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Abstract:

The term ‘Multidimensional Scaling’ or MDS is used in two essentially different ways in statistics
(de Leeuw & Heiser 1980a). MDS in the wide sense refers to any technique that produces a
multidimensional geometric representation of data, where quantitative or qualitative relationships
in the data are made to correspond with geometric relationships in the representation. MDS in
the narrow sense starts with information about some form of dissimilarity between the elements
of a set of objects, and it constructs its geometric representation from this information. Thus
the data are dissimilarities, which are distance-like quantities (or similarities, which are inversely
related to distances). This chapter concentrates on narrow-sense MDS only, because otherwise
the definition of the technique is so diluted as to include almost all of multivariate analysis.

MDSis a descriptive technique, in which the notion of statistical inference is almost completely
absent. There have been some attempts to introduce statistical models and corresponding
estimating and testing methods, but they have been largely unsuccessful. | introduce some quick
notation. Dissimilarities are written as i j , and distances are di j (X). Here i and j are the objects
we are interested in. The n x p matrix X is the configuration, with coordinates of the objects in Rp.
Often, we also have as data weights wi j reflecting the importance or precision of dissimilarity i j .
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MULTIDIMENSIONAL SCALING

J. DE LEEUW

The term ‘Multidimensional Scaling’ or MDS is used in two essentially
different ways in statistics (de Leeuw & Heiser 1880MDS in the wide
senserefers to any technique that produces a multidimensional geometric
representation of data, where quantitative or qualitative relationships in the
data are made to correspond with geometric relationships in the represen-
tation. MDSin the narrow sensstarts with information about some form
of dissimilarity between the elements of a set of objects, and it constructs
its geometric representation from this information. Thus the dataiare
similarities, which are distance-like quantities (similarities which are
inversely related to distances). This chapter concentrates on narrow-sense
MDS only, because otherwise the definition of the technique is so diluted as
to include almost all of multivariate analysis.

MDS is a descriptive technique, in which the notion of statistical inference
is almost completely absent. There have been some attempts to introduce
statistical models and corresponding estimating and testing methods, but
they have been largely unsuccessful. | introduce some quick notation. Dis-
similarities are written a&; , and distances adgj (X). Herei andj are the
objects we are interested in. Thex p matrix X is theconfiguration with
coordinates of the objects iRP. Often, we also have as datgightswi;
reflecting the importance or precision of dissimilaity.

1. SOURCES OFDISTANCE DATA

Dissimilarity information about a set of objects can arise in many different
ways. | review some of the more important ones, organized by scientific
discipline.

1.1. Geodesy.The most obvious application, perhaps, is in sciences in
which distance is measured directly, although generally with error. This
happens, for instance, in triangulation in geodesy, in which measurements
are made which are approximately equal to distances, either Euclidean or
spherical, depending on the scale of the experiment.

In other examples, measured distances are less directly related to physical
distances. For example, one could measure airplane or road or train travel
distances between different cities. Physical distance is usually not the only

factor determining these types of dissimilarities.
1
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1.2. Geography/Economics.In economic geography, or spatial econom-
ics, there are many examples of input-output tables, where the table indi-
cates some type of interaction between a number of regions or countries.
For instance, we may havecountries, and entryjj; indicates the number

of tourists travelling, or the amount of grain exported, froro j. Itis

not difficult to think of many other examples of these square (but generally
asymmetric) tables. Again, physical distance may be a contributing factor
to these dissimilarities, but certainly not the only one.

1.3. Genetics/SystematicsA very early application of a scaling technique
was Fisher (1922). He used crossing-over frequencies from a number of loci
to construct a (one-dimensional) map of part of the chromosome. Another
early application of MDS ideas is in Boyden (1931), where reactions to
sera are used to give similarities between common mammals, and these
similarities are then mapped into three-dimensional space.

