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Applications of Multidimensional Scaling
in Cognitive Psychology
Edward J. Shoben

, University of Illinois

Cognitive psychology has used multidimensional
scaling (and related procedures) in a wide variety of
ways. This paper examines some straightforward ap-
plications, and also some applications where the ex-
planation of the cognitive process is derived rather di-
rectly from the solution obtained through multidimen-
sional scaling. Other applications examined include
cognitive development, and the use of MDS to assess
change as a function of context. Also examined is
how an ideal representation is selected, whether, for
example, a space or a tree is more appropriate. Fi-
nally, some inherent limitations of the method for
cognitive psychologists are outlined, and some pitfalls
and potential misapplications are identified.

Although there are many examples of multidi-
mensional scaling (MDS) and related methods ap-
plied to problems in cognitive psychology, ~lI7S
has not been used to its fullest potential in this
branch of psychology. Not only are there many
circumstances where a straightforward application
of MDS might be profitable, but there are also
instances where some more subtle application of
these procedures might be useful in providing an-
swers to cognitive questions. The present paper
will attempt to illustrate some of these less straight-
forward applications by example, as well as noting
some of the more routine applications. No effort
has been made to cover every application of MDS
in the cognitive literature, however, since this re-

view is intended to be illustrative rather than ex-

haustive. Moreover, it should be admitted at the
outset that the proportion of applications in com-
prehension and memory exceeds considerably the
proportion of such examples from perception and
psychophysics. Although a conscious effort has been
made to draw on more recent work, older studies
have been included when deemed appropriate.

This paper will examine applications of both tra-
ditional two-way MDS (e.g., Kruskal, 1964a, 1964b;
Shepard, 1962a, 1962b) and three-way MDS (e.g.,
Carroll & Chang, 1970). Three-way analyses which
can extract higher dimensionality on the same data
set, are generally, but not exclusively, performed
when individual differences are considered. When
these individual variations are not at issue, two-

way MDS is usually employed.
The most straightforward and the most common

use of MDS has been descriptive. Many of these
early applications (e.g., dark, 1968; Rapaport &

Fillenbaum, 1972) have used MDS to characterize
the spatial structure underlying a set of stimuli.
This use makes no attempt, however, to specify
how the stimuli are processed. Although research-
ers can attempt to identify the dimension along
which the stimuli vary in a multidimensional space,

frequently little or no evidence has been provided
that subjects are actually using these dimensions.
More recent studies have progressed beyond this

descriptive use:
1. Studies suggesting that subjects are actually

using the spatial representation recovered by
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MDS. For example, Rumelhart and Abraham-
sen (1973) have used Henley’s animal names
and found that distance in the ~1~~ solution

would predict solutions to analogies. Simi-

larly, Rips, Shoben, and Smith (1973) found
that distance in a multidimensional space would

predict reaction times (l~’~’s) in a categorization
task.

2. Studies comparing the structure of the stimulus
space over time. For example, Arable, Kos-
slyn, and Nelson (1975) and Howard and
Howard (1977) have looked at changes in the
stimulus space from a developmental perspec-
tive. Voss and his colleagues (~ah&reg;r~~ ~ ~~&reg;ss9
1979; Bisanz, l~~P&reg;~°&dquo;~~9 Vesonder, & Voss,
1978) have used MDS procedures to examine
changing representations of prose with changes
in context.

3. Studies using MDS analysis to evaluate var-
ious theories (e.g., Friendly, 1977; Soli
Arable, 1979).

This paper will examine some of the descriptive
uses of MDS before moving on to some of the less
straightforward applications. Alternatives to MDS
as a representation of data will be examined; and
finally, there will be an attempt to specify the role
of MDS in cognitive psychology.

Uses

~~y~~~l~~1~~31 Domains Concrete Objects

Many stimulus sets have been subjected to MDS
analysis. These range from consonant phonemes
to color names to semantic domains. A brief and

useful review has been provided by Shepard (1980).
The data set that has probably been subjected to

analysis by the largest number of multidimensional
scaling programs is the confusion data collected by
Miller and Nicely (1955) on consonant phonemes.
Shepard (1972) incorporated the fitting of an ex-
ponential decay function on the original confusion
proportions in performing the MDS analysis. The
resulting two-dimensional solution was readily in-
terpretable. The first dimension distinguished be-
tween voiced (za and da) and unvoiced (fa and ka)
phonemes. The second dimension separated the na-

