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Introduction to Multidimensional Scaling
and Its Applications
Mark L. Davison

University of Minnesota

Although Richardson (1938) and Young and
Householder (1938) may have officially initiated
the multidimensional scaling (MDS) literature in
psychology, frequent applications did not begin to
appear until the seminal papers on nonmetric 1~I~S

by Shepard (1962) and Kruskal (1964). Twenty
years later, it is time to critically examine the MDS
literature and its contribution to psychology. The
first two papers in this special issue review statis-
tical developments in MDS with an emphasis on
the design of MDS studies. The last four papers
scrutinize the ~11~5 research in four areas of com-
mon application: consumer, social, cognitive, and
vocational psychology.

Carroll and Arabie (1980) have described two

ways to define I~il7S. According to the broader of
the two definitions, MDS means a set of techniques
for estimating parameters in geometric models so
as to yield a representation of data structure. Such
a broad definition would encompass cluster, dis-
criminant, and factor analysis. These techniques
are treated here as alternatives to MI7S, rather than
as methods included within it. In this special issue,
the MDS literature refers to a body of knowledge
involving (1) a set of statistical techniques for es-
timating the parameters in and assessing the fit of
various spatial distance models for proximity or

preference data and (2) the coordinate representa-
tions of stimulus structure that result from such

statistical techniques.
This introduction first briefly reviews the past

50 years of developments in 1~~~, developments
covered more extensively by Coxon (19~’~), Dav-
ison (1993), Kruskal and Wish (1978), and Schiff-
man, Reynolds, and Young (1981). Then it sum-
marizes the six papers that follow.

Development of h4DS

MDS techniques differ on several criteria. The
more common, models apply to symmetric prox-
imity data, measurements defined over pairs of ob-
jects that quantify the degree to which the two
objects are alike. Correlation coefficients and joint
probabilities are two examples of proximity data.
A proximity measurement may be called a measure
of similarity or dissimilarity depending on whether
the highest scores correspond to pairs that are most
or least alike.

In contrast to models for symmetric proximity
data are models for preference data. The data con-
stitute measurements defined over pairs consisting
of a stimulus and a subject. Each measurement
quantifies s~bjcct9s attraction to or linking for the
stimulus object. This section will begin by briefly
highlighting the development of models for prox-
imity data; then it will consider preference models.
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Proximity models

Proximity data can be classified as direct or de-
rived. To obtain direct proximity data, the exper-
imenter asks the subject to respond to stimulus pairs
on the basis of similarity. Subjects might rate or
rank pairs in terms of similarity. Many kinds of
measures do not constitute proximity measure-
ments, but they do provide a basis for deriving
such measures. For instance, ability test scores do
not constitute proximity measures, but such scores
can be used to compute correlations between pairs
of tests, and hence to derive proximities. When the
proximities data are computed from other mea-
surements, they are called derived, rather than di-
rect, proximities.
The statistical models for proximity data can be

classified as two- or three-way depending on whether
the data matrix has two or three dimensions. Two-

way models for symmetric proximities presume
a matrix in which rows and columns correspond to
stimuli. Three-way models for symmetric data pre-
sume a matrix with two dimensions corresponding
to stimuli and a third that corresponds to replica-
tions. Although the replications may be occasions
or settings, they are usually subjects, and hence-
forth this paper will refer to replications as subjects.
Whereas two-way models contain only stimulus
parameters, three-way models contain parameters
for both stimuli and subjects.
MDS models consist of at least two components.

