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with many bumps and valleys of just the right size) could have 
yield a minimal path on a neighborhood size of 10 which was 
slightly longer than the (true) minimum path on a larger neighbor- 
hood. In practice, however, this limitation has not been a problem. 
Our experience with distance measurements in monkey visual cor- 
tex, which is a highly complicated, folded surface, suggest that any 
errors associated with this algorithm and order of iteration are no 
more than a few percent. 

We use this algorithm as an heuristic approximation to a minimal 
geodesic-distance algorithm. In our application, running this al- 
gorithm to relatively low orders of iteration (i .e. ,  10) does seem 
to yield very good approximations to the geodesic distances that 
we need in order to obtain flattening of the cortical surfaces of the 
brain. 

It is worth pointing out that we have implemented two versions 
of this algorithm. The first version is the one described above, 
where at the ith iteration, n-chains up to length 2‘-’ can possibly 
be obtained. The other version, at the ith iteration, is limited to 
n-chains of length i .  We have used both runs and merged them for 
later flattening, thus obtaining a sampling of very long-range dis- 
tances and also spanning a large neighborhood around each node. 
Limitations of machine time and storage space make this procedure 
worthwhile. 

IV. PERFORMANCE 
For a polyhedron consisting of about 2500 triangles (about 1200 

nodes) representing the surface of monkey visual cortex, we cal- 
culated all of the distances over 10-chains on each node. On a Sun- 
3 workstation, this run took about 2 h and used 12 pbytes of mem- 
ory; it provided sufficient data for successful flattening of the sur- 
face of monkey visual cortex [ 5 ] .  

V .  OTHER APPLICATIONS 
This algorithm finds local shortest-distance patches. Used to- 

gether with our flattening algorithm, it lets us measure overall 
shortest distances. This may in fact be the most efficient way to 
compute long-range shortest distances on the class of polyhedra 
whose global curvature allows flattening with a relatively small er- 
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‘In other work we describe ways to measure the mean and Gaussian 
curvature of polyhedra [8]. 

A Numerical Solution to the Generalized 
Mapmaker’s Problem: Flattening 
Nonconvex Polyhedral Surfaces 

ERIC L. SCHWARTZ, ALAN SHAW, AND ESTAROSE WOLFSON 

Abstract-We describe methods to “unfold” and flatten the curved, 
convoluted surfaces of the brain in order to study the functional ar- 
chitectures and neural maps embedded in them. In order to do this, it 
is necessary to solve the general mapmaker’s problem for representing 
curved surfaces by planar models. This algorithm has applications in 
areas other than computer-aided neuroanatomy, such as robotics mo- 
tion planning and geophysics. 

Our algorithm maximizes the goodness of fit of distances in these 
surfaces to distances in a planar configuration of points. We illustrate 
this algorithm with a flattening of monkey visual cortex, which is an 
extremely complex folded surface. We find distance errors in the range 
of several percent, with isolated regions of larger error, for the class 
of cortical surfaces which we have so far studied. 

Zndex Terms-Cortex, flattened surface, geodesic distance, map. 

INTRODUCTION 
The mapmaker’s problem is to find a flat representation of a 

curved surface, for example, the surface of the earth. Classical 
mapmaking has been restricted to the relatively simple spherical 
surface of the earth. In the case that the surface of interest is com- 
plex, and possibly nonconvex, there are no known methods of find- 
ing quasi-isometric planar representations, that is, those that distort 
distance relationships as little as possible.’ (An isometric map 
would be one in which the distance between any two points was 
identical to the corresponding distance in the original surface.) 

The solution to this problem is of importance to computer-aided 
neuroanatomy, since it is often desired to view the surface of var- 
ious cortical areas in a planar model. Primate cortex is highly con- 
voluted, and provides one of the more complex surfaces encoun- 
tered in practical applications. 

Motion planning in robotics is another area of application for 
which the finding of shortest distances on polyhedral surfaces is of 
importance [lo], [ 1 11. Other areas of biophysics and geophysics 
would seem to provide possible areas of application of a general- 
ized mapmaker’s algorithm. 

Our interest is in obtaining a flat representation of the cortical 
surfaces of the brain, because the detailed maps of sensory and 
other neural data embedded in these surfaces are easiest to study, 
measure, and model when they are presented in planar form. 