In much of systematic zoology distances between species or individuals
are actually computed from a matrix of measurements on a number of vari-
ables describing the individuals. There are many measures of similarity or
distance which have been used, and not all of them have the usual metric
properties. The derived dissimilarity or similarity matrix is analyzed by
MDS, or by cluster analysis, because systematic zoologists show an obvious
preference for tree representations over continuous representati@ris in

1.4. Psychology/PhoneticsMDS, as a set of data analysis techniques,
clearly originates in psychology. There is a review of the early history,
which starts with Carl Stumpf around 1880, in de Leeuw & Heiser (2280
Developments in psychophysics concentrated on specifying the shape of the
function relating dissimilarities and distances, until Shepard (1962) made the
radical proposal to let the data determine this shape, requiring this function
only to be increasing.

In psychophysics one the basic forms in which data are gathered is the
confusion matrix In such a matrix we record how many times row-stimulus
I was identified as column-stimulys A classical example are the Morse
code signals studied by Rothkopf (1957). Confusion matrices are not unlike
the input-output matrices of economics.

In psychology (and marketing) researchers also collect direct similarity
judgments in various forms to map cognitive domains. Ekman'’s color simi-
larity data is one of the prime examples (Ekman 1963), but many measures
of similarity (rankings, ratings, ratio estimates) have been used.

1.5. Psychology/Political Science/Choice TheoryAnother source of dis-
tance information arpreference datalf a number of individuals indicate
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their preferences for a number of objects, then many choice models use ge-
ometrical representations in which an individual prefers the object she is
closer to. This leads to ordinal information about the distances between the
individuals and the objects, e.g., between the politicians and the issues they
vote for, or between the customers and the products they buy.

1.6. Biochemistry. Fairly recently, MDS has been applied in the confor-
mation of molecular structures from nuclear resonance data. The pioneering
work is Crippen (1977), and a more recent monograph is Crippen & Havel
(1988). Recently, this work has become more important because MDS
techniques are used to determine protein structure. Numerical analysts and
mathematical programmers have become involved, and as a consequence
there have been many new and exciting developments in MDS.

2. AN EXAMPLE

The previous section shows that it will be difficult to find an example that
illustrates all aspects of MDS. We select one that can be used in quite a few
of the techniques discussed below. It is taken from Coombs (1964, page
464). The data are cross-references between ten psychological journals.
The journals are given in Tablé 1. The actual data are in Table 2. The basic

Journal Label
A American Journal of Psychology AJP
B Journal of Abnormal and Social Psychology JASP
C Journal of Applied Psychology JAP
D Journal of Comparative and Physiological PsychologhCPP
E Journal of Consulting Psychology JCP
F Journal of Educational Psychology JEP
G Journal of Experimental Psychology JEXP
H Psychological Bulletin PB
| Psychological Review PR
J Psychometrika Pka

TABLE 1. Ten Psychology Journals

idea, of course, is that journals with many cross-references are similar.

3. TYPES OFMDS

There are two different forms of MDS, depending on how much informa-
tion is available about the distances. In some of the applications reviewed
above the dissimilarities are known numbers, equal to distances, except
perhaps for measurement error. In other cases only the rank order of the
dissimilarities is known, or only a subset of them is known.
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A B C D E F G H I J
122 4 1 23 4 2 135 17 39 1
23 303 9 11 49 4 55 50 48 7
0O 28 84 2 11 6 15 23 8 13
36 10 4 304 O O 98 21 65 4
6 93 11 1 186 6 7 30 10 14
6 12 11 1 7 34 24 16 7 14
65 15 3 33 3 3 337 40 59 14
47 108 16 81 130 14 193 52 31 12
22 40 2 29 8 1 97 39 107 13
2 0o 2 0 0 1 6 14 5 59
TABLE 2. References in Row-Journal to Column-Journal

—TITOTMMOO >

3.1. Metric Scaling. In metric scaling the dissimilarities between all ob-
jects are known numbers, and they are approximated by distances. Thus
objects are mapped into a metric space, distances are computed, and com-
pared with the dissimilarities. Then objects are moved in such a way that
the fit becomes better, until some loss function is minimized.

In geodesy and molecular genetics this is a reasonable procedure, be-
cause dissimilarities correspond rather directly with distances. In analyz-
ing input-output tables, however, or confusion matrices, such tables are
often clearly asymmetric and not likely to be directly translatable to dis-
tances. Such cases often require a model to correct for asymmetry and
scale. The most common class of models (for counts in a square table)
is E(fij) = aiBjexp{—¢(dij (X))}, whereg is some monotone transfor-
mation through the origin. Fop equal to the identity this is known as
the choice model for recognition experiments in mathematical psychol-
ogy (Luce 1963), and as a variation of the quasi-symmetry model in sta-
tistics (Haberman 1974). The negative exponential of the distance function
was also used by Shepard (1957) in his early theory of recognition experi-
ments.

