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We survey some of the models more recently used to portray panelists’ 
perceptions of risk, viewed as a complex psychological response. These 
models are compared (a) as continuous versus discrete, (b) with regard to type 
of data and tasks required of panelists, and (c) by facility for portraying dif- 
ferent patterns of judgmems among panelists. Substantive results from ap- 
plying different models to the same risks and/or data are presented. Finally, 
we consider possible future directions for research in the perception of risk, 
oriented toward use of the models presented here. 0 1988 Academic Press. Inc. 

INTRODUCTION 

Pioneering studies of utility that used preference for gambles (e.g., 
Coombs & Komorita, 1958; Mosteller & Nogee, 1951) implicitly viewed 
risk as a unidimensional psychological response varying systematically as 
a function of factors in an experimental design. This tradition emphasized 
the (stimulus) factors and attempted to identify a preferred set of factors 
to characterize gambles. Slavic and Lichtensrein (1968), for example, 
sought to determine the relative importance of the “four basic risk di- 
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mensions”: (a) probability of winning, (b) amount to be won, (c) proba- 
bility of losing, and (d) amount to be lost. 

While the approach just described led to some interesting results and 
models, and is appropriate enough for laboratory studies of utility, the 
tradition is not well suited for current problems of risk and hazard as- 
sessment.’ The hallmarks of these problems are (a) severely limited 
ability to manipulate a “real world” stimulus such as a catastrophe (in 
contrast to adjusting the probability of winning a bet, B la Slavic & Lich- 
tenstein, 1968) and (b) diverse, multidimensional, and often unpredictable 
responses to such hazards by individuals of the relevant public. When 
expert opinion and rational (i.e., a priori based) expectations are used to 
supplant knowledge about (b), the consequences can be counterproduc- 
tive. Covello (1983, pp. 290-291) provides a telling example: 

“In several countries, including France, proposals are currently being considered 
to compensate those who live in the vicinity of nuclear power plants. I f  the inten- 
tion is to win wider public acceptance, then the policy is misdirected. Those living 
nearest to the power plant are already supportive and little would be gained by 
compensating them. By comparison, compensating those who are least supportive 
(i.e., those living in areas where power plants are under construction or being 
planned) might have a maJOr impact. Such a policy of course, could also backfire 
by providing support for the belief that the risks of n&ear power are indeed sub- 
stantial. 

“What this specific case and others similar to it teach us is that analysts and 
decision-makers need a better understanding of how people think and make deci- 
sions about technological risks. Public risk acceprance and the success of risk 
management policies are hkely to hinge on such understanding. Stated more force- 
fully, without such understanding Well-Intended policies may be ineffective or even 
counterproductive.” 

Sage and White (1980, p. 426) have noted that “there appears to be no 
commonly accepted definition of ‘risk’ in the area of risk and hazard as- 
signment.” If we are to gain an understanding of psychological reaction 
to risks and hazards over diverse contexts, then more versatile models 
than a unidimensional continuum are needed to represent the perception 
ofrisk. For example, Fischhoff, Watson, and Hope (1984) proffered mul- 
tiattribute utility theory (Keeney & Raiffa, 1976) as a framework for de- 
fining a given risk as a function of attributes characterizing possible con- 
sequences of risky decisions. In this framework, the cruciai tasks are (a) 
determining an agreed upon set of attributes and (b) finding an acceptable 
set of numerical weights for them. While Fischhoff et al. (1984) demon- 
strated the utility of this approach, the current paper emphasizes empir- 
ical rather than a priori methods for approaching problem (a). 

’ Gooding (1978, p. 401) draws a parallel similar to the view of risk as a unidimensional 
concept in modem finance versus a multidimensional concept in the theory of stock valua- 
tion. 
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As such, the present paper (a) seeks to review some models other than 
multiattribute utility theory and contrasts such models as continuous 
versus discrete, (b) discusses some applications, and (c) considers pos- 
sible future directions of research using such models. 

CONTINUOUS (SPATIAL) MODELS 

The continuous (and generally multidimensional) models most com- 
monly used for the study of risk, whether emphasizing “risk perception” 
(e.g., Slavic, Fischhoff, & Lichtenstein, 1982) or “risk judgment” (Bor- 
cherding, Brehmer, Vlek, & Wageoaar, 1984b; Kuyper & Vlek, 1984), 
have been such spatial models as principal components analysis, factor 
analysis, and multidimensional scaling. The history of their applications 
to the study of risk in some ways mirrors their development and usage in 
the psychometric literature, where they originated. A study by Fischhoff, 
Slavic, and Lichtenstein (1981, 1982) had panelists rate 90 hazards 
(stimuli) on 18 qualitative and often subjective aspects (scales) of risk 
compiled from various sources. A factor analysis of correlations from the 
resulting data resulted in a two-dimensional representation of the 90 
hazards. The dimensions were interpreted as “some combination of nov- 
elty and mystery” and “possibility of uncontrollable consequences” 
(Fischhoff et al., 1982, p. 249; also see further discussion in Slavic, 
Fischhoff, & Lichtenstein, 1984, pp. 188- 190). Similarly, Hohenemser, 
Kales, and Slovk (1983) had subjects rate 93 technological hazards {e.g., 
dynamite blasts, elevator falls, hexachlorophine-toxic effects, oil tanker 
spills) on twelve investigator-stipulated scales that emphasized physical, 
biological, and social characteristics. A principal components analysis 
yielded a five-dimensional solution. 

Both of these studies simply used spatial models as a method for re- 
ducing the nominal dimensionality of the panelists’ rating data. That is, 
the scales supplied by the investigator are replaced by a smaller set of 
factors or dimensions. (In the case of principal components analysis, the 
factors will be linear combinations of the scales.) Hohenemser et al. ob- 
tained a solution in a space of dimensionality too high for visualization, 
did not present any lower-dimensional projections, and pursued the con- 
struction of a taxonomy for which discrete methods (see below) would 
probably have been more appropriate. Fischhoff et al. (1981, 1982) of- 
fered a spatial representation that, although readily visualizable, revealed 
nothing about possible differences among panelists because of limitations 
inherent in the psychometric models used.2 As noted below, these two 
deficiencies are often related. 

* Fischhoff el al. did, however, succeed in imbuing their results with considerable gener- 
ality by obtaining similar spatial representations from a variety of subject groups. 
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The Vector Model 

We have already observed that factor analysis and principal compo- 
nents analysis require panelists’ ratings of a set of hazards or events on a 
set of scales (attributes) specified by the investigator. Thus, the resulting 
dimensions or factors of the spatial representation can easily bear the 
stamp of the investigator’s judgment as well as the imprint of the pan- 
elists’ ratings. This disadvantage is highly regrettable+ since it makes re- 
sults from these spatial models vulnerable to a major drawback of many 
decision-analytic approaches: the investigator’s role in the procedure can 
unduly influence the results. 