The first component, what Spence (this issue) calls
a spatial function, is a combination rule for stim-
ulus coordinates. In most MDS models for prox-
imity data, the spatial function is some form of

Minkowski distance function:

Hence, Heiser and Meulman (this issue) refer to a
distance function rather than a spatial function. In
Equation 1, dij refers to the theoretical distance
between stimuli i and j, x;, and xjI( refer to coor-
dinates for stimuli i and’ along dimension k, and
p is an exponent (;1) specified by the researcher.
Although the Euclidean distance function in which
p = 2 is the most common, the literature also con-

tains discussions of the city-block metric (p = 1)
and the dominance metric (p = 00) (Arnold, 1971; 9

Attneave, 1950). The second component is a data
function, f9 which maps the theoretical distance
onto the observed data, 8~, indexing the proximity
of stimuli ~~d~.’ Thus, most MDS models assume
that the data have the form 8,y =/(~), where dj
either has the form shown in Equation i if the
data have two ways, or some variant including
subject parameters, if the data have three ways.
To a large extent, tracing the development of

MDS algorithms means tracing alterations in as-
sumptions; about the spatial or data function. Each
alteration has been accompanied by corresponding
changes in the numerical analytic techniques needed
to solve for parameters and by changes in the kinds
of data to which ~1~~ is applicable. MDS began
with the simple model of Young and Householder
(1938), which was subsequently elaborated by Tor-
gerson (1958) and Cower (1966).
The metric two-way model. Torgerson (1952,

1958) presented the best known (to psychologists)
development of the metric two-way model:

The model is simple in the sense that it contains

no explicit error function, the data function is a

strict equality, it contains no subject parameters,
and the Minkowski exponent p must equal 2. It

was later expanded to handle data of the form
8;, = di.i. + c. Torgerson (1958) used the data 8~. to
estimate scalar products of the form

He then proposed using an Eckart-Young (1936)
decomposition of the square symmetric scalar prod-
ucts matrix to estimate stimulus coordinates that
were uniquely determined up to a rotation.

Because of its restrictive assumptions, Torger-
son’s (1952) approach is seldom used today. It

remains important, however, because more recent
algorithms incorporate many of its features. Spence
(this issue) concludes that when the data are lin-

1Authors in this special issue use different terms for the data
and spatial functions. Spence calls the data function a distance
function, which seems regrettable because the spatial function
is often a Minkowski distance function. Heiser and Meulman

break the data function into two subcomponents, fit and trans-
formation functions.
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early related to distances, the Torgerson approach
will often do as well as the nonmetric programs
and do it more inexpensively.
Nonmetric two-way models. The early ad-

vances in nonmetric algorithms occurred from 1962
to 1968 (Guttman, 1968; Kruskal, 1964; Shepard,
1962; Young & Torgerson, 1967). The major change
was in the data function. In the less frequently used
parametric mapping (Shepard & Carroll, 1966), f
is considered to be a polynomial function specified
by the user. In the more conventional nonmetric
models, f is an unknown monotone function esti-
mated by the algorithm. Whereas Torgerson,’ ap-
proach required interval or ratio level data, the
nonmetric algorithms required only ordinal data.
Most recent algorithms allow sublist splitting in

which the monotone function f is allowed to vary
for each row of the data matrix. Allowing f to vary
opened the way for conditional rank-order judg-
ment tasks. In such tasks, one stimulus serves as
a standard. The subject then ranks the (n - 1) re-
maining stimuli in terms of their similarity to the
standard. Each stimulus in turn serves as a stan-

dard. The data element 8,j represents the rank sim-
ilarity of stimulus j to standard i. Since the judg-
ments in each row correspond to a different standard,
the monotone function / relating data to distances
cannot be assumed constant across rows of the data
matrix.

Not only did the nonmetric advances change as-
sumptions aboutf, it allowed changes of assump-
tions about the Minkowski exponent, p, in the co-
ordinate function. Most nonmetric algorithms allow
the user to setup at any desired value. Nevertheless,
virtually all algorithms are computationally more
efficient and dependable when p = 2 for the Eu-
clidean distance function (e.g., Kruskal, Young,
& Seery, 1973, p. 10). Computer programs that
execute nonmetric analyses include INDSCAL
(Kruskal & Carmine, undated); KYST (Kruskal et
~.1., 1973); TORSCA (Young & Torgerson, 1967);
ALSCAL (Young ~~ L,cmyckyj9 1979); and MIN-
ISSA (Lingoes, 1973). Although these nonmetric
models relaxed some assumptions of Torgerson
(1952), they are still simple in two respects. They
contain no subject parameters and no explicit as-
sumptions about error.

