms: 
 
1.   A "first-score" matrix in which case an N x p matrix is input. 
 
2.   A set of pair comparisons matrices in which case there will 
     be N matrices, each p x p. 
 
Options available with each type of option differ.  The type of input 
is chosen by the parameter: 
 
DATA TYPE              Default   0:  Data are in a pair-comparisons 
                                     matrix. 
                                 1: Data are ranks (I-scales) of column 
                                    indices in decreasing order of                      
                                    preference. 
                                 2: As 1 but in increasing order of 
                                    preference. 
                                 3: Data are scores in order of column 
                                    indices - high score means low 
                                    preference. 
                                 4: As 3 but high scores mean 
                                    high preference. 
 
7.3.1  OPTIONS WITH THE FIRST SCORE MATRIX 
Keyword         Default                        Function 



MATFORM            0                0:  The matrix is saved subjects 
                                        (rows) by stimuli (columns). 
                                    1:  The matrix is saved stimuli 
                                        (rows) by subjects (columns). 
GROUPS             0                The number of groups present in an 
                                    analysis of variance should be 

specified (See Appendix 2). 
CENTRE             0                0:  The data are not centred. 
                                    1:  Row-means only are subtracted. 
                                    2:  Column means only are subtracted. 
                                    3:  Matrix is double centred. 
NORMALISE          0                0:  Matrix is not normalised. 
                                    1:  Rows are centred and normalised. 
                                    2:  Columns are centred and normalised. 
                                    3:  Both rows and columns are centred 
                                        and normalised. 
 
 
 
7.3.2  OPTIONS WITH PAIRED COMPARISONS MATRICES 
Keyword         Default                         Function 
SAME PATTERN       0                Sets the number of subjects whose 
                                    pattern of missing data or weights 
                                    matrices are the same. 
WEIGHTS            0                0:  No weights are input 
                                    1:  Weights are input 
BLOCK              0                0:  The data are not arranged in blocks 
                                    1:  The non-empty cells are arranged 
                                        in blocks or are to be treated as 

such. 
                                   (NOTE:  Weights cannot be used with  
                                           this option). 
MISSING             0                0:  There are no missing data 
                                     1:  There are missing data in the 
                                         matrix. 
7.3.3  NOTES 
1.   READ CONFIG is not valid with MDPREF. 
 
2.   Note that even if only two or three codes are used in the paired 
     comparisons matrices, the READ CODES command must specify four 
     codes, which must be in the order specified. 
 
7.3.4  PROGRAM LIMITS 
     Maximum number of stimuli      60 
     Maximum number of subjects    100 
     Maximum number of dimensions    8 
     Maximum number of groups       15 
 
 
7.3.5  PRINT, PLOT AND PUNCH OPTIONS 
     The general format for PRINTing, PLOTting and PUNCHing output 
is described in the Overview.  In the case of MDPREF, the options are as 
follows. 
 
7.5.1  PRINT options 
Option              Form                       Description 
FINAL               p x r            The stimulus matrix followed by  
                    N x r            the subject matrix. 
FIRST               N x p            The first-score matrix.  (This is the 
                                     input matrix after being modified 
                                     i.e. centred/normalised). 
                                     Means & standard deviations of  
                                     subjects are listed. 



CROSS-PRODUCTS                       Four matrices are listed: 
                    N x N          1. the cross-product matrix 
           (subjects) 
                    p x p          2.  "     "     "       "   (stimuli) 
                    N x N          3. the correlation(PPM) matrix(subjects)  
                    p x p          4.  "     "                "  (stimuli) 
 
SECOND              N x p             The second-score matrix. 
ROOTS                                 The latent roots. 
RESIDUALS           N x p             The first-score matrix less the 
                                      second-score. 
CORRELATIONS        N                The correlation for each subject 

Between the data and the stimulus 
projections is listed. 

 
     The default option allows for only the final configuration to 
be listed. 
 
7.5.2  PLOT options 
Option                                         Description 
SUBJECTS                             The n(n-1)/2 plots of the subject 
                                     vectors in chosen dimensionalities. 
STIMULI                              The n(n-1)/2 plots of the stimulus 
                                     points in the chosen dimensionalities. 
JOINT                                Both of the above. 
SHEPARD                               In this case simply the first-score 
                                      plotted against the second-score. 
ROOTS                                 A scree diagram. 
RESIDUALS                             Histogram of residual values 
GROUPS                                A plot showing the average vector of 
the groups  

(if chosen). 
 
     The default options allow for the first two dimensions of the joint 
space in each dimensionality only to be plotted. 
 
7.3.5.3  PUNCH options 
Option                                     Description 
SUBJECT SPACE             The final configuration of subjects is saved. 
STIMULUS SPACE            The final configuration of stimuli is saved. 
   
     By default, no secondary output is produced. 
 
 
7.4. EXAMPLES 
 
7.4.1  EXAMPLE OF A SIMPLE RUN 
 
  RUN NAME           TEST RUN OF MDPREF 
  TASK NAME          FIRST SCORE OPTION 
  N OF SUBJECTS      20 
  N OF STIMULI       16 
  DIMENSIONS         2,3 
  PARAMETERS         DATA TYPE(1), NORMALIZE(1) 
  COMMENT            ***** 
                     THE PARAMETERS STATEMENT SPECIFIES FIRST SCORE 
                     MATRIX AS INPUT. THIS MATRIX IS TO BE 
                     NORMALISED BY ROW 
                     ***** 
  READ MATRIX 
     <the 20x16 first score matrix follows here in free format> 
  PRINT             CROSS-PRODUCTS(2), SECOND(2,3) 
  COMPUTE 



  TASK NAME         PAIRED COMPARISONS OPTION 
  N OF SUBJECTS     20 
  N OF STIMULI      10 
  DIMENSIONS        2 
  READ CODES 
  1 0 8 9 
  COMMENT 
                     ... WHEREAS THIS ONE REFERS TO THE INPUT MATRICES 
                     NO PARAMETERS STATEMENT IS INSERTED AS 
                     ALL DEFAULT OPTIONS ARE ASSUMED 
  PLOT               SHEPARD, RESIDUALS 
  READ MATRIX 
     <20 square matrices, each of order 10 follow here> 
  COMPUTE 
  FINISH 
 
7.4.2  EXAMPLE OF A RUN WITH WEIGHTS ADDED 
 
  RUN NAME             MORE MDPREF TEST DATA 
  TASK NAME            ... THIS TIME WITH WEIGHTS 
  N OF SUBJECTS        10 
  N OF STIMULI         5 
  DIMENSIONS           2,3 
  PARAMETERS           WEIGHTS (1) 
  COMMENT              default DATA TYPE(0) 
 
  READ CODES 
  1 0 8 9 
  WEIGHTS FORMAT       (5F2.0) 
  COMMENT              ***** 
                       WE NOW INPUT FOR EACH OF THE 10 
                       SUBJECTS A P-C MATRIX AND A WEIGHTS 
                       MATRIX WITHOUT SEPARATION. NOTE THE 
                       USE OF AN OPTIONAL WEIGHTS FORMAT.IN 
                       THIS CASE IT COULD EQUALLY WELL HAVE 
                       BEEN OMITTED.      
                       ***** 
  READ MATRIX 
  9 1 1 1 1 
  0 9 1 1 1 
  0 0 9 1 1            PAIRED COMPARISONS 
  0 0 0 9 1 
  0 0 0 0 9 
   0 2 1 9 4 
   3 0 3 6 2 
   8 5 0 3 1              WEIGHTS 
   4 8 2 0 9 
   3 4 5 8 0 
    <here, without break, follow 9 other such pairs of matrices> 
  PLOT                 SHEPARD  (2) 
  COMPUTE 
  FINISH 
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APPENDIX 1 :  THE RELATION OF MDPREF TO PROGRAMS NOT IN NewMDSX 
     MDPREF is analogous to the INGRID program widely used in the 
analysis of repertory grids (Slater, 1960).  The use of various MDS(X) 
programs in this type of analysis is described in detail by Tagg (1980); 
see also Forgas (1979).  A similar model is used by Tucker;  see Tucker 
(1955; 1960).  A MDPREF-like model is not included in either ALSCAL 
or the G-L series but an approximation is implemented by the Takane-Young- 
de Leeuw program PRINCIPALS (see Takane et al, 1975). 
 
 
 



APPENDIX 2:  STATISTICS FOR DIRECTIONAL DATA 
A2.1  Definitions 
    We shall be concerned with differences and similarities between 
subjects' preferences, i.e. between the vectors.  A sample of vectors 
may be thought of as drawn from a population whose overall direction is 
the polar vector.  The average direction for the sample set of vectors 
is called the modal vector.  The vector sum of a set of vectors is a 
resultant vector and its sum of squares its length (R). 
 
A2.2  Measures of distribution 
     It is clear that the greater the length of the resultant vector, 
the more agreement exists in the sample. 
 
     The probability density of distribution of vectors around the polar 
vector is given by kappa, high values of which imply a concentrated 
symmetrical distribution of vectors around the polar, while a zero value 
gives a uniform distribution around the circle or sphere. 
 
     Kappa may be estimated from sample data by 
 
          K =  N-1 / N-R 
 
where N is the total number of vectors (and also, obviously, the sum of the 
lengths of N unit vectors) and R the length of the resultant.  Note, 
however, that this approximation is only accurate when R/N > 0.7 (i.e. 
kappa > 3.3). 
 
A2.3  Tests of significance 
     A directional analogy to one-way analysis of variance is an 
approximate test for comparison of polar vectors from two or more samples. 
The parameter 2K(N-R) is distributed approximately as chi-square with 
2(N-1) degrees of freedom. 
 
     It is possible, arguing from the analogy with analysis of variance, 
to partition the chi-square for the concentration of vectors from two 
independent samples about a common estimated mean vector.  The overall 
X<s2>s is the sum of the components from (a) the concentration of vectors 
in each sample about their mean vectors, and (b) the concentration of the 
two estimated mean vectors. 
 
     An approximation to the F-test compares 'between-group' and 'within 
group' components.  With S samples an F-distribution is approximated by 
 
                 (N-S)  ( ∑ R  - R) 
                          i  i 
           U  =  −⎯−⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯          
                 (S-1)  (N -  ∑ R ) 
                                i 
                           
      In the three-dimensional (spherical) case this statistic has (2S-2) 
and (2N-25) degrees of freedom in the numerator and denominator 
respectively. In the circular (two-dimensional) case these values are 
respectively (S-1) and (N-S). 
 
     The statistical theory which would allow us to proceed to a two-way 
analysis of variance has not been developed. 
 
A2.4  Input parameters for statistics 
     statistics are only available with the 'first-score' option.  If the 
user wishes to use the program to perform the one way analysis (s)he should 
specify the number of groups on the GROUPS parameter in the PARAMETERS 



statement. Each row of the matrix (i.e. each subject) should then be 
assigned to a group.  This is done by appending to each row the number of 
the group to which that subject is assigned. With free-format input, the 
group number is simply added to the end of the corresponding row of the 
matrix, separated by a space. The INPUT FORMAT specification, if used, 
should be amended to read this number as an integer (I-type) value.  
 



 
8.   MDSORT (Multidimensional Scaling for SORTing data) 
 
8.1 OVERVIEW  
 
MDSORT expects as input a matrix consisting of a set of N row vectors, one 
for each respondent i, arrayed so that each column refers to a given object 
j and where the entry f(i,j) consists of the category/group number in which 
the object is located by respondent i. The only restriction is that each 
stimulus/object must be assigned to one and only one category. The model 
implemented in MDSORT is designed specifically for the direct analysis of 
free-sorting data, and was developed to generate a joint representation of 
objects and subjects' categories, which simultaneously scales and 
represents the sorting data. 
DATA: 2-way 2-mode data matrix of subjects’ stimulus allocation to own 
category („pile-sort“) 
TRANSFORMATION: Linear 
MODEL: Scalar Product 
 
 
8.2  DESCRIPTION 
 
See Coxon (1999) for a full description of the Sorting method and its 
applications.The basic operation of sorting consists of subjects allocating 
a set of objects into categories of their own choosing. The researcher 
usually defines a common set of "objects" (stimuli, statements, names, 
artefacts, pictures) and then asks typically asks each of the n subjects to 
sort the p objects into a subject-chosen number (c) of groups/categories.  
The mathematical representation of the sorting is: 
 
    the partition of a set of  p  elements into a number ( c ) of cells. 
 
The most important characteristic of a partition is that the categories of 
a subject's sorting must be mutually exclusive and exhaustive, i.e. each 
object must be sorted into one, and only one, category. This allows an 
object to be put into a category by itself, but it explicitly disallows 
overlapping categories. Sorting data are therefore, at least initially, at 
the nominal level of measurement. 
 
Takane's (1980) model takes the data as a matrix F consisting of a set of N 
row vectors, one for each respondent i, arrayed so that each column refers 
to a given object/stimulus j, and the entry f(i,j) consists of the 
category/group number in which the object is located by subject i. The 
categories are in a sequential (but arbitrary) numbering, and respondents 
may employ differing numbers of categories in sorting the set of stimuli.    
 
That is: 
 
            F = [fij],     (i = 1,...,N;  j = 1,...,p) 
 
where the value of cell fij is the category number, say k, in which object 
j occurs in i’s sorting.   
 
The F data matrix is then expanded into a set of individual matrices Gk 
each of which is of size p rows and q categories, where q may differ from 
subject to subject in free-sorting : 
 
      Gk = [ gjqk ]   ( i = 1,...,N; j = 1,...,p; q = #ci )   
 
Where 
 



      gjqk  = 1, 0:    1   if object j occurs in subject i's qth category; 
                       0   otherwise. 
 
Takane (1980) proceeds directly to a joint scaling by decomposing the data 
matrix. The major feature  of the model is that a decomposition is sought  
which simultaneously seeks to locate both the object point locations and 
the category centroids for each subject - this being the degree of 
individual difference allowed in this model, which thus allows the subjects 
to be represented by a series of category centroids, rather than by a 
single ideal point.  
 
The intention is to obtain a configuration of stimulus/object points in 
such a way that the sum of squared inter-category distances (averaged over 
subjects) is maximized under suitable normalization restrictions. MDSORT 
determines a matrix X of coordinates of the n objects in a minimal, user-
chosen dimensionality, r.  The squared distances between category centroids 
are related by definition to the trace of the product-moment of X, which is 
determined so that tr(X'BX)} is maximized, where B is the mean of the sums 
of the subject-specific similarity matrices: 
 
                            N                            
               B = 1  3 Π G 
                         N k=1 

k

                          
The subject-specific matrix Π Gk, thus plays an important role in 
understanding this process, and is related to the data matrix  Gk  as 
follows: 
                                        
                     Π Gk  = Gk(Gk’Gk)-1 Gk’ 
 
The (k,j) element of  ( GkGk’)is 1 when objects j and k are sorted into the 
same group and is 0 otherwise. The(Gk’Gk)-1 matrix scales nonzero elements of  
GkGk’ by the size of categories, so that the similarity between two objects 
sorted into the same group is inversely related to the size of the 
category. The values output for the matrix B are therefore also related to 
the sizes of the sorted categories, corresponding to the assumption of 
Burton’s (1975) weighted similarity measure G. The raw co-occurrences may 
also be output, and may be submitted for comparison to other scaling 
routines within NewMDSX.  
 
With the addition of the restriction for the multidimensional case that   
X'X = I, the required maximum of tr(X'BX) is the matrix of normalized 
eigenvectors of B corresponding to its r dominant eigenvalues and 
satisfying the centering requirement by excluding the constant eigenvector. 
Once X has been obtained in this way, category centroids for each subject 
can be derived from it, in combination with and based on its relationship 
to the original input data matrix. 
 
Takane himself points out that however desirable it may be to link the 
scaling and representation of the data (e.g. by seeking to reproduce 
aspects of subjects’ behaviour in making a sorting), this is not actually 
achieved in the model (nor, it should be added, in any similar model). The 
MDSORT model maximizes the average sum of squared distances – a useful 
technical requirement – but it is hardly likely that subjects themselves 
form their categories so that the sum of the intercategory distances is a 
maximum. 
 
 
 
 
 



 
 
 
8.3.1    INPUT COMMANDS 
 
DIMENSIONS     n Integer    This restricts the output to the first n 
                            principal components, in diminishing order 
                            of significance. 
 
N OF STIMULI   n Integer    The number of objects/stimuli sorted, 
                            corresponding to the number of columns in 
                            the input data matrix. 
 
N OF SUBJECTS  n Integer    The number of subjects for which sortings are 
                            Available, corresponding to the number of 
                            rows in the input matrix.  
 
READ DATA                   precedes the input data matrix. By default 
                            input is assumed to be in free format. If an 
                            INPUT FORMAT command is used, it must be 
                            specified to read a line of integer values 
                            corresponding to the N OF STIMULI.                      
 
LABELS  followed by a       optionally identify the stimuli in the 
       series of labels     output. Labels should contain text characters 
      (<= 65 characters),   only, without punctuation. 
       each on a separate  
       line 
  
 
8.3.2    OUTPUT 
 
8.3.2.1  PRINT options  (to main output file) 
Option                        Description 
SIMILARITIES         Outputs the matrix B of similarities between 
                     the stimuli derived from the input data. 
CLUSTERS             Outputs the set of individual cluster centroids 
                     corresponding to these overall similarities. 
CO-OCCURRENCES       Outputs the matrix of raw co-occurrences in categories             
                     of the stimuli.  
 
8.3.2.2  PLOT options    (to main output file) 
Option                        Description 
STIMULI              Plots the stimulus configuration, representing the 
                     number of normalized principal components 
                     specified by the DIMENSIONS statement.   
CLUSTERS             Plots the set of cluster centroid configurations                   
                     For the individual subjects. If the N OF SUBJECTS is 
                     more than a small number, this option may produce a 
                     rather large output file. 
 
NOTES 
1.   READ DATA, N OF STIMULI and N OF SUBJECTS are obligatory in MDSORT. 
2.   No secondary output file is produced. 
3.   No PARAMETERS are used by MDSORT. 
4.   Program limits: STIMULI  - 200 
                     DIMENSIONS – 8 
 
 
 
8.4 EXAMPLE 
 
RUN NAME    COMPARISONS OF A SERIES OF COMPOSERS 



N OF STIMULI  16 
N OF SUBJECTS 19 
DIMENSIONS    2 
PLOT  STIMULI 
PRINT SIMILARITIES CLUSTERS                    
READ DATA 
 1 1 2 3 4 4 2 5 6 7 7 7 6 6 8 8  
 1 1 2 2 2 3 2 4 4 5 5 5 4 4 3 3  
 1 1 2 3 3 2 6 4 4 5 5 1 4 4 7 4  
 1 1 2 3 3 4 2 5 5 1 6 7 5 5 7 5  
 1 1 2 3 2 3 5 6 5 6 6 4 6 6 4 4  
 1 1 2 3 4 4 2 5 5 6 6 1 5 5 7 7  
 1 1 1 3 3 3 1 2 2 3 3 2 2 2 2 2  
 1 1 2 3 4 4 2 5 5 6 6 3 5 5 7 7  
 1 1 2 2 2 2 2 3 3 1 2 2 3 3 3 3  
 3 1 2 4 4 4 1 5 1 6 6 3 5 3 7 5  
 1 1 2 3 4 4 2 3 5 6 6 7 5 5 4 4  
 3 3 4 5 4 4 1 6 6 2 2 2 6 6 2 6  
 4 4 5 6 3 6 3 2 1 5 6 6 1 2 6 2  
 3 3 4 4 4 5 4 1 2 5 5 3 2 2 2 5  
 3 3 4 5 5 4 6 1 2 4 4 6 2 1 5 1  
 3 3 4 4 4 5 4 6 6 7 7 1 6 1 2 1  
 3 3 4 5 6 7 1 1 1 7 7 7 1 1 2 1  
 3 3 4 5 4 6 4 1 1 6 6 3 1 1 2 1  
 3 3 4 5 5 5 6 7 7 8 8 8 1 1 2 2  
COMPUTE 
FINISH 
 
 
OUTPUT 
........ 
 
 SIMILARITY MATRIX DERIVED FROM THE DATA 
 
            1        2        3        4        5        6        7       8 
            9       10       11       12       13       14       15      16 
 
  1     0.425    0.408    0.013    0.000    0.000    0.000    0.013   0.000 
        0.000    0.035    0.000    0.088    0.000    0.018    0.000   0.000 
  2     0.408    0.425    0.013    0.000    0.000    0.000    0.031   0.000 
        0.018    0.035    0.000    0.070    0.000    0.000    0.000   0.000 
 
........ 
 
 16     0.000    0.000    0.000    0.000    0.013    0.044    0.009   0.120 
        0.067    0.013    0.013    0.043    0.085    0.120    0.170   0.304 
 
 
 EIGENVALUES, CHI SQUARES AND THE CORRESPONDING D.F. 
 
 
        1        0.847   -109.682       113 
        2        0.639    -59.682       111 
        3        0.566    -48.871       109 
        4        0.503    -40.910       107 
        5        0.401    -29.964       105 
        6        0.378    -27.771       103 
        7        0.343    -24.602       101 
        8        0.328    -23.245        99 
        9        0.248    -16.654        97 
       10        0.216    -14.224        95 
       11        0.201    -13.108        93 
       12        0.176    -11.339        91 



       13        0.142     -8.982        89 
       14        0.125     -7.834        87 
       15        0.097     -5.961        85 
       16        0.000     -0.000        83 
 
 
 STIMULUS COORDINATES 
 
                    1       2 
 
   CONTRIBUTION   0.162   0.123 
  
       1 (1)      0.622  -0.200 
       2 (2)      0.620  -0.195 
       3 (3)     -0.065   0.172 
       4 (4)     -0.145  -0.072 
       5 (5)     -0.151  -0.068 
       6 (6)     -0.129   0.030 
       7 (7)     -0.029   0.224 
       8 (8)     -0.174  -0.264 
       9 (9)     -0.145  -0.217 
      10 (A)      0.050   0.471 
      11 (B)     -0.010   0.509 
      12 (C)      0.148   0.301 
      13 (D)     -0.168  -0.248 
      14 (E)     -0.140  -0.229 
      15 (F)     -0.131  -0.051 
      16 (G)     -0.152  -0.163 
 
....... 
 