A highly innovative paper by Vlek and Stallen (1981) used a related 
spatial model, the vector model (described below), and thus allowed their 
panelists to rate twenty-six stimulus events on a 7-point category scale, 
using the “Q-sort” technique, with respect to such attributes as “the 
seriousness of risks and dangers” (see Mek & Stallen, 1981, pp. 242-244 
for details). That is, each panelist i produced a row vector ei for the ma- 
trixE={eii},wherei= l,..., m (the number of panelists) and j = 
1 . , , IZ (the number of stimuli). Panelists’ data constitute row vectors 
0; ratings that can be viewed as dominance judgments. To elaborate, if 
e3.7 = 2 and e2,4 = 2, then the third panelist put event seven in the second 
least risky category, while the second panelist placed the fourth event in 
the second least risky category. First, note that although the two entries 
just described have identical numerical values, those values are not com- 
parable, since they came from different subjects who may have very dif- 
ferent underlying scales of “riskiness.” The data are thus conditional by 
respective panelists, who are indexed as rows in matrix E, which is thus 
labeled (in the terminology of Coombs, 1964) a “row conditional” ma- 
trix. Second, note that the entries within each row are treated as “domi- 
nance” data (cf. Carroll, 1980), as would arise, for example, from a tour- 
nament. Although such data are more commonly associated with the task 
of paired comparisons than with straightforward ranking, the vector 
model described below can be fitted to data from either paradigm. (In 
spite of the classic arguments (Kendall & Babington Smith, 1940, p. 324) 
advocating paired comparisons, both VIek and Stallen (I98f) and the 
present authors avoided that technique, in order to save panelists time 
and effort. A derivation of the vector model for paired comparisons data 
is given in Carroll (1973, pp. 326-328).) 

Given the row conditional matrix E of dominance data, the vector 
model (first proposed independently by Slater, 1960; Thcker, 1960) seeks 
to represent the n events as points in a multidimensional Euclidean 
space, and the m panelists as vectors in the same space. A given pan- 
elist’s dominance ordering of the set of risky events is reconstructed from 
the projections of events onto the vector for that panelist. The earliest 
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application we have found of the vector model to the study of risk was 
Green and Maheshwari’s (1969, pp. 452-454) investigations of preference 
for common stock. 

Algebraically, the model can be written 

where C, is the predicted or reconstructed rank given by panelist i to 
eventj, fis a linear function, r is the dimensionality (with index t) of the 
Euclidean space, Xjt is the coordinate in this Euclidean space of the jth 
event on the ah dimension, and bj, is proportional to the direction cosine 
of the angle between panelist i’s vector and the axis for the tth dimension. 
The value of bi, can be interpreted as a measure of the importance of 
dimension t for panelist i. 

The computer program used most often for fitting the vector model 
(viz., solving for both variables in the summation on the right side of Eq. 
(1)) is Carroll and Chang’s (1964; Chang & Carroll, 1969) MDPREF. Fur- 
ther discussions of the model and algorithms for fitting it are given by 
Carroll (1972, 1973, 1980) and Carroll and Arabie (1980). 

Vlek and Stallen (1981) used an alternative to MDPREF, PRINCALS 
(de Leeuw & van Rijckevorsel, 1980; Gifi, 1985; van Rijckevorsel & de 
Leeuw, 1979) to fit data from 456 panelists on 26 events (e.g., transport- 
ing chlorine gas by freight train, smoking in bed, etc.). Vlek and Stallen 
(1981) gave dimensional interpretations of “size of a potential accident” 
and “degree of organized safety” for the two-dimensional solution they 
presented (1981, Fig. 4), which accounted for 51% of the variance. The 
authors grouped their panelists according to age, sex, and other vari- 
ables, and then looked for and interpreted differences in directions of pan- 
elists’ average vectors according to such background variables. Vlek and 
Stallen (1981, p. 269) emphasized the importance of being able to look at 
individuals’ representations, in contrast to aggregate spatial solutions 
(e.g., as in principal components). Another advantage those authors 
(1981, p. 239) claimed for their approach, of deriving (from data) rather 
than selecting (for panelists’ questionnaires) the dimensions of perceived 
risk, was that the newer practice allowed “a wider perspective for 
judging risky activities than a rational decision analysis (presumably 
using fewer, if any, psychological variables) is capable of accommo- 
dating” (1981, p. 239). 

Following the tradition of Vlek and Stallen (1981), we used the fourteen 
events listed in Table 1 for a study in which panelists were asked to rank 
these events according to risk posed for the U.S. economy. Selection was 
based on relative prominence given these and related topics by the media 
during the summer of 1983. The panelists were eight stock brokers, eight 
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TABLE I 
FOURTEEN ECONOMIC EVENTS USED BY ARABIE, MASCHMEYER, AND CARROLL (1986) 

Code used 
for plotting Economic event 

PR+ An increase of at least 1% in the prime interest rate occurs 
PR- A decrease of at least 1% in the prime interest rate occurs 
TX+ There is an increase in United States income tax 
TX- There is a cut in United States income tax 
IM+ The United States makes more money available to fnterrtariunal Monetary 

IM- 

O- 
o+ 
NUC 
TDR 
MMT 
OSH 
IMQ 

EBT 

Fund 
The United States makes less money available to International Monetary 

Fund 
An oil embargo occurs (causing a shortage in the United States) 
An oil glut occurs 
A breakthrough in safety and economy for nuclear electric power is achieved 
There is further deregulation of the airline and the trucking industry 
Much more money is made available for mass transit 
OSNA guideines are relaxed 
United States imposes import quotas on a large variety of manufactured 

products 
A new electronic breakthrough, comparable to the invention of the 

transistor, is announced 

Ph.D. students, and thirteen MBA students. The latter two groups were 
specializing in finance at the Business School of the University of Illinois 
at Urbana-Champaign. (Further details of the study are available in Ar- 
abie, Maschmeyer, & Carroll (1986).) Like Gooding (1975), Slavic, 
Fischhoff, and Lichtenstein (1981), and others, we were interested in 
how professionals and students (two groups of the latter, in our study) 
might differ in the perception of risk. 

A four-dimensional MDPREF solution based on the twenty-nine pan- 
elists’ rankings accounted for 75.0% of the variance. (Corresponding 
values for each of the four dimensions were 40.2, 13.6, 12.6, and 8.7%. 
Mean product-moment correlations between input data and predicted 
values were .88 for MBA and .83 for Ph.D. students, and .87 for brokers.) 
Figure I presents the first two dimensions, accounting for the highest 
percentages of variance. Dimension 1 clearly reflects a concern for trans- 
portation and energy, in pitting an oil shortage (0 - ) against more money 
for mass transit and a breakthrough in safety for nuclear power. Dimen- 
sion 2, contrasting such events as changes in the prime lending rate 
versus relaxation of OSHA rules, can be interpreted as monetary versus 
nonmonetary governmental actions. 

Figure 2 plots the third and fourth dimensions. The third contrasts gov- 
ernment versus private initiatives to boost the economy. Specificalfy, fur- 
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FIG. 1. Dimensions 1 and 2 of four-dimensional MDPREF solution, with events plotted, 
using codes given in Table 1. 

ther deregulation of airline and trucking industries, more money for mass 
transit, etc., are contrasted with a tax break, an electronic breakthrough, 
etc. The fourth dimension of the MDPREF solution, accounting for the 
least variance, is predictably also the least interpretable. That dimen- 
sion’s extreme events, an oil surplus and more money for the Interna- 
tional Monetary Fund (IMF), suggest a stance of concern for the Third 
World. Concretely, an oil surplus often is associated with less concern for 
Third World suppliers of oil (with the notable exception of their ability to 
pay international bank debts), in contrast to the involvement shown by 
making more money available to the IMF. 