This correspondence describes the method we use to find an op- 
timal quasi-isometry that maps an arbitrary curved surface into a 
plane. This mapping is optimal in the sense that it is derived from 
a variational principle that optimizes the overall fit between the 
curved and planar surfaces. The mapping is a quasi-isometry be- 
cause it optimizes the fit of distances over multiple scales, rather 
than, for example, local angles (in which case it would be quasi- 
conformal). 
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We use a Newton-Raphson minimization, applying it to a matrix 
of distances between nodes in a polyhedral representation of the 
surface up to some neighborhood of distances from each node. 
Minimal geodesic distances are calculated in the surface, and these 
form the initial distance matrix. The planar distance matrix is ini- 
tially generated from random numbers. Planar points are moved 
along the direction of the gradient of a “stress,” which measures 
the quality of the isometry. 

We have found that different random starting configurations con- 
verge to virtually identical final states. This finding indicates lack 
of “trapping” in local minima, and also indicates the robustness 
of our method. We also show that in general, local distances (i.e., 
edge lengths between adjacent nodes in the polyhedral graph; we 
call these nearest-neighbor distances) are insufficient for this prob- 
lem. We base this conclusion on general arguments and on our own 
experience with local distance problems. 

DESCRIPTION OF THE ALGORITHM 
Given an arbitrary curved surface, we wish to “flatten” it. Be- 

cause surfaces generally have nonzero Gaussian curvature, there is 
usually no isometry between the surface and the corresponding 
plane [13]. In other work [2], we describe ways to measure the 
mean and Gaussian curvature of a polyhedral surface. 

We state the mapmaker’s problem in the following way. Given 
a polyhedral surface, determine the entire set of interpoint dis- 
tances.’ This lower triangular distance matrix is of size N ( N  - 
1 ) / 2  for N nodes. We then determine a set of N points in the plane 
such that the corresponding distance matrix in the plane provides 
a best fit, in the least-squares sense, to the distance matrix of the 
original surface. This is done by a Newton-Raphson gradient de- 
scent on the difference between the three-dimensional (geodesic) 
distance matrix and that of a corresponding set of initially random 
two-dimensional points [3], [7]. This procedure should yield an 
optimal quasi-isometric mapping of the surface into the plane. 

DISTANCES I N  POLYHEDRAL SURFACES 
One difficulty with this algorithm is that until recently, no al- 

gorithms were known that could find distances on arbitrary (i.e., 
nonconvex) polyhedral surfaces. Sharir and Schorr [ l l ]  describe 
an algorithm that finds minimal distances in a convex polyhedral 
space. Other workers [5], 161 have described algorithms to find 
distances on nonconvex polyhedrons. While these algorithms have 
attractive complexity (that of Mitchell et a l .  [5] is O ( N 2  log N )  
where N is the number of nodes), they appear very difficult to im- 
plement, and we know of no actual implementations of them. Else- 
where we describe an algorithm we have developed that finds min- 
imal geodesic distances in arbitrary polyhedral surfaces [12]. Our 
algorithm has exponential complexity, but we have implemented 
it, and it is capable of providing adequate distance information for 
surfaces as complex as monkey cortex. In the present correspon- 
dence, we assume that we have obtained the distance matrix of the 
original surface by applying that algorithm to compute the discrete 
minimal distances. 

VARIATIONAL ALGORITHM 
Our mapping problem is very similar to the conventional “mul- 

tidimensional” scaling problem, which is used to optimally map 
point sets from N to M dimensions, in which M is usually 1, 2, or 
3, and N is usually large (e .g . ,  10-50). This is a common cluster 
analysis procedure that is often used to visualize multivariate data 
Sets P I ,  171, t81. 

In our case, we are mapping between a two-dimensional surface 
in three-space and one in the plane. We would expect good per- 
formance, because our surfaces are not closed, that is, they do not 
usually represent “crumpled” spheres but rather crumpled sections 
of spheres; and because, although they are highly convoluted or 
folded, their integral mean curvature, as indicated by separate mea- 
surements, is not very large. Typically radii of mean curvature of 

’For large problems (our N is typically more than IOOO),  it is not prac- 
tical to determine the entire distance matrix. Later in this paper, we de- 
scribe methods for using subsets of the distance matrix which correspond 
to overlapping patches of the surface to be flattened. 

Fig. 1. A hemispherical shell flattened by our algorithm. This figure shows 
the 3-D wire-frame model of the original surface and also the flattened 
version of the surface. 

visual cortex were in the range of 20 mm, while the typical size of 
cortex was also in the range of 20 X 20 mm. Thus, our surfaces 
span a fairly small fraction of the solid angle of a sphere, and can, 
in principle as well as in fact, be flattened with little error [2]. 