As we noted above, in systematic zoology and ecology, the basic data
matrix is often a matrix in which objects are measured @variables. The
first step in the analysis is to convert this into & n matrix of similarities or
dissimilarities. Which measure of (dis)similarity is chosen depends on the
types of variables in the problem. If they are numerical Euclidean distances
or Mahanalobis distances can be used, but if they are binary other dissimi-
larity measures come to mind (Gower & Legendre 1986). In any case, the
result is a matrix which can be used as input in a metric MDS procedure.
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3.2. Nonmetric Scaling. In various situations, in particular in psychology,
only the rank order of the dissimilarities is known. This is either because
only ordinal information is collected (for instance by using paired or triadic
comparisons) or because while the assumption is natural that the function
relating dissimilarities and distances is monotonic, the choice of a specific
functional form is not.

There are other cases in which there is incomplete information. For ex-
ample, observations may be available on only a subset of the distances,
either by design or by certain natural restrictions on what is observable.
Such cases lead to distance completion problgnwhere the configura-
tion is constructed from a subset of the distances, and at the same time the
other (missing) distances are estimated. Such distance completion problems
(assuming that the observed distances are measured without error) are cur-
rently solved with mathematical programming methods (Alfakih, Khandani
& Wolkowicz 1998).

3.3. Three-way Scaling. In three-way scalingnformation is available on
dissimilarities between objects onm occasions, or fom subjects. Two
easy ways of dealing with the occasions is to perform either a separate MDS
for each subject or to perform a single MDS for the average occasion. Three-
way MDS constitutes a strategy between these two extremes.

This technique requires computationrafMDS solutions, but they are
required to be related to each other. For instance, one can impose the re-
striction that the configurations are the same, but the transformations relating
dissimilarities and distances are different. Or one could require that the pro-
jections on the dimensions are linearly related to each other in the sense that
dij (Xk) = dij (XW), whereW is a diagonal matrix characterizing occa-
sionk. A very readable introduction to three-way scaling is Arabie, Carroll
& DeSarbo (1987).

3.4. Unfolding. Inmultidimensional unfoldingnformation is available only
about off-diagonal dissimilarities, either metric or nonmetric. This means
dealing with two different sets of objects, for instance individuals and stim-
uli or members of congress and political issues, and dissimilarities between
members of the first set and members of the second set, and not on the within-
set dissimilarities. This typically happens with preference and choice data,
in which how individuals like candies, or candidates like issues is known,
but not how the individuals like other individuals, and so on.

In many cases, the information in unfolding is also only ordinal. More-
over, it isconditional which means that while it is known that a politician
prefers one issue over another, it is not known if a politician’s preference for
an issue is stronger than another politician’s preference for another issue.
Thus the ordinal information is only within rows of the off-diagonal matrix.
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This makes unfolding data, especially nonmetric unfolding data, extremely
sparse.

3.5. Restricted MDS. In many cases it makes sense to impose restrictions
on the representation of the objects in MDS. The design of a study may be
such that the objects are naturally on a rectangular grid, for instance, or on a
circle or ellipse. Often, incorporating such prior information leads to a more
readily interpretable and more stable MDS solution.

As we have seen above, some of the more common applications of re-
stricted MDS are to three-way scaling.

4. EXISTENCE THEOREM

The basic existence theorem in Euclidean MDS, in matrix form, is due
to Schoenberg (1937). A more modern version was presented in the book
by Torgerson (1958).

We give a simple version here. Suppdses a non-negative, hollcﬂl
symmetric matrix or ordem, and supposé, = I, — %ene{1 is thecentering
operator. Herdy, is the identity, andy, is a vector with all elements equal
to one. Therk is a matrix of squared Euclidean distances betwepaints
in RP if and only if —%JnE Jn is positive semi-definite of rank less than or
equal top.