CLUSTER CENTROIDS FOR EACH SUBJECT 
 
      SUBJECT=  1 
 
          1 (1)           0.621  -0.197 
          2 (2)          -0.047   0.198 
          3 (3)          -0.145  -0.072 
          4 (4)          -0.140  -0.019 
          5 (5)          -0.174  -0.264 
          6 (6)          -0.151  -0.231 
          7 (7)           0.063   0.427 
          8 (8)          -0.142  -0.107 
 
      SUBJECT=  2 
 
          1 (1)           0.621  -0.197 
          2 (2)          -0.097   0.064 
          3 (3)          -0.137  -0.062 
          4 (4)          -0.157  -0.239 
          5 (5)           0.063   0.427 
 
....... 
 
      SUBJECT= 19 
 
          1 (1)          -0.154  -0.238 
          2 (2)          -0.142  -0.107 
          3 (3)           0.621  -0.197 
          4 (4)          -0.065   0.172 
          5 (5)          -0.141  -0.037        
          6 (6)          -0.029   0.224 
          7 (7)          -0.160  -0.240 



          8 (8)           0.063   0.427 
 
....... 
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9.   MINIRSA (MINI Rectangular Smallest Space Analysis) 
 
9.1.  OVERVIEW 
 
    Concisely:  MINIRSA (MINI Rectangular Smallest Space Analysis, or non-
metric Multidimensional Unfolding Analysis) 
provides internal analysis of two-way data in a row-conditional 
format of a (dis)similarity measure by a Euclidean distance model 
using a monotonic transformation of the data. 
 
DATA: 2-way, 2-mode row-conditional preference or dis/similarity data 
TRANSFORMATION: monotonic 
 
     Following the terminology developed by Carroll and Arabie (1979) 
MINIRSA may be described as: 
 
     Data:  Two-mode                Model:  Euclidean distance  
                                            incorporating 
            Two-way                         Two sets of points in 
            Ordinal                         One space 
            Row conditional                 The solution is internal 
            Complete or incomplete 
            One replication 
 
 
9.1.1  ORIGIN, VERSIONS AND ACRONYMS 
     The MINIRSA program included in the NewMDSX series is adapted from 
Roskam's 1973 release. 
 
9.1.2  BRIEF DESCRIPTION OF MINIRSA 
     MINIRSA performs a non-metric multidimensional unfolding analysis. 
Consider a set of subjects and a set of stimuli where the subjects 
indicate their preferences for the stimuli (the judgements need not 
be of preference;  any asymmetric relation is acceptable).  The aim of 
the program is to position both stimuli of subjects as points in a 
space of minimum dimensionality so that, for each subject, the rank 
order of the distances from his or her point of maximum preference in 
the space (the "ideal point") to the stimuli matches the subject's 
preference ordering as closely as possible. 
 
9.1.3  RELATION OF MINIRSA TO OTHER PROCEDURES IN NewMDSX 
     MINIRSA analyses preference data by means of an 'ideal point' 
or 'point-point' model.  That is to say that each subject, or "judge" 
is represented in the solution space as a point positioned at his(her) 
point of maximum preference.  The stimuli are also positioned as 
points in the same space so that the nearer a point lies to a given 
subject's ideal point the greater is that subject's preference for it. 
 
     (By contrast the MDPREF program implements a 'point-vector' model, 
where the subjects are represented in the solution space as vectors: 
i.e. directions of increasing preference (which is formally equivalent 
to having an ideal point at infinity). 
 
     MINIRSA is also equivalent to the third phase of PREFMAP except 
in so far as MINIRSA provides an internal analysis, that is to say 
that both subject and stimulus points are simultaneously positioned 
to satisfy the data, whereas in PREFMAP phase 3 the subject points 
are inserted into a pre-existing configuration of stimulus points. 
(Note, however, that PREFMAP also provides for a quasi-internal 
analysis q.v.). 
 
 



 
9.2.  DESCRIPTION OF THE PROGRAM 
9.2.1  DATA 
     MINIRSA takes data in a 'row-conditional' format.  In the simplest 
case, a group of N subjects might be asked to rank in order of preference 
a set of p stimuli.  The judgement may, of course, be a ranking (or rating) 
in terms of any suitable criterion of which preference is the intuitively 
most obvious example. 
 
     The data matrix, then, consists of N rows each of which reflects 
a particular subject's order of preference for the stimuli.  There are 
p columns.  The various p ways in which these may be presented are 
detailed below (9.2.1.1). 
 
     MINIRSA does not accept paired-comparisons data as such but will 
take the row sums of such matrices (see MDPREF, Section 7.2.1.2). 
 
9.2.1.1  Ranks or Scores 
     Preference judgements may be represented for MINIRSA (as in MDPREF 
and other procedures) in four distinct ways.  The major distinction is that 
between a rank and a score.  If a subject is asked to write down in his 
order of preference for five stimuli, he might respond with: 
 
          ACDEB 
 
If these letters (or stimulus names) are given numeric values this 
becomes: 
 
          13452 
 
This is the rank-ordering method (analogous to Coombs's I-scales) and 
means that stimulus 1 is preferred to 3 which is preferred to 4 etc. 
     Data may be input to MINIRSA in this form by specifying DATA TYPE(1). 
In various data-collection techniques it may be that the ordering 
obtained begins with the least-preferred stimulus so that the previous 
example would in this case be written as:  BEDCA,  signifying that B 
is least preferred, followed by E, and so forth.  If this is the case 
then the data should be specified as:  DATA TYPE(2). 
 
     A different way of representing such data is by the 'score' method. 
In this method each column represents a particular stimulus and the 
entry in that column gives the score or rating of that stimulus 
(for that subject) in his 'scale of preference'.  Thus, in our original 
example the I-scale  ACDEB  (where A is preferred to C, which is preferred 
to D etc.) would in this method be represented as follows: 
 
                         A B C D E 
          subject    i   1 5 2 3 4 
 
In this instance, the lowest number ('1') is used to denote the most 
preferred stimulus and the highest ('5') to represent the least preferred. 
This option is chosen by:  DATA TYPE(3).  Alternatively, the highest 
number might have been used to represent the most preferred stimulus and 
if this is so,  DATA TYPE(4)  should be specified. 
 
     (Although in illustrating the score method we have used the number 
1 to 5, the data might equally well have been numerical ratings). 
 
     Figure 1 provides a simple means of identifying the appropriate 
DATA TYPE value. 



 
 
 
 
 
 

        Figure 1 
 

 Are the data 
                       ranks or scores ? 
                     /                   \ 
                ranks                    scores 
                /                             \ 
      Is the first                          Does the highest 
      stimulus the                           value mean most 
     most preferred ?                         preferred ? 
     /               \                        /             \ 
   yes               no                     yes              no 
    |                 |                      |                |  
DATA TYPE(0)       DATA TYPE(1)          DATA TYPE(2)    DATA TYPE(3) 
 
 
 
9.2.2  THE MODEL 
     Coombs (1964) developed the notion of unidimensional unfolding 
in which a set of stimuli were so placed along the continuum 
(the "J(“joint”)-scale") that a subject might be thought of as being 
located at one point (our 'ideal point') in such a way that his or her 
preference for the stimuli decreased the further away from the ideal point 
a given stimulus is situated.  If the J-scale is folded at the ideal point, 
this then forms the subject’s I (for “individual”) scale. The point of 
Unfolding analysis is to take a set of individual I-scales and unfold them 
into a joint scale. In this simple 1-space the fact that the distance from 
the subject's ideal point to stimulus a was greater than the distance from 
the ideal point to stimulus b implied that the subject preferred stimulus b 
to stimulus a.  (For a more detailed overview see Appendix 3). The 
generalisation to spaces of higher dimensionality is intuitively obvious 
though computationally complex. MINIRSA is the program which performs non-
metric multidimensional unfolding in the NewMDSX library. 
 
     MINIRSA takes data of the form described and seeks to position 
both sets of objects - subjects and stimuli - as points in a space of 
minimum dimensionality.  The subjects are positioned at their points 
of maximum preference: their 'ideal points'.  For each subject the 
distances to the stimuli will reflect the order of preference as 
revealed by the data:  the most preferred stimulus will be the nearest 
stimulus point to a subject's ideal point, the least-preferred, the 
farthest away. 
     Strictly speaking, this will hold only if the data are 'perfect' 
(i.e. fit the given dimensionality) and for all but minimal STRESS 
values, some inversions will occur. 
 
     It is instructive to consider the contours enclosing areas of 
equal preference.  In MINIRSA these will describe circles around each 
of the subject points (as contrasted, for instance, with PREFMAP phases 
I, II, where the contours are ellipses and MDPREF and PREFMAP IV where 
the "contours" are straight lines perpendicular to the subject's vector). 
 
9.2.2.1  The Algorithm 
1.   If the user does not provide one, the program generates an 
     initial stimulus configuration (see Appendix 2.5) in which 
     the subjects are initially placed between their two most 
     preferred stimuli. 



 
2.   The configuration is normalised. 
 
3.   The distances in the configuration (between each subject and 
     the stimuli) are calculated. 
 
4.   The fitting values are next calculated following Kruskal's 
     method of monotone regression. 
 
5.   STRESS2 is calculated  (n.b. NOT STRESS1; see below) 
6.   If STRESS2 has reached zero or an acceptable minimum then the 
     configuration is output as solution.  If not, then 
 
7.   For each point on each dimension both the direction in which it 
     should move so that STRESS2 is minimized and the optimal size of 
     that move (the 'step-size') are calculated. 
 
8.   The configuration is moved in accordance with (7) and the 
     program returns to step 2. 
 
9.   The solution is rotated to principal axes.  (A translation 
     of the origin is also allowed). 
 
9.2.2.1.1  MINIRSA and MINISSA 
     The MINIRSA algorithm differs from the basic MINISSA algorithm 
on two major counts. 
 
9.2.2.1.1.1  The monotonicity requirement 
     Since at step 5 Kruskal's method of calculating the fitting 
values is used, the program only enforces the requirement of weak 
monotonicity on the fitting value.  Specifically, this means that 
different data values may be fit by the same fitting values. 
 
9.2.2.1.1.2  STRESS 
     The input data to MINIRSA is considered to be 'row-conditional' 
(i.e. no comparability is assumed between subjects' rankings).  Thus 
it is inappropriate to calculate STRESS according to the simple STRESS1 
formula, but rather a form of STRESS2  is calculated.  For each  
distinct ranking ("I-scale"), the STRESS2 value is first calculated: 
(STRESS2 is used in preference to STRESS1 in order to prevent the  
occurrence of degenerate solutions, with fitting values all having the 
same value).  The overall STRESS  value is then defined as a weighted 2

average of the individual STRESS values. 
 
9.2.3  FURTHER FEATURES 
 
9.2.3.1  Missing Data 
     MINIRSA allows for missing data.  The value to be regarded as 
indicating a missing value should be specified in the PARAMETERS statement 
by means of the MISSING parameter:  e.g. if 9 is the code for a missing 
datum then MISSING(9) is appropriate. 
 
 
9.3.  INPUT PARAMETERS 
 
9.3.1  LIST OF PARAMETERS 
Keyword        Default Value 
DATA TYPE           1         1:  Data are ranks (I-scales) of column 
                                  indices in decreasing order of 
                                  preference. 
                              2:  As 1 but in increasing order of 
                                  preference. 
                              3:  Data are scores in order of column 



                                 indices - high score means low preference 
                              4:  As 3 but high scores mean high preference 
 
MINIMUM ITERATIONS   6          Sets the minimum number of iterations to be 
                                to be performed before convergence test. 
MISSING DATA         0          Sets the data value which is to be regarded 
                                as missing data. 
MATFORM              0          NOTE: only relevant when 'READ CONFIG' is 
                                         used. 
                              0:  The input configuration is saved 
                                  subjects and stimuli (rows) by dimensions 
                                  (columns). Subjects are saved before 
                                   stimuli. 
                              1:  The input configuration is saved 
                                  dimensions (rows) by subjects and 
                                  stimuli (columns). 
 
9.3.2  NOTES 
    ( #  )                                ( #  ) 
1.  ( N  ) OF SUBJECTS may be replaced by ( N  ) OF ROWS. 
    ( No )                                ( No ) 
    ( #  )                                ( #  } 
2.  ( N  ) OF STIMULI may be replaced by  ( N  ) OF COLUMNS 
    ( No )                                ( No ) 
 
3.   See section 6.2.3.2 for details of frequency counts. 
 
9.3.3  PROGRAM LIMITATIONS 
     Maximum number of subjects     =  100 
     Maximum number of stimuli      =   60 
     Maximum number of dimensions   =    5 
 
9.3.4  PRINT, PLOT AND PUNCH OPTIONS 
     The general format for PRINTing, PLOTting and PUNCHing output is 
described in the Overview.  In the case of MINIRSA the particular options 
are as follows. 
 
9.3.4.1  PRINT options  (to the main output file) 
Keyword        Form                        Description 
INITIAL        N x r           Two matrices are produced being the 
               p x r           coordinates of the subject points and the 
                               stimulus points in the required dimensions. 
FINAL          N x r           Similarly, two solution matrices are listed. 
               p x r 
DISTANCES      N x N           Three matrices are listed: 
               p x p           1.The distances between the subject points. 
               N x p 
                               2.The distances between the stimulus points. 
                               3.The distances between the subjects and the 
                                 stimuli. 
FITTING        N x p           The matrix of disparities (DHAT's). 
RESIDUALS      N x p           The matrix of residuals is listed. 
HISTORY                        This keyword generates an extremely detailed 
                               history of the iterative process.  Users are 
                               warned that this option generates a large 
                               amount of output. 
 
     By default only the final configurations and the final STRESS value 
are listed. 
 
9.3.4.2  PLOT options  (to the main output file) 
Keyword                                   Description 
SUBJECTS                        A plot of the subject points only 



                                is produced. 
STIMULI                         A plot of the stimulus points only 
                                is produced. 
JOINT                           The configuration of subject and stimulus 
                                points is plotted. 
SHEPARD                         The Shepard diagram is produced 
STRESS                          A histogram of STRESS values at each 
                                iteration is produced. 
POINT                           The contribution of each subject to the 
                                overall STRESS value is plotted. 
RESIDUALS                       A histogram of residual values is produced. 
 
     By default a Shepard diagram and the joint space only are plotted. 
 
 
9.3.4.2  PUNCH options (to a secondary output file) 
 
Keyword                                      Description 
SPSS                         A file suitable for input to SPSS is produced. 
                             The following values appear: 
                             I      :  the subject index no. 
                             IFR    :  no. of repeat orderings. 
                             0      :  the stimulus index no. 
                             INPUT  :  the datum corresponding to I,J. 
                             FITTING:  the corresponding DHAT value. 
                             DIST   :  the solution distance between I & J. 
 
                             RESID  :  the corresponding residual value. 
                             The format of the file is (4I4,3F10.4)???. 
STRESS                       The STRESS values at each iteration are 
                              output in a fixed format. 
FINAL                        A file of the final configuration 
                              is produced. 
 
9.4.   EXAMPLE 
 
  RUN NAME                MINIRSA TEST DATA 
                          46 I-SCALES FROM 5 CONVEX STIMULI 
  ITERATIONS              80 
  DIMENSIONS              2 
  N OF SUBJECTS           46 
  N OF STIMULI            5 
  PRINT                   DISTANCES, RESIDUALS 
  PLOT                    POINT 
  READ MATRIX 
    <data follow here> 
  COMPUTE 
  FINISH 
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APPENDIX 1:  RELATION OF MINIRSA T0 OTHER PROGRAMS NOT IN NewMDSX 
 
      Internal multidimensional unfolding analysis, implemented by 
MINI-RSA, is also implemented by the SSAR-II program in the Guttman- 
Lingoes series and in Young and Lewyckyj's ALSCAL IN SPSS-4 package (with 
parameters set so that the measurement level is ordinal and the data 
type is rectangular and row-conditional). 
 
     More general variants are also possible in these packages.  The 
Guttman-Lingoes programs permit other types of conditionality (see 
Lingoes 1972, pp 57-59) and ALSCAL IN SPSS-4 allows other levels of 
measurement (see Young and Lewyckyj 1979, p 23). 
 
 



10.  MINISSA (Michigan-Israel-Nijmegen Integrated Smallest 
     Space Analysis) 
 
 
OVERVIEW 
 
 Concisely:  MINISSA (Michigan-Israel-Nijmegen Integrated Smallest 
Space Analysis) provides internal analysis of a two-way symmetric matrix 
of (dis)similarities by means of an Euclidean distance model using a 
monotone transformation of the data. 
 
DATA: 2-way, 1-mode dis/similarity measures 
TRANSFORMATION: Monotonic 
MODEL: Euclidean distance 
 
     Following the categorisation developed by Carroll and Arabie (1979) 
the program may be fully described as: 
 
     Data:  One mode         Model:  Minkowski metric (restricted) 
            Two-way                  One set of points 
            Dyadic                   One space 
            Ordinal                  Internal 
            Unconditional 
            Complete 
            One replication 
 
 
10.1.1  ORIGIN AND VERSIONS OF MINISSA 
     NewMDSX for Windows offers MINISSA(N), a fast, efficient version of 
the basic Guttman-Lingoes MINI-SSA program with a limited number of user 
options. This version emanates from Nijmegen and is part of Roskam's       
KUNST library of MDS programs. In particular, MINISSA(N) embodies the 
changes and improvements outlined in his classic monograph (Lingoes and 
Roskam 1973)integrating the Bell and Michigan traditions of basic non-
metric scaling. 
     MINISSA(M), based upon the original SSA program in the Michigan 
(Guttman-Lingoes) series, contains a large number of user options, and 
is less easy to use than MINISSA(N). It was referred to as SSA(M) in the 
original MDS(X) series. 
 
10.1.2  BRIEF DESCRIPTION OF MINISSA     
 
     MINISSA performs what is known as the basic non-metric model of MDS by 
taking (the lower triangle of) a square symmetric matrix whose elements are 
to be transformed to give the distances of the solution.  This 
transformation will preserve the rank order of the input data.  The model 
is formally equivalent to that developed by Kruskal (1964) although MINISSA 
uses a hybrid computational approach to the minimization problem, involving 
techniques originated by both Kruskal and Guttman.  This approach is 
efficient and succeeds better than other programs in avoiding suboptimal 
solutions (Lingoes and Roskam 1973). 
 
10.1.3  RELATION TO OTHER PROCEDURES IN NewMDSX 
 
     The MINISSA method and algorithm also forms the basis of MRSCAL. In 
MRSCAL it is assumed that there is a linear or power relation between the 
data and the solution distances output from MINISSA may be used as input 
for PINDIS. 
 
 
 
 
 



10.2. DESCRIPTION OF THE PROGRAM 
 
10.2.1  DATA 
     MINISSA accepts as input either the lower triangle (without diagonal) 
or a full square symmetric data matrix. Each entry of this input matrix is 
a measure of (dis)similarity between the row-element and the column 
element.  Commonly these are pair-wise ratings of similarity, but any 
symmetric measure may be used (including correlations, covariances if they 
are non-negative) and co-occurrences. 
 
     The aim of the algorithm is to position the elements as points 
in a space of minimum dimensionality so that a measure of departure 
from perfect fit between the (monotonically) rescaled data and the 
distances of the solution (STRESS) is minimised.  Perfect fit occurs 
if a monotone transformation of the data can be found which forms a 
set of actual distances. 
 
10.2.1.1  Example 
     Benjamin(1958) collected data on the social mobility of some 2600 
subjects using thirteen occupational categories.  Macdonald, used the index 
devised by Blau and Duncan (1967, p.43) to measure the dissimilarity in 
mobility between occupational groups.  (For a fuller description of this 
index see section 2.3.3.4 of the Users' Guide).  The measure, writes 
Macdonald (1972, pp.213-14) may be interpreted as  "the percentage of the 
sons of (group) A that would have to be reallocated jobwise for the sons of 
A to match the sons of B".  He assembles the index values into a lower 
diagonal matrix, and these are included in the example  described in 
section 4.  The scaling solution is discussed at length in Macdonald's 
article. 
 
10.2.2  THE ALGORITHM 
1.   An initial configuration is input by the user, or one is 
     generated by the program (see 7.2.3.2 below). 
 
2.   This configuration is normalised (see 7.2.2.2 below). 
 
3.   The distances between the points are calculated according to 
     the Minkowski metric chosen (see 7.2.3.3 below). 
 
4.   The disparities or fitting-values are calculated (see 7.2.2.1). 
 
5.   STRESS, the index of badness-of-fit between the disparities 
     and the distances, is calculated. 
 
6.   A number of tests are performed to determine whether the 
     iterative process should continue, e.g. 
 
        Is STRESS sufficiently low ? 
 
        Has the improvement of STRESS over the last few iterations 
        been so small as to be not worth continuing ? 
 
        Has a specified maximum number of iterations been performed ? 
 
     If the answer to any of these is YES, then the configuration is 
     output as solution.  If not, then 
 
7.   For each point on each dimension the direction in which it would 
     have to move for STRESS to be minimized is calculated as is the 
     optimal size of the move (the 'step-size'). 
 
8.   The configuration is moved in accordance with 7 and the program 
     returns to step 2. 



 
10.2.2.1  Minimization, fitting values  
     In MINISSA there are two methods of finding the minimum STRESS 
value.  These are known in Guttman's (1968) terminology as soft and 
hard squeeze methods.  The program begins by using the soft squeeze 
which minimizes raw STRESS and when this has reached a minimum 
switches to the hard squeeze and minimizes STRESS1.  By convention 
different fitting values (step 4) are used in the different phases. 
 
10.2.2.1.1  Soft squeeze 
     Soft squeeze derives from a technique of Guttman's (1968).  It 
is particularly efficient at quickly reducing STRESS.  Fitting values 
are calculated using a procedure known as rank-image permutation. 
These fitting values are known as d* (DSTARS) and have the property of 
being strongly monotone with the data.  That is to say that unequal 
data values must be matched with unequal fitting values (formally if 
δij > δkl   then  d*ij > d*kl  ). 
 
