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ABSTRACT. This is an entry for The Encyclopedia of Statistics in Be-

havioral Science, to be published by Wiley in 2005.

In a general nonmetric scaling situation, using the Shepard-Kruskal ap-

proach, we have datayi , · · · , yn and a modelfi (θ) with a number of free

parametersθ . Often this is a nonmetric multidimensional scaling model, in

which the model values are distances, but linear models and inner product

models can be and have been treated in the same way.. We want to choose

the parameters in such a way that the rank order of the model approximates

the rank order of the data as well as possible.

In order to do this, we construct a loss function of the form

σ(θ, ŷ) =

n∑
i =1

wi (ŷi − fi (θ))2,

where thewi are known weights. We then minimizeσ over all ŷ that are

monotone with the datay and over the parametersθ .

Date: April 2, 2004.

Key words and phrases.fitting distances, multidimensional scaling, unfolding, choice

models.
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After we have found the minimum we can make a scatterplot with the data

y on the horizontal axis and the model valuesf on the vertical axis. This

is what we would also do in linear or nonlinear regression analysis. In

nonmetric scaling, however, we also have theŷ, which are computed by

monotone regression. We can add thêy to vertical axis and use them to

draw the best fitting monotone step function through the scatterplot. This

shows theoptimal scaling of the data, in this case the monotone transfor-

mation of the data which best fits the fitted model values. The scatterplot

with y and f , andŷ drawn in, is called the Shepard diagram.
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FIGURE 1. Shepard Diagram Morse Code Data
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In Figure 1 we show an example from a nonmetric analysis of the classi-

cal Rothkopf Morse code confusion data [2]. Stimuli are 36 Morse code

signals. The raw data are the proportionspi j which signalsi and j were

judged to be the same by over 500 subjects. Dissimilarities were computed

using the transformation

δi j = −
1

2
log

pi j p j i

pi i p j j
,

which is suggested by both Shepard’s theory of stimulus generaliztion and

by Luce’s choice model for discrimination (see [1] for details). A nonmetric

scaling analysis in two dimensions of these dissimilarities gives the Shepard

diagram in Figure 1.
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