Thistheorem has been extended to the classical non-Euclidean geometries,
for instance by Blumenthal (1953). It can also be used to show that any non-
negative, hollow, symmetri& can be imbeddedonmetricallyin n — 2
dimensions.

5. LOSSFUNCTIONS

5.1. Least Squares on the DistancesThe most straightforward loss func-
tion to measure fit between dissimilarities and distanc83 RESS defined

by

n n
(1) STRESSX)= Y > wyj (8ij — dij (X)2.

i=1j=1
Obviously this formulation applies to metric scaling only. In the case of
nonmetric scaling the major breakthrough in a proper mathematical formu-
lation of the problem was Kruskal (1964). For this c&8ERESSs defined
as,
. NN wij (dij — dij (X))?
2) STRES$X, D) 2 n'—lznl—l (G — Gy ) -

=1 2_j—1 wij (Ghj (X) —d(X))

lie. zero-diagonal
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and this function is minimized over botk and D, whereD satisfies the

constraints imposed by the data. In nonmetric MDSItere calleddispar-

ities, and are required to be monotonic with the dissimilarities. Finding the

optimal D is anisotonic regression problemn the case of distance com-

pletion problems (with or without measurement) error,&ihlenust be equal

to the observed distances if these are observed, and they are free otherwise.
One particular property of th8 TRESSIoss function is that it is not

differentiable for configurations in which two points coincide (and a distance

is zero). Itis shown by de Leeuw (1984) that at a local minimu@TRESS

pairs of points with positive dissimilarities cannot coincide.

5.2. Least Squares on the Squared DistancedA second loss function,
which has been used a great deaE&TRESSdefined by

n n
(3) SSTRES$X)= > Y wij (82 — d? (X))2.
i=1j=1
Clearly, this loss function is a (fourth-order) multivariate polynomial in the
coordinates. There are no problems with smoothness, but often a large
number of local optima results.
Of course a nonmetric version of tt®&TRESSproblem can be con-
fronted, using the same type of approach use@&MRESS

5.3. Least Squares on the Inner products.The existence theorem dis-
cussed above suggest a third way to measure loss. Now the function is
known asSTRAIN, and it is defined, in matrix notation, as

(4)  STRAINX)2tr {J(A®@ — D@ (X))I(A® — D@ (X))},

whereD®@(X) and A®@ are the matrices of squared distances and dissimi-

larities, and wherd is the centering operator. Sind®®@ (X)J = —2X X’

this means th&t—%JA(z) J is approximated by a positive semi-definite ma-

trix of rankr, which is a standard eigenvalue-eigenvector computation.
Again, nonmetric versions of minimizingTRAIN are straightforward to

formulate (although less straightforward to implement).

6. ALGORITHMS

6.1. STRESS The original algorithms (Kruskal 1964) for minimizilgyf RESS
use gradient methods with elaborate step-size procedures. In de Leeuw
(1977) themajorization methodavas introduced. It leads to a globally con-
vergent algorithm with a linear convergence rate, which is not bothered
by the nonexistence of derivatives at places where points coincide. The ma-
jorization method can be seen as a gradient method with a constant step-size,
which uses convex analysis methods to prove convergence.
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More recently, faster linearly or superlinearly convergent methods have
been tried successfully (Glunt, Hayden & Rayden 1993, Kearsley, Tapia &
Trosset 1998).

One of the key advantages of the majorization method is that it extends
easily to restricted MDS problems (de Leeuw & Heiser 198Each sub-
problem in the sequence is a least squares projection problem on the set of
configurations satisfying the constraints, which is usually easy to solve.

6.2. SSTRESS Algorithms for minimizingSSTRESSwvere developed ini-

tially by Takane, Young & de Leeuw (1984). They applied cyclic coordinate
descend, i.e. one coordinate was changed at the time, and cycles through the
coordinates were alternated with isotonic regressions in the nonmetric case.
More efficient alternating least squares algorithms were developed later by
De Leeuw, Takane, and Browne (cf. Browne (1987)), and superlinear and
guadratic methods were proposed by W. Glunt & Liu (1991) and Kearsley
et al. (1998).