Figure 3 depicts the paneiists’ judgments of risk, with each panelist 
represented as a vector in the same space depicted in Fig. 1 (Dimensions 
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FIG. 2. Dimensions 3 and 4 of four-dimensional MDPREF solution, with events plotted, 
using codes given in Table 1. 

1 and 2 from the four-dimensional MDPREF solution). The length of a 
vector is proportional to the correlation (R) between the corresponding 
panelist’s original rankings of the events and those reconstructed from 
the projections of the events onto the MDPREF-positioned vector. The 
fourteen events from Fig. 1 have not been included in Fig, 3 simply be- 
cause they make it too cluttered. In Fig. 3, ail vectors except the one for 
a doctoral student (22P6) aim toward quadrants one and four. Interesting 
differences emerge between groups. For example six of the eight brokers’ 
vectors (denoted by “BRK” as the first three characters in the labels) he 
in quadrant four, indicating that increases in the prime rate and in taxes 
were judged most risky for the U.S. economy. In contrast, ten of the 
thirteen MBA candidates (whose labels have an “M” as the third char- 
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acter and year of study as the fourth character) point to quadrant one, in 
the direction of oil shortage and imposition of import quotas, as greatest 
risks for the U.S. economy. The vectors of the doctoral students (having 
“P” as the third and year of study as the fourth character in the labels) 
show more variability in direction, although there is some concentration 
in the first quadrant, especially in the direction lying between the imposi- 
tion of import quotas and less money for the IME Another noteworthy 
point is that the more idiosyncratic panelists are readily noticed. For ex- 
ample, MBA student “19M2” ostensibly views more funding for the IMF 
as a risk. That panelist’s vector is diametrically opposed by doctoral stu- 
dent “22P6” who regards the further deregulation of trucking and airlines 
and the relaxation of OSHA rules as most risky for the U.S. economy. If 

P 3rl2 

FIG. 3. Dimensions 1 and 2 of four-dimensional MDPREF solution (as in Fig. l), with 
panelists represented as vectors. BRK denotes brokers, a third character of M denotes 
MBA students, and P denotes doctoral students. 



SOME CURRENT MODELS FOR RISK 309 

FIG. 4. Dimensions 3 and 4 of four-dimensional MDPREF solution (as in Fig. 2), with 
panelists represented as vectors. BRK denotes brokers, a third character of M denotes 
MBA students, and P denotes doctoral students. 

one wants to evaluate the representativeness of a panelist’s rankings 
vis-a-vis the other panelists, Fig. 3 presents a graphic answer. 

Figure 4 shows the panelists’ vectors in the same space depicted in Fig. 
2 (Dimensions 3 and 4 from the four-dimensional MDPREF solution). 
Again, the fourteen events from Fig. 2 are not included in Fig. 4 because 
of clutter. Clearly, there is much greater variability in the directions of the 
vectors in Fig. 4 than was the case in Fig. 3. As noted earlier, the dimen- 
sions in Figs. 2 and 4 accounted for considerably less variance than did 
the dimensions in Figs. 1 and 3, so that it is fair to say that the pictures in 
Figs. 2 and 4 are more noisy. The MBA students’ vectors show the 
greatest uniformity in Fig. 4, with concentration in changes in the prime 
rate as risky for the U.S. economy. As a group, the stock brokers show 
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less coherence (i.e., their vectors point in more diverse directions) than 
they did in Fig. 3, and the doctoral students are again highly variable in 
the directions of their vectors. 

In addition to studying MDPREF representations of the panelists’ 
vectors to find patterns of agreement and individual differences, one can 
also go directly to the raw data (viz., the panelists’ orderings of the 
events vis-8-vis risk to the U.S. economy). Using Kendall’s (1948) coeffl- 
cient of concordance, W = .340 (p < .OOl) for all 29 panelists, .316 (p < 
.005) for the eight doctoral students, .456 @ < .OOl) for the thirteen MBA 
students, and .446 (p < .OOl) for the stock brokers. Vlek and Stallen 
(1981, p. 253) reported a corresponding statistic of .20 for their 238 pan- 
elists’ orderings of a subset of 12 of the 26 events according to the crite- 
rion “size of a possible accident following a serious and credible error.” 
The values of this statistic, computed for different studies and groups of 
panelists, suggest that there is enough variability among panelists to jus- 
tify caution in the use of aggregate representations. 

Other Spatial Models 

Of course, principal components, factor analysis, and the vector model 
do not exhaust the possibilities for (continuous) spatial models that can 
be used to represent judged and perceived risk. (A taxonomy of such 
models is presented by Carroll & Arabie (1980).) Another especially 
useful spatial model for such purposes is the INDSCAL model of Carroll 
and Chang (1970) for three-way (panelists x events x events) scaling. In 
fact this model was the original basis for the development of Impact 
Scaling (Carroll, 1977; Carroll & Sen, 1976), designed as a forecasting 
and planning technique for managers faced with risky decisions. In addi- 
tion to early applications of INDSCAL to the perception of investment 
risk (Gooding, 1975, 1978), we refer the reader to Arabie et al. (1986) for 
a detailed description of the methodology of Impact Scaling as well as 
recent extensions. That paper includes an INDSCAL solution for the 
same fourteen events represented above using MDPREE INDSCAL re- 
quires dyadic measures of proximity between all pairs of events from 
each panelist as input, in contrast to the (monadic) orderings of risk re- 
quired for the MDPREF analyses. In the INDSCAL analysis by Arabie et 
al. (1986), the data were derived from modified subjective conditional 
probabilities between all pairs of the fourteen events listed in Table 1. 
Thus, although the same 29 panelists gave (different types of) data for 
both the MDPREF and INDSCAL analyses, the resulting dimensional 
interpretations for the two solutions were neither expected nor found to 
be identical. To elaborate, because MDPREF was applied to dominance 
data and the INDSCAL solution came from proximities data, there is no 
a priori psychological reason the two solutions should be symmetrically 
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related. Empirical evidence to date has left much room for argument over 
whether any predictable relationship in general is to be expected. (See, 
for example, the exchange of views between J. D. Carroll and C. H. 
Coombs in the Discussion chapter of Lantermann & Feger (1980, pp. 
368-369).) 

Comparative Relevance of Various Spatial Models to the Study of Risk 

We give a brief overview of differences and similarities among the spa- 
tial models just considered, with respect to (a) their utility for studying 
the perception and judgment of risk, (b) types of input data and requisite 
paradigms for collection, and (c) scale types assumed for the input data. 
We hope that a fourth important consideration, types of representation 
afforded by fitting the models, has already been covered in the preceding 
summaries of the analyses discussed earlier. 

A useful distinction in this discussion stems from Tucker’s (1964) no- 
menclature of “modes.” Although all the approaches considered here 
assume as basic data a two-way matrix (or a collection of them for such 
“three-way” models as INDSCAL and INDCLUS), the vector, principal 
components, and factor analytic models are generally fitted to a (single 
two-way) matrix where rows and columns represent such different sets of 
entities as panelists and events, Thus such data are said to be two-mode 
as well as two-way. In contrast, the two-way matrices used in nonmetric 
multidimensional scaling (MDS) are one-mode, with both rows and 
columns corresponding to the same set of entities (e.g., events). 