sals (ma and na) from the other consonant pho-
nemes. Within the remaining consonants, there was
also a separation between those that are formed at
the front of the mouth (fa and ba) and those formed
at the back of the mouth (ga and zha). These results
thus placed some order on this domain.
The color domain has long been of interest to

users ofMDS (~l~~a~9 1954). In his original paper,
Shepard (1962a) provided an analysis of the judged
similarity of colors. In the resulting t~l&reg;-di~e~-
sional solution, a color circle was recovered in
which the various colors formed a circle with a gap
between the color with the shortest wavelength (vi-
olet) and the one with the longest wavelength (red).
If the other points are connected by drawing the
circle, the resulting ordering is monotonic with

wavelength. Moreover, the fact that red and violent
are quite close to each other in the two-dimensional
space (while they are maximally distant in wave-
length) accords with the knowledge that red and
violet are quite similar to each other.

For semantic domains, the results are generally
less clear-cut. There are several possible reasons
for this difference. First, semantic domains are

generally of functionally infinite size (although there
are exceptions, such as kin terms). Thus, it is not
practicable to scale all a~Air~als9 some selection must
be made. Surprisingly, this selection is often made
haphazardly. Perhaps not surprisingly, altering the
sample of exemplars can affect the resulting so-
lution. Second, semantic domains are potentially
more heterogeneous than the other two domains
that have been discussed. Whereas any group of
colors will have some hue and some saturation, it

is not easy to come up with shared dimensions for
the ~&reg;~ns jus~~ace9 c&reg;~se~°v~~~&reg;~a9 and laughter. Third,
some domains that are commonly subjected to MDS
analysis (categories) may pose technical problems
for computer programs that are commonly used.
This last point will be discussed in greater detail
in a subsequent section.
One of the most frequently scaled semantic do-

mains is animal names. Henley (1969) scaled 30
animal names based on the dissimilarity judgments
of undergraduates. In the three-dimensional solu-
tion that Henley obtained, the first dimension was
clearly identifiable as size, with elephant, giraffe,
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and camel at one extreme and rat, mouse, and

chipmunk at the other. The second dimension, la-
beledferocity by Henley, had the pr~d~t~rs-li&reg;~,
tiger, and Ieopard-ai one extreme and the do-
mesticated animals&horbar;cow, sheep, and donkey-at
the other extreme. Finally, the third dimension,
labeled humanness by Henley, placed the apes at
one extreme and pig, dog, and wolf at the other.

Henley’s last dimension is particuarly difficult
to interpret. It is not at all clear why giraffe, chip-
munk, and camel are all &dquo;more human&dquo; than horse,
dog, and leopard. Although the third dimension
does separate the anthropoid apes from the rest of
the animals, it is difficult to maintain that this third
dimension is interpretable. Similarly, the label for
the second dimension has been disputed even though
the ordering of objects is quite consistent across
studies (see Storm, 1980, for an exception). For
example, rather than ordering the animals on ftt-
rocity, Rips, Shoben, and Smith (1973) labeled a
similar dimension in their MDS solution predacity,
arguing that this dimension separated the wild an-
imals from the domesticated farm animals.

In addition to this dispute over labeling dimen-
sions, there has also been an apparent controversy
over how many dimensions are required. Rips et
al. (1973), for example, used only two dimensions.
Shoben (1976) also used two dimensions (in ad-
dition to one that separated the birds from the mam-
mals in his solution). However, King, Gruenewald,
and Lockhead (1978) have argued for a three-
dimensional result, and Rumelhart and Abraham-
sen (1973) were unable to obtain satisfactory re-
sults in their analogies task with any dimensionality
lower than three.

Theory

MDS analysis has also been profitably applied
to theories of memory (e.g., Ross 1983). Ross
examined 12 well-known cognitive psychology
theories: the distributed memory model (J. A. An-
derson, 1977), ~1~~ (J. R. Anderson & Bower,
1974), the short-term memory model (Atkinson &
Shiffrin, 1968), levels of processing theory (Craik
~ Lockhart, 1972), the prepositional theory
(Kintsch, 1974), the LNR model (Norman & Ru-

melhart, 1975), the dual code theory (Paivio, 1971),
the SAM model (Raaijmakers & Shiffrin, 1980),
the random walk model (Ratcliff, 1978), the schema
model (Rumelhart & Ortony, 1977), the MOPS
model (Schank, 1980), and Tulving’s (1975) mem-
ory model.