10.2.2.1.2  Hard squeeze 
     When a minimum has been reached using the soft squeeze the program 
switches to the so-called hard squeeze, which is a simpler, more well- 
behaved method.  Fitting values are now calculated using a procedure 
 
                                                            ^ 
known as monotone (or isotonic) regression and are known as d (DHATS).  
These have 
the property of being weakly monotone with the data in that unequal 
data may be matched with equal fitting values if in so doing STRESS 
 
                                              ^     ^ 
is reduced (formally, if  δ   >  δ     then  d    ≥  d   ). 
                           ij    kl           ij      kl 
To summarise: 
                    SOFT SQUEEZE         HARD SQUEEZE 
                    (initial method)     (second method) 
 
  Minimizes:        Raw Stress            STRESS1 
                                                 
                     *                    ^ 
  Using:            d  (DSTAR)            d (DHAT) 
 
  Relation to       strongly              weakly 
    data:           monotone              monotone 
 
 
     Users who wish to vary the combination of fitting values with 
methods are referred to SSA(M). 
 
10.2.2.2  STRESS and normalization 
     In the so-called 'soft-squeeze' the program minimizes raw STRESS 
(otherwise known as raw phi, or STRESS0 ) which is simply the sum of 
the squared differences between the distances in the configuration 
and the DSTAR's,  i.e. Σ  (d    - d* )2.  Since this index might be ij ij ij

minimized by successive  scaling down of the overall size of the 
configuration, the configuration is normalised after each iteration. 
 
     In the so-called 'hard-squeeze' however, STRESS1  is calculated 
and minimized. STRESS1  is simply a normalized form of raw STRESS, 
the normalizing factor being the sum of the squared distances in the 
configuration.  This removes the dependence of the original index on 
the size of the configuration.  Values for STRESS of both flavours 
are output by the program. 



 
10.2.2.2.1  Step-size and angle factor 
     At step 7, the algorithm computes the direction in which each 
point should be moved in order to reduce STRESS.  This is done by 
calculating the partial derivation of STRESS with respect to each 
point - the negative gradient.  It is also important however correctly 
to compute the optimal amount of movement in that direction.  This 
is the so-called 'step-size'.  This step-size may be changed at each 
iteration.  These changes are monitored by the 'angle factor', which 
is in effect the cosine of the angle between successive gradients, i.e. 
the correlation between them.  This ensures that, as the program moves 
towards convergence, and the gradient becomes less steep the step-size 
will decrease, so as to minimize the possibility of overshooting a 
minimum STRESS value.  MINISSA prints out at termination the final angle 
factor.  At this stage the value ought to be very small.  If it is large, 
then more iterations should be attempted. 
 
10.2.3  FURTHER OPTIONS IN MINISSA 
 
10.2.3.1  Ties in the data 
     It is possible to treat ties in the data in two ways when calculating 
STRESS.  These are known as the primary and secondary approaches and are 
chosen by the user, by means of TIES on the PARAMETERS command. 
 
10.2.3.1.1  The primary approach (TIES (1)) 
     The primary approach allows that if two data elements are equal 
then the assigned fitting values may be unequal The tie is broken if, 
in so doing, STRESS is reduced.  Substantively this approach regards ties 
in the data as relatively unimportant.  It is, of course, possible for 
the program to capitalise on this approach to produce a 'good', though 
degenerate configuration.  If data contain a lot of ties and the program 
is using the primary approach then long horizontal lines will appear in 
the Shepard diagram.  A number of such horizontal lines is a sign of 
possible degeneracy in the solution. 
 
10.2.3.1.2  The secondary approach (TIES (2)) 
     On the other hand, the secondary approach regards the equality of 
data elements as important information and requires that the fitting 
values be equal for equal data.  This constraint is more stringent than 
the primary approach and will normally result in higher STRESS values. 
 
10.2.3.1.3  The parameter EPSILON 
     A further approach to tied data is given by means of EPSILON on the 
PARAMETERS command.  Each pair of data values will be compared and, if the 
difference between them is less than this value they will be regarded as 
tied.  This approach is recommended if the user wishes to place little 
emphasis on the smaller variations in the data. 
 
     For a full description of options regarding ties and the preservation 
of order information, see the Users' Guide section 3.2.3.  The user wishing 
to combine a particular approach to ties with a particular type of fitting 
value is referred to the options available in SSA(M) mentioned in the 
Appendix below. 
 
10.2.3.2  The initial configuration 
     The values of a 'good' starting point for the iterative process 
include saving on machine time and avoidance of local minima. Two options 
exist within MINISSA for the choice of initial configuration: 
 
     The user may supply a starting configuration.  This may be a guess 
at the solution, an a priori configuration or a solution to a previous 
metric scaling.  The matrix of coordinates is preceded by a READ CONFIG 



command, which may if necessary have associated with it an optional INPUT 
FORMAT specification to read real (F-type) values.  The configuration may 
be input either stimuli (rows) by dimensions (columns) or dimensions (rows) 
by stimuli (columns).  (In this latter case, the parameter MATFORM should 
be given the value (1) in the PARAMETERS command). 
 
     Alternatively, the program will generate a starting configuration 
with desirable numerical properties.  This configuration is the usual 
one in the Guttman-Lingoes-Roskam MINI programs and uses only the ordinal 
properties of the data.  It has been found to be particularly useful in 
avoiding problems with local minima.  Further details justifying this 
choice of initial configuration will be found in Lingoes and Roskam 
(1973, pp.17-19), and Roskam (1975, pp.37-44). 
 
 
10.2.3.3  Distances in the configuration 
 
     The user may choose how the distances between the points in the 
configuration are to be computed by the MINKOWSKI parameter. The 
default of 2.0 gives the ordinary Euclidean metric and 1.0 gives a 
'city-block' metric but any positive number may be used. It is however 
unwise to use large values as there is then a risk of overflow. 
 
10.2.3.4  The final configuration 
 
     When the iterative process is terminated, the current configuration 
is output as the solution.   If the metric is Euclidean (i.e. MINKOWSKI(2)) 
then the configuration is rotated to principal axes.   It should be noted 
that these axes are arbitrary from the point of view of interpretation, 
but have certain desirable geometric properties.  In particular the 
coordinates of the points on the axes are uncorrelated.  Furthermore 
it is often helpful in deciding on the 'correct' dimensionality of the 
solution to notice how much variation is associated with each axis. 
This variation is given in the output by the value SIGMA which is the 
standard deviation of the coordinates on each axis. 
 
10.2.3.5  STRESS and dimensionality 
     The estimation of the appropriate dimensionality of an MDS solution 
is central to the analysis.  Three methods are commonly used with MINISSA 
in addition to that involving SIGMA alluded to above. 
 
     The first guideline (attributed to Forrest Young) asserts that the 
ratio between the number of data elements and the number of latent 
parameters (i.e. coordinates) should be at least two.  This compression 
ratio should serve as a useful guide when choosing the dimensionalities for 
a run of the program. 
 
     The second is a heuristic device analogous to the familiar "scree 
test" of factor analysis.  STRESS should decrease with increasing 
dimensionality until in n-2 dimensions a perfect (though trivial) fit 
will be achieved.  If a graph is drawn of STRESS against dimensionality it 
is a common occurrence to find an 'elbow' - a sharp decrease in STRESS 
between dimensions  occurring at some relatively low dimensionality. At 
this value, to add dimensions will not significantly improve the fit of 
data to solution so it is reasonable to attempt interpretation of this 
solution. 
     If however 10 and 60 points are being used and the dimensionality is 
less than or equal to 5 the program will print a value of STRESS1 based 
on an approximation to random data as detailed in Spence (1979). 
 
10.2.3.6  Local minima 
     For a given set of data each configuration will have an associated 
STRESS value.  The MINISSA procedure finds the 'best' configuration, 



by finding the partial derivatives of STRESS (with respect to the 
coordinates).  It is possible that a given STRESS value, although locally 
the minimum attainable, may not be the real 'global' minimum. 
 
     As mentioned earlier both a good initial configuration and a hybrid 
algorithm (such as MINISSA) tend to decrease the possibility of local 
minima occurring.  Relatively high STRESS values may be a sign of local 
minima as would a decrease in STRESS in decreasing dimensionality. 
If the user suspects local minima, then it is suggested (s)he try a 
number of different starting configurations. 
 
10.3. INPUT PARAMETERS 
 
     All parameter keywords may be shortened to the first four letters. 
All subsequent mis-spellings are ignored. 
 
10.3.1  LIST OF PARAMETERS 
 
Keyword           Default Value               Function 
DATA TYPE              0            0:  The data are similarities 
                                        (high values mean high similarities 
                                         between points) – input is lower 
                                         triangle matrix without diagonal 
                                    1:  The data are dissimilarities 
                                        (high values mean high 
                                        dissimilarities between points) – 
                                        input is lower triangle without 
                                        diagonal 
                                    2:  The data are similarities – input 
                                        is full symmetric matrix 
                                    3:  The data are dissimilarities – 
                                        input is full symmetric matrix 
 
MINIMUM ITERATIONS     6             Sets the minimum number of iterations 
                                     to be performed before the 
                                      convergence test. 
 
EPSILON                0.0           Data are to be considered tied 
                                     if difference between them is less 
                                     than EPSILON. 
 
MATFORM                0             (Only relevant when 'READ CONFIG' 
                                           is used). 
                                     0:  The input configuration is saved 
                                         stimuli (rows) by dimensions 
                                         (columns). 
                                     1:  The input configuration is saved 
                                         dimensions (rows) by stimuli 
                                         (columns). 
TIES                   1             1:  Primary approach to ties in the 

data. 
                                     2:  Secondary approach to ties in the 
                                           data. 
MINKOWSKI             2.0            1:  Distances in the configuration are 
                                           measured by 'city-block' metric. 
                                     2:  Distances are measured by a 
                                           Euclidean metric. 
                                     Any positive number may be used. 
 
10.3.2  NOTES 
    ( #  )                                ( #  ) 
1.  ( N  ) OF STIMULI may be replaced by  ( N  ) OF POINTS 
    ( NO )                                ( NO ) 



 
2.  ( #  ) 
    ( N  ) OF SUBJECTS  is not valid. 
    ( NO ) 
 
3.   LABELS  followed by a series of labels (<= 65 characters), each on 
     a separate line, optionally identify the stimuli in the output. 
     Labels should contain text characters only, without punctuation. 
 
4.   Note that the program expects real (F-type) numbers.  The data 
     should be input as the lower half of a matrix without diagonal. 
     The INPUT FORMAT statement, if used, should read the longest row of 
     this matrix (i.e.  n-1 values when there are n stimuli). 
 
5. Note that MINISSA expects (dis)similarities and is not intended to 

work with negative values. 
 
6.   Program limits: 
           Maximum number of stimuli     =  80 
           Maximum number of dimensions  =   8 
 
10.3.3  PRINT, PLOT AND PUNCH OPTIONS 
     The general format for PRINTing, PLOTting and PUNCHing output is 
described in the Overview.  In the case of MINISSA, the available options 
are as follows: 
 
10.3.3.1  PRINT options   (to the main output file) 
 
Option               Form                         Description 
INITIAL          p  x r matrix      Initial configuration, either generated 
                                    by the program or input by the user 
                                    (p = no. of stimuli). 
FINAL            p x r matrix       Final configuration, rotated to 
                                       principal components. 
DISTANCES        lower triangular,  Solution distances between points, 
                 with diagonal        calculated according to MINKOWSKI 
                                      parameter. 
FITTING          lower triangular,  Fitting values: the disparities 
                 with diagonal         (DHAT) values. 
RESIDUALS        lower triangular,  The difference between the distances 
                 with diagonal         and the disparities. 
HISTORY                             An iteration by iteration history 
                                       of STRESS and values. 
 
     By default only the final configuration and the final STRESS values 
are listed. 
 
10.3.3.2  PLOT options     (to the main output file) 
 
Option                                        Description 
INITIAL                              Up to r(r-1)/2 plots of the 
                                     initial configuration. (r = no. of 
                                     dimensions). 
FINAL                                Up to r(r-1)/2 plots of final 
                                     configuration (r = no. of dimensions). 
SHEPARD                              The Shepard diagram of distances 
                                     plotted against data. Fitting values 
                                     are shown by *, actual data/distance 
                                     pairs by 0. 
STRESS                               Plot of STRESS values by iteration, 
                                     with a final plot of stress by the 
                                     number of dimensions.  



POINT                                Histogram of point contributions to 
                                     STRESS. 
RESIDUALS                            Histogram of residual values. 
  
   By default, the Shepard diagram and the final configuration will be 
plotted.  Configuration plots are calibrated both from 0 to 100 and from 0 
to the maximum coordinate value. 
 
 
10.3.3.3 PUNCH options  (secondary output file) 
 
Option                                          Description 
SPSS                                  Outputs  I (Row index), J (Column 
                                      index) and corresponding DATA, 
                                      DISPARITIES, DISTANCES, RESIDUALS 
                                      values in the format:(2I3,4F12.0). 
 
FINAL                                 Outputs final configuration as 
        stimuli(row) by dimension(column) 

  matrix. 
                                      Each row is prefaced by the stimulus 
                                      number.  Format: (I4, rF10.0) where 
                                      r is the number of dimensions. 
STRESS                                Outputs STRESS value by iteration. 
 
 
     By default, no secondary output is produced. 
 
 
10.4.  EXAMPLE 
 
   RUN NAME             8 POINT ZERO STRESS DATA 
   TASK NAME            AS MADE FAMOUS BY USERS GUIDE 
   N OF STIMULI         8 
   DIMENSIONS           2 
   INPUT FORMAT         (7F4.0) 
   PARAMETERS           TIES(2), DATA(1) 
   READ MATRIX 
     <data> 
   PRINT                 ALL 
   PLOT                  SHEP(2) 
   COMPUTE 
   FINISH 
 
  RUN NAME               OCCUPATIONAL DISSIMILARITY DATA 
  TASK NAME              AS IN SEC. 2.1.1 
  N OF STIMULI           13 
  DIMENSIONS             5 TO 1 
  PARAMETERS             DATA(1) 
  INPUT FORMAT           (12F5.0) 
  LABELS                 FARMERS 
                         AGRICULTURAL WORKERS 
                         HIGHER ADMIN ETC 
                         OTHER ADMIN ETC 
                         SHOPKEEPERS 
                         CLERICAL WORKERS 
                         SHOP ASSISTANTS 
                         PERSONAL SERVICE 
                         FOREMEN 
                         SKILLED WORKERS 
                         SEMI-SKILLED WORKERS 
                         UNSKILLED WORKERS 
                         ARMED FORCES 



   READ MATRIX 
   51.1 
   71.4  75.8 
   63.0  52.7  36.9 
   58.6  57.7  40.8  32.3 
   67.0  55.6  38.6  17.7  38.2 
   63.4  52.3  39.4  13.4  27.8  27.3 
   54.5  43.3  55.5  29.3  41.1  35.0  23.5 
   71.2  47.5  56.5  26.2  41.0  35.6  21.1  36.1 
   65.2  44.3  62.3  33.0  45.1  42.1  27.4  32.0  14.7 
   65.7  43.0  68.2  39.0  50.8  47.3  33.3  36.0  15.7   8.4 
   60.1  34.2  69.4  39.8  51.9  47.2  35.5  30.4  23.9  21.1  19.3 
   66.7  41.9  62.7  36.1  44.6  42.7  29.0  35.9  21.2  20.7  18.4  18.9 
   PLOT                                   SHEP(2) 
   COMPUTE 
   FINISH 
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APPENDIX :  RELATION OF MINISSA TO OTHER PROGRAMS 
     The MINISSA program merges the two main traditions of basic 
non metric MDS:  the Shepard-Kruskal approach (using monotone regression, 
weak monotonicity and minimising STRESS ) and the Guttman-Lingoes 
approach (using rank images, strong monotonicity and minimising raw 
STRESS).  The former was implemented in the original MDSCAL program, and 
the latter in the Guttman-Lingoes SSA-1 program.  Both of these programs 
are now outdated and have been withdrawn. 
 
     The basic model is now implemented as the default option by a 
number of general purpose programs:  KYST (the successor to MDSCAL), 
TORSCA (for Torgerson Scaling) and ALSCAL-4 (the successor to POLYCON). 
The chief advantages of MINISSA are its small size and speed of 
computation and its resistance to suboptimal solutions. 
 
 



11.   MRSCAL (MetRic SCALing) 
 
11.1.  OVERVIEW 
 
     Concisely:  MRSCAL (MetRic SCALing) provides internal analysis 
of a two-way data matrix by means of a Minkowski distance model 
using either a linear or a logarithmic transformation of the data. 
 
DATA: 2-way, 1-mode dissimilarity measure 
TRANSFORMATION: Linear or Logarithmic transform 
MODEL: Minkowski distance model  
 
     Following the categorisation developed by Carroll and Arabie 
(1979) MRSCAL may be described as: 
 
     Data:  One mode          Model:  Minkowski metric 
            Two-way                   One set of points 
            Dyadic                    One space 
            Unconditional             Internal 
            Complete 
            One replication 
 
 
11.1.1  ORIGIN AND VERSIONS OF MRSCAL 
     The MRSCAL program is the basic metric distance scaling program 
in Roskam's MINI series.  The MRSCAL program in the NewMDSX series is 
based upon the 1971 and KUNST (1977) versions. 
 
 
11.1.2  BRIEF DESCRIPTION OF MRSCAL 
     The MRSCAL algorithm is a metric counterpart to MINISSA.  Its 
aim is to position a set of stimulus objects as a set of points in a 
space of minimum dimensionality in much the same way as MINISSA, except 
that the distances in this space will be a linear (or optionally a 
logarithmic) function of the dissimilarities between the stimuli. 
In this it has obvious similarities to 'classic' MDS (Richardson 1938, 
Young and Householder 1938) and to the linear (metric) scaling procedure 
developed by Messick and Abelson (1956) and made more widely known 
by Torgerson (1958).  The MRSCAL algorithm however, utilises the iterative 
procedures which Guttman, Lingoes and Roskam (1971) developed and also 
allows the user additional options, both in the manner by which the 
distances in the solution space are measured (see Section 2.2.2) and 
in the form of the transformation function linking data to distances 
in the solution (see Section 2.2.4) which make it both more general 
and more robust than the original procedures. 
 
11.1.3  RELATION OF MRSCAL TO OTHER PROCEDURES IN NewMDSX 
     MRSCAL is an exact metric counterpart to MINISSA, differing from 
it in that it restricts the field of possible transformation of the 
data to linear (or power) ones. 
 
     Output from MRSCAL may be input to PINDIS. 
 
11.2.  DESCRIPTION 
     MRSCAL accepts as input the lower triangle (without diagonal) or  
a square symmetric data matrix.  Each entry of this matrix will be a 
measure of the (dis)similarity between the row-element and the column 
element.  If the linear transformation option is chosen it should be 
borne in mind that product moment correlations and covariances may not be  
acceptable in that they are only monotonically (and not 
linearly) related to distance. 
 
     The aim of the algorithm is to position these elements as points 



in a space of minimum dimensionality such that a STRESS-like measure 
of departure from perfect fit (Guttman’s coefficient of alienation) between 
the (linearly) rescaled data and the distances in the solution is 
minimised.  A perfect fit occurs if a linear (or logarithmic) 
transformation of the data is found which is a set of actual distances. 
 
11.2.1.1  Example 
     Benjamin (1958) collected data on the social mobility of some 2600 
subjects using thirteen occupational categories.  Macdonald, who  
investigated the notion of social distance, uses the Dissimilarity Index 
devised by Blau and Duncan (1967, p.43) to measure the dissimilarity in 
mobility between occupational groups.  (For a fuller description of this 
index see section 2.3.3.4 of the Users' Guide).  The measure, writes 
Macdonald (1972, pp. 213-14) may be interpreted as  "the percentage of 
the sons of (group) A that would have to be reallocated jobwise for 
the sons of A to match the sons of B".  He assembles the index values 
into a lower diagonal matrix, and these are included in the examples 
described in section 4.  The scaling solution is discussed at length 
in Macdonald's article. 
 
11.2.2  THE ALGORITHM 
     The program proceeds as follows. 
 
1.   An initial configuration is input (or one may be generated by 
     the program (see 2.2.1 below)). 
 
2.   The configuration is normalised. 
 
3.   The inter-point distances are calculated according to the 
     Minkowski metric chosen by the user (see 2.2.2 below). 
 
4.   A set of fitting quantities are computed that are 
 
     i)   a linear (or power) transformation of the data;   and 
 
     ii)  a least-squares best-fit to the distances. 
 
5.   The coefficient of alienation between the fitting-quantities 
     and the distances is computed. 
 
6.   A number of tests is performed to determine whether the iterative 
     process should continue;  e.g. Is STRESS sufficiently low? 
     Has the improvement in STRESS over the last few iterations been 
     great enough to warrant continuing ?  Has a specified maximum 
     number of iterations been performed ? 
7.   If not, then the gradient is computed.  This gives for each 
     point on each dimension the direction in which that point 
     should be moved on that dimension in order that STRESS be 
     minimized. 
 
8.   If the gradient is zero then the configuration is output as 
     solution. 
 
9.   If not, then the points are moved in accordance with (7) and 
     the program returns to step 2. 
 
11.2.2.1  Initial configuration 
     The user may provide a starting configuration by means of the 
Command READ CONFIG, with an associated INPUT FORMAT specification if 
the data are not in free format.  In this case a coordinate for each point 
on each dimension is input.  This may be done either by stimuli (rows) by 
dimensions (columns) or dimensions(rows) by stimuli (columns). 
In this latter case the parameter MATFORM should be given the value 1 



in the PARAMETERS command. 
 
     If this is not done, however, then the program constructs an 
initial configuration from the original data by the Lingoes-Roskam 
procedure which, as has often been shown, is a good initial approximation 
of a solution and also has certain desirable geometrical properties. 
 
 
11.2.2.2  Distances in the configuration 
     The user may choose the way in which the distance between the 
points in the configuration is measured by means of the MINKOWSKI 
parameter.  The default value 2 provides for the ordinary Euclidean 
metric where the distances between two points will be the length of 
the line joining them.  The user may specify any value for the parameter. 
Commonly used values, however, include 1, the so-called 'city-block' 
or 'taxi-cab' metric where the distance between the two points is the 
sum of the differences between their co-ordinates on the axes of the 
space, and infinity (in MRSCAL approximated by a large number (>25)) 
the so-called 'dominance' metric when the largest difference on any 
one axis will eventually come to dominate all others.  (Users are 
warned that high values of MINKOWSKI are liable to produce program 
failure due to overflow). 
 