DESCRIPTION OF THE ALGORITHM 
Let the minimal geodesic distances in the surface be organized 

as a lower triangular matrix d,]. Let the (unknown)Pistances in the 
plane be organized as a lower triangular matrix d,]. We pose the 
mapmaker’s problem as obtaining the best least-squares goodness 
of fit between these two distance matrices. That is, we propose to 
minimize the “stress,” defined by the quantity L below [7]: 

1 (d, - dG)’ 
L = -  c 

c r c j  (i, 
where 

Because the distance matrix contains all possible interpoint dis- 
tances in this discrete problem, an optimal preservation of the dis- 
tance matrix in a planar representation is equivalent to an optimal 
preservation of the metric structure of the original surface. 

We calculate the initial planar distance matrix from a random set 
of points. Then we analytically calculate the gradient of (1.0) 
above, and move each point in the planar layout in the direction of 
the negative gradient by an amount scaled according to the com- 
ponents of the Hessian of (1.0) [Newton-Raphson method]. Our 
approach minimizes the stress. We have tested the algorithm with 
several different random starting configurations, producing solu- 
tions that differ by random rotations and reflections but with iden- 
tical interpoint distance relations, as shown in Fig. 2 ,  which sup- 
ports the validity of the solution. The quantity L of (1) is a function 
only of interpoint distances, and is normalized to preserve size. 
Thus, the solution is determined only up to a rotation and reflec- 
tion. Plots of stress as a function of the number of iterations (Fig. 
2 ,  lower right) give some indication of how well this algorithm 
performs. For the example illustrated in Fig. 3, there were large 
oscillations in the stress early in the run; but after about 100 iter- 
ations, all three runs converged to the same stress and to the same 
geometric solution. 
EXPERIMENTS WITH NEAREST-NEIGHBOR AND SECOND-NEIGHBOR 

DISTANCES 
Our early experiments involved only nearest-neighbor distances 

and second-neighbor distances (we obtained these easily by apply- 
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Fig. 2 .  A section of the operculum of visual cortex, reconstructed from serial sections of monkey brain, flattened by our al- 
gorithm. The curved appearance of these figures is illusory; they are of course planar representations. The three different 
versions of the planar surface were obtained in successive runs, with different random starting configurations. The plot of the 
stress as a function of iterations is shown at the lower right. For this model, minimal distances were calculated using the 
algorithm of Wolfson and Schwartz [12]. Use of an eight-node neighborhood (that is to say, a neighborhood extending eight 
nodes away from a given node) of the 600-node model limited the size of the distance matrices. 

ing the law of cosines across two neighboring triangles). (Nearest- 
neighbor distances are the edge lengths of the original polyhedron, 
and second neighbors are the neighbors of nearest neighbors; in 
general, two nodes in a graph are called nth neighbors if there is a 
path from one to the other consisting of n edges.) The results of 
these experiments were disappointing. When the algorithm was in- 
itialized with a random starting configuration, there generally was 
no convergence to the expected final state. Instead, the configura- 
tions we obtained seemed to be “folded.” In other words, large 
regions had the right structure but were in the wrong position in 
the final planar configuration. 

This result was easy to understand. When only short-range dis- 
tances are available, little penalty is imposed on misplaced patches 
whose internal structural details are correct. This point is best il- 
lustrated with a simple example. Consider a correctly flattened sur- 
face, in which only nearest-neighbor distances were used in the 
flattening. Now fold this solution along any line. This “folded” 
solution does not differ appreciably in its fit to the original 3-D 
surface. Since the distance matrix is composed only of nearest- 
neighbor distances, only pairs of nodes whose connecting edge lies 
across the fold line make an erroneous contribution to the goodness 
of fit of the planar configuration. The relative “weight” of incor- 
rect distances is thus proportional to the length of the fold, while 
the number of correct distances in the folded solution is propor- 
tional to the area of the entire solution. Thus, there is little penalty 
attached to “folded” solutions for flattenings based on short-range 
distances. 

The only condition under which we were able to obtain success- 
ful flattenings with short-range distances was by supplying the al- 

gorithm with an initial state that had been relatively well flattened 
beforehand (i.e., through human intervention). Obviously, such a 
procedure cannot be called a flattening algorithm. However, by 
adding longer-range distance terms, computed using an implemen- 
tation of the algorithm of [ 121, we successfully flattened polyhedra 
from random starting configurations, as described below. 