When a researcher seeks a representation of both panelists and events 
(for example) in the same space, then it is not surprising that a two-mode 
data matrix is required. In such studies as those reported above em- 
ploying the vector model, each panelist is typically giving ratings or 
rankings for a specified criterion according to some task yielding at least 
ordinal information on the events, according to that panelist’s judgment 
(see discussion above of row conditional matrices). The computer pro- 
gram used most often for fitting this model (MDPREF, written by Chang 
& Carroll, 1969) treats the numerical entries in the data matrix as interval 
scale data. That is, B, in Eq. (1) is intended to reconstruct (approxi- 
mately) the numerical ratings given by a panelist, according to the stipu- 
lation that those values have interval rather than ordinal scale informa- 
tion. (This interpretation of reconstructing or predicting the panelists’ 
data, or some transformation of them, according to a specific type of 
scale, will be central to the discussion of models for the judgment and 
perception of risk.) 

Kruskal and Shepard (1974) devised a “nonmetric” or ordinally based 
technique for fitting the same vector model of Eq. (I), but concluded 
(1974, p. 153) that the robustness of the linear approach (as taken by 
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Carroll & Chang, 1964) enabled it to do a better job of recovering a 
known structure, even when the data had been subjected to nonlinear 
(but monotone) distortion. This result suggests that there may be little 
advantage to using the monotone option available in the PRINCALS pro- 
gram (de Leeuw & van Rijckevorsel, 1980; Gifi, 1985; van Rijckevorsel & 
de Leeuw, 1979) employed by Vlek and Stallen (1981) for fitting the 
vector model. 

The general principle for comparing different assumptions about un- 
derlying scale types is straightforward: if the user believes the input data 
(e.g., ratings, rankings, or measures derived from subjective estimates of 
probabilities) are not linearly related to the parameters fitted to them in 
constructing a spatial representation (i.e., distances between points de- 
picting objects in MDS, cosines of angles between vectors depicting vari- 
ables in principal components analysis), then assuming a functional rela- 
tionship that is only required to be monotone (for ordinal scales) rather 
than linear (for interval scales) is preferable. When subjective probabili- 
ties are involved, assuming monotonicity seems highly advantageous, 
given the well-known distortions that are especially prevalent for extreme 
values. However, the arguments based solely on measurement character- 
istics of the data must sometimes be tempered by limitations inherent in 
the actual models or their associated algorithms. We have already cited 
Kruskal and Shepard’s surprising results in fitting a nonmetric (ordinal) 
model for principal components analysis. Similarly, Carroll and Arabie 
(1983, p. 167) provided technical arguments precluding the development 
of a (conventional) ordinal approach to fitting the ADCLUS model (de- 
scribed below in the discussion of discrete models). 

Returning to the discussion of various spatial models appropriate for 
the perception and judgment of risk, both principal components analysis 
(PCA) and common-factor analysis (as well as other approaches to the 
latter technique; see McDonald, 1985) assume a two-mode matrix as 
input. PCA and factor analysis can also be regarded as vector models, 
even though their typical input data are not preference (or dominance) 
data, as discussed here for studies using MDPREF or PRINCALS. In the 
studies cited earlier, Fischhoff et al. (1982) had panelists rate 90 hazards 
on 18 qualitative attributes of risk, and Hohenemser et al. (1983) had 
subjects consider 93 technological hazards on twelve scales. We have 
noted earlier that the requirement of two-mode data for PCA and factor 
analysis entails the selection by the researcher of relevant attributes or 
scales. In contrast, MDS assumes one-mode matrices (as discussed 
below) and thus allows the experimenter a less obtrusive role. 

A reviewer of the present paper called attention to the fact that the 
experimenter also selects the other mode of a two-mode matrix-namely 
the entities such as technological hazards under study. This observation 
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necessarily applies to all the scaling and clustering models considered in 
this paper and underscores the context-dependency of both the resulting 
representations and this general approach to the perception and judgment 
of risk. The limitation here parallels the fixed versus random effects 
models of analysis of variance. There simply are no scaling and clustering 
models presently available embodying the random effects philosophy. 
Since many of the major projects studying perception and judgment of 
risk in recent years have been specific to such domains as energy (see 
examples in Borcherding et al., 1984a), there does not seem to be a mis- 
match in generality between models and context-specific domains of in- 
vestigation. 

Both PCA and most approaches to factor analysis begin by computing 
product-moment correlations (or occasionally covariances; see Tiemann 
& Tiemann, 1985) between all pairs of attributes, variables, or “scales” 
selected by the experimenter, and thus assume interval scale data. PCA 
places ones in the principal diagonal of this correlation matrix whereas 
common-factor analysis uses estimates of commonalities (e.g., squared 
multiple correlations). Rather than trying to represent pairwise relation- 
ships between hazards by the distances between points representing 
hazards in a space as in MDS, PCA and factor analysis approximate the 
input correlations by the cosines of the angles between vectors. (These 
vectors are formed by the points representing the variables and the non- 
arbitrary origin of the “factor space.” The coordinates of these vectors’ 
endpoints are given as “factor loadings.” Traditionally, these points are 
not included in the graphic display of the hazards, whose coordinates are 
given as “factor scores.“) PCA finds a linearly independent set of “com- 
ponent” variables accounting for the larger number of variables originally 
selected by the experimenter. Thus, the pioneering study in this area, by 
Fischhoff, Slavic, Lichtenstein, Read, and Combs (1978; also see Slavic 
et al., 1981, 1984) had panelists rate 30 potential hazards on each of nine 
characteristics. Those authors then used PCA to obtain two interpretable 
factors (accounting for 80% of the variance) to represent ratings on the 
original nine scales. 

Several decades of psychometric literature have failed to resolve de- 
bates on whether PCA or common-factor analysis is the better technique, 
but recent attention that is relevant to the study of risk has focused on the 
former technique’s lack of robustness to outlying data values (Critchley. 
1985; Krzanowski, 1984). 

Before considering nonmetric MDS, we first return to the question of 
context dependence resulting from the experimenter’s selection of stimuli 
(e.g., hazards). While describing the vector model, we noted that such 
computer programs as MDPREF and PRINCALS attempt to reconstruct 
the panelists’ ratings, subject to various assumptions about scale type. 
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This approach to fitting the vector model has been designated the “di- 
rect” approach by Kruskal (1978). PCA and factor analysis, however, 
pursue a less ambitious task of “indirect” fitting of the same model, 
namely reconstructing the correlations among the variables, rather than 
the numerical values used to compute the correlations. If one considers 
the generality of a representation (obtained as output from an analysis) 
based on the two different approaches, it is clear that equality of correla- 
tion matrices (resulting from sampling over different hazards) is a more 
easily satisfied and more general condition that is equality of the actual 
numerical values (up to a monotone or positive linear transformation, 
depending on the scale type assumed). Thus, although we view PCA and 
factor analysis as inferior to MDS for representing the perceived judg- 
mental structure of hazards, the former methods are advantageous when 
considered from the perspective (raised by a reviewer) of generality over 
hazards sampled. 

Nonmetric MDS (Kruskal, 1964a, 1964b; Shepard, 1962a, 1962b) typi- 
cally assumes a single one-mode two-way data matrix as input. The data 
are assumed to be systematic measures of the relatedness of each distinct 
pair of objects (e.g., hazards) under study. Paradigms commonly used 
(e.g., by Johnson & Tversky, 1984) include giving “direct” judgments on 
(say) a nine-point scale from least to most similar, for all n(n - I)/2 dis- 
tinct pairs of n hazards. In general, any consistent measure of pairwise 
similarity, dissimilarity, confusability, substitutability, cooccurrence, or 
association can serve in principle as input data. Because the data re- 
quired for MDS are one-mode, the researcher is spared the intrusive role 
of selecting the crucial attributes or “scales” for the requisite second 
mode of an input matrix for PCA or factor analysis. 