models. In 1968 three-way models
began to appear. The weighted Euclidean model
(Bloxom, 1968; Carroll & Chang, 1970; Horan,
1969), the most common-three way model, as-

sumes subjects to vary in the importance or salience
of the stimulus dimensions. Except for error, data
are assumed to be of the form

where

8iis is the proximity measure on stimulus
pair (i, j) for subject s9

d4;s is the theoretical distance between i and
j in a coordinate space unique to
subject s9

Wks is a salience weight for subject s long
dimension k, and

xik and xj, are stimulus coordinates as before.

Algorithms based on this model yield a dimen-
sional description of stimuli, the coordinates x,,,
and a dimensional description of subjects, the weights
w,.s. Both Carroll and Chang (1972) and Tucker
(1972) have proposed more complex three-way
models that allow subjects to vary both in their
weightings and in their orientations of dimensions.

Programs for fitting the weighted Euclidean model
include INDSCAL (Carroll & Chang, 1970);
SINDSCAL (Pruzansky, 1975); ALSCAL (Young
& Lewyckyj, end MULTISCALE (Ramsay,
1978). ALSCAL can fit a nonmetric form of the
model in Equation 4; hence, it combines nonmetric
and individual differences features.
Maximum likelihood models. Ramsay (1969)

explicitly incorporated error assumptions into his
models. In the log normal form of his metric two-
way model, Ramsay assumed that each data point
~B is normally distributed about its expectation,
dii = [Ek(Xik - .%jk)Z~ll2^ Ramsay also has devel-
oped a log normal model that assumes that ln5,y is
normally distributed about its expectation di,. Ex-
plicitly adopting assumptions about error allowed
Ramsay to develop maximum likelihood estimates
of coordinates ~.r~d ~ ~2 statistic for testing the fit
of the model to data. Although the ~z statistic must
be interpreted cautiously (Ramsay, 1980), it opens
the way to a more confirmatory, less exploratory
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approach to MDS. Heiser and Meulman (this issue)
discuss a more confirmatory approach to 1~~75.
Ramsay (1978) has subsequently developed

maximum likelihood approaches to fitting the
weighted Euclidean model in Equation 4, as well
as approaches that allow the data function to be a
polynomial function specified by the user. Takane
(1981; Takane & Sergent, 1983) has extended the
maximum likelihood approach. Ramsay’s (1978)
MULTISCALE is the major program to implement
the maximum likelihood approach.

Imbedding Vectors

Not wanting to rely solely on subjective visual
inspection of coordinates for interpretation of so-
lutions, researchers have used various statistical

techniques to confirm (or disc&reg;rafirrra) their inter-
pretations of coordinates. If the coordinates, x,,
correspond to locations along stimulus attributes
(e.g., price, size, status, leadership potential), then
it would be expected that a high correlation would
be obtained by regressing an independent measure
of the attribute onto the stimulus coordinates. Since
the attributes can be considered stimulus proper-
ties, the process of regressing independent mea-
sures of attributes onto stimulus coordinates is
sometimes called embedding property vectors into
the space. If the researcher has a prior hypothesis
that a particular attribute will appear as a dimension
in the MDS solution, then he or she can obtain

independent measurements on the attribute. The

multiple correlation obtained by regressing the in-
dependent measurements onto the MDS stimulus
coordinates can be used to confirm or disconfirm

the hypothesis. Davison (1983) and Kruskal and
Wish (1978) have described in more detail the pro-
cess of imbedding property vectors to interpret MDS
solutions.

Preference h4odels

Whereas proximity data index the congruence
between two stimuli, a preference datum, 15;~., in-
dexes the degree to which subject likes or is
attracted to stimulus i. As a rule, the data matrix
has two dimensions corresponding to stimuli and

subjects. Virtually all models contain parameters
for both stimuli and subjects. The spatial function
is not necessarily a distance function.