HEURISTIC SIMPLIFICATION OF THE ALGORITHM 

The size of the distance matrix (and hence the complexity of this 
algorithm) scales as N 2 ,  where N is the number of nodes. The com- 
puter memory and CPU time required for large N are therefore pro- 
hibitive. We restricted the size of the neighborhood of distances 
represented for each node to a “patch” of surface. 

The extent of these patches is an empirical problem. In our ex- 
perience, a patch whose size is roughly 10 percent of the surface 
area of the entire problem yields good results, while smaller patch 
sizes lead to solutions which are “folded,” which was clearly ev- 
ident in graphic displays of the flattened solution. Thus, for ex- 
ample, as shown in Fig. 3(d), with some 1200 nodes, a patch of 
“diameter” of about 10 nodes gave good results. 

Through the use of patches, our distance matrix became rela- 
tively sparse. By storing this data in a forest of binary search trees,3 
rather than a matrix, we achieved reasonable performance on a 
Sun-2 microprocessor system (which is roughly comparable to a 
VAX 750). CPU time required to run these algorithms for the ex- 

‘Each binary search tree corresponds to a node on the polyhedron. We 
call the collection of these binary search trees a “forest.” 
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Fig. 3. (a) A block of monkey brain. The outer surface (operculum) of visual cortex is the bullet-shaped region at the left. (b) 
The opercular visual cortex physically flattened by being pressed between glass plates while being filmed with an 8 mm movie 
camera. The India-ink dots visible on the cortex were used to measure the distortion caused by physical flattening. (c) A 
computer-generated reconstruction of the entire striate cortex, viewed from the bottom. The opercular surface is away from 
the viewer, while the convoluted “calcarine” cortex appears as a flower-petal shape closer to the viewer. (d) The entire striate 
cortex from (c). as flattened by our algorithm. Greater densities of triangles in the model indicate the regions of higher 
curvature on the cortical surface. 

amples of monkey cortex consisting of 1200 nodes, using a patch 
diameter of ten nodes, was about 10 hours for the geodesic distance 
calculation and about 10 hours for the flattening on a Sun-2 work- 
station. 

EXAMPLES OF SURFACE FLATTENING 
Exarnple I :  Hemisphere. 
We generated a hemispherical shell, calculated the distance ma- 

trix (of nearest neighbors only) analytically, and “flattened” it with 
our algorithm. The result is shown in Fig. I ,  

Excrrnple 2: Visual cortex. 
The surface of the visual cortex of a macaque monkey was dig- 

itized, triangulated, and flattened. Fig. 2 shows the “opercular” 
surface of visual cortex. The operculum is the easily accessible 
outer surface of primary visual cortex. In fact, as shown in Fig. 
3(b), the opercular cortex can be flattened physically with rela- 
tively little distortion. We studied the error component of physical 
flattening of the opercular surface of cortex by making India-ink 
dots on cortex which we then flattened and filmed with a movie 
camera. This allowed us to observe an animation of the distortions 
caused by physical flattening. Fig. 3(b) is a picture from this series 

The usefulness of digital flattening is clearer when we consider 
the entire striate cortex instead of just the operculum. Fig. 3(c) is 
a computer-generated reconstruction of the entire cortex, viewed 
from below. Although the cortex is quite convoluted, this view 
shows that its surfaces are generally rather flat. In fact, it is easy 
to fold a sheet of paper into the petal-like shape shown in Fig. 3(c) 
without tearing or stretching the paper. 

Fig. 3(d) shows the flattening of the entire cortex. The model in 
this example was a polyhedron consisting of about 2500 triangles. 
We flattened the model by using a 10-neighbor deep distance around 
each node. Mean error (defining error as the average local differ- 
ence between edge lengths in three dimensions and the correspond- 
ing lengths in two dimensions) was 5 percent. 

~91. 

OTHLR APPLICATIONS 
As noted earlier, this algorithm is a solution to the general map- 

maker’s problem. The visual cortex is arguably the most convo- 
luted of the cortical regions, and our cortical data seeins to be rather 

more complex than the data in other common instances of the prob- 
lem. The good results we have obtained with this data encourage 
us to think that our methods can deal competently with a variety of 
problems related to the mapping of surfaces. In particular, we be- 
lieve that problems in robot motion planning and autonomous ve- 
hicle navigation might yield to an application of this algorithm. 
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