Nonmetric MDS assumes only a monotone function relating the input 
proximities to the (reconstructed) interpoint distance between all pairs of 
hazards in the spatial representation. As noted earlier, because the input 
data are only assumed to be ordinal, nonmetric MDS can better accom- 
modate such data as subjective probabilities that are rarely viewed as 
interval scale. A second advantage of nonmetric MDS is that its weaker 
assumptions about the data often allow fitting nonlinear data in fewer 
dimensions than are required by such linear techniques as PCA and 
factor analysis (Shepard, 1962a, 1962b). Thus, MDS may offer a more 
parsimonious description of risk spaces. 

The techniques discussed thus far in this section have all assumed a 
single input matrix. (For MDS, such a proximities matrix is necessarily 
aggregated over panelists and/or replications.) A consequence is that un- 
less one of the modes for two-mode approaches is for panelists (as in the 
MDPREF example given earlier), none of the techniques just described 
has any facility for depicting individual differences among panelists’ per- 
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ceptions and judgments. Realizing this limitation, Slavic et al. (1981) did 
separate analyses of data from four different groups of panelists varying 
in expertise. However, this approach can lead to difficulties in comparing 
groups’ solutions and offers little information concerning within-group 
differences. 

Beginning with the advent of the INDSCAL (for INdividual Differ- 
ences SCALing) model and computer program (Carroll & Chang, 1970), 
three-way (or “individual differences”) MDS has seen greatly increasing 
usage, especially in the behavioral sciences. However, with the notable 
exception of work by Vlek and his colleagues (cited earlier), we believe 
that three-way MDS has been underemployed in studies of the perception 
and judgment of risks. For example, Cvetkovich and Earle’s (1985, p, 19) 
review listed the lack of information concerning individual judgments as a 
major weakness of psychometric approaches to the study of hazardous 
events. The description offered here of three-way techniques that remedy 
this deficiency will be fairly terse so as not to be redundant with Arabie et 
al. (1986). 

The INDSCAL technique assumes a symmetric proximities matrix 
from each panelist or other source of data. The INDSCAL method places 
n stimuli (events) in a Euclidean space of specified dimensionality, so that 
events perceived to be closely related are positioned close together, 
whereas relatively unrelated events are distantly placed from each other. 
This Euclidean space has a mathematically preferred orientation, and 
only reflections and permutations (but nd other rotations) leave the vari- 
ante accounted for unchanged, as a measure of goodness-of-fit. The axes 
defining the preferred orientation have, in most published applications. 
been substantively interpretable. Differences among subjects (panelists) 
are depicted by stretching or shrinking (i.e., weighting) axes (dimensions) 
according to the salience attributed to those axes by the individual pan- 
elists’ data. As a result, the INDSCAL model is sometimes referred to as 
the “weighted Euclidean model.” 

Formally, the estimated distance between a pair of events Ej and & in 
the weighted Euclidean space can be written as 

where D$ is the distance between the events Ej and E, for the ith pan- 
elist, wir is the weight for panelist i in the rth dimension, and xj, is the 
coordinate of event Ej on the tth dimension. 

Graphically, the events are represented in a space of r dimensions, and 
the panelists are positioned in a separate space of the same dimension- 
ality Y. The coordinates for the panelists (represented as points in the 
space) are given by the weights We,. Thus, both graphically and numeri- 
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tally, the experimenter has a representation of potential differences 
among panelists’ judgments. 

A noteworthy aspect of the INDSCAL model is that, unlike two-way 
nonmetric multidimensional scaling in Euclidean space and also unlike 
most approaches to factor analysis, the axes in an INDSCAL event space 
have a mathematically preferred orientation. As such, the goodness-of-fit 
(variance accounted for) of a spatial solution is only invariant under re- 
flections and permutations of the axes. (The data analyst, of course, is 
responsible for the substantive interpretation of these axes or dimen- 
sions.) The preferred orientation is conferred upon the event space by the 
presence of the weights, wit, in Eq. (2). As noted above, these weights are 
the coordinates of the panelists’ space. Although not constrained to be 
positive, the weights empirically are nearly always in the positive orthant 
of the space. A subject (or other source of data) giving judgments incon- 
sistent with the model for any of the r dimensions will generally have 
very small weights for those dimensions. Psychologically, the weights wi, 
gauge the salience of dimension t for panelist i by differentially stretching 
or shrinking that dimension. Statistically, the size of the weights gives an 
indication of the variance accounted far in the data from a given panelist. 
Thus, the weights provide an opportunity for studying within- as well as 
between-group differences in patterns of judgments and are thus poten- 
tially quite useful for policy-making decisions (see Arabie et al., 1986). 
Another important feature of the INDSCAL approach is that in fitting the 
weights of the model, one is simultaneously fitting the dimensions of the 
space and giving them a preferred orientation. In contrast, a multiattri- 
bute utility approach (see Fischhoff et al., 1984) requires that the investi- 
gator first select the dimensions before panelists can give data suitable for 
estimating weights for these a priori dimensions. 

Considering assumptions of scale type for INDSCAL analyses, both 
the original INDSCAL program and Pruzansky’s (1975) SINDSCAL as- 
sumed interval scale proximities data. ALSCAL, an alternative program 
devised by Takane, Young, and de Leeuw (1977), has options for fitting 
the INDSCAL model while assuming only ordinal data. However, Hahn, 
Widaman, and MacCallum (1978) concluded that the INDSCAL pro- 
gram, even though it assumes interval scale data, generally recovered 
ordinally defined structure better than ALSCAL did, using the latter’s 
option for ordinal data. 

DISCRETE MODELS 

Vlek and Stallen (1980) sought to provide a “psychological categoriza- 
tion” (1980, p. 273) or taxonomy of risk and therefore offered (1980, Fig. 
4) a “rational ordering of the various aspects of risk.” This ordering was 
based on a priori considerations rather than analysis of empirical data. 
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(Also see the review of such schemes of classification of hazardous 
events in Cvetkovich & Earle (1985, pp. 16-24).) As noted earlier, Ho- 
henemser et al. (1983) were also attempting to classify hazards. For such 
purposes, discrete models (in which a risky event either is or is not (i.e., 
all-or-none) relevant to a given cluster, subset, or feature of the model) 
can offer advantages of additional information over the continuous spatial 
models considered in the preceding section. Various types of clustering 
(see Hartigan, 1975; Hubert, 1974; Morrison, 1967) have long been avail- 
able as discrete alternatives to spatial models. For example, Cooley 
(1977) used hierarchical clustering to depict judgmental differences in 
perceived risk among professional investment managers. However, more 
recent developments offer as promising candidates discrete models for 
representing the perception of risky events. Reviews of these models are 
given by Carroll (I976), Carroll and Arabie (I980), and Shepard (1980). 