Using expert subjects, Ross (1983) employed
SINDSCAL (Carroll & Chang, 1970; Pruzansky,
1975) to obtain a two-dimensional solution. The

resulting solution ordered the theories in terms of
the unit of analysis on one dimension and the de-
gree of rigor on the other dimension. In terms of
the unit of analysis, MOPS and the schema model
were at one extreme, and J. A. ~~derst~n9s dis-
tributed memory model and l~~tcliff’s random walk

model were at the other. Theories such as MOPS

are often concerned with paragraphs or stories as
units, whereas Ratcliff model and J. A. Ander-
son’s model are usually applied to single words.
On the degree of rigor dimension, theories that

have strong mathematical or computer underpin-
nings were at one extreme, and thus MOPS, the
LNR model, HAM, SAM, lZ~tcliff’s model, and
J. A. Anderson’s model all scored very high on
this dimension. At the other extreme, theories that

are not mathematical, such as Tulving’s model,
levels of processing, and the dual code theory were
low on this dimension.

Although Ross did not attempt to apply his scal-
ing results to any kind of behavioral data, it is

interesting to note that memory theories are orga-
nized in this way, and it may perhaps belie a gen-
eral trend in that two of the theories examined by
Ross (levels of processing and the dual code theory)
have recently been receiving considerable criti-

cism ; interestingly, both are theories without strong
mathematical or computer underpinnings and both
are theories whose prominent unit of analysis is

pairs of words.

of MDS Analysis

Some early studies (Clark, 1968; Fillenbaum &

Rapaport, 1971) have allowed the MDS analysis
to stand by itself. Although the authors typically
made some comment about the dimensions re-
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covered and their significance, no attempt was made
to provide evidence that the derived space is ac-
tually used in processing information.

In contrast, most recent studies have attempted
to obtain evidence for the general validity of the
derived multidimensional space. Rips et al. (1973),
for example, showed that distances in a multidi-
mensional space would predict categorization times.
Specifically, they obtained the mean reaction time
(RT) to verify statements such as &dquo;A robin is a
bird.&dquo; For the 12 birds and 12 mammals they em-
ployed, Rips et al. found that semantic distance
correlated with categorization time quite highly.

Similarly, Shoben (1976) used semantic distance
to predict RTs in a Same-Different task. The stim-
ulus domain in this study was a set of six mammals
and six birds. Scaled together (in contrast to most
earlier studies), these 12 exemplars and the two
superordinate terms bird and mammal yieldcd a
three-dimensional solution that was readily inter-
pretable. One dimension, as usual, was size with
bear at one extreme and robin, sparrow, and mouse
at the other. A second dimension was labeled pre-

dacity with bear and lion at one extreme and goose
and chicken at the other. A third dimension simply
clustered the birds at one extreme and the mammals
at the other. For Same category judgments, such
as hawk-eagle, Shoben was able to show first that
the distance between hawk and bird and the dis-

tance between eagle and bird predicted Same RT
quite well. Moreover, the distance between hawk
and eagle was not predictive of Same ~’1’, contrary
to some semantic memory theories (such as Schaef-
fer & Wallace, 1969, 1970). In addition, Shoben
was also able to use the distances obtained from
MDS to predict the ease with which people can
determine that the exemplars are from different
categories. For the first item, the distance between
the exemplar and its category was predictive of
RT. For the pair bear-goose, for example, the bear-
mammal distance was predictive ofRT. Moreover,
the distance between the second exemplar and the
category of the first was also predictive, in this

example, the goose-mammal distance. Here, small
distances led to long RTs. Once again, the distance
between exemplars was a relatively poor predictor.

Task Processing Account

The I~1~S solution could be used here to provide
a processing account of the task. If subjects com-
pared exemplars to each other, then it might have
been expected that the distance between the ex-
emplars would be the best predictors of RT. Dis-
tances in the multidimensional space and regression
analyses were able to place severe constraints on
any viable processing account of this Same-Dif-
ferent task.

Rumelhart and Abrahamsen (1973) also used MDS
to provide a processing account of an analogies
task. Although more sophisticated accounts of an-
alogical reasoning are now available (Stemberg,
1977), Rumelhart and Abrahamsen’s work is in-
structive in that it shows another way in which
MDS analysis can be applied to provide some the-
oretical constraint on a cognitive task.