Carroll (1972) divided MDS of preference data
into internal and external analyses. In an internal
analysis, both stimulus and subject parameters are
unknown and must be estimated. In an external

analysis the stimulus coordinates are known and
only subject parameters need be estimated. Exter-
nal methods are not stimulus scaling techniques,
but they do yield subject measurements.

~&reg;~~1~ ~°&reg;~ internal analysis. Distance or un-

folding models (Coombs, 1964) generally take the
following form, except for error:

WllCIC

Y sk is the coordinate locating subject along
dimension k,

is the theoretical distance between stirr~-
ulus and the ideal point for subject
s, and

fs is a function unique to subjects.
According to this model, the more a stimulus re-
sembles the subject’s ideal, the more the subject
will like the stimulus.

Internal analyses based on distance functions have
suffered from computational problems that limit
their use. The nature of the problem differs some-
what depending on the form offs. Iffs is considered
to be an unknown monotone function, the solutions
are prone to a form of degeneracy in which stimuli,
cluster in one region of the space and subjects clus-
ter in another yielding an uninterpretable solution
consisting of two clumps. Schonemann (1970) de-
scribes computational problems arising when £ is
an equality. Kruskal, Young, and Seery (1973)
have described the problem for an unknown mon-
otone function t.

Algorithms based on linear, rather than distance,
spatial functions have been more successful (Car-
roll, 1972 ; Tucker, 1960). Typically, such algo-
rithms assume data of the following form except
for error:

where w, is a salience weight for subject along
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dimension k. Instead of assuming that there exists
an optimum, ysx, along each dimension, and that
stimuli are preferred to the extent they resemble
the optimum (as in the distance model in Equation
6), the vector model of Equation 7 presumes that
the subject favors one end of each dimension and
prefers those stimuli that lie farthest toward the
favored end. Whereas distance models characterize

subjects in terms of ideal point coordinates in the
same space as the stimulus coordinates, vector

models characterize subjects with weights, wxs,

constituting a space separate from the stimulus space.
The sign of the weight, wxs9 indicates whether the
subject favors the positive or negative end of di-
mension k, and the absolute value is said to reflect
the dimension salience.

External analysis models. In external models,
the stimulus coordinates are presumed known from
either theory or a prior scaling. The object is to
estimate subject parameters and to assess the fit of
the model to the data and to known stimulus co-
ordinates. Most external analyses employ models
from Carroll’s (1972) hierarchy. Only the most
frequently used models will be described here.

At the lowest level of the hierarchy is the vector
model in which preferences are presumed to satisfy
some form of Equation 7. Methods of fitting the
model yield estimates of subject salience weights,
bvxS, and a measure of fit.

In the weighted Euclidean model, except for er-
ror, preferences are presumed related to the known
stimulus coordinates by a function of the following
form:

This model presumes subjects to vary in the lo-
cations of their ideal points, 9 Y~-k, and in dimension

saliences, Wks. Consequently, algorithms for fitting
this model yield two sets of subject parameters. In
metric algorithms that use a squared error loss func-
tion, the fit is measured by a multiple correlation
coefficient, the significance of which can be tested
with the conventional F statistic. Furthemiore, if
a metric model is assumed, it can be shown that

the weighted Euclidean model hierarchically in-

cludes the vector model as a special case; hence,
a standard F statistic exists for testing whether the
weighted Euclidean model accounts for signifi-

cantly more variance than the vector model. Carroll
and Chang’s (1967) PREFMAP is the most widely
used program, but several others exist: DACAR

(Davison, 1976, 1980); LINMAP (Srinivasan &
Shocker, 1973); and MORALS (de Leeu~,v, Young,
& Takane, 1976).
Most additive numerical conjoint analyses are

built on the vector model. In numerical conjoint
analysis, each stimulus corresponds to one cell of
an ANOVA design. For instance, the stimuli might
be written descriptions of bank accounts varying
on two factors: interest rate and minimum balance.