11.2.2.3  STRESS and the coefficient of alienation 
     The family of STRESS formulae for the MINI series is based on 
the sum of the squared differences between the fitting-values and the 
distances.  In MRSCAL, since the fitting-values are at interval level, 
a product-moment form is applicable, represented by MU which is the 
correlation between the distances and the fitting-values, and is hence 
a measure of goodness of fit.  In addition, a related badness of fit 
measure very similar to STRESS is calculated, known as the coefficient 
of alienation, K.  The two measures used in MRSCAL are related by:   
     
                  K  =  (1-MU2 ) 
 
11.2.2.3.1  Angle factor and step-size 
     At step 7, the algorithm computes the direction in which each 
point should be moved in order to reduce STRESS.  This is done by 
calculating the partial derivative of STRESS with respect to each 
point - the negative gradient.  It is also important, however correctly, 
to compute the optimal amount of movement in that direction.  This is 
the so-called 'step-size'.  This step-size may be changed at each 
iteration.  These changes are monitored by the 'angle factor', which 
is in effect the cosine of the angle between successive gradients, 
i.e. the correlation between them.  This ensures that, as the program 
moves towards convergence, and the gradient becomes less steep the 
step-size will decrease, so as to minimize the possibility of 
overshooting a minimum STRESS value.  MRSCAL prints out at termination 
the final angle factor.  At this stage the value ought to be very small 
if it is large, then more iterations should be attempted. 
 
11.2.2.4   Linear and logarithmic transformations 
     The most common use of MRSCAL is to find a linear transformation 
of the data which best fits a configuration of points in the chosen 
dimensionality.  The program will also, however, perform an analysis 
using logarithmic transformations of the data values.  In this case 
the Shepard diagram will show a smooth exponential curve.  The user must 
specify which transformation is required.  If no PARAMETERS statement is 
read and/or no specification of the transformation made, then no 
analysis will be performed. 
 
 
 



11.2.3  FURTHER FEATURES 
 
11.2.3.1  The CRITERION parameter 
     In step 6 of the algorithm a number of stopping tests are 
performed.  One of these involves calculating the improvement in 
fit between the present and the previous iteration.  If the improvement is 
less than the value given by CRITERION in the PARAMETERS statement, then 
the process is terminated and the current configuration is output as 
solution.  A large value for CRITERION will have the effect of stopping the 
iterative process earlier than would otherwise be the case.  This allows 
the user to make more “cheaply” a number of exploratory analyses. 
 
11.2.3.2  The final configuration 
     When the iterative process is terminated, the current configuration 
is output as the solution.  If the metric is Euclidean (i.e. MINKOWSKI (2)) 
then the configuration is rotated to principal axes.  It should be noted 
that these axes are arbitrary from the point of view of interpretation, 
but have certain desirable geometric properties.  In particular the 
coordinates of the points on the axes are uncorrelated.  Furthermore 
it is often helpful in deciding on the 'correct' dimensionality of the 
solution to notice how much variation is associated with each axis. 
This variation is given in the output by the value SIGMA which is the 
standard deviation of the coordinates on each axis. 
 
11.2.3.3  Dimensionality 
     As a general rule solutions should be computed in a number of 
dimensionalities.  Since a perfect fit will be obtained in n-2 dimensions 
the trial dimensionalities should always be in dimensionalities less 
the n-3.  As a guide to the choice of trial dimensionalities it is 
recommended that the product of stimuli x dimensions should be less than 
half the number of data elements (Young’s index of data compression). 
 
     A further method is one superficially similar to the 'scree' test of 
factor analysis. This involves examining the plot of stress by 
dimensionality. Since MU is a measure of goodness of fit the plot will show 
an ascending function and the elbow test for appropriate dimensionality may 
be performed.   The 'appropriate' dimensionality, i.e. one of which 
interpretation may be attempted, is that at which the graph shows an 
'elbow', i.e. where the addition of extra dimensions is otiose. 
 
 
11.3.   INPUT PARAMETERS 
 
11.3.1  LIST OF PARAMETERS 
Keyword             Default Value                 Function 
DATA TYPE              0           0:  The data are similarities 
                                        (high values mean high similarities 
                                         between points) – input is lower 
                                         triangle matrix without diagonal 
                                   1:  The data are dissimilarities 
                                        (high values mean high 
                                        dissimilarities between points) – 
                                        input is lower triangle without 
                                        diagonal 
                                   2:  The data are similarities – input 
                                        is full symmetric matrix 
                                   3:  The data are dissimilarities – 
                                        input is full symmetric matrix 
LINEAR TRANSFORMATION   0          0:  Linear transformation is not 
                                         performed 
                                   1:  Linear transformation is performed. 
LOG TRANSFORMATION      0          0:  Logarithmic transformation is not 
                                         performed 



                                   1:  Logarithmic transformation is 
                                         performed. 
CRITERION               0.00001    Sets the criterion value for terminating 
                                     the iterations. 
MINKOWSKI               2           Sets the Minkowski metric for the 
                                      analysis. 
MATFORM                 0        (RELEVANT ONLY WHEN 'READ CONFIG' IS USED) 
                                    0:  The input configuration is saved: 
                                     stimuli(rows) by dimensions(columns) 
                                    1:  The input configuration is saved: 
                                      dimensions(rows) by stimuli(columns) 
 
 
   N.B.  Either LINEAR TRANSFORMATION or LOG TRANSFORMATION 
          must be specified 
 
 
11.3.2  NOTES 
   ( #  ) 
1. ( N  ) OF SUBJECTS is not valid with MRSCAL. 
   ( NO ) 
 
   ( #  )                                 ( #  ) 
2. ( N  )   OF STIMULI may be replaced by ( N  ) OF POINTS 
   ( NO )                                 ( NO ) 
 
3.   LABELS  followed by a series of labels (<= 65 characters), each on 
     a separate line, optionally identify the stimuli in the output. 
     Labels should contain text characters only, without punctuation. 
 
4.   a)  The program expects input to be in the form of the lower 
     triangle of a matrix of real (F-type) numbers, or a full square 
matrix, with diagonal. 
 

b) The INPUT FORMAT, if used, should read the longest,  
i.e. last, row of this matrix. 

 
5.   Maximum no. of stimuli     =  80 
     Maximum no. of dimensions  =   8 
 
 
11.3.3  PRINT, PLOT AND PUNCH OPTIONS 
 
     The general format for PRINTing, PLOTting and PUNCHing output is 
described in the Overview.  In the case of MRSCAL, the available options 
are as follows: 
 
11.3.3.1  PRINT options  (to the main output file) 
 
Option              Form                        Description 
INITIAL        p x r matrix         Initial configuration, either generated 
                                     by the program or listed by the user 

(p = no. of stimuli, r = no. of 
dimensions). 

FINAL          p x r matrix         Final configuration, rotated to 
Principal components. 

DISTANCES      lower triangular,    Solution distances between points, 
   with diagonal        calculated according to MINKOWSKI 

parameter. 
FITTING        lower triangular,    Fitting values:  the disparities 
                with diagonal        (DHAT) values. 
 



RESIDUALS      lower triangular,    The difference between the distances 
                with diagonal       and the disparities. 
 
 
     By default only the final configuration and the final STRESS values 
are listed. 
 
11.3.3.2  PLOT options  (to the main output file) 
 
Option                                  Description 
INITIAL                          Up to r(r-1)/2 plots of the initial 
                                  configuration. (r = no. of dimensions). 
FINAL                            Up to r(r-1)/2 plots of final 
                                   configuration (r = no. of dimensions). 
SHEPARD                            The Shepard diagram of distances plotted 
                                   against data.  Fitting values are shown 
                                   by *, actual data/distance pairs by 0. 
STRESS                             Plot of STRESS by iteration. 
POINT                              Histogram of point contributions to 

STRESS. 
RESIDUALS                          Histogram of residual values (logged). 
 
      By default, only the Shepard diagram and the final configuration 
will be plotted.  Configuration plots are calibrated both from 0 to 100 
and from 0 to the maximum coordinate value. 
 
11.3.3.3  PUNCH options (to secondary output file)  
 
Option                                      Description 
SPSS                               Outputs  I (Row index), J (Column index) 
                                   and corresponding DATA, DISPARITIES, 
                                   DISTANCES, RESIDUALS values in the 
                                   format: (2I4, 4F10.0). 
FINAL                              Outputs final configuration as stimulus 
                                   (row) by dimension (column) matrix. 
                                   Each row is prefaced  y the stimulus 
                                   number.  Format: (I4,rF9.6) where r 
                                   is the number of dimensions. 
STRESS                             Outputs STRESS value by iteration. 
 
 
     By default, none of these options is produced. 
 
11.4.   EXAMPLE 
 
   RUN NAME             8 POINT ZERO STRESS DATA 
   TASK NAME            AS MADE FAMOUS BY USERS' GUIDE 
   N OF STIMULI         8 
   DIMENSIONS           2 
   INPUT FORMAT         (7F4.0) 
   PARAMETERS           LINE(1), DATA(1) 
   READ MATRIX 
     <data> 
   PRINT                 ALL 
   PLOT                  SHEP (2) 
   COMPUTE 
   FINISH 
 
 
 
 
 
 



APPENDIX :  RELATION OF MRSCAL TO SIMILAR PROGRAMS OUTSIDE NewMDSX 
 
     The earliest work in MDS assumed that the data dissimilarities 
were direct estimates of Euclidean distances, and solved for the 
coordinates of the space that generated them.  This so-called "classic 
MDS" thus assumes the distances are at the ratio level of measurement. 
Later developments (Messick and Abelson, 1956) assumed that the data were 
"relative" distances - i.e. a linear function of the solution distances, 
thus implying interval level of measurement - and therefore had to solve 
additionally for the "additive constant" necessary to turn the data 
into distance estimates.  A surprisingly robust procedure for implementing 
such "linear" or metric scaling is described in detail in Torgerson (1958). 
 
     Similar procedures to those provided by MRSCAL are implemented 
in the following package and programs: 
 
     (1)  KYST (the successor to the original general purpose 
          package known as MDSCAL) provides options for 
          specifying linear and power transformations 
          relating data to the solution distances, and thus 
          implement linear and logarithmic scaling respectively. 
 
     (2)  ALSCAL-4 (the successor to POLYCON and TORSCA) also 
          allows the user to specify ratio or interval levels 
          of measurement, which also implement classical and 
          linear scaling respectively.  There is an additional 
          facility for the user to specify a polynomial 
          in degree 1 to 4 as the nearest equivalent to a 
          logarithmic transformation. 
 



 
12.   PARAMAP (PARAmetric MAPping) 
 
12.1.  OVERVIEW 
 
     Concisely:  PARAMAP (PARAmetric MAPping) provides internal 
analysis of either a matrix (of co-ordinates or profiles) or a square 
symmetric matrix of (dis)similarity coefficients by means of a 
distance model which maximises continuity or local monotonicity. 
 
DATA: either 2-way, 1-mode dissimilarities, or 2-way 2-mode data (profiles 
or co-ordinates) 
TRANSFORMATION: Continuity (local monotonicity) or smoothness (kappa 
coefficient) 
MODEL: Euclidean distance  
(n.b. only one set of points – usually the row elements) is represented. 
 
     Alternatively, using the categorisation developed by Carroll and 
Arabie (1979) PARAMAP may be described as: 
 
     Data:  One-mode (possibly two-mode)   Model:  Distance 
            Two-way                                One set of points 
            Interval or ratio                      One space 
 
12.1.1  ORIGIN, VERSIONS AND ACRONYMS 
     The PARAMAP procedure was developed by Shepard and Carroll and 
is documented in Shepard and Carroll (1966).  The present program is 
based on the original program. 
 
12.1.2  PARAMAP IN BRIEF 
     PARAMAP takes as input either a rectangular matrix of profile data, 
or a symmetric matrix of distances or covariances/correlations.  The 
program derives distances from the various inputs which are considered 
as ratio quantities and as existing in a space of high dimensionality. 
These data the program seeks to represent in a space of lower (user- 
specified) dimensionality so that the function relating the two sets 
of distances is as smooth (continuous) as possible.  It can be shown 
that the criterion used to maximise smoothness also accurately represents 
small distances, and hence preserves 'local' information in the data 
and may be regarded as implementing local monotonicity. 
 
12.1.3  RELATION OF PARAMAP TO OTHER NewMDSX PROCEDURES 
     PARAMAP will take as data the distance matrix output from other 
scaling procedures, such as MINISSA, MRSCAL etc.  It may also be used 
to analyse data of the same form as input to PREFMAP or MDPREF except 
that, since the data are used to compute a matrix of distances the data 
must be at least at the interval level of measurement.  In the case of 
rectangular data input, only the 'stimulus' points are represented in 
the space by this program. 
 
12.2. DESCRIPTION 
 
12.2.1  DATA 
     Data may be input to PARAMAP in two basic forms 
     1.  as a matrix of distances 
or   2.  as a matrix of coordinates (or 'profile' data). 
 
The type of data input is described by DATA TYPE in the PARAMETERS command. 
 
12.2.1.1  Data on the form of distances 
     The PARAMAP model actually operates on squared distances so data 
may be input to the program either as a matrix of distances between 
points or as a matrix of squared distances between points.  Since the 



program simply squares the original distances and then proceeds 
there is no particular advantage in using one form rather than another. 
If distances are input then DATA TYPE (4) is appropriate, for squared 
distances DATA TYPE (2).  The data are read by the READ MATRIX command, 
according to its associated INPUT FORMAT specification, if the data are not 
in free format, and consist of a lower-triangular  matrix without diagonal.  
Distance matrices output by such procedures as MINISSA, MRSCAL, MVNDS, 
HICLUS, TRISOSCAL are suitable for analysis by PARAMAP, but INDSCAL 
solutions are not amenable to PARAMAP analysis. 
 
12.2.1.1.1  Covariance/correlation data 
     Data in the form of a covariance matrix may also be input to the 
program by specifying DATA TYPE (1).  These are considered as being 
the scalar products between vectors in a space.  The implied (squared) 
distances are calculated directly from these scalar-products by means 
of the cosine rule.  Since the operation of this rule requires that the 
length of the vectors must be known, the diagonal of the matrix must 
also be input (the diagonal elements, the variances, consist of the 
squared vector lengths). 
     This is not the case with a correlation matrix since the vectors 
are normalised to unit length, thus it is important to distinguish 
between input of correlation and covariance matrices.  A correlation 
matrix may be input by specifying DATA TYPE (3), in which case the 
diagonal elements of the matrix should not be input. 
 
12.2.1.2  Matrices of coordinates 
     The default option DATA TYPE (0) allows the user to input a 
matrix of coordinates for p points in r dimensions.  This is again 
converted by the program to a set of (squared) distances before 
proceeding.  The input matrix might be an actual matrix of coordinates 
or profile data for N subjects on p variables.  If this is the case, 
since these are treated as coordinates, there should be good grounds 
for regarding the data as being at least interval level.  It is for 
this reason that 'preference data' are not normally analysed by this 
model. 
 
 
12.2.2  THE MODEL 
     As has been noted, the PARAMAP program operates on a matrix of 
(squared) distances in a high-dimensional space.  The basic model seeks 
a representation of this information in a space of lower dimensionality 
(user-specified) with as much of the 'local' information as possible 
in the data preserved.  This is intuitively similar to the technique 
common in geography of representing information about distances on 
the sphere of the globe as a flat, two-dimensional conformal map. 
On the map, the local distances are 'true' reflections of the spherical 
distances but as the distances involve increase, so does the amount of 
distortion. 
 
     This is achieved by defining an index of continuity (Carroll and 
Chang, 1964;  Shepard and Carroll, 1966)  as a measure of departure from 
perfect representation.  This measure K (KAPPA) in effect assigns a 
heavy weighting factor to the small distances in the configuration. 
This factor is increased as iterations continue so that even small 
discrepancies in the small distances are progressively more heavily 
penalised. 
 
     PARAMAP thus makes use of a criterion of local monotonicity, 
producing a configuration in which the smaller distances are faithfully 
represented and large distances distorted - quite unlike the case of 
say, a MINISSA solution in which the global structure is highly reliable 
and the local structure relatively unreliable. The ability to project down 
relatively high-dimensional configurations into much lower dimensionality 



(at the cost of sacrificing the faithful reproduction of high distances) is 
one of the main advantages of PARAMAP, and can often be used for precisely 
this reason. 
 
     The KAPPA index is minimized when the function relating the data 
to solution is as smooth as possible.  Thus the Shepard diagram in 
PARAMAP is at least as important as the solution configuration, and 
will normally have a characteristically "fan-like" shape:  small input 
distances are represented by small output distances, but as input 
distances become longer the corresponding output distances will take 
on an increasingly wide range of values.  (Alterations in the exponent 
values of KAPPA will affect this shape considerably). 
 
12.2.2.1  The Algorithm 
1.   The data are normalised if appropriate and the matrix of 
     squared inter-point distances is computed. 
 
2.   If one is not input by the user the program generates an 
     initial configuration. 
 
3.   The index of continuity between data-derived distances (Step 1) 
     and the solution distances is computed. 
4.   A number of tests is performed to determine whether the 
     degree of fit is acceptable or whether a minimum has been 
     reached.  If so, then the configuration is output as solution. 
5.   If fit is unsatisfactory then the direction of movement 
     for each point on each dimension is calculated as is 
     the optimum amount of such movement. 
 
6.   The configuration is moved in accordance with (5) and 
     the program returns to Step 3. 
 
12.2.3  FURTHER FEATURES 
 
12.2.3.1  The weighting factors 
     The generalised index of continuity, κ* (KAPPA STAR) contains 
three factors A, B and C which control the weighting assigned to various 
elements in the formula.  The basis of the index of continuity is the 
sum of the ratios of the data distances to the solution distances. 
This sum is normalised by the sum of the solution distances.  Each of 
these elements is weighted by being raised to a specific power. 
These powers are the values A, B and C.  A is the exponent associated 
with the data distances,  B with the solution distances and C with the 
normalising factor.  There are two constraints on the possible values 
of A, B and C.  The first is that C must be negative, and the second 
that B + C - A should equal zero if similarity transformations are 
required, as will normally be the case.  The default options allow 
for the values A(1), B(2), C(-1) as recommended by Shepard and Carroll 
(1966), which reduces the general index κ* to the index κ (as used 
in PROFIT q.v.).  Users may wish to vary these values.  The crucial 
consideration would seem to be the ratio between the weights assigned 
to the data values and to the solution values (A and B respectively). 
In general, B should be greater than or equal to A. 
 
 
12.2.3.2  The CRITERION parameter 
     At step 4 of the algorithm PARAMAP performs a number of tests 
to determine whether the iterative process should proceed.  One of these 
is to decide whether the index of continuity has reached a minimum value. 
 
This value is set by the user by means of the CRITERION parameter. 
The default value CRITERION (0) asks the program to try for a perfectly 
smooth functional relationship between data and solution.  It is, of 



course, likely that the process will terminate before KAPPA reaches 
zero if a minimum is found.  The user may specify non-negative values 
of CRITERION, reasonably between 0.05 and 0.1 in order to make 
exploratory analyses of a data set. 
 
12.2.3.3  Normalisation 
     If a rectangular matrix is input, the user may choose to normalise 
the matrix before the distances are computed.  There are three options. 
If the distances are to be calculated from the matrix without normalisation 
then NORMALISE(0), the default option is appropriate.  If the rows of the 
matrix are to be normalised, then NORMALISE(1) should be specified in the 
PARAMETERS command.  Alternatively, the column effects may be removed by 
specification of NORMALISE(2). 
 
     Normalisation has the effect of removing the influence of both 
the spread and absolute magnitude of the data scores on the resulting 
distances. 
 
12.2.3.4  The initial configuration 
     The user may choose to input an initial configuration of points 
which represent a guess at the possible solution configuration.  In this 
case a configuration containing the stimulus points in the required 
dimensionalities are input.  Two points should be noted.  First, a 
configuration must be input with stimuli as rows and dimensions as columns. 
Secondly, if solutions are to be obtained in more than one dimensionality 
then a configuration for each dimensionality should be input.  These 
should be read under the READ CONFIG command.  The configurations should 
follow each other without break.  The lowest dimensionality should come 
first and an INPUT FORMAT specification, if the data are not in free 
format, should be suitable for reading one row of the longest matrix (i e. 
the highest dimensionality).  Such a course may decrease the amount of time 
taken to reach a solution. 
 
     Otherwise (at step 2 of the algorithm) the program will generate 
a random configuration of points to provide the starting configuration. 
Different starting configurations should be tried if relatively high 
values of KAPPA occur.  This is done by specifying in the PARAMETERS 
command different values for RANDOM, since the process is random only 
insofar as the values generated are taken from a rectangular distribution. 
Each "seed" will, however, generate the same configuration. 
 
12.3.  PARAMETERS 
 
12.3.1  LIST OF PARAMETERS 
Keyword           Default Value               Function 
DATA TYPE              0          0:  Input matrix is a rectangular matrix 
                                         of stimulus coordinates. 
                                  1:  Input matrix is lower-triangle 
                                         covariance matrix with diagonal. 
                                  2:  Input matrix is a lower triangle 
                                         matrix of squared inter-point 
                                         distances without diagonal. 
                                  3:  Input matrix is lower triangle matrix 
                                      of correlation coefficients without 
                                         diagonal. 
                                  4:  Input matrix is lower triangle matrix 
                                      of inter-point distances without 
                                         diagonal. 
MATFORM                0              Relevant only when DATA TYPE(0) is 
                                      specified. 
                                  0:  The input matrix is saved stimuli 
                                      (rows) by dimensions (columns). 
                                  1:  The input matrix is saved 



                                      dimensions(rows) by stimuli(columns). 
 
NORMALISE              1          0:  No normalisation 
                                  1:  The X matrix is normalised on the 
                                      last iteration. 
RANDOM                12345           Enter any odd five digit integer. 
                                      Sets the random number generator seed 
                                      value. 
A                       1             Small 'a' of the KAPPA formula. 
B                       2             Small 'b' of the KAPPA formula. 
C                      -1             Small 'c' of the KAPPA formula. 
CRITERION               0             Sets the criterion value for the 
                                      terminating value for KAPPA. 
 