Johnson and Tversky (1984) provided a useful data set, concerning 
perceived relations among prevalent causes of death, for illustrating the 
use of these models. The eighteen risks (stimuli) covered in the study 
were accidental falls, airplane accidents, electrocution, fire, flood, heart 
disease, homicide, leukemia, lightning, lung cancer, nuclear accident, 
stomach cancer, stroke terrorism, tornado, toxic chemical spill, traffic 
accidents, and war. Among the panelists’ tasks were (a) giving judgments 
of similarity on a nine-point scale for all distinct pairs of the eighteen 
risks, and (b) “conditional’ predictions” which referred to panelists’ will- 
ingness to increase the estimated incidence rate for risk i given informa- 
tion that their earlier estimates of incidence for riskj were conservative. 
The “conditional predictions” task is the more novel of the two and was 
regarded by Johnson and Tversky (1984, p. 57) as a measure of judged 
covariation. Both tasks were described as comparative and holistic, in 
contrast to an evaluative task not considered here since our analyses will 
not use data from the third task. The authors predicted that data from 
paradigms (a) and (b) to be fitted better by discrete “feature” models 
than by either metric (interval scale) or nonmetric (ordinal) MDS, and 
this prediction was confirmed. (Further details are available in the source 
article.) 

Johnson and Tversky (1984, Table Al) helpfully published the aggre- 
gate proximity matrices resulting from each of these two judgmental 
tasks. Among other analyses, those authors provided discrete representa- 
tions of the perceived structure for the eighteen risks, via an additive tree 
(1984, p. 61) solution for the conditional prediction data, using the ADD- 

’ The three senses of “conditional” used in this paper (row conditional matrix, condi- 
tional prediction, and matrix conditional analyses) are unrelated and should not be con- 
fused. 
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TREE program of Sattath and Tversky (1977). This solution, which ac- 
counted for 74% of the variance, was described as a hierarchy of clusters 
interpreted as hazards, accidents, violent acts, technological disasters, 
and diseases. The authors (1984, p. 61) concluded that “Nevertheless, 
the results indicate that the clustering of the risks is not entirely hierar- 
chical, and there is some evidence for overlapping clusters.” (For further 
details of the analysis and the model involved, the reader should consult 
Johnson & Tversky (1984) and Sattath & Tversky (1977).) This conclu- 
sion is consonant with the view of Vlek and Stallen (1980, p. 294) that 
various aspects of risk are “naturally” viewed as clusters and that these 
aspects overlap or mutually influence each other. Thus, to pursue a more 
complete representation allowing for overlap,4 Johnson and Tversky ob- 
tained an “extended tree representation” for the conditional prediction 
data, using the EXTREE method of Corter and Tversky (1986). A solu- 
tion (Johnson & Tversky, 1984, Fig. 7) having more than twenty clusters5 
for the eighteen risks accounted for 94% of the variance. 

Since the representation just described has more clusters than the 
number of risks being studied, it seems natural to seek a more parsimo- 
nious representation for the eighteen risks. As an alternative to the 
Corter and Tversky (1986) EXTREE model, we used a closely related 
discrete model, ADCLUS (for ADditive CLUStering), devised by She- 
pard and Arabie (1979) and described below. J. Douglas Carroll (personal 
communication) has observed that the EXTREE model differs from the 
ADCLUS model only in that the former constrains the hierarchical tree’s 
component of the clustering solution to conform to the path length metric 
(see Sattath & Tversky, 1977), when EXTREE solutions are presented in 
the format of Johnson and Tversky’s solution in their Fig. 7 (1984, p. 62). 

Like EXTREE, the ADCLUS model assumes as input a single n x IZ 
symmetric proximities matrix gauging pairwise proximity between all 
distinct pairs of the n stimuli (viz., the eighteen risks in the present anal- 
ysis). The number of clusters, m, to be interpreted, is defined by the user, 
and the model is written 

S=PWP’+c, (3) 

where ,$ is an n x it symmetric matrix of reconstructed similarities (with 
ones in the principal diagonal), W is an m X m diagonal matrix with 

4 It should perhaps be added that hierarchical clustering allows clusters to overlap only if 
one cluster is a proper subset of another. That is, one cluster is “nested” in the other. Thus, 
for any two distinct clusters X and Y, the following conditions are mutually exclusive and 
exhaustive: X C Y, Y C X, or X fl Y = 0. The methods of overlapping clustering consid- 
ered below allow for intermediate degrees of overlap among clusters. 

5 The clusters constituting the hierarchicai part of an EXTREE solution are constrained 
to satisfy the path length metric (Sattath & Tversky, 1977). 
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weights w, (k = I, . . . , m) in the principal diagonal (and zerues else- 

where), and P is the n X m rectangular matrix of binary values pik. Here 
P’ is the m x n matrix transpose of matrix P. C is an n X n matrix having 
zeroes in principal diagonal, and the (fitted) additive constant in ail the 
remaining entries. Two further points should be noted. First, for the P 
matrix, note that each column represents one of the m subsets (clusters), 
with the ones of that column defining constituency of stimuli (risks) 
within the respective subsets. Second, the additive constant c is required 
to allow variance (rather than just sums of squares) accounted for as a 
measure of goodness-of-fit. The constant can also be viewed as the 
weight corresponding to the complete set of stimuli, included implicitly 
as an (m + l)-st subset. It should perhaps be added that in the analyses 
presented below, both the clusters (P) and their weights (W) are being 
fitted simultaneously by the program MAPCLUS (for MAthematical Pro- 
gramming CLUStering) for fitting the ADCLUS model; neither matrix 
was supplied by the data analysts. Further discussions of the ADCLUS 
model and generalizations of it can be found in Arabie and Carroll 
(1980b), DeSarbo (1982), Carroll and Arabie (1983), and Shepard and Ar- 
abie (1979). 

We used the MAPCLUS algorithm of Arabie and Carroll (1980a. 
1980b) for fitting the ADCLUS model in order to analyze Johnson and 
Tversky’s (1984) mean conditional predictions data. The MAPCLUS pro- 
gram requires the user to assume interval scale proximity values as input. 
Table 2 presents a seven-cluster solution, obtained using a random initial 
configuration for the P matrix, and accounting for 76.5% of the variance. 
The representation shares with the solution of Johnson and Tversky 
(1984, Fig. 7) three clusters (here numbered 1, 2, and 4) and a high degree 
of interpretability. The most heavily weighted cluster (heart disease. 

TABLE 2 
MAPCLUS SOLUTION FOR MEAN CONDITIONAL PREDICTION DATA FROM JOHNSON AND 

TVERSKY (1984) 

Subset Weight Risks contained in subset 

(1) .768 Heart disease, stroke 
(2) .636 Nuclear accident, toxic chemical spill 
(3) ,532 Heart disease, leukemia, lung cancer, stomach cancer 
(4) ,519 Homicide, terrorism, war 
(9 .427 Fire, flood. lightning, tornado 
(6) .231 Leukemia, iung cancer, sComach cancer, stroke, toxic chemical spill 
(7) ,226 Accidental falls, airplane accidents, electrocutmn, fire, lightning, 

traffic accidents 

Note. These seven clusters plus an additive constant of ,135 accounted for 76.5% of the 
variance. See text for interpretation of clusters. 
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stroke) comprises problems and failure of the circulatory system. The 
second cluster concerns environmental disasters that can also have ge- 
netic consequences. The third most heavily weighted cluster consists of 
heart disease and all three forms of cancer included in the set of the eigh- 
teen risks. Violent acts (homicide, terrorism, and war) constitute the 
fourth cluster. The natural hazards of tornado, flood, lightning and its 
frequent concomitant, fire, are the fifth most heavily weighted cluster. 
Stroke, the three forms of cancer considered here, and a class of events 
often regarded as carcinogenic (toxic chemial spills) constitute the sixth 
most heavily weighted cluster. Finally, the seventh cluster consists of 
accidents attributable either to nature or human error. 

It is of interest to note that only the fourth cluster (acts of violence) 
fails to have partial overlap with another cluster and that no cluster is 
nested within another (as in hierarchical clustering). This observation 
corroborates the remark quoted earlier from Johnson and Tversky (1984, 
p. 61) concerning overlapping clusters for these data. 

Although Johnson and Tversky reported 94% of the variance ac- 
counted for in their second similarity data matrix by an EXTREE (in- 
terval scale) solution, neither the solution nor the number of clusters 
entailed is reported in their article. Table 3 presents a MAPCLUS repre- 
sentation fitting the ADCLUS model to these similarity data. A seven- 
cluster solution, obtained from a random initial configuration, accounted 
for 72.7% of the variance. The five most heavily weighted clusters from 
this solution also appeared in Johnson and Tversky’s ADDTREE (Sat- 
tath & Tversky, 1977) representation of these data. 

For the various models over which Johnson and Tversky (1984, Table 

TABLE 3 
MAPCLUS SOLL'T~ONFORSSM(LARITYRATINGSOFRISKSDATAFROMJOHNSONAND 

TvERsKY(~~~~) 

Subset Weight Risks contained in subset 

(1) -724 
(73 .613 
(3) .606 
(4) .542 
(5) .412 
(6) .208 
(7) .170 

Flood, lightning, tornado 
Electrocution, fire, lightning 
Nuclear accident, toxic chemical spill 
Homicide, terrorism, war 
Heart disease, leukemia, lung cancer, stomach cancer, stroke 
Accidental falls, heart disease, lightning, stroke, trafIic accidents 
Accidental falls, airplane accidents, electrocution, tire, flood, 

homicide, nuclear accident, terrorism, tornado, toxic chemical spill, 
traffic accidents, war 

Note. These seven clusters plus an additive constant of ,161 accounted for 72.7% of the 
variance. See text for interpretation of clusters. 
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2) compared goodness-of-f@ between the two matrices (conditional pre- 
dictions vs similarities), the fit to the similarities data was always inferior. 
We found the same result and also that our solution for the similarities 
data was somewhat less interpretable than was the solution for condi- 
tional prediction data in Tabfe 2. Clusters 3 and 4 in Table 3 are identical 
respectively to Clusters 2 and 4 in Table 2. The first cluster consists of 
natural hazards arising from bad weather. Lightning and its lethal 
henchmen, fire and electrocution, comprise Ihe second cluster. Circula- 
tory problems and the three types of cancer form the fifth cluster. The 
sixth cluster can be construed as causes of death that prudence and cau- 
tion may enable one to avoid, and whose hazards are thus somewhat 
under an individual’s control, unlike, for example, a nuclear accident.’ 
The least weighted cluster is also the most problematic for interpretation, 
although it is readily described as all the risks except lightning and the 
health-related risks constituting the fifth cluster. Note that the last cluster 
also subsumes the third and fourth so thar there is some (rather weak) 
evidence of nesting to indicate hierarchical structure. Otherwise, there 
are many instances of partial overlap among clusters in the MAPCLUS 
solution shown in Table 3. This aspect of structure cannot be represented 
by an ADDTREE analysis such as Johnson and Tversky’s (1984, Fig. 5). 
which yields a (constrained) hierarchical solution. 

Before presenting a discrete model that allows seeking a representation 
of both the similarities and the predictions data simullaneously, we first 
return to the question of parsimony. Johnson and Tversky reported 83 
and 94% variances accounted for, using EXTREE (linear option) with a 
twerzry-one cluster solution for the latter data set. Our corresponding 
seven-cluster MAPCLUS solution in Tables 2 and 3 accounted for 72.7 
and 76.5% of the variances, respectively. Pursuing an even more parsi- 
monious representation, we also succeeded in obtaining five-cluster solu- 
tions accounting for 63.2 and 74.3% of the variances, respectively. How- 
ever, we found these latter solutions considerably less interpretable and 
therefore presented the seven-cluster solutions. 

INDCL US 

The Shepard-Arabic ADCLUS model of Eq. (3) can be generalized to 
the (three-way) case of multiple input proximities matrices. The general- 
ization, called INDCLUS (Carroll & Arabie, 1982, 1983) allows for ma- 

’ Those authors also provided spatial representations based on multidimensional scaling 
and principal components analysis for the 18 risks. 

’ Although an established literature surrounds this distinction, it still gives rise to strongly 
divergent views: see the exchange on this topic between Perrow (1986) and Wildavsky 
(19861. 
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trices from different individuals (hence, the acronym for INdividual Dif- 
ferences CLUStering), or other sources of data, such as the two experi- 
mental conditions Johnson and Tversky employed to obtain the data sets 
used above. 

We mentioned earlier that INDSCAL (Carroll & Chang, 1970) allows a 
continuous spatial representation for a collection of input proximities ma- 
trices (all based on the same set of n entities). The INDSCAL model 
assumes a Euclidean space whose dimensions are differentially relevant 
or salient to all subjects or other sources of data. The differences be- 
tween such sources are depicted in differential weights fitted to each di- 
mension for each input matrix. The 1NDCLUS (Carroll & Arabic, 1983) 
model offers a discrete counterpart to the INDSCAL model, in assuming 
that a set of clusters potentially interpretable as features can be found 
that are relevant to all the input matrices. However, the weights for these 
clusters vary both as a function of which cluster and which input matrix 
is being considered. Thus, the INDCLUS model substitutes cluster (viz., 
discrete subsets of the n entities being studied) for the spatial dimensions 
assumed by INDSCAL. 

The INDCLUS model can be written 

$9 = pwmp + C(i), (4) 

where S@ is the symmetric n x n similarities matrix estimated for the ith 
input matrix; P is the n x m binary matrix whose unities within a column 
define the constituency of the column corresponding to the kth cluster (k 
= 1 . * 7 m); W@ is an m x m diagonal matrix having weights for the m 
x n’ matrix transpose of P, and 0’7 is the constant matrix supplying the 
additive constant required by linear regression for the ith input matrix. 
Thus, to the input similarities data S (I), INDCLUS simultaneously fits the 
m clusters (P) and their weights (W(I)). If it were not for the binary con- 
straint on P in Eq. (4), then this model would simply be a generalization 
of principal components analysis, with W corresponding to eigenvalues 
and P to eigenvectors, and with the attendant rotational invariance 
leading to the “rotation problem.” However, the discrete, binary con- 
straint on P requires much more elaborate procedures (such as mathe- 
matical programming, alternating least squares, and combinatorial opti- 
mization, described in Carroll & Arabie, 1983) for fitting the INDCLUS 
model. 