Rumelhart and Abrahamsen were concerned with
four-term analogies such as &dquo;f&reg;x:h~rsee:chipm~~ko

.&dquo; Subjects were asked to select the best
completion (in one experiment) from among alter-
r~ativcs-a~tel&reg;pe, donkey, elephant, and wolf-
where elephant is the best answer. Spatially, Ru-
melhart and Abrahamsen noted that the ideal point
or solution to the analogy in the multidimensional
space can be located by first determining the re-
lationship (in all three dimensions in this case) be-
tween the first two terms and then by applying those
differences to the third term. Thus, people have
solved the analogies by constructing a parallelo-
gram whose vertices are the first three terms of the

analogy. In the present example, fox is smaller than
horse (Dimension l ), somewhat more ferocious than
horse (Dimension 2), and slightly less human than
horse (Dimension 3). The ideal point is thus an
animal that is larger than chipmunk, less ferocious
than chipmunk, and slightly more &dquo;human&dquo; than

chipmunk. Elephant comes closest to this ideal point.
Interestingly, the alternatives can also be rank-

ordered (as done by Rumelhart and Abrahamsen),
and subjects will judge that antelope is the second-
best completion to the problem, donkey is third,
and wolf is poorest.
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In addition to predicting subjects’ first choices

by distances from an ideal point, Rumelhart and
Abrahamsen also developed a theory about the dis-
tribution of subjects’ responses. Specifically, they
assumed that subjects’ choices would be in pro-
portion to their distances from the ideal point. More
formally, they proposed that the distribution of re-
sponses would follow Luce’s (1959) choice rule,

Here, di = Xi - 1: the distance between alternative
Xi and the ideal point, and v( ) is a monotonically
decreasing function, and P(Xi X,, .... X,,) is the

probability of selecting the ith item from the n

alternatives. Following Shepard’s (1972) original
work, Rumelhart and Abrahamsen (1973) assumed
v(x) = exp ( - c~x)9 where <2 is constrained to be

positive, because Shepard obtained good fits to re-
call data using this kind of function. In addition,
this function has the virtue of requiring only one
parameter.
The results corresponded quite well to the the-

oretical predictions, both qualitatively and quan-
titatively. Examination of even the data for third
and fourth choices showed a close correspondence
between theory and data. Moreover, this corre-

spondence held up even when the distance among
the possible alternatives was systematically varied.

This exemplifies a case in which MDS analysis
appears to have actually aided in the formulation
of a psychological processing model. Because it

was relatively easy to determine the distance of
each of the alternatives from the ideal point, given
the availability of the multidimensional space, Ru-
melhart and Abrahamsen (1973) were led to for-
mulate the expanded theory based on Luce’s ( 1959)
choice rule.

Free Recall Analysis

1~~5 analysis can also play a useful role in the
analysis of free recall. The distances derived from
the multidimensional space can be used as predic-
tors of output order in free recall. Shepard ( 1972)
did this analysis by fitting an exponential transfor-

mation to the recall data. A different and promising
approach is one developed by Friendly (1977). He
derived the average distance between any pair of
objects !’ and j by the following equation:

lit is the position of item i on trial t and ~,J,
is an indicator variable which is 1 if items i and j
are both recalled on trial t and zero otherwise. If

giving greater weight to items recalled in close
contiguity to each other is desired, then this expres-
sion can be modified by extracting the square root
of the squared difference in recall position, i.e,

With this proximity matrix, Friendly was able to
obtain a highly interpretable two-dimensional so-
lution that had a very low stress value.
Whereas Friendly derived his similarity matrix

from free recall pr&reg;t&reg;c&reg;ls, a related question is
whether distances obtained from an MDS solution
can predict recall data. For example, Caramazza,
Hersh, and Torgerson (1976) found little correla-
tion between distance and recall proximity on early
trials, but positive and usually significant correla-
tions on later trials. For categories whose exem-
plars varied the most in the multidimensional space,
such as mammals, these correlations were quite
high; for categories whose exemplars showed little
variation, such as fish, the correlations were much
lower. Obviously, there must be variation in the
space in order to predict patterns of free recall.
Generally, similarity as measured by direct ratings
or by distance in a multidimensional space is a

reasonably good prediction of results in free recall
experiments (Friendly, 1979; Schwarz & Hum-

phreys, 1973).