12.3.2  NOTES 
1.   What we refer to as stimuli in the list of parameters are the 
     entities actually represented in the configuration, and it is 
     the number of these entities which is given by N OF STIMULI. 
 
2.   The number of dimensions on which the stimuli are measured is 
     given to the program by the N OF SUBJECTS command. 
 
3.   Program Limits 
 
           Maximum number of stimuli                            = 100 
           Maximum number of subjects (data dimensions)         =  60 
           Maximum number of dimensions (solution dimensions)   =   5 
 
12.3.3  PRINT, PLOT AND PUNCH OPTIONS 
     The general format for PRINTing, PLOTting and PUNCHing output 
is described in the Overview.  In the case of PARAMAP the particular 
options are as follows. 
 
12.3.3.1  PRINT options 
Option              Form                        Description 
 
INITIAL             p x r           The coordinates at the initial 
                                    configuration are listed. 
FINAL               p x r           The coordinates of the stimuli in 
                                    the solution configuration are listed. 
DISTANCES      lower triangle       The squared distances in the solution 
                                    are listed. 
HISTORY                             An iteration-by-iteration history of 
                                    the algorithm is listed. 
      
By default the initial and final configurations and the final value of 
KAPPA are listed. 
 
12.3.3.2  PLOT options 
                                             Description 
Option 
INITIAL                             The initial configuration is 
                                    plotted. r(r-1)/2 two-way plots are 
                                    produced. 
FINAL                               The solution configuration in the 
                                    form of r(r-1)/2 plots is produced. 
                                      
FUNCTIONS                           r2 plots of the functions 
                                    required to translate the r 
                                    dimensions at x into the r 
                                    dimensions of Y. 
SHEPARD                             A plot of the initial distances against             
                                    the fitted values is produced. 



KAPPA                               A histogram showing the value of KAPPA 
                                    at each iteration is produced. 
 
By default only the FINAL configuration is plotted. 
 
 
12.3.3.3  PUNCH options (to a secondary output file) 
Option                                          Description 
SPSS                              The following are output in a fixed 
                                  format 
                                  I = stimulus index 
                                  J = subject index 
                                  DATA = corresponding (squared) data 
                                           distance 
                                  DISTANCE = corresponding (squared) 
                                               solution distance 
                                  RESIDUAL = corresponding residual value 
FINAL                             The coordinates of the stimuli in the 
                                  final configuration are output in a fixed 
                                  format. 
KAPPA                             The values for KAPPA at each iteration 
                                  are output. 
 
By default, no secondary output is produced. 
 
12.4.   EXAMPLE 
 
    RUN NAME          UNBENDING THE HORSESHOE 
    TASK NAME         FROM USERS' GUIDE AND COXON & JONES 1980 
    N OF SUBJECTS     2 
    N OF STIMULI      16 
    DIMENSIONS        1 
    PARAMETERS        MATF(0) 
    INPUT FORMAT      (4X, 2F8.5) 
    READ MATRIX 
         <data> 
    COMPUTE 
    FINISH 
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APPENDIX : 
 
     PARAMAP is the only program in the scaling area to perform such 
scaling, although it is formally equivalent to conformal mapping 
procedures used in geography etc. 
 
 
 



 
13.  PINDIS (Procrustean INdividual DIfferences Scaling) 
 
 
13.1.  OVERVIEW 
 
     Concisely:  PINDIS (Procrustean INdividual DIfferences Scaling) 
Is a hierarchy of  six models which provides an internal analysis of a set 
of configurations by a Procrustean fitting model which uses a similarity 
transformation of the data. 
 
DATA:  2-way 2mode data (configurations of p stimuli in r dimensions) 
TRANSFORMATION: depends on model number. P0 (basic model) performs 
similarity transforms to put configurations into maximum conformity. Other 
models employ “impermissible” transforms, which do not preserve original 
relative distance information. 
MODEL: P1 and P2 are weighted distance models (P2 with idiosyncratic 
rotation) akin to INDSCAL and IDIOSCAL; 
P3 and P4 are vector models (with idiosyncratic origins) 
P5 is a hybrid distance-vector model. (see below) 
 
     Alternatively, following the categorisation suggested by Carroll 
and Arabie (1979) the program may be described as follows: 
 
     Data:  A set of configurations:     Model: 
     Three-way                           P0:  Similarity 
     Three-mode                          P1:  Dimensional weighting 
     Non-symmetric                       P2:  Dimensional weighting 
     Dyadic                                   and rotation 
     Ratio level of measurement          P3:  Perspective (vector) 
     Matrix conditional                  P4:  Perspective and translation 
     Incomplete (missing dimensional     P5:  Double weighted 
        co-ordinates)                    Two spaces 
     One replication                     Internal/External 
 
 
13.1.1  ORIGIN, VERSIONS AND ACRONYMS 
     PINDIS was developed by Lingoes and Borg at the University of 
Michigan.  A number of early versions of the program exist.  The present 
program was adapted from the 1975 version which is documented in Borg 
(1977). 
 
13.1.2  PINDIS IN BRIEF 
     PINDIS provides means of dealing with the question of individual 
differences.  It takes as input a set of configurations obtained from 
previous scaling analyses.  From these it derives a 'centroid 
configuration' which is an optimal fit to the input configurations by means 
of “permissible” (relative-distance preserving) operations on the input 
configurations. These operations are: differential rotation, reflection and 
re-scaling. . 
 
13.1.3  THE RELATION OF PINDIS TO OTHER PROCEDURES IN NewMDSX 
     PINDIS differs from all other procedures in the NewMDSX library in 
accepting configurations as data.  However, most of the models have 
affinities with other programs: 
 
     P0   Procrustean rotation is not related to any other 
          NewMDSX program. 
 
     P1 and P2 are distance models. 
 
     P1   (Dimension weighting) is very similar to INDSCAL in 
          permitting individual weighting of fixed dimensions. 



          The parallels are discussed in Borg and Lingoes (1978). 
 
     P2   (Rotated and weighted distance) is very similar to 
          the Carroll and Chang's IDIOSCAL model in permitting 
          individual rotation of the dimensions followed by 
          differential weighting of the dimensions. 
 
     P3 and P4 are weighted vector models. 
 
     P5   is a double weighting (dimensional and vector weighting) 
           model. 
 
P3 to P5 do not have a  parallel in any other program in NewMDSX. 
 
 
13.2.  DESCRIPTION 
 
13.2.1  DATA 
     The PINDIS program takes as its input data a number of configurations. 
These will normally be the result of some previous scaling analysis, 
although any technique giving dimensional output is suitable. The number 
of points in each of the configurations should be the same although the 
dimensionalities of the spaces may differ. 
 
     The intuitively most apparent form of the data might be a three-way 
analysis where each configuration results from the scaling of a given 
individual's judgements of a set of stimuli. 
 
     The maximum number of dimensions in any one configuration is given 
in the DIMENSIONS statement, the number of configurations by N OF SUBJECTS. 
The number of points in the configuration is given on by N OF STIMULI and 
the data are read by the READ CONFIGS command. These may be input either 
stimuli (rows) by dimensions (columns) or vice versa (in which case 
MATFORM(1) should be specified in the PARAMETERS command). If the data are 
not in free format, an INPUT FORMAT specification should be provided to 
read the longest row of the configurations. 
 
13.2.2  THE MODEL 
     PINDIS stands for Procrustean INdividual DIfferences Scaling, 
and consists of a set of six models for dealing with the question of how 
different configurations are to be related to each other.  In psychological 
terms,  the general assumption is that each subject is systematically 
distorting a common, shared structure.  The configuration obtained from 
a given individual is thought of as being a systematic distortion of a 
"master" configuration, the 'group space', and the program seeks both to 
derive this 'group space' and to relate the given configuration to it. 
The program contains six models which define different modes of 
(successively more complex) distortions. It will be seen that it is quite 
possible that different subjects will be best fit by different models.  The 
first main output of PINDIS is an estimate of this shared aggregate group 
space or centroid configuration as it is known in the program.  This is 
normally generated by the program from the input configurations in the 
manner described below but it is possible to input a fixed reference 
configuration and then use PINDIS for an external analysis (see 13.2.3.1). 
 
13.2.2.1  The basic model (P0): Similarity transformation (Unit weighting) 
     The basic "model" of the PINDIS is simple Procrustean fitting and 
depends on the fact that MDS solutions are unique up to translation, 
rotation and reflection and uniform stretching or shrinking rescaling 
of axes.  This is simply to say that in a configuration from, say, 
MINISSA, the significant information is contained in the relative 
distances between the stimulus and, in particular: 
 



     1.   that the position of the origin is arbitrary and 
          may be moved (translated) without destroying any 
          of the significant information in the solution.  (This 
          is not the case for factor analytic solutions (see 13.2.3)). 
 
     2.   that the axes of the configuration are in an arbitrary, 
          though possibly convenient, position and may be (rigidly) 
          rotated without destroying the salient information in 
          the solution. 
 
     3.   that a configuration may be reflected without loss of 
          information.  Intuitively this means that a configuration 
          may come out of an analysis "back-to-front".  Geometrically 
          reflection is merely a special case of rotation. 
4.   that the actual numbers assigned to the distances 
     are not significant information but may be made 
     uniformly bigger or smaller at will.  Intuitively, 
     this means that the actual configuration may be 
     enlarged or reduced so long as this process is uniform. 
 
These operations, translation, rotation (with which we include 
reflection) and rescaling (uniform stretching etc.) comprise a similarity 
transformation and are known in the model as the "permissible 
transformations" in that changing a configuration by any (or all) of 
them gives a configuration which contains neither more nor less 
information than the original in terms of relative distances. 
 
     The program's first step is to take each pair of configurations 
in turn and, by applying the permissible similarity transformations, 
move them into maximum conformity with each other.  Having done this, 
the program has effectively eliminated any differences in the 
configurations due to the conventions of the program producing them and has 
left the substantive differences - the differences due to random error and 
differential cognition.  The centroid configuration is formed simply 
by taking the average position of each point over all the configurations. 
The model at this stage implies that in reporting their perceptions, 
subjects make no systematic distortions to the group space (the centroid). 
 
     The communality of each configuration to the centroid is then 
calculated.  This may be regarded as the proportion of variance (r2 ) 
in that particular configuration which is explained by the centroid. 
 
     The higher order models allow that subjects may systematically 
distort this centroid configuration.  It is the mode of distortion which 
differs in these models. 
 
 
13.2.2.2   In dimensional weighting the mode of distortion is analogous to 
that of the INDSCAL model in that subjects, in arriving at their perceptual 
spaces, are thought of as applying differential weights to the dimensions 
of the group space (the centroid).  Substantively this amounts to saying 
that subjects will attach greater salience to certain (fixed) aspects of 
the difference between stimuli than to others, or that they will be prone 
to make finer distinctions on some criteria over others. 
 
     The user may choose whether these differential weights are to be 
applied to the centroid obtained at P0 or whether this configuration is 
to be rotated to some optimal position before the weights are applied. 
The default option allows for this latter course and may be expected to 
result in substantively more interpretable solutions.  If, however, the 
user wishes to fix the centroid after P0, or has input a hypothesis 
configuration with 'meaningful' axes, then ROTATE(0) should be specified 
in the PARAMETERS statement. 



 
     The communality of the centroid to each of the input matrices is 
then calculated.  This and the similar values obtained from higher 
models should be compared to the value from P0 which is treated as the 
baseline from which the more complex models are assessed.  Final choice 
of the preferred explanatory model is made on the basis of the increase 
in the fitting value (r2) which takes into account the fact that at each 
stage the number of free parameters increases dramatically. 
 
 
13.2.2.3  Dimensional salience with idiosyncratic orientation (P2) 
     In this model each subject is thought of as distorting the centroid 
by first rotating the axes of the configuration to his/her own preferred 
orientation and then applying differential weights to these new axes. 
(It should be noted that if ROTATE(0) has been specified then this 
solution will be identical to P1). 
     The substantive interpretation of the model is that subjects 
are not only affording differential salience to the same criteria but 
also using different criteria. 
 
     In models P1 and P2 the mode of distortion which took the centroid 
into the subject configurations was essentially a dimensional weighting. 
In models P3 and P4 the distortions are applied directly to the actual 
stimulus points, which are considered as vectors from the origin of the 
space. 
 
13.2.2.4  Perspective model with fixed origin (vector weighting) (P3) 
     Let us remind ourselves that the aim of the PINDIS procedure is to 
get the points of the centroid configuration (the group space) as close 
as possible to each of the individual input configurations in turn. 
This model seeks to do this by differentially stretching or shrinking 
each stimulus vector drawn from the origin of the space.  What does this 
mean?  Essentially the process may be conceived of in this way.  Take 
a subject configuration and plot it on top of the centroid so that the 
origin and axes coincide.  Now draw a line to connect the origin with 
a particular stimulus point in the centroid configuration and produce it 
beyond both the point and the origin.  The point on this line which is 
nearest to the corresponding point in the subject configuration is the 
point we are looking for. 
 
     The substantive justification for this model relies on the axes and 
origin of the space being interpretable/meaningful and asserts that 
the significant information in the configuration is the balance (actually 
the ratio) between the coordinates on the constituent axes.  It is 
sometimes called the "unscrambling" model since a weight applied to a 
stimulus vector moves the position of that stimulus in the space. 
 
13.2.2.5  The perspective model with idiosyncratic origin  (P4) 

Although the actual orientations of the axes of the configuration do 
not affect the direction of the stimulus vector, the position of the origin 
is crucial.  The idiosyncratic vector model additionally allows the 
subjects to move the origin of the centroid space to an idiosyncratic 
position before the vector weighting operations are performed. 
 
     If the centroid configuration has a rational origin and it does not 
make sense to shift it about in this manner, then the user should specify 
TRANSLATE(0) in the PARAMETERS command (see also 13.2.3). 
 
13.2.2.6  The double weighted (dimension and vector weighting) model (P5) 
     This model allows both dimensional and vector weighting 
simultaneously. Although the number of free parameters in this model is 
large, it has been found that the goodness-of-fit of this particular model 
is often surprisingly low.  This may indicate that the geometrical 



processes which define it have little psychological rationale (it is 
largely within the psychological field that it has been tried) though other 
substantive applications may find one. 
 
     The double weighting solution may be suppressed by specifying 
SUPPRESS(1) in the PARAMETERS command. 
 
 
13.2.2.7  Some general points 
     For each of the models the program calculates the communality 
between the centroid (or alternatively hypothesis configuration if one has 
been supplied) and each of the subject configurations.  Choice of a 
particular model should be made by comparing this value for each subject 
for each model against the communality at PO.  Some improvement should 
manifest itself as the number of free parameters increases. If a higher 
level model has virtually the same communality (for a given subject) as a 
lower one then obviously parsimony suggests that the lower one be 
preferred. 
     The number of parameters estimated in each model in finding a 
given subject configuration is a function of the dimensionality of the 
configuration (r) and the number of stimulus points (p). 
 
     P0 = 0                 (simply permissible transformations) 
     P1 = r                 (dimension weights) 
     P2 = r r (r(r-1)/2)    (dimension weights and pair-wise 
                             rotation certificate) 
     P3 = p                 (stimulus vector weights) 
     P4 = p + r             (stimulus vector weights and r-dimensional 
                             origin) 
     P5 = p + (p + r)       (dimension weights, stimulus vector weights 
                             and origin). 
 
The models thus form a semi-lattice: 
 
 
                     (distance)           (vector) 
                         P2       P5        P4 
 
                         P1                 P3 
 
                                  P0 
                              (similarity) 
 
 
13.2.3  FURTHER FEATURES 
 
13.2.3.1  External analysis 
     The user may wish to use the PINDIS program to effect an external 
analysis by inputting, as well as the subject configurations, a fixed 
hypothesis configuration, which may be an a priori arrangement of points 
or the result of a previous MDS or other dimensional analysis.  This 
configuration is input to the program by means of the READ HYPOTHESIS 
command which is peculiar to PINDIS, if necessary with its own associated 
INPUT FORMAT specification. This configuration will form the centroid at PO 
and will be rotated, weighted, etc., in the other models and users are 
urged to pay particular attention to the values given to the ROTATE 
(see 13.2.2.2 and 13.2.2.3) TRANSLATE (see 13.2.2.5) and ORIGIN (see below) 
parameters to ensure that they do not violate the logic of the 
configuration. 
 
13.2.3.2  The use of the ORIGIN parameter 
     We note at 13.2.2.4 the importance of the position of the origin of 
the space in the weighted vector models.  One way of making substantive 



sense of vector weighting is by moving the origin to a substantively 
meaningful position rather than at an arbitrary centroid and considering 
each of the other points as directions of distinction from that point. 
Consider this hypothetical example.  Suppose we were interested in the 
perceptions of political parties.  We might take the configurations 
belonging to members of a particular party and place the origin of the 
space at the point representing that party.  The distance to the other 
party points (the length of the stimulus vectors) is then proportional 
to the perceived difference between the party of affiliation and the 
others but the direction will also have significance in representing 
the mode of difference (say right vs. left, populist vs. elitist). 
It may very well be the case that there is virtual consensus over the 
modes of difference, i.e. the ways in which the parties differ but 
disagreement over how different they are.  Some right wing Conservatives 
may, for instance, be very anxious to dissociate themselves from the 
UK Independence Party and while acknowledging the fact that the U.K.I.P. is 
more right-wing, will insist on the difference between the Front and the 
Tories being made as large as between, say, the Tories and the Labour 
party.  Other members of the Conservative party, of a more moderate bent, 
might be less neurotic about admitting the similarity between the two.  In 
this case, the weighted vector model provides a feasible model of the 
differences between the two groups. The user may use this option by 
specifying the number of the point to be regarded as the origin as the 
argument to the ORIGIN parameter. 
 
TESTS OF SIGNIFICANCE 
 
Langeheine (1980) has provided Tables of Significance for the PINDIS fit 
measures, based upon extensive simulation studies.  
 
13.3.   PARAMETERS 
 
13.3.1  LIST OF PARAMETERS 
Keyword          Default                        Description 
SUPPRESS            1              0:  Double-weighted solution (P5) is 
                                        performed. 
                                   1:  Double-weighted solution (P5) is 
                                         suppressed. 
ROTATE              1              0:  Idiosyncratic rotations of the 
                                        centroid are not allowed, i.e. P2 
                                        is not performed. 
                                   1:  Idiosyncratic rotations are allowed. 
TRANSLATE           0              0:  No translation of the origin allowed 
                                        i.e. P4 is not performed. 
                                   1:  Translation of origin to an 
                                        idiosyncratic position is allowed. 
ORIGIN              0              0:  The origin is situated at the 

centroid of the space 
                                   <any positive integer> gives the 
                                         number of the point to be regarded 
                                         as the origin. 
MATFORM             0              0:  The input configurations are input 
                                      stimuli(rows) by dimensions(columns) 
                                   1:  The input configurations are input 
                                      dimensions(rows) by stimuli(columns) 
 
 
13.3.2  NOTES 
 
1.   READ CONFIGS is obligatory in PINDIS. 
 
2.   READ MATRIX is not valid with PINDIS. 
 



3.   LABELS  followed by a series of labels (<= 65 characters), each on 
     a separate line, optionally identify the stimuli in the output. 
     Labels should contain text characters only, without punctuation. 
 
4.   Maximum number of dimensions     =   6 
     Maximum number of stimuli        =  50 
     Maximum number of configurations =  50 
 
 
13.3.3  PRINT  PLOT AND PUNCH OPTIONS 
     The general format for PRINTing, PLOTting and PUNCHing output is 
described in the Overview.  The particular options for PINDIS are as 
follows: 
 
13.3.3.1  PRINT options 
Option          Form                          Description 
CENTROID        p x r               The centroid configuration is listed 
                                    at each phase. 
SUBJECTS      N(p x r)              The subject matrices are listed at 
                                    each phase. 
 
     Both of these are produced by default. 
13.3.3.2  PLOT options 
Option                                        Description 
CENTROID                            The centroid configuration is plotted 
                                    at each phase. 
SUBJECTS                            The subject configurations at each 
phase 
                                    are plotted. 
     Both configurations are plotted by default. 
 
 
13.3.3.3  PUNCH options 
Option                                        Description 
CENTROID                            The coordinates of the centroid 
                                    configuration are output. 
 
     By default, no secondary output file is produced. 
 
 
 
13.4.   EXAMPLE 
 
 RUN NAME             RUN OF TEST DATA FOR PINDIS 
 PRINT DATA           YES 
  NO OF SUBJECTS       5 
 NO OF STIMULI        16 
 DIMENSIONS           3 
 COMMENT              FIVE CONFIGURATIONS ARE TO BE INPUT.   

    EACH HAS SIXTEEN POINTS IN THREE DIMENSIONS 
 PLOT                 ALL 
 COMMENT              ALL PARAMETERS WILL ASSUME DEFAULT VALUES 
 READ HYPOTHESIS 
    <the hypothesis (target) matrix follows here> 
 READ CONFIGS 
    -0.283    -0.899    -0.049  
    -0.348    -0.827     0.099 
     .....     .....     .....  
    -0.930     0.400     0.020    
    -0.870     0.500     0.190  
COMPUTE 
FINISH 
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RELATION OF PINDIS TO OTHER PROGRAMS 
 
Within NewMDSX, P1 is akin to INDSCAL. 
MATCHALS (Commandeur 19XX) is similar to the PINDIS hierarchy. 



15. PRINCOMP  (Principal Components) 
 
15.1 OVERVIEW  
 
PRINCOMP expects as input a matrix of correlations or covariances. It is 
included here to allow comparison with the dimensions identified by non-
metric MDS procedures for the same data. For convenience, input matrices 
may be in any of the formats used elsewhere in NewMDSX. An error is 
reported if the input matrix is not one of correlations or covariances,  
i.e. if, for any  i, j,  ( xij ) 2   >  ( xii . xjj ).  
 
