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MONOTONE REGRESSION

JAN DE LEEUW

Abstract. This is an entry for The Encyclopedia of Statistics in Behavioral

Science, to be published by Wiley in 2005.

In linear regression we fit a linear functiony = α + βx to a scatterplot ofn

points(xi , yi ). We find the parametersα andβ by minimizing

σ(α, β) =

n∑
i =1

wi (yi − α − βxi )
2,

where thewi are known positive weights.

In the more general nonlinear regression problem we fit a nonlinear function

φθ (x) by minimizing

σ(θ) =

n∑
i =1

wi (yi − φθ (xi ))
2

over the parametersθ . In both cases, consequently, we select the minimizing

function from a family of functions indexed by a small number of parameters.

Date: March 27, 2004.

Key words and phrases.monotone regression, optimal scaling, multidimensional

scaling.
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In some statistical techniques low-dimensional parametric models are too

restrictive. In nonmetric multidimensional scaling [3], for example, we can

only use the rank order of thexi and not their actual numerical values. Para-

metric methods become useless, but we still can fit the best fitting monotone

(increasing) function non-parametrically. Suppose there are no ties inx,

and thexi are ordered such thatx1 < · · · < xn. In monotone regression we

minimize

σ(z) =

n∑
i =1

wi (yi − zi )
2,

over z, under the linear inequality restrictions thatz1 ≤ · · · ≤ zn. If the

solution to this problem iŝz, then the best fitting increasing function is the set

of pairs(xi , ẑi ). In monotone regression the number of parameters is equal

to the number of observations. The only reason we do not get a perfect

solution all the time is because of the order restrictions onz.

Actual computation of the best fitting monotone function is based on the

theorem that ifyi > yi +1 then ẑi = ẑi +1. In words: if two consecutive

values ofy are in the wrong order, then the two corresponding consecutive

values of the solution̂z will be equal. This basic theorem leads to a simple

algorithm, because knowing that two values ofẑ must be equal reduces the

number of parameters by one. We thus have a monotone regression problem

with n − 1 parameters. Either the elements are now in the correct order, or

there is a violation, in which case we can reduce the problem to one with
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n − 2 parameters. And so on. This process always comes to an end, in

the worst possible case when we only have a single parameter left, which is

obviously monotone.

We can formalize this in more detail as the up-and-down blocks algorithm

of [4]. It is illustrated in the table below, in which the first row isy. The

first violation we find is 3> 0, or 3 is not up-satisfied. We merge the

two elements to a block, which contains their weighted average3
2 (in our

example all weights are one). But now 2> 3
2, and thus the new value32 is

not down-satisfied. We merge all three values to a block of three and find

5
3, which is both up-satisfied and down-satisfied. We then continue with

the next violation. Clearly the algorithm produces a decreasing number of

blocks. The value of the block is computed using weighted averaging, where

the weight of a block is the sum of the weights of the elements in the block.

In our example we wind up with only two blocks, and thus the best fitting

monotone function̂z is a step function with a single step from53 to 4.
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y 2 3 0 6 6 0

2 3
2

3
2 6 6 0

5
3

5
3

5
3 6 6 0

5
3

5
3

5
3 6 3 3

ẑ 5
3

5
3

5
3 4 4 4

Table 1. Computing Monotone Regression

This is also illustrate in the figure below. The line through the pointsx and

y is in blue. This is obviously the best possible fitting function. The best

fitting monotone function, which we just computed, is in red.

●

●

●

● ●

●

1 2 3 4 5 6

0
1

2
3

4
5

6

x

y

Figure 1. Plotting Monotone Regression
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If x has ties, then this simple algorithm does not apply. There are two

straightforward adaptions [2]. In the primary approach to ties we start our

monotone regression with blocks ofy values corresponding to the ties in

x. Thus we require tiedx values to correspond with tiedz values. In the

secondary approach we pose no constraints on tied values, and it can be

shown that in that case we merely have to order they values such that they

are increasing in blocks of tiedx values. And then we perform an ordinary

monotone regression.

We finally mention that monotone regression can be generalized in two

important directions. First, basically the same algorithm can be used to

minimize any separable function of the form
∑n

i =1 f (yi − zi )), with f any

convex function with its minimum at zero. For instance,f can be the absolute

value function, in which case we merge blocks by computing medians instead

of means. And second, we can generalize the algorithm from weak orders

to partial orders in which some elements cannot be compared. For details

see [1].
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