Each factor might contain three levels-5%, 7%,
and 9% for the interest factor and $100, $1,000,
and $2,500 for the minimum balance factor-to
yield nine stimuli, one for each cell in the 3 X 3
ANOVA design. Subjects would then rate or rank
the nine stimuli in terms of how much they liked
each account (or how likely they would be to open
such an account). In the external analysis of the
data, the known stimulus coordinates, x,, would

represent dummy codings of ANOVA effects. If

x, is a coordinate designating the presence (Xik =

1) or absence (xi, = 0) of feature k in stimulus i,
then the empirically estimated weight, wks, is usu-
ally interpreted as the utility of feature k to sub-
ject s.

The proximity and preference models reviewed
above constitute the major MDS developments
leading to the statistical issues and applied studies
reviewed in this special issue.

Overview Of Papers
In the first paper, Heiser and Meulman consider

the application of constraints to either the param-
eters or the data function in MDS models. The
authors discuss the role of substantive theory in
MDS research, including the role theory can play
in suggesting constraints. They describe the various
possible kinds of constraints. Their discussion of
constraints leads to a comparison of MDS with
other multivariate methods. Finally, the authors

consider the sampling error associated with MDS
solutions and techniques for confirming (or dis-
confirming) structural hypotheses.

Spence reviews monte carlo simulation studies
of MDS algorithms. These studies lead to several
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recommendations, including recommendations about
choosing a computer program, deciding dimen-
sionality, and dealing with large stimulus sets.

Spence also discusses problems in designing good
monte carlo research.

In the third paper, Cooper reviews the muds
research in consumer psychology. He covers 34DS ’ s
contribution in six marketing domains: product
planning, product pricing and brand naming, 9
choosing distribution channels, personal selling,
advertising, and general fact finding. He then offers
three suggestions. First, marketing research should
move toward a more fine-grained analysis of in-
dividual and group perceptions of products. Sec-
ond, it should merge MDS data on product per-
ceptions with other consumer level measurements
(such as ~&reg;rrr4~tiv~ beliefs) and with market level
measurements. Third, it should expand research to
include, not only new products in existing markets,
but also new markets such as those created by video
games and home computer.

Jones examines the literature on social percep-
tion. He divides the area into studies of interper-
sonal perception and attraction in intact groups,
perception of political and fictional figures, and
perception of social roles, relationships, and situ-
ations. He points out that the field seeks dynamic
process models, whereas MDS provides static, 9
structural representations. MDS and related tech-
niques can yield representations of perceived social
stimuli over which process models are presumed
to operate .
The fifth paper, by Shoben, reviews the Muds

literature in cognitive psychology. He first de-

scribes studies designed simply to represent stim-
ulus structure; then he discusses studies of the func-
tional relationship between MDS stimulus structure
and behavioral responses, such as reaction times
in categorization tasks. His third set of studies fo-
cuses on changes in structure as a function of age
and context. Finally, Shoben compares MDS and
cluster models as techniques for mapping cognitive
structure.

In the vocational psychology literature reviewed
by Rounds and Zevon, most studies have focused
on the structure of vocational interests and on per-
ceptions of occupations. Increasingly, however, re-

searchers use MDS to study vocational develop-
ment, sources of job satisfaction, and work
outcomes. The authors call for more attention to

the sampling of stimuli in 1~~,~ studies. The

emerging confirmatory techniques offer ways to
examine the field’s various theories of structure.

Tal&oelig;n together, these six papers illustrate I~~~9s
past and future directions. Some common themes
run through the papers. ~’irst9 the difficulty of han-
dling large data sets poses an impediment to applied
MDS research. Second, in applied areas, there is
movement away from studies that simply describe
stimulus structures toward those that explicitly ex-
amine theories of structures, that study changes in
structure, or that study the relationship between
perceived stimulus structure and behavioral re-

sponses to the stimuli. Third, there remain nu-
merous questions as to the relative merits of the
stimulus representations provided by factor, dis-

criminant, T~/~y7~9 and cluster analysis. The six au-
thors describe these and other common themes far

better than this brief introduction.
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