 
15.2  DESCRIPTION 
DATA: 2-way, 1-mode matrix of scalar products (covariances, correlations) 
TRANSFORMATION: Linear 
MODEL: Scalar-products 
 
Principal components is a mathematical technique, with no underlying 
statistical model, which is frequently used to identify a limited number of 
orthogonal linear combinations of the original p variables 
  
 yi  =  ai1 x1  +  ai2 x2  +  ....  +  aiq Xq,     q ≤ p    
 
that can be used to summarise the data, while losing as little information 
as possible. Technically, it simply produces an orthogonal rotation of the 
input matrix to its principal axes, or eigenvectors, arranged in 
diminishing order of size.  
 
By default, PRINCOMP will list all n eigenvalues (latent roots) and 
principal components (eigenvectors) of a matrix of n variables, in 
descending order of their contribution to the total variance of the 
original matrix. The first principal component is therefore the linear 
combination which accounts for the largest possible proportion of the 
overall variance, often interpeted as a kind of general factor providing 
the greatest discrimination between the individual observed data values. 
This however is not always the one that is of greatest interest to the 
investigator, it is the second or subsequent components that give an 
indication of the structure of relationships between the variables.  
 
Components are reported with the vectors normalized to their corresponding 
eigenvalues, rather than unity, so that they are analogous to factor 
loadings. When they arise from a correlation matrix, they may be 
interpreted as correlations between the components and the original 
variables.   
 
In many sets of multivariate data the variables will be measured in 
different units and are standardised before analysis. This is equivalent to 
extracting the principal components as eigenvectors of the matrix of 
correlations, rather than of the covariance matrix. Note that the 
eigenvalues and principal components of these matrices are not generally 
the same, and that choosing to analyse a matrix of correlations is 
equivalent to deciding to consider all of the variables to be equally 
important.  
 
The number of principal components to be listed may be restricted to the 
number given in in the  DIMENSIONS statement. The size of the input matrix 
is given by  N OF STIMULI  and the matrix is read by the  READ MATRIX 
command. The format of the input matrix is given by the parameter  DATA 
TYPE in the PARAMETERS command. If an INPUT FORMAT specification is used, 
it should read the longest row of the type of matrix to be input. By 
default, however, free format input is assumed. 
 



 
 
 
 
15.3 INPUT PARAMETERS 
 
15.3.1 PARAMETERS 
Keyword  Default  Description 
DATA TYPE      1  1:  Lower triangular matrix without diagonal 

   2:  Lower triangular matrix with diagonal 
    3:  Upper triangular matrix without diagonal 
    4:  Upper triangular matrix with diagonal 
    5:  Full symmetric matrix. 
 
 
15.3.2 PLOT options  (to main output file) 
Option    Description 
COMPONENTS  Plots the principal components. 
             If a parameter is added, this specifies the number 
             of normalized principal components to be plotted. 

   (Plotting all components is liable to generate a  
             rather large output file.)   
ROOTS   Produces a 'scree plot' of the latent roots 
   against the principal components. 
 
NOTES 
1.   The  READ MATRIX command is obligatory in  PRINCOMP. 
2.   LABELS  followed by a series of labels (<= 65 characters), each on 
     a separate line, optionally identify the stimuli in the output. 
     Labels should contain text characters only, without punctuation. 
3.   There are no  PRINT options as such in  PRINCOMP. 
     By default, the eigenvalues (or latent roots) of the input matrix are 
     listed in descending order, together with the corresponding 
     eigenvectors, or principal components, and the proportions of the 
     total variance accounted for by each. 
4.   No secondary output file is produced by  PRINCOMP.  
5.   Program limit – 80 stimuli 
 
 
15.4 EXAMPLE 
 
RUN NAME   A CORRELATION MATRIX TO DEMONSTRATE PRINCOMP 
N OF STIMULI    6 
DIMENSIONS      6 
PARAMETERS DATA TYPE(1) 
READ MATRIX 
0.54  
0.34 0.65 
0.37 0.65 0.84 
0.36 0.59 0.67 0.80 
0.62 0.49 0.43 0.42 0.55 
PLOT  COMPONENTS(2) ROOTS 
COMPUTE 
FINISH 
 
 
 
 
 
 
 
 



 
OUTPUT 
......... 
A CORRELATION MATRIX TO DEMONSTRATE PRINCOMP                                            
 
EIGENVALUES 
        1          2          3          4          5          6      
     3.80526    0.99117    0.49642    0.30970    0.28669    0.11076 
 
       
PRINCIPAL COMPONENTS NORMALIZED TO EIGENVALUES 
           1          2          3          4          5          6      
   1    -0.6434     0.6552    -0.2264     0.2943    -0.1311     0.0411 
   2    -0.8256     0.0364    -0.4114    -0.3824    -0.0371    -0.0133 
   3    -0.8439    -0.3519    -0.0913     0.1493     0.3306     0.1554 
   4    -0.8774    -0.3691     0.0008     0.1723    -0.0528    -0.2479 
   5    -0.8478    -0.2221     0.3217    -0.0528    -0.3262     0.1383 
   6    -0.7134     0.5011     0.4050    -0.1486     0.2228    -0.0649 
  
        % TOTAL VARIANCE 
        63.4210    16.5194     8.2737     5.1617     4.7782     1.8460 
 

........ 
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16. PROFIT (PROperty FITting) 
 
16.1 OVERVIEW 
 
    Concisely:  PROFIT (PROperty FITting) provides external analysis 
of a configuration by a set of properties (ratings or rankings in row- 
conditional format) by a scalar products (vector) model using either 
a linear or “smoothness”  transformation of the data. 
DATA: external mapping of 2-way 2-mode matrix of “properties” into user-
provided configuration of the same points 
TRANSFORMATION: Linear and/or continuity (kappa) 
MODEL: Scalar-products or vector 
 
     According to the categories developed by Carroll and Arabie 
(1979) PROFIT may be described as: 
 
     Data:  Two-mode                   Model:  Scalar-product 
            Two-way                            Two set of points 
            Asymmetric                         One space 
            Dyadic                             External 
            Ordinal or Interval/Ratio 
            Row-conditional 
            Complete 
 
16.1.1  ORIGINS, VERSIONS AND ACRONYMS 
     PROFIT was developed by J.D. Carroll and J.J. Chang at Bell 
Laboratories and originally documented in Chang and Carroll (1968). 
 
 
16.1.2  PROFIT IN BRIEF 
     PROFIT takes as input both a configuration of stimulus points 
and a set of rankings or ratings of the same set of stimuli.  These 
rankings and ratings are usually estimates of different properties of 
the stimuli.  The program locates each property as a vector through 
the configuration of points, so that it indicates the direction over 
the space in which the property is increasing.  The fitting is 
accomplished by maximising the correlation between the original 
property values and the projection of the stimuli onto the vector. 
This correlation may be either linear or non-linear (continuity). 
 
16.1.3  RELATION OF PROFIT TO OTHER PROCEDURES IN THE NewMDSX SERIES 
 
1.   PROFIT using the linear option is formally identical to 
     Phase 4 (vector model) of the preference mapping program 
     PREFMAP, also using the linear option.  (Note that PREFMAP 
     phase IV may also be used with a quasi-non-metric option, 
     providing a form of ordinal property fitting). 
 
2.   An internal form of the point-vector model (i.e. where the 
     input configuration is not fixed but is generated from the 
     data) is available in MDPREF. 
 
3.   An option within PARAMAP allows a rectangular or row-conditional 
     (two-way, two mode) array of data to be input for internal 
     analysis using a continuity (kappa) transformation between the 
     data and the solution.  But only the stimuli are represented 
     in the solution. 
 
 
 
 
 



16.2.  DESCRIPTION OF THE PROGRAM 
 
16.2.1  DATA 
     There are two parts to the input data for PROFIT. 
 
16.2.1.1  The configuration 
     The configuration consists of the coordinates for a set of 
objects (stimuli) on a number of dimensions.  This may be an a priori 
configuration (Coxon, 1974 ) or one resulting from another multi-
dimensional scaling analysis, or, indeed, from a factor analysis. The 
configuration is input to the program by means of the READ CONFIG Command, 
with its associated INPUT FORMAT specification, if used, and may be 
presented either stimuli (rows) by dimensions (columns) or dimensions 
(rows) by stimuli (columns).  In this latter case the parameter MATFORM 
should be given the value 1.  Since the configuration is not substantially 
altered by the PROFIT algorithm, analysis can only take place in a given 
dimensionality and attempts to specify more than one value in the 
DIMENSIONS command will cause an error. 
 
16.2.1.2  The properties 
     Each of the "properties"  which PROFIT will seek to represent as 
vectors in the configuration, is a set of values which distinguish 
the stimuli on a particular criterion.  These may be physical values 
(as in the following example) or subjective evaluations of the stimuli 
on criteria other than that or those used to generate the original 
configuration.  For instance, a simple use of the program might be 
to map into a MINISSA representation of the perceived similarities 
between a set of stimuli, information about the subjects' preferences 
of the same stimuli. 
 
16.2.1.2.1  Input of properties 
     Each property consists of a set of values, one for each stimulus in 
the configuration.  All properties must be in the same format and unless 
the data can be read in free format this is given by the INPUT FORMAT 
specification which precedes the READ MATRIX command which reads the 
properties. Each property is preceded, however, by a separate input 
statement containing a label, which is listed in the output. 
 
16.2.1.3  Example 
     To illustrate the use of the PROFIT program we take the configuration 
reported by Wish (Wish et al, 1972).  In their study individuals 
(subjects) gave ratings on a scale of the degree of similarity between 
pairs of nations (stimuli).  The averaged ratings were used to obtain 
a four-dimensional MDS solution where a larger distance between a pair 
of points in this space indicates a greater dissimilarity between the 
nations concerned.  After visual inspection of the plots the authors 
interpreted the dimensions as shown in figure la and lb. 
 
     We may wish to concentrate on the following properties of 
the nations concerned: 
 
     1)  Gross National Product per Capita, 1965 
     2)  Total Population, 1965 
     3)  Population Growth Rate, Total Time Span (1950-1965) 
     4)  Ethno-linguistic Fractionalization 
     5)  Soviet Aid per Capita, 1954/5 - 1965 
     6)  Total U.S. Economic and Military Aid per Capita (1958-1965) 
 
These aggregate data were obtained under the direction of Taylor 
(Taylor et al, 1973) and the list could be expanded to contain as many 
of the 300 and more variables which they report for each country. 
The set up for two properties of this example is given in section 16.4. 
 



16.2.2  THE MODEL 
     PROFIT seeks to represent the properties as vectors over the 
configuration of points.  The analysis is external in as much as the 
configuration is regarded as being fixed:  the stimulus points cannot be 
moved to make the fit of the vectors better (other than to centre the space 
round its centroid). 
 
     A fitted vector is regarded as indicating the direction in which the 
given property is increasing.  This implies theoretically that preference 
increases continually, never reaching a maximum (corresponding to the 
economic concept of insatiability). 
 
     The property values are then correlated with the projections 
of the stimuli onto the vector in the following way.  The vector is 
drawn through the origin of the space. (This is for convenience only.  
In fact, any vector parallel to this will give an identical result,  
since it is only the projections which are significant.) The perpendicular 
projections from the origin to the bases of the projections calculated.  
It is this final set of measurements (the distances from the origin to 
the projections) which is correlated with the original property values  
and it is this correlation which is the index of goodness-of-fit between 
data and solution.  Two options are available to the user in calculating 
this correlation.  The program will either calculate and maximise the 
(linear) product-moment correlation between data and solution or a (non-
linear) "smoothness" or "continuity" measure (or, indeed, both). These  
are chosen by means of the REGRESSION parameter. 
 
     Despite its name, the non-linear procedure does not fit curves 
rather than straight lines into the space.  Rather, the function which 
links the data (property values) to the solution (point projections)  
is not constrained to being linear and may instead be drawn from the  
wider class of non-linear functions.  In PROFIT, the particular index  
of non-linear badness-of-fit is KAPPA, which ensures local monotonicity. 
This means that in the Shepard diagram the function plot might be 
upwardly monotone in the lower range and downwardly monotone in the 
upper range, since it is the variations between data values adjacent 
(or close) to each other which are crucial in calculating the index: 
Kappa maintains only the smoothness or continuity of the function 
between adjacent values (hence "local" monotonicity).  In the algorithm 
this is done by giving adjacent (or close) data values a heavy weight.   
The user is given the option of varying this weight to give varying 
importance to different aspects of the data (see below). 
 
16.2.2.1  The Algorithm 
     Since the linear and non-linear procedures differ from each other 
quite considerably, we discuss them here separately. 
 
16.2.2.1.1  The linear procedure 
 
1.   The columns of the configuration are normalised. 
 
2.   The XMAT matrix is computed. 
 
For each property in turn: 
 
3.   The direction cosines of the vectors are computed. 
 
4.   The projections of the points onto the vectors are 
     computed. 
 
5.   The correlation between the projections and the property 
     values is computed. 
 



6.   The cosines corresponding to the angles between each pair 
     of vectors are computed. 
 
7.   The configuration and vector-ends are plotted using both 
     normalised and original coordinates. 
 
 
 
16.2.2.1.2  The non-linear procedure 
 
1.   The configuration is normalised. 
 
For each property: 
 
2.   KAPPA and ZSQ measures of alienation and correlation 
     respectively are computed. 
 
3.   The cosines of the angles between the vectors and the original 
     axes are calculated. 
 
4.   The projections of the points onto the vectors are calculated. 
 
When all properties have been thus treated: 
5.   The cosine of the angle between each pair of vectors is 
     calculated. 
 
6.   The configuration of points and vectors is plotted in 
     original and normalised co-ordinates. 
 
 
16.2.3  FURTHER OPTIONS 
 
16.2.3.1  Linear vs. non-linear regression 
     Because the results of non-linear analysis are more difficult 
to evaluate, it is often tempting to start with the more familiar 
linear regression.  The linear procedure is however merely a special 
case of the non-linear and, since usually we do not possess prior 
information on the form of the relation expected between property 
values and stimulus projections, the more general non-linear analysis 
may be preferred as an exploratory technique. 
 
     The PROFIT program always reports the product-moment correlation 
coefficient.  It is quite possible that a relatively low value for 
the non-linear continuity measure KAPPA, and a high value for the 
(linear) correlation coefficient will be found.  This would indicate 
that the relation is indeed linear and PROFIT should then be run with 
the linear option in order to test this assumption and provide the 
information on the (linearly) best fitting property vector. 
 
16.2.3.2  Non-linear measures of goodness-of-fit 
     In the case of linear property fitting, the product moment 
correlation is a suitable measure of goodness-of-fit between the data 
and the solution.  In the non-linear case no such familiar index is 
available.  Rather, an index KAPPA (κ), which is a badness-of-fit measure, 
is minimized.  Intuitively this measure is minimized whenever the form 
of the function relating the data to the solution becomes smoother or 
more continuous locally, whatever its actual overall shape may be. 
Thus it may be considered as an index of 'local' monotonicity. 
 
16.2.3.2.1  The use of the weight parameter 
 
     Carroll defined the general index of non-linear correlation Kappa (κ) 
between an independent variable p and a dependent x as: 



  к  =  _1_  ∑  wij  ( xi - xj )2 

                   S2   i≠j 

 
Where 
 
            wij =  f (|pi – pj|) 
 
and  f  is a monotone decreasing function, 
                              _   
and         S2 =  _1_ ∑ ( xi - x )2 
                   N  i 
 
     In PROFIT the independent  p  corresponds to one property and the 
dependent  x  to the projections of the points on to the vector. PROFIT 
seeks to minimize  к. 
 
     The weighting function plays a crucial role in the definition 
of Kappa.  This function can take on three different values and each 
value defines a different "flavour" of к.  The choice of flavour 
depends crucially on the characteristics of the property values. 
 
16.2.3.2.1.1  When WEIGHT (0) 
     This is the general definition of non-linear correlation and 
no restrictions are placed on the data.  Therefore, this index can  
always be applied to examine the extent to which the property values  
(data) and the projections of the stimulus points (solution) are  
related by a smooth or continuous function. 
 
16.2.3.2.1.2  When WEIGHT (1) 
     In this case, it is assumed that the property values are equally 
spaced.  So the level of measurement of the properties is in effect  
taken to be ordinal if the order is specified with equal intervals. To  
do this any equally spaced values may be chosen, such  as 1, 2, 3,...N   
or  5, 10, 15,...5N. 
 
     There is no restriction on the characteristics of the stimulus 
configuration when using this option. This option limits the calculation 
of Kappa to adjacent points.  In this case, κ becomes equivalent to 
Von Neumann's η (Eta, the ratio of the mean square successive difference) 
as defined in Von Neumann (1941).  See below (16.2.3.2.2.2) for the 
use of BCO in conjunction with this option. 
 
16.2.3.2.1.3  When WEIGHT (2) 
     If the property values tend to be highly clustered into two or 
more groups of values, then the PROFIT program can be used to determine 
whether this is also the case for the projections of the stimuli on 
the fitted vector.  To do this we must choose the property values in  
such a way that it becomes possible to discriminate the clusters. 
Ordinal level of measurement is sufficient, provided the property 
values are equally spaced.  By defining the maximum distance between 
two points which are to be taken as falling in the same grouping, 
the program then selects the clusters.  This maximum distance is set 
using the BCO parameter (see 2.3.2.2.3 below). 
 
     The weight factor will now have the effect of restricting 
attention to property distances which are close to each other (in  
effect, in the same grouping) and ignoring values outside the BCO  
value. In this case, κ can be shown to be the equivalent of the 
"correlation ratio" (Carroll 1964, see also Nie et al, 1975). 
 
16.2.3.2.2  The use of the BCO parameter 
     This parameter has a different use and meaning when used in 
conjunction with different WEIGHT options: 



 
16.2.3.2.2.1  When WEIGHT = 0 
     In the general case a value of 0 for BCO (the default) will make 
the weighting function be undefined for equal property values. If there 
are equal property values and BCO(0) the program will terminate. Thus 
this option in effect assumes that there are no ties between the property 
values.  If ties do occur among your property values then a small value of 
BCO (say .001) should be used.  This will allow calculation of the weight 
factor even when the property values are equal.  A large value for BCO  
has the effect of allowing Kappa to decrease indefinitely and is not 
recommended. 
 
16.2.3.2.2.2  When WEIGHT (1) 
     When Von Neumann's η is approximated, then the value of the BCO 
parameter has a more simple explanation than in the previous case.  Now  
BCO simply gives the size of the equal intervals.  Note that if WEIGHT(1), 
which is the default value, then BCO(0) has no meaning and some other value 
must be specified. 
 
 
16.2.3.2.2.3  When WEIGHT (2) 
     In this case the BCO parameter gives the maximum distance allowed 
between points in the hypothetical clusters described above in 2.3.2.1.3. 
Again in this case, the default value BCO (0) has no meaning, and must 
be over-ridden by some other value. 
 
16.3.  INPUT PARAMETERS 
 
16.3.1  LIST OF PARAMETERS 
Keyword           Default Value                       Function 
REGRESSION           1               1:  Linear regression only will be 
                                          performed. 
                                     2:  Non-linear regression. 
                                     3:  Both regressions will be performed 
                                           (independently). 
MATFORM              0               0:  The input configuration is 
                                         saved stimuli (rows) by 
                                         dimensions (columns). 
                                     1:  The input configuration is saved 
                                         dimensions (rows) by stimuli 
                                          (columns). 
WEIGHT               0               (See Section 16.2.3.2). 
                                     0:  Carroll's index of continuity. 
                                     1:  Von Neumann's ratio of the mean 
                                         square successive difference. 
                                     2:  the "correlation ratio". 
BCO                  0               (See Section 16.2.3.2). 
 
 
16.3.2  NOTES 
 
1.   # OF PROPERTIES may be used in PROFIT in place of  
     # OF SUBJECTS. 
 
2.   READ CONFIG is obligatory. 
 
3.   LABELS  followed by a series of labels (<= 65 characters), each on 
     a separate line, optionally identify the stimuli in the output. 
     Labels should contain text characters only, without punctuation. 
 
4.   Since the non-linear option involves calculation of large powers 
     of the data values, exponent overflow may occur.  In this case 



     the data values should be made smaller.  This might be done by 
     changing the format statement so as to divide the values by, say, 
     100. 
 
5.   PROGRAM LIMITS 
     Maximum dimensionality:       10 
     Maximum number of points:     60 
     Maximum number of properties: 20 
 
 
16.3.3 PRINT, PLOT AND PUNCH OPTIONS 
 
     The general format for PRINTing, PLOTting and PUNCHing output 
is described in the Overview.  In the case of PROFIT, the available 
options are as follows: 
 
16.3.4.1  PRINT options 
     The PRINT DATA command will echo both the input stimulus 
configuration and the property values. 
 
Keyword             Form                       Description 
INITIAL             p x r           The matrix of stimulus points as 
                                    normalised by the program.  This will 
                                    differ in linear and non-linear 
approaches. 
CORRELATIONS        1 x N           The following are listed: 
(Default)                           1(a) the correlations for each property 
                                         (linear regression). 
                                    (b) the eigenroots associated with each 
                                         vector (non-linear regression). 
PROPERTIES                         The following are listed: 
                    N x r         1.   The direction cosines between each 
                                  of the fitted vectors and each dimension 
                                    in the normalised space. 
                    N x r         2.   The direction cosines between each 
                                  vector and each dimension of the original 
                                    space. 
                    N x N         3.   The cosines of the angles between 
                                    the vectors. 
RESIDUALS                           A table of residuals is listed 
      '                            i.e. obtained distances - 
                                       original distances. 
 
16.3.4.2  PLOT OPTIONS 
INITIAL                   The stimulus configuration plotted in pairs of 
                          dimensions with both original and normalised 
                          co-ordinates marked (up to r(r-) 2 plots). 
FINAL                     Both stimulus points and property vectors 
                          plotted together original and normalised 
                          co-ordinates (up to r(r-1)2 plots). 
SHEPARD                   N plots of original property values against 
                          projections on fitted vectors giving the 
                          shape of the linking function. 
RESIDUALS                 Histogram of residual values. 
 
     By default only the first two dimensions of the joint space are 
plotted. 
 
16.3.4.3  PUNCH options 
Option                                      Description 
SPSS                      This command produces a file containing the 
                          following variables: 
                          I       property 



                          j       stimulus 
                          DATA    original value on property i of 
                                   stimulus j 
                          FITTED  projection on fitted vector 
                          RESID   difference between original and fitted 
                                   values. 
SOLUTION                  Two matrices are saved: 
                           i)  the matrix of stimulus points as 
                                normalised, and 
                          ii)  the matrix of direction cosines for the 
                                fitted vectors. 
 
 
 
 
 
 
 
 
 16.4.   EXAMPLE 
 
  RUN NAME             PROFIT TEST DATA 
  N OF STIMULI         21 
  N OF PROPERTIES      2 
  DIMENSIONS           4 
  PARAMETERS           REGRESSION(3), BCO(.OOl) 
  COMMENT               * * * * 
                       NOTICE THAT BOTH LINEAR AND NON-LINEAR OPTIONS 
                       ARE TO BE USED AND THAT THE SMALL VALUE IS 
                       GIVEN TO BCO BECAUSE THERE ARE TIES IN THE DATA 
                       (SEE SECTION 2.3.2.2.1) 
                       * * * * 
 INPUT FORMAT          (4F4.3) 
 COMMENT               * * * * 
                       THE ABOVE FORMAT STATEMENT REFERS TO THE 
                       CONFIGURATION TO FOLLOW ... 
                       * * * * 
 READ CONFIG 
   <here follows the configuration in four dimensions> 
 INPUT FORMAT          (11F5.0) 
 COMMENT               * * * * 
                       ... WHILE THE ABOVE FORMAT REFERS TO  
                       THE PROPERTIES 
                       * * * * 
READ MATRIX 
POPULATION GROWTH RATE 1950-1965 
1.60 0.50 1.10 1.10 4.70 1.10 2.40 0.80 0.80 3.10 3.40 
1.70 2.00 2.10 1.40 2.50 1.50 2.20 1.20 1.60 1.60 
ETHNO-LINGUISTIC FRACTIONALISATION 
505 325 026 261 199 015 877 099 436 071 305 
694 886 764 657 044 118 038 754 028 666 
PLOT                  SHEPARD 
COMPUTE 
FINISH 
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APPENDIX :  RELATION OF PROFIT TO OTHER PROGRAMS OUTSIDE THE NewMDSX SERIES 
     No programs outside the NewMDSX series (and the corresponding Bell 
Laboratories versions) implement a continuity or "smoothness" scaling 
transformation, and therefore no parallel programs exist for the 
non-linear version of PROFIT. 
 
     The linear version of PROFIT can be thought of as a linear multiple 
regression program:  predicting property values from a linear combination 
of dimensional co-ordinates of the stimuli involved.  Strictly speaking, 
any multiple regression program can therefore be used to implement 
linear PROFIT. 
 
     A number of MDS programs outside the NewMDSX series have the 
capability of external scaling with linear (metric) or ordinal (non-metric) 
transformation functions.  (Guttman-Lingoes SSA-1;  KYST;  ALSCAL in SPSS) 
- but only for an ideal point (distance) model.  However, none of these 
allow the possibility of using a vector (scalar products) model. 
Currently the only accessible equivalent of linear PROFIT occurs in the 
PRINCIPALS model in the Young - de Leeuw - Takane ALSCAL series. 
 
 



17.  TRISOSCAL (TRIadic Similarities Ordinal SCALing) 
 
17.1.  OVERVIEW 
     Concisely:   TRISOSCAL (TRIadic Similarities Ordinal SCALing) 
provides internal analysis of: 
 
DATA: a set of triadic (dis)similarity measures 
TRANSFORMATION: using a local or global monotonicity transform 
MODEL:  Minkowski distance model  
 
     Alternatively, following the categorisation developed by Carroll 
and Arabie (1979) TRISOSCAL may be described as follows: 
 
     Data:  One-mode               Model:  Minkowski distance 
            Polyadic (triadic)             One set of points 
            Ordinal                        One space 
            Triad-conditional              Internal 
            Incomplete 
            Replications allowed 
 
17.1.1  ORIGIN, VERSIONS AND ACRONYMS 
     The present program is a revised version of the TRISOSCAL program 
developed by M.J. Prentice at the University of Edinburgh, which was in 
turn developed as a generalisation of MINITRI, a program in E.E. Roskam's 
(University of Nijmegen) MINI series.  The original Roskam MINITRI 
approach is included in the present version as an option (see below). 
 
 
17.1.2  TRISOSCAL IN BRIEF 
     In a triadic comparison exercise, subjects are presented with sets 
of 3 objects drawn from a larger collection and asked to judge the 
relative (dis)similarity of the objects involved. Two alternative methods 
of triadic data collection are catered for in this program (which is unique 
to the NewMDSX series). Given a triad of objects (A,B,C), the subject may 
be asked:  

1. which pair is the most dis/similar 
2. which pair is the most dis/similar, and which pair is the least 

dis/similar. 
 
The TRISOSCAL program 
seeks to represent these dissimilarities as distances between the objects, 
considered as points in a space of minimum dimensionality.  The data are 
considered to be at the ordinal level. 
 
 
17.2.  DESCRIPTION 
 
17.2.1  DATA 
     The fourth quadrant of Coombs's (1964) fourfold typology of data 
concerns distance information on pairs of pairs. The most obvious method  
of obtaining directly such data is the so-called method of tetrads in which 
the subject is presented with all possible combinations of four objects and 
asked:  "which is the most similar/dissimilar pair ?" This method has the 
disadvantage of requiring a very large number of judgements even on fairly 
small sets of stimuli.  The method of triads while eliciting information on 
pairs of objects in systematic relation to other objects in the set reduces 
considerably the number of judgements required of a subject. 
 
17.2.1.1  The method of triads 
     The method of triads consists in presenting the subject with all 
possible triads (but see 2.3.3).  (S)He is asked to consider the three 
possible pairs formed by the triad ABC, namely (A,B), (B,C) and (A,C) and 
to state either 



          "which is the most similar pair of these three ?" 
or 
          "which is the most similar pair and which the 
           least similar pair of these three ?" 
 
     The first method yields only a partial ordering on each triad in 
that we know only that, for any triad A, B, C, that (A,B) is more similar 
than (B,C) and than (A,C).  The latter case, by contrast, produces a strict 
ordering since if the subject chooses (A,B) as the most similar and (B,C) 
as the least similar, then the order of the three pairs in terms of 
similarity is necessarily (A,B) (A,C) (B,C). 
 
     If the first method has been used in obtaining the data then the 
user should specify ORDER(0)in the PARAMETERS command. If the method 
producing a strict ordering has been used then ORDER(1) should be 
specified. 
 
13.2.1.1.1  Presentation of the data 
     The number of objects to be positioned as points in the space is 
specified in the N OF STIMULI command, the number of actual triads is 
presented to the program in the N OF TRIADS specification. 
 
     Each object is labelled by a number and thus each triad consists 
of three numbers, say (5, 2, 4) which are interpreted in the following 
way. 
 
17.2.1.1.1.1  When ORDER (0) 
     The pair which is chosen as the most similar is designated by the 
first pair of numbers of the three.  Thus in our example the pair (5,2) 
is that chosen. 
 
     If the subject has been asked which pair is the most dissimilar 
then the pair chosen should again be the pair defined by the first two 
numbers, but in this case the parameter DATA TYPE should be given the 
value 1 in the PARAMETERS command. 
 
17.2.1.1.1.2  When ORDER (1) 
     When the subject has been asked to choose both the most similar and 
the least similar pair, then the triad is interpreted in the following 
way. 
 
     The first pair of numbers defines the pair chosen as the most 
similar.  The pair consisting of the first and last number is that chosen 
as the least similar. The pair consisting of the second and third numbers 
is thus the "middle" pair.  Thus for the triad 5,2,4 the pair (5,2) is 
the most similar, the pair (2,4) the next most similar and the pair (5,4) 
the least similar. 
 
     By specifying DATA TYPE (1) in the PARAMETERS command the data are 
interpreted as dissimilarities rather than similarities. The default 
DATA TYPE (0) regards the data as similarities as described above. 
 
17.2.2  THE MODEL 
     Roskam (1970) has shown that the common procedure of aggregating 
triadic data by a simple vote-count procedure (counting the number of times 
that pair jk is judged more similar than pair lm) not only obscures but can 
positively distort the order information in the data, especially when not 
all triads are presented.  Rather than the simple vote-count, he suggests 
that each point j be assigned a sub-matrix, whose row- and column-elements 
correspond to pairs in which j occurs.  Within these it is possible to 
use the vote-count method.  Each of these matrices is represented as a 
row of a new rectangular asymmetric matrix whose row-elements correspond 
to the objects and whose column-elements, although labelled as objects, 



refer to the pair formed by the column-element with the particular 
row-element. 
 
     This matrix forms the basis of the analysis but is treated in 
two different ways by two differing STRESS approaches (v.i.). The "local" 
approach treats the matrix as row-conditional while the "global" approach 
does not enforce this conditionality. 
 
17.2.2.1  The Algorithm 
1.   An initial configuration is generated or one is supplied by 
     the user (see 17.2.3.2). 
 
2.   The distances in the configuration are calculated according 
     to the Minkowski metric chosen (see 17.2.3.1). 
 
3.   The fitting values are calculated (see 17.2.2.2). 
 
4.   STRESS is calculated according to the option chosen 
     (see 17.2.2.2). 
5.   A number of tests are performed: e.g. 
        Has STRESS reached an acceptable minimum ? 
        Has a specified number of iterations been performed ? 
        Has the improvement in STRESS over the last few 
        iterations been too small to warrant continuing ? 
     If the answer to any of these is YES then the current 
     configuration is output as solution.  If not, then:- 
 
6.   The direction in which each point should move in order that 
     STRESS should decrease as well as the estimated optimum size of 
     that movement are calculated. 
 
7.   The configuration is moved in accordance with 6 and the program 
     returns to stage 2 above. 
 
17.2.2.2  Fitting-values and STRESS 
     At each iteration a set of fitting values is calculated which are 
constrained to being in the same order as the dissimilarities implied 
in the data.  These fitting values are used to calculate the value of 
STRESS which is an index of how well the particular configuration matches 
the data.  Two methods are available within TRISOSCAL for making this 
calculation - Roskam's "local" approach and Prentice's "global" approach. 
 
17.2.2.2.1  The "Local" approach 
     This is the approach used exclusively in the original Roskam 
MINITRI program.  Fitting values are assigned to pairs of points (stimuli) 
so that the order of the fitting-values matches the order of 
dissimilarities within each triad.   Each inversion of that order will  
lead to an increase in the value of STRESS.  In this method no account is 
taken of inversions of order occurring between triads.  Consequently, the 
same datum (pair) can be fitted by different fitting values in different 
triads. 
 
17.2.2.2.2  The "Global" approach 
     Consider the following two triads:  (ABC) and (BCD). In the "local" 
approach the program is free to assign to the one pair (B,C) which occurs 
in both triads two distinct fitting values without affecting the value of 
STRESS.  The "global" approach forces the program to assign the same 
fitting value.  This has the effect of requiring that the order of fitting 
values be kept across the whole set of stimuli.  This is the option of 
choice when the data refer to one individual’s set of triadic data. This 
option is chosen by specifying STRESS(1) in the PARAMETERS command. 
 



     Since the "global"  approach  obviously imposes far greater 
constraints on the solution than the "local" approach, the values of STRESS 
obtained will be considerably higher.  The "local" procedure ignores 
transitivity between triads and thus it is often advisable to use this 
option if the data have been collected from a large number of subjects. 
 
Examples of the use of both options are found in Coxon & Jones (1979), and 
where data from single individuals are scaled separately, it is often 
useful to use PINDIS (P0, P1) to combine the configurations 
 
 
17.2.3  FURTHER FEATURES 
 
17.2.3.1  Distances in the configuration 
     The user may choose the way in which the distance between the 
points in the configuration is measured by means of the MINKOWSKI 
parameter.  The default value 2 provides for the ordinary Euclidean 
metric where the distances between two points will be the length of 
the line joining them.  The user may specify any value for the parameter. 
Commonly used values, however, include 1, the so-called 'city-block' 
or 'taxi-cab' metric where the distance between the two points is the 
sum of the differences between their co-ordinates on the axes of the 
space, and infinity (in TRISOSCAL approximated by a large number (>25)) 
the so-called 'dominance' metric when the largest difference on any 
one axis will eventually come to dominate all others.  (Users are 
warned that high MINKOWSKI values are liable to produce program 
failure due to numerical overflow). 
 
17.2.3.2  The initial configuration 
     It is not possible to generate an initial configuration directly 
from the triadic data.  However, as a vote count matrix is formed 
(section 17.2.2) this is used to generate an initial configuration in  
the same way as the Guttman-Lingoes-Roskam MINI programs. This configu- 
ration uses only the ordinal properties of the vote count matrix and 
has certain desirable properties such as avoiding local minima. 
 
     If the user wishes to supply an initial configuration then this is 
input via the READ CONFIG command and, if the data are not in free format, 
an associated INPUT FORMAT specification.  The configuration must be in the 
maximum dimensionality to be used in the solution. The parameter MATFORM is 
used to specify how the input configuration is entered and is detailed in 
section 17.3.1. 
 
17.2.3.3  Balanced incomplete block designs 
     Even with the method of triads the number of judgements required 
of subjects, increasing with the cube of the number of stimuli, rapidly 
becomes unmanageable.   Balanced incomplete block designs are designs which 
reduce this number, while ensuring that certain desirable conditions (such 
as ensuring that every possible triad is presented at least once) are met.   
These are described in Burton and Nerlove (1976). 
 
 
17.3.   INPUT PARAMETERS 
 
17.3.1  LIST OF PARAMETERS 
Keyword          Default Value                  Function 
DATA TYPE              0            0:  Input data are similarities 
                                    1:  Input data are dissimilarities. 
MINKOWSKI              2.0         (Any positive number) sets the Minkowski 
                                      parameter for determination of 
                                      distances in the configuration. 
 
 



ORDER                  0            0:  Partial order is input 
                                    1:  Pull order is input (section  
                                        17.2.1) 
STRESS                 0            0:  STRESS calculated using "local" 
                                          approach. 
                                    1:  STRESS calculated using "global" 
                                          approach (see 17.2.2.2). 
 
 
17.3.2  NOTES 
 
1.   The N OF TRIADS statement, having the same form as N OF STIMULI, 
     is mandatory in TRISOSCAL. 
 
2.   N OF TRIADS may be replaced by N OF SUBJECTS. 
 
3.   Program Limits: 
           Maximum number of stimuli allowed 
           by the program is                      50 
           Maximum number of triads allowed 
           by the program is                     3333 
           Maximum number of dimensions  =         8 
 
17.3.3  PRINT, PLOT AND PUNCH OPTIONS 
     The general format for PRINTing, PLOTting and PUNCHing output is 
described in the Overview.  In the case of TRISOSCAL, the available options 
are as follows: 
 
17.3.3.1  PRINT options 
Option              Form                         Description 
INITIAL             p x r            The co-ordinates of the points in the 
                                     initial configuration are listed. 
FINAL               p x r            The solution matrix, the co-ordinates 
                                     of the stimulus points in the final 
                                     configuration are listed. 
DISTANCES          p x p            The matrix of inter-point distances in 
                (lower triangle     the final configuration is listed. 
                 only) 
FITTING            p x p            The matrix of fitting values is listed. 
                (lower triangle 
                 only) 
RESIDUALS          p x p            The matrix of residuals (distances- 
                (lower triangle     fitting values) is listed. 
                 only) 
HISTORY                             A detailed history of the iterative 
                                     process is listed. 
COUNT               p x p            The vote-count matrix as derived from 
                (lower triangle     the triadic comparisons is listed. 
                 only) 
GRADIENT            p x r           The matrix at gradients as applied 
                                    to the final configuration is 
                                    listed. 
   
 By default only the final configuration is listed. 
 
17.3.3.2  PLOT options 
Option                                             Description 
INITIAL                              The initial configuration is plotted  
                                     as r(r-1)/2 two-way plots. 
FINAL                                The solution is plotted as r(r-1)/2 
                                      two-way plots. 
SHEPARD                              The Shepard diagram of data against 
                                      distances is plotted. 



POINT                                A histogram of the contribution to 
                                      STRESS of each point is plotted. 
RESIDUALS                            A histogram of residual values is 
                                      produced. 
STRESS                               A histogram of the STRESS values at 
                                     each iteration is produced. 
      

By default only the Shepard diagram and the FINAL configuration 
are plotted. 
 
17.3.3.3  PUNCH options (to an optional secondary data file) 
Option                                       Description 
FINAL                           The solution configuration is output, 
                                indexed in a fixed format. 
SPSS                            The following are output in a fixed format: 
                                 I = row index 
                                 J = column index 
                                 VOTE = entry in vote-count matrix 
                                 Corresponding to I,J 
                                 DIST = the corresponding distance 
                                 FITTING = the corresponding fitting value 
                                 RESID = the corresponding residual value 
STRESS                          An iteration by iteration history of 
                                STRESS values is saved in a fixed format. 
 
17.4.   EXAMPLE 
 
   RUN NAME           SOME DATA FOR TRISOSCAL 
   N OF STIMULI       10 
   N OF TRIADS        120 
   DIMENSIONS         2 TO 3 
   PARAMETERS         MINKOW(1), ORDER(1), STRESS(1) 
   READ MATRIX 
     <data follow here> 
   PRINT               COUNT 
   PLOT                SHEPARD, POINT(3) 
   COMPUTE 
   FINISH 
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APPENDIX : 
     There are no other programs widely available for the analysis 
of triadic data. 
 
 
 
 
 
 
 
 
 



18. WOMBATS: Work Out Measures Before Attempting to Scale 
 
 
18.1 Overview 
 
Concisely: WOMBATS (Work Out Measures Before Attempting To Scale), does 
just what its acronym says and computes from a rectangular data matrix one 
or more (dis)similarity measures suitable for input to other NewMDSX 
procedures. 
 

18.1.1 WOMBATS in brief 
The WOMBATS program is in effect a utility which takes as input a 
rectangular matrix either of raw data, and computes a measure of 
(dis)similarity between each pair of variables in the matrix.  These 
measures are output in a format suitable for input either to other NewMDSX 
procedures or to other programs.  This output format is chosen by the user. 
 
18.2. DESCRIPTION OF THE PROGRAM 
The following section describes briefly those aspects of the program 
pertinent to its use.  The measures calculated in WOMBATS are those 
detailed in chapter 2 of `The User's Guide' (Coxon 1982). For a fuller 
discussion, see that reference.  
 
Section 2.1 describes the type of data suitable for input, and its 
presentation to the program and section 2.2 the range of measures 
available.  Section 2.3 describes further options including those for 
outputting the results. 
 
18.2.1 Data 
The basic form of input data for the WOMBATS program is a rectangular 
matrix in which the rows represent cases (or subjects) and the columns, 
variables (or stimuli). This may be a matrix of ‘raw’ data as collected by 
the user or exported from EXCEL, SPSS or a similar program. 
 
The number of rows in the matrix is specified by the user in the N OF CASES  
command or, (alternatively, in N OF SUBJECTS).  The number of columns 
fields is given by either N OF VARIABLES or N OF STIMULI. (In these 
commands ‘N’ may of course be replaced by either ‘NO’ or ‘#’.) The data are 
read by the program when it encounters a READ MATRIX command, and the INPUT 
FORMAT specification, if used, should describe one row of the data matrix. 
Otherwise, data values are be entered in free format, separated by spaces. 
 
If the data to be input are for some reason in a matrix where the rows 
represent variables and the columns cases, then the user should specify 
MATFORM(O) in the PARAMETERS command. 
 
The chosen measures are calculated between the entities designated as 
variables (so-called R-analysis).  This will be the case whatever value  
is taken by the parameter MATFORM.  If the user wishes measures to be 
calculated between cases rather than between variables (Q-analysis), 
see section 2.3.1 below. 
 
N.B. The program expects data to be input as real numbers.  The INPUT 

FORMAT statement, if used, must therefore be specified to read F - 
type numbers, even if the numbers do not contain a decimal point. 

 
18.2.1.1 Levels of Measurement 
The user must specify, for each of the variables in the analysis, the level 
of measurement at which it is assumed to be.  Five levels are recognised by 
the program.  The recognised levels are ratio, interval, ordinal, nominal 
and dichotomous.  If a particular variable is not explicitly assigned to a 



particular level by the user, then the program assigns it by default to the 
ordinal level of measurement. 
 
Each of the measures in the program assumes that the variables on which it 
is operating have the properties of a particular level of measurement. If 
an attempt is made to compute a measure which assumes a level of 
measurement higher than that at which the variables have been declared to 
lie, the program will fail with an error message.  No restriction is 
placed, obviously, on the attempt to calculate measures which assume levels 
lower than those declared. 
 
The user signals the measurement level of the variables to the program by 
means of the LEVELS command, peculiar to the WOMBATS program.  This 
consists of the command LEVELS, and one or more of the keywords RATIO, 
INTERVAL, NOMINAL, DICHOTOMOUS or ORDINAL.  (Obviously, since the program 
defaults to ordinal, there is no need actually to specify variables 
associated with this last keyword).  In parentheses following each keyword 
used are listed the variables which are to be assumed to be at that level 
of measurement.  In these parentheses, ALL and TO are recognized.  The 
following are valid examples of a LEVELS declaration. 
 
 

LEVELS  INTERVAL (1, 2, 5, 7,), NOMINAL (3, 4, 6, 8) 
LEVELS  RATIO (ALL) 
LEVELS  NOMINAL (1 TO 4), INTERVAL (7 TO 11) 

 
In the last example, variables 5 and 6 are presumed by default to be at the 
ordinal level. 
 
18.2.1.2 Missing Data 
Variables that include missing data are a problem.  The user may specify, 
for each variable in which there are missing data, one code which the 
program will read as specifying a missing datum.  Users will note however 
that an attempt to calculate certain measures between variables will fail 
if missing data are present.  The measures for which this is the case are 
indicated in the discussion of the available measures in section 18.2.2.1. 
 
The user signals the occurrence of missing data by means of the MISSING 
statement.  This consists of the command MISSING followed by the value(s) 
to be regarded as signifying missing data. In parentheses following each 
missing data value is a list of the variables for which that value 
represents a missing datum.  In these parentheses the forms ALL and TO are 
recognised.  The following are valid examples of a MISSING declaration. 
 

MISSING  -9.(1, 2, 7, 9),  99.(3, 4, 6, 8) 
MISSING  0. (ALL) 
MISSING  .1(1 TO 7), -.1(8 TO 16) 

 
 
18.2.2 ANALYSIS 
The aim of the WOMBATS program is to calculate for each pair of variables 
in the analysis a measure of the (dis)similarity between them.  Having 
described the data to the program, the user must then choose the measure to 
be calculated.  WOMBATS currently offers 26 different measures.  
 
The required measures are chosen by means of the MEASURES command.  This 
contains the keyword MEASURES followed by one only of the keywords 
referring to the available measures described below.  Only one measure is 
computed in each TASK of the run.  If more than one measure is required on 
the same set of data, then a separate TASK NAME is necessary. 
 
 
 



18.2.2.1 Available measures 
It is convenient to consider the available measures in WOMBATS under their 
respective assumed levels of measurement. 
 
18.2.2.1.1 Dichotomous measures 
Sixteen measures of agreement between dichotomous variables are included in 
WOMBATS.  These correspond to those described in `The User's Guide to MDS' 
pp.24-27.  Missing data are allowed in all these measures. 
 
In this section, the following notation will be crucial.  Consider two 
dichotomous variables which we will assume to measure whether the objects 
under consideration do or do not possess a particular attribute.  The co-
occurrence(or frequency) matrix of these two variables looks as follows. 
 

 
 Variable 1       
 
 

 
      1/Yes 

 
 0/No 

 
 1/Yes 

 
 a 

 
 b 

 
 
 
 
 
Variable 2 
 
 

 
 0/No 

 
 c 

 
 d 

 
 
 
The cell `a' is the number of times that the attributes 1 and 2 co-occur, 
`b', the number of times attribute 2 is present when attribute 1 is not, 
`c' is the number of times attribute 1 is present and 2 is not and `d' is 
the number of objects possessing neither attribute 1 nor attribute 2.  All 
the measures of agreement to be considered in this section result from the 
combination of these quantities in some way. 
 
The measures available for the comparison of dichotomous variables are 
denoted by the `keywords' D1, D2, ..., D16 and it is these `keywords' that 
appear in the MEASURES command 
 
 
 For example, the command 

 
MEASURES   D15  

 
will select Yule's Q as the measure to be calculated 

 
 
Before choosing a dichotomous measure, users should consider: 
 
• whether they wish “co-absences” (cell d) to feature in the assessment of 

similarity, and 
• whether they wish the measure to have Euclidean properties. Gower and 

Legendre(1986) prove that if a similarity measure has non-negative 
values and the self-similarity sii is 1, then the dissimilarity matrix 
                   ______ 

   with entries δij = √(1-sij) is Euclidean. 
 
Note that any similarity measure can be converted into a dissimilarity 
measure by a related transformation: 

δij = (1-sij) if the similarity measure takes values between 0 and 1, 
or δij = (max-sij) where max is the value of the greatest similarity. 
 
D1 and D2 are undoubtedly the simplest and most commonly-used of these 
measures. 
 



 
 
 
Each dichotomous measure is now considered: 
 
 

Command  MEASURES  D1 
Type   Similarity measure 
Range   low = 0, high = 1 

Name   Jaccard's coefficient 

Formula  
c)+b+(a

a
 

 
Description Excludes `d'.  Represents the probability of a pair 

of objects exhibiting both of a pair of attributes 
when only those objects exhibiting one or other are 
considered.  It is possible that a division by zero 
may occur in the calculation of this measure. 

 
 

Command  MEASURES  D2 
Type   Similarity measure 
Range   low = 0, high = 1 
Formula 

Name   Russell and Rao's measure 
 

Description: Represents the probability of a pair of objects in 
a pre-selected set exhibiting both of a pair of 
attributes. 

 
 

 
Command  MEASURES  D3 
Type   Similarity measure 
Range   low = 0, high = 1 
Name   Sokal's measure 

 Formula  
 
      Description  Includes `d' in numerator and denominator.   
                   Represents the probability of a matching of  
   two attributes. 

 

d)c+b+(a
a

+
 

d)=c+b+(a
d)+(a

 



Command  MEASURES  D4 
Type   Similarity measure 
Range   low = 0, high = 1 
Formula 

Name   Dice's measure 
Description Gives the positive matches `a' twice as much 

importance as anything else.  Excludes entirely the 
mismatches.  It is thus possible that a division by 
zero may occur in the calculation of this measure. 

 
 

Command  MEASURES  D5 
Type   Similarity measure 
Range   low = 0, high = 1 
Formula 

Name   no name 
Description Includes `d' in both numerator and denominator.  

The matches (a and d) are given twice as much 
weight as the mismatches. 

  
 
 
      Command           MEASURES  D6 

Type   Similarity measure 
Range   low = 0, high = 1 
Formula 

Name   no name 
Description Excludes `d' entirely.  The matches (b and c) are 

accorded twice as much weight as the matches.  It 
is possible that a division by zero may occur in 
the calculation of this measure. 

 
 

Command  MEASURES  D7 
Type   Similarity measure 
Range   low = 0, high = 1 
Name   Rogers and Tanimoto's measure 

Formula 
 

Description Includes `d' in numerator and denominator.  The 
mismatches (b and c) are accorded twice as much 
weight as the matches. 

 

c)+b+(2a
2a

 

c)+b+d)+(2(a
d)+2(a

 

c)+2(b+(a
a

 

c)+2(b+d+(a
d)+(a

 



 
Command  MEASURES  D8 
Type   Similarity measure 
Range   low = 0, high =  a + b + c + c + d - 1 
Name   Kulczynski's measure 



c+b
a

 

Formula 
 

Description Excludes `d' entirely.  This measure is the simple 
ratio of the positive matches (a) to the mismatches 
(cf. D9).  it is possible that a division by zero 
could occur in the calculation of this measure and 
an undefined statistic occur.  The maximum value 
otherwise is as stated. 

 
 

Command  MEASURES  D9 
Type   Similarity measure (Sokal & Sneath) 
Range   low = 0, high =  a + b + c + d – 1 
Formula 

Name   no name 
Description This measure is the simple ratio of all matches 

(positive and negative) to the mismatches (cf D8).  
The statistic may be undefined, due to a zero 
divisor.  The maximum finite value is as stated. 

 
 

Command  MEASURES  D10 
Type   Similarity measure 
Range   low = 0, high = 1 
Name   Kulczynski's measure 

Formula 
Description Excludes `d' entirely.  This measure is a weighted 

average of the matches to one or other of the 
mismatches.  This statistic may be undefined. 

 
 

Command  MEASURES  D11 
Type   Similarity measure 
Range   low = 0, high = 1 
Formula 

Name   no name 
Description Includes `d' in numerator and denominator.  This is 

the analogue of D10 with mismatches included. 
 
 

 
 
 
 

c)+(b
d)+(a

 

)
b+a

a+
c+a

a(
2
1

 

)
d+c

d+
d+b

d+
b+a

a+
c+a

a(
4
1

 



Command  MEASURES  D12 
Type   Similarity measure 
Range   low = 0, high = 1 
Formula 

Name   Ochiai's measure 
Description Excludes `d' from numerator.  It uses the geometric 

mean of the marginals as a denominator.  This 
statistic may have a zero divisor. 

 
 

〉〈 b)+c)(a+(a
a

 



Command  MEASURES  D13 
Type   Similarity measure 
Range   low = 0, high = 1 
Formula 

Name   no name 
Description Includes `d' in numerator and denominator.  It uses 

the geometric mean of the marginals as a 
denominator and will return a value of 0 iff either 
a or d is empty. 

 
 

Command  MEASURES  D14 
Type   Similarity measure 
Range   low = -1, high = +1 
Formula 

Name   Hamann's coefficient 
Description Simply the difference between the matches and the 

mismatches as a proportion of the total number of 
entries.  A value of 0 indicates an equal number of 
matches to mismatches.  Some thought should be 
given to the interpretation of any negative 
coefficients before scaling the results. 

 
Command  MEASURES  D15 
Type   Similarity measure 
Range   low = -1, high = +1 
Formula 

Name   Yule's Q 
Description This is the original measure of dichotomous 

agreement, designed to be analogous to the product-
moment correlation.  A value of 0 indicates 
statistical independence.  Some thought should be 
given to the interpretation of any negative 
coefficients before scaling the results.  This 
statistic may be undefined. 

 
Command  MEASURES  D16 
Type   Similarity measure 
Range   low = -1, high = +1 
Formula 

Name   Pearson's Phi 
  

〉〈 d)+d)(c+b)(b+c)(a+(a
ad

 

d)+c+b+(a
c)+(b-d)+(a

 

bc)+(ad
(bc)-(ad)

 

〉〈 d)+d)(c+b)(b+c)(a+(a
bc)-(ad

 



Description A value of 0 indicates statistical independence.  
Some thought should be given to the interpretation 
of any negative coefficients before scaling the 
results.  The statistic may be undefined if any one 
cell is empty. 

 
 
 



18.2.2.1.2 Nominal measures 
Five measures are available in WOMBATS for the measurement of nominal 
agreement between variables.  Four of these are based on the familiar chi-
square statistic.  The other is the Index of Dissimilarity. 
 
18.2.2.1.2.1 Chi-square based measures 
The following procedure is used to evaluate the chi-square statistic that 
forms the basis of four of the available measures. 
 
Consider two variables x and y.  We form the table whose row elements are 
the values taken by (or the categories of) the variable x and whose column 
elements are the values (categories) taken by variable y.  (Obviously, 
since this is a nominal measure, these values have no numerical 
significance).  The entries of this table are the number of cases which 
take on particular combinations of values of x and y i.e. the number of 
cases that fall into the particular combinations of categories. 
 
The value of the chi-square statistic is calculated by comparing the actual 
distribution of these values in the cells of the  table to that 
distribution which would be expected by chance (statistical independence 
occurs when p(i,j) = p(i) x p(j)) .  Thus, the higher the value of the 
statistic,  the more the actual distribution diverges from the chance or 
expected one (0). 
 
In the case of there being missing data in the original matrix, then the 
whole row or column corresponding to that value is deleted.  Caution should 
be exercised if there are many missing data and particularly if these are 
unequally distributed around the variables since the value of the statistic 
is dependent on the number of values it considers and strictly speaking 
chi-square measures based on largely different numbers of cases are not 
comparable. 
 
The other measures in this section seek to overcome the dependence of chi-
square on the number of cases by norming it.  The norming factor differs 
for each statistic. 
 
The following notation will be used in discussing nominal measures: 

N  will indicate the number of cases 
r  will stand for the number of rows in the matrix i.e. the number 

of categories (values) taken by variable x and 
c will stand for the number of columns i.e. the number of 

categories in variable y. 
 
 
Name   Chi - square 
Command  MEASURES CHISQUARE 
Type   Similarity measure 
Range   low = 0, high = N x min(r,c) 
Comment A value of 0 indicates statistical independence.  The 

maximum value is dependent on the value of N. 
 
 
 
Name   Phi 
Command  MEASURES PHI 
Type   similarity measure 
Range   low = 0, high = ≤(min(r,c)-1) 
Comment The phi coefficient is chi-square normed to be 

independent of N.  Reaches a maximum for 2 x 2 tables in 
which case it reduces to the product-moment correlation.  



It may, however, exceed 1 when the minimum of r and c is 
greater than 2. 

 
 
Name   Cramer's V 
Command  MEASURES CRAMER 
Type   similarity measure 
Range   low = 0, high = 1 
Comment Cramer's coefficient is chi-square normed to be 

independent of N and of the number of r and c.  Reaches a 
maximum for non-square tables. 

 
 
 
Name   Pearson's Contingency coefficient C 
Command  MEASURES PEARSON 
Type   similarity measure  
Range   low = 0, high = 1 
Comment Pearson's coefficient is chi-square normed to be 

independent of N, originally developed as a measure for 
contingency tables.  Cannot reach its maximum of 1 for 
non-square tables. 

 
 
18.2.2.1.2.2 The index of dissimilarity 
The remaining statistic in this section is the index of dissimilarity.  In 
the case of the chi-square measures, the implicit comparison is between the 
actual (bi-variate) distribution and the expected (chance) one.  In the 
case of the index it is two (univariate) distributions that are compared. 
 
Consider again the table that is formed by cross-tabulating the values of 
variable x and those of variable y.  If the two variables had identical 
distributions then all the off-diagonal cells would be empty.  The index of 
dissimilarity is simply the proportion of cases that appear in these off-
diagonal cells and may be thought of as the proportion of changes needed to 
change the one distribution into the other.  The index does not require 
equal numbers of values in the variables. 
 
Name   Index of dissimilarity 
Command  MEASURES ID 
Type   dissimilarity 
Range   low = 0, high = 100 
 
 
 
18.2.2.1.2 Ordinal level measures 
At present, there are three measures of ordinal agreement in WOMBATS, all 
related to the basic tau (τ) measure of Kendall (19..). τb, τc and Goodman 
and Kruskal's gamma (γ).  There are two important distinctions in 
considering these measures.  First, we need to know if they measure weak or 
strong monotonic agreement between the variables and secondly how they 
treat tied values in them.  This second distinction can be crucial since 
much ordinal level data, being composed of a relatively small number of 
categories, will contain a large proportion of tied data values. 
 
Consider a two-way table between ordinal variables x and y. For any pair of 
individuals i,j , one of the following five conditions will hold:  
 

a) Concordant (C): where X and Y order the individuals in the same 
way (if i is higher(lower) on X, the j is higher(lower) on Y) 



b) Discordant (D): where X and Y order the individuals in opposite 
ways 

c) Tied on X (Tx) 
d) Tied on Y (Ty) 
e)  Tied on both X and Y (Txy) 

 
 
The numerator of all the ordinal measures here considered is the difference 
between numbers of concordant and discordant pairs. They differ in the form 
the denominator takes. 
 
 

Name  Goodman and Kruskal's gamma (γ) 
Command MEASURES GAMMA 
Type  similarity measure 
Range  low = -1, high = +1 
Formula 

 
Comment Measures the weak monotonic agreement between the 

variables, taking the ratio of the difference between 
concordant and discordant pairs to their sum.  It thus 
ignores the ties completely.  For this reason it is 
possible that the value be undefined (i.e. there may be 
no cases).  If there are no ties then the index reduces 
to Yule's Q (D15).  Some thought should be given to the 
interpretation of the negative values before the results 
are scaled. 

 
 

Name   Kendall's tau-b (τb) 
Command  MEASURES TAUB 
Type   similarity measure 
Formula 

Range   low = -1, high = +1 
 
Comment     Measures strong monotonic agreement in the variables, 
            relating the difference between concordant and discordant 
            pairs of the geometric mean of the quantities arrived at  
            by adding in the ties to the denominator.  This should be  
            used only for square tables. 

 
 

Name  Kendall's tau-c (τc) 
Command MEASURES TAUC 
Type  similarity measure 
Formula (corrects for non-square tables) 

Range  low = -1, high = +1
     
Comment     In the formula, m stands for the lesser of the number of 
            rows and columns in the original matrix.  The statistic  
            may be used for non-square tables and reduces, in the 
            case of square ones to tau-b. 

 

γ = (C-D)/(C+D) 

    τb = (C-D) / {√(C+D+Ty).√(C+D+Tx)} 

 



 
 
18.2.2.1.4 Interval level measures 
The interval level measures currently available in WOMBATS are product-
moment measures (covariance and the product-moment correlation) and 
Euclidean distance. 
 
Consider the conventional scatter-plot of, a number of cases measured on 
two variables.  These cases may be represented as points in a space, the 
two dimensions of which are the variables concerned.  (The statement holds 
for more than two variables, of course.)  The Euclidean distance between 
the cases is the straight line distance between the points which represent 
them.  The correlation between each pair of points is simply the cosine of 
the angle between the two vectors drawn from the origin to the points 
concerned and the covariance is that same cosine multiplied by the length 
of the vectors. 
 
 
Command  MEASURES   DISTANCE 
Type   dissimilarity 
Range   low = 0, high = maximum variance in the variables 
Comments If the ranges of the variables involved are markedly 

different, then some attempt at rescaling (i.e. 
normalisation) should be made so that differences in a 
highly valued variable do not swamp out differences in 
one of humbler dimensions. 

 Does not take into account the extent to which the 
variables are correlated. (A measure which does so is 
Mahalanobis 1936, qv.) 

  
 
 
Command  MEASURES COVARIANCE 
Type   similarity 
Range   low = 0, high = highest variance 
Comments The interpretation given to the negative values should be 

carefully thought out before scaling. 
 
 
Command  MEASURES CORRELATION 
Type   similarity 
Range   low = 0, high = 1 
Comments The negative values may need to be given some thought 

before the results of this calculation are scaled. 
 
 
18.2.3 FURTHER OPTIONS 
18.2.3.1 Measures between cases 
It may be that the user wishes to have the measures calculated between the 
cases (subjects, individuals) in the analysis rather than the variables.  
This is accomplished simply by specifying in the PARAMETERS command, the 
keyword ANALYSIS, followed in brackets by the figure 1. 
 
This command has the effect of calculating the measures between the 
entities designated as cases and is independent of the MATFORM parameter. 
 
 
 
 
 



18.2.3.2  Multiple analyses 
 
Only one measure may be calculated at each TASK NAME.  In order to 
calculate more than one measure on the same data at one time, more than one 
TASK NAME should be contained in one RUN.    The TASK NAME command also 
resets PARAMETERS values to their original (default) values and it is 
necessary to reset these on subsequent runs, as required. 
 
18.3. OUTPUT OPTIONS 
The  measures are output by default as a lower triangular matrix suitable 
for input to other procedures in the NewMDSX library.  There is no need to 
signal this output with a command.  Other options are available which match 
different  conventions in other programs (see below) and in this case it is 
necessary to specify the output format for the measures. 
 
18.3.1 Secondary output 
If an OUTPUT FORMAT statement is included, specifying a valid FORTRAN format 
in brackets, this will be used to save the matrix in an optional secondary 
output file. By default, there is no secondary output.  
 
18.3.2 Alternative output forms 
By request, measures may be output as an upper triangular or as full 
(symmetric) matrix.  This is accomplished by use of the keyword OUTPUT in 
the PARAMETERS command: 
• The default specification OUTPUT(1) gives a lower triangle without 

diagonal, and  
• OUTPUT(2) a lower triangle with digonal, and  
• OUTPUT(3) a full matrix.   
This parameter does not affect the operation of the OUTPUT FORMAT command, 
if used. 
 
 
18.3 Examples 
 
RUN NAME             WOMBATS TEST PROG 
TASK NAME            CORRELATION TEST 
NO OF STIMULI         4 
NO OF SUBJECTS       15 
LEVELS               INTERVAL  (1 TO 4) 
OUTPUT FORMAT        (1X,3F13.7) 
MISSING              2.(2 , 3)  3.( 4) 
PARAMETERS           OUTPUT (1) 
MEASURE              CORREL 
READ MATRIX 
 1. 1. 3. 4. 
 1. 2. 3. 3. 
 2. 4. 3. 3. 
 4. 3. 3. 4. 
 3. 2. 3. 2. 
 4. 3. 3. 4. 
 3. 3. 2. 1. 
 1. 1. 4. 3. 
 3. 4. 3. 1. 
 3. 4. 2. 1. 
 1. 2. 1. 1. 
 3. 3. 4. 2. 
 4. 3. 2. 1. 
 1. 2. 1. 2. 
 2. 3. 4. 1. 
COMPUTE 
TASK NAME            CUBE 
NO OF STIMULI        8 



NO OF SUBJECTS       3 
LEVELS               INTERVAL (1 TO 8) 
MEASURE              DISTANCE 
READ MATRIX 
 0. 0. 0. 0. 1. 1. 1. 1. 
 1. 1. 0. 0. 1. 1. 0. 0. 
 1. 0. 1. 0. 1. 0. 1. 0. 
COMPUTE 
TASK NAME            TAU AND SIMILAR 
NO OF STIMULI         4 
NO OF SUBJECTS       15 
LEVELS               INTERVAL  (1 TO 4) 
MISSING              2.(2 , 3)  3.( 4) 
PARAMETERS           OUTPUT(1) 
INPUT FORMAT          (8F3.0) 
MEASURE                GAMMA 
READ MATRIX 
 1. 1. 3. 4. 
 1. 2. 3. 3. 
 2. 4. 3. 3. 
 4. 3. 3. 4. 
 3. 2. 3. 2. 
 4. 3. 3. 4. 
 3. 3. 2. 1. 
 1. 1. 4. 3. 
 3. 4. 3. 1. 
 3. 4. 2. 1. 
 1. 2. 1. 1. 
 3. 3. 4. 2. 
 4. 3. 2. 1. 
 1. 2. 1. 2. 
 2. 3. 4. 1. 
COMPUTE 
TASK NAME      INDEX OF DISSIMILARITY TEST 
NO OF CASES      4 
NO OF VARS       4 
PARAMETERS     OUTPUT(5) 
INPUT FORMAT     (4F3.0) 
MEASURE         ID 
READ MATRIX 
 58 22 41 19 
 30 38 14 23 
 25 44 19 22 
 07 51 12 51 
COMPUTE 
TASK NAME            PHI 
NO OF STIMULI        4 
NO OF SUBJECTS       15 
LEVELS               INTERVAL  (1 TO 4) 
MISSING              2.(1 , 3)  3.( 4) 
PARAMETERS           OUTPUT(3) 
INPUT FORMAT          (8F3.0) 
MEASURE              PHI 
READ MATRIX 
 1. 1. 3. 4. 
 1. 2. 3. 3. 
 2. 4. 3. 3. 
 4. 3. 3. 4. 
 3. 2. 3. 2. 
 4. 3. 3. 4. 
 3. 3. 2. 1. 
 1. 1. 4. 3. 
 3. 4. 3. 1. 



 3. 4. 2. 1. 
 1. 2. 1. 1. 
 3. 3. 4. 2. 
 4. 3. 2. 1. 
 1. 2. 1. 2. 
 2. 3. 4. 1. 
COMPUTE 
FINISH 
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