6.3. STRAIN. Minimizing STRAIN was, and is, the preferred algorithm

in metric MDS. It is also used as the starting point in iterative nonmetric
algorithms. Recently, more general algorithms for minimizBWRAIN in
nonmetric and distance completion scaling have been proposed by Trosset
(1998&) and Trosset (1998.

7. ANALYSIS OF THE EXAMPLE

7.1. Initial Transformation. In the journal reference example we suppose
E(fij) = aiBj expl—¢(dij (X))}. In principle this model can be tested by
contingency table techniques, but we shall not go that route. We merely use
the model to transform the frequencies to estimated distances, using

fi i

—— ~ ¢ (dij (X)),
i 1]
where fij = fij + 3. This transformed matrix is given in Tatﬂa 3.

7.2. Metric Analysis. In the first analysis we suppose the numbers in Ta-
ble[3 are approximate distances, i.e. we supgoisethe identity. We then
minimize STRAIN, using metric MDS, i.e. we find the dominant eigenval-
ues and corresponding eigenvectors of the doubly-centered squared distance
matrix.This results in the following two-dimensional configurations. In the
second analysis we iteratively minimize metric STRESS, using the majoriza-
tion algorithm. The solutions are given in Figlife 1. In both figures we see
the same grouping of journals, with Pka as an outlier, the journals central
to the discipline, such as AJP, JExP, PB, and PR, in the middle, and more
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0.00 293 477 1.89 3.33 2.78 0.77 1.02 1.35 3.79
293 0.00 2.28 3.32 125 261 2.39 053 141 4.24
477 2.28 0.00 3.87 239 1.83 3.13 1.22 3.03 2.50
1.89 3.32 3.87 0.00 562 477 1.72 1.11 141 4.50
3.33 1.25 239 562 0.00 244 389 045 2.71 3.67
2.78 261 183 4.77 2.44 0.00 246 1.01 290 2.27
0.77 2.39 3.13 1.72 3.89 246 0.00 0.41 0.92 2.68
1.02 053 122 1.11 0.45 1.01 0.41 0.00 0.76 1.42
1.35 141 3.03 141 2.71 290 0.92 0.76 0.00 2.23
3.79 424 250 450 3.67 2.27 268 142 2.23 0.00
TABLE 3. Transformed Journal Reference Data
Pka Pka
0.1 — 0.1 —
JExP JEP
JAP
O_JCCP b PB , Jocp JExP
PR PB
_ AJP
—0.05 005 AJP
o jagp P JASP P
| | | | | | | | | | | |
—0.15—-0.1-0.05 0 0.05 0.1 —0.15-0.1-0.05 0 0.05 0.1

FIGURE 1. Metric Analysis (STRAIN left, STRESS right)

specialized journals generally in the periphery. For comparison purposes the
STRESS of the first solution is@87, that of the second solution i£639.
Finding the second solution takes about 30 iterations.

7.3. Nonmetric STRESS Analysis. Next, we minimize nonmetric STRESS

on the same data (using only their rank order). The solution is in Figure 2.
On the left we see the transformation relating the data in Table 3 to the opti-
mally transformed data, a monotone step function. Again we see basically
the same configuration of journals, with the same groupings. The nonmetric
solution has a (normalized) STRESS 00095, and again finding it takes
about 30 iterations of the majorization method. The optimal transformation
does not seem to deviate systematically from linearity.
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0.25 — Pka
0.1—
o, 000
02— B
0.05 IExp Ar
jccp JEP
0.15 — 0 PB
PR
0054 AJP
0.1 «se
-on JASP  JCP
T I —0.1 T T T ]
1 2 i 5 —0.15-0.1-0.05 0 005 0.1

FIGURE 2. Nonmetric Analysis (Transformation left, Solu-
tion right)

8. FURTHER READING

Until recently, the classical MDS reference was the little book by Kruskal
& Wish (1978). Itis clearly written, but very elementary. A more elaborate
practical introduction is by Coxon (1982), which has a useful companion
volume (Davies & Coxon 1982) with many of the classical MDS papers.
Some additional early intermediate-level books, written from the psycho-
metric point of view, are Davison (1983) and Young (1987).

More recently, more modern and advanced books have appeared. The
most complete treatment is no doubt Borg & Groenen (1997), while Cox &
Cox (1994) is another good introduction especially aimed at statisticians.
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