As with MAPCLUS analyses presented in Tables 2 and 3, the 
INDCLUS analysis below fitted both the clusters (P) and the weights 
(W(n) simultaneously. A random initial configuration was used so as not 
to bias the final solution toward either matrix, as might be maintained if 
the solution in either Table 2 or 3 had been used for an initial configura- 
tion. A final detail to note is that the two matrices are incommensurable 
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in several details. First, the similarities matrix, as given by Johnson and 
Tversky (1984, p. 69), is the mean over subjects’ ratings on a nine-point 
scale, whereas the predictions data are tallies of subjects. Second, the 
mean and standard deviation are (3.39, 1.44) for the similarities data and 
(22.07, 17.94) for the cunditionai predictions data. In our INDCLUS anal- 
ysis of these two data matrices, we therefore specified a “matrix condi- 
tional” analysis (terminology of Takane et al., 1977), which causes the 
matrices to be separately standardized so that each will have unit vari- 
ance. Entries are thus rendered more comparable across the matrices as a 
result of this preprocessing. Selecting this option typically causes the 
weights to be larger than from a MAPCLUS analysis or a matrix uncon- 
ditional analysis using INDCLUS. The reader is therefore cautioned not 
to attribute any significance to the weights generally being larger in Table 
4 than in Tables 2 and 3. 

The seven clusters in Table 4 account for 74.0% of the variance com- 
puted over the two separately normalized matrices and, once again, the 
fit is better for the predictions data. The two clusters common to both 
Tables 2 and 3 also reassuringly appear as Clusters 3 (homicide, ter- 
rorism, war) and 6 (nuclear accident, toxic chemical spill) in Table 4. The 

TABLE 4 
INDCLUS SOLUTION FOR RISKS DATA FROM JOHNSON AND TVERSKY (1984) (MATRIX 

UNCONDITIONAL ANALYSIS) 

Weights for different 
sources of data 

Conditional 
Simifarities predictions 

Subset data data Risks contained m subset 

(1) 1.933 2.897 Heart disease, leukemia, lung cancer, stomach 
cancer, stroke 

(21 1.713 1.568 Electrocution, fire, flood, lightning 
(3) 2.519 2.081 Homicide, terrorism, war 
(4) 0.634 0.573 Accidental falls, airplane accidents, electrocution, 

fire, homicide. lightning, nuclear accident, 
terrorism, toxic chemical spill, traffic accidents, 
WiW 

(5) 0.566 0.540 Accidental falls, airplane accidents, fire, flood, 
lightning, stroke, tornado, toxic chemical spill, 
traffic accidents 

m 2.797 2.620 Nuclear accident, toxic chemical spill 
(7) 1.129 a. 145 Flood, homicide, nuclear accident, tornado 

-0.713 - 0.688 Additive constants 
69.5% 78.6% Variance accounted for within condition 

Note. Overall variance accounted for =74.0%. 
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first cluster in Table 4 had appeared earlier as Cluster 5 in Table 3 (from 
predictions data), so that it is not surprising to see a larger weight for this 
cluster for the predictions data (2.897) than for the similarities data 
(1.933). The second cluster consists of the effects and hazards of adverse 
weather. Cluster 4 subsumes Clusters 3 and 6, and also the three types of 
accidents as well as lightning, fire, and electrocution (Cluster 2 from 
Table 3). The tifth cluster overlaps considerably with the preceding 
cluster but is neither as interpretable nor as heavily weighted. The last 
cluster could be given a causal interpretation of a nuclear accident and 
some events likely to follow it if an explosion is involved (flood, tornado, 
homicide). As with the first cluster in Table 4, there is a considerable 
difference in the sizes of the weights for the last cluster. 

While the overall goodness-of-fit and general interpretability of the 
INDCLUS solution in Table 4 seems satisfactory, we were disappointed 
to see insufficient differences in the weights for the two conditions to 
allow for an interpretable pattern of contrasts. Johnson and Tversky 
(1984, p. 58) noted that the product-moment correlation between the two 
matrices is .76, and we suggest that this value and the fact that the same 
subjects provided both matrices account for the generally similar pattern 
of weights across the two conditions. 

FUTURE PROSPECTS 

We have posed continuous spatial versus discrete models as portraying 
complementary aspects of the same data (cf. Kruskal, 1977); each can 
capitalize on aspects of structure inherently not emphasized in the 
other’s representation. Quite recently, there has been interest in trying to 
offer a taxonomy of which types of substantive domains are more appro- 
priate for spatial versus discrete models. Obtaining a general answer to 
this question is impeded by the practical necessity of somewhat arbitrary 
choices for various decisions: (a) which model(s) shall be selected to 
champion the respective classes, (b) how are the numbers of fitted pa- 
rameters to be matched across the two models selected, when the param- 
eters are subject to different constraints across the models, and (c) how is 
a goodness-of-fit measure to be selected that is fair to both classes? A 
seminal paper by Pruzansky, Tversky, and Carroll (1982) produced early 
results as well as some diagnostic measures for deciding which of the two 
specific exemplars of the two classes was preferred, subject to certain 
assumptions. Those authors concluded (1982, p. 18), however, that “Ul- 
timately, the choice of a representation depends, in addition to goodness- 
of-fit, on the interpretability and the theoretical interest of the proposed 
solution.” It is quite possible that stronger results will be forthcoming in 
the next several years, although such tests may not be tailored to the 
types of data collected in studies of risk. 
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Returning lo the distinction between two- and three-way models, we 
note that the intended advantage of three-way (as opposed to aggregate 
two-way) models for scaling (e.g., INDSCAL) and clustering (e.g., 
INDCLUS) is their facility for depicting differences among panelists, ex- 
peritnentil conditions, or other sources of da&. Given lhe marked differ- 
ences among individuals’ judgments and perceptions of risk, this partic- 
ular substantive domain seems especially well suited for applying such 
three-way analyses. We note, however, that the Carroll and Chang (1970) 
INDSCAL method had been available for several years before many 
publications appeared offering protracted analyses of the “subject 
space” (based on the weights) produced in an INDSCAL analysis (e.g.. 
Bisanz, LaPorte, Vesonder. & Voss, 1978; LaPorte & Voss, 1979; Wish, 
Deutsch, 62 Biener, 1972). Even many current applications fail to realize 
the full potential the INDSCAL model offers for depicting individual (or 
other) differences, but one might hope for a more optimistic pattern of 
usage for the newer INDCLUS (Carroll & Arabie, 1983) method. 

The obvious remedy for this problem requires investigators planning 
studies of judged and perceived risk to place greater emphasis on the 
experimental designs for observing different types of subjects and for 
groups of panelists. Such comparisons among panelists would be facil- 
itated by more background and demographic data than are typically re- 
quested of panelists. We reported one and cited several other studies ear- 
lier that were not looking at data aggregated over subjects, but those 
studies appear to be in the minority- The models and associated rompurer 
programs for three-way representations are available, but data to exploit 
such models fully are scarce. We believe that the examples discussed 
earlier demonstrate the advantages of three-way versus (aggregate) two- 
way analyses (e.g., Hohenemser et al., I983). Thus, we strongly urge that 
future studies be designed to exploit the full capabilities of three-way 
analyses and representations. 

A second development to note is the advent of “hybrid” models (Car- 
roll, 1976) that simultaneously fit a (continuous) spatial and a (discrete) 
clustering component to the same proximity data. Examples of fitting 
such models (but not for stimuli relevant to risk) are given by Carroll 
(1976) and Carroll and Pruzansky (1980). Although development of these 
models is still in progress, they offer the possibility of trying to disen- 
tangle discrete versus continuous bases of judgment for such stimuli as 
the types of risk considered in the studies surveyed here. 
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