1~~~~~ Perceptioxx

Perhaps the area in which MDS has contributed
most to cognitive psychology in the past 5 years
is in the area of music perception. Early psycho-
logical investigations focused solely on the dimen-
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sion of pitch height ~Ste~ ~~s ~ Volkmann, 1940), 9
and subsequent work has provided evidence of more
complicated structure largely in its emphasis on the
octave (Shepard, 1964). According to this for-

mulation, the notes of the scale could be thought
of in terms of a chroma circle, analogous to the
circle observed for colors.

Recently, the investigation has proceeded in a
musical context. That is, many studies now ask

subjects, not for their judgment of similarity of two
tones in the absence of explicit context, but for the
similarity of two tones in the context of a diatonic
scale, or the similarity of two passages in the con-
text of a melody. This practice has led to the re-
covery (through MDS) of much more complicated
representations.

Perhaps the seminal work along these lines was
done by Kmmhansl (1979). She presented subjects
with a simple musical context: a major triad chord,
an ascending major scale, or a descending major
scale. Differences among these contexts were slight.
Subjects were then presented with a pair of tones
whose similarity they were to judge in the context.
The raw similarity results alone are interesting.

For stimuli in the major triad, other major triad
stimuli were judged to be most similar, followed
by diatonic tones. Nondiatonics were judged as
least similar. This same pattern was observed for
diatonic tones. For nondiatonic tones, there was

little effect of this categorical variable. Instead, the
similarity in pitch height was the primary deter-
minant of the similarity between a nondiatonic tone
and another one.

The MDS representation that Kmmhansl ob-

tained is a more complicated version of the chroma
circle. Of particular interest is the three-dimen-

sional solution that resembles an inverted cone. At

the base of the cone are the components of the

major triad. For the C major scale she employed,
these items are middle C, 9 ~ ~ G, and high C, reading
clockwise around the circle. The diatonic tones

cluster at the next level. These, too, can be viewed
as a circle. Reading clockwise, the tones here are
D, F, A, and B. Finally, at the base of the inverted
cone are the nondiatonic tones, which, like the

other clusters, are arranged in ascending order when
the circular base is read in a clockwise direction.

Thus, it appears that more than a chroma circle
is present when the tones are presented in a scale
context. Regardless of musical training, people make
the classification of tones as suggested by music
theory; this representation can be recovered through
MDS.

Krumhansl and her colleagues (Krumhansl,
~h~~h~9 ~ Kessler, 1982) have generalized this
result from tones to chords. In a scale context,
people judged the major chords (for C major: CEG,
FAC, and GBD) as central unless the scale context
was a minor key, in which case the corresponding
chords occupied the center of the MDS represen-
tation. More specifically, for the A minor scale
Krumhansi et al. employed, the corresponding chords
were A minor, D minor, and E major, respectively.
Chords that were not part of the scale sequence
(such as the E major for the C major scale) were
at the periphery of the space. This pattern held
across scale types.

Recently, Pollard-Gott (1983) has extended this
line of work to passages from classical music. Morse

specifically, her subjects listened to a Liszt sonata
over three sessions. In each, the listeners were en-

couraged to take notes and to think about the re-
lations among the passages. After each session,
subjects judged the similarity of the 28 pairs of
stimuli that were generated from the eight passages
(4 to 16 measures in length) Pollard-Gott studied.
These similarity data were analyzed using

SINDSCAL (Carroll & Chang, 1970; Prozansky,
1975). The data are particularly interesting when
examined across sessions. After the first session,
the dimensions recovered by the program represent
fairly gross physical features of the passage; the
dimensions are most adequately labeled, for ex-
ample, as happy-sad, high-low, simple-complex,
and loud-soft. However, by the second session, a
different dimension emerges: a thematic dimen-

sion. By the second session, this dimension sep-
arated without overlap passages that deal with Theme
A from those that deal with Theme B. This sepa-
ration is even more pronounced after the third lis-
tening session. Thus, it seems that a thematic di-

mension emerges as the subject becomes more
knowledgeable about the composition.

Strong support for this interpretation is provided
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by the results obtained in an expert condition con-
ducted by Pollard-Gott (1983). In this condition,
a one-dimensional MDS solution was obtained; that
single dimension accounted for 84% of the vari-
ance. As with the fourth dimension obtained with
the naive subjects, this single thematic dimension
clustered all the passages that dealt with Theme A

at one extreme and all the passages that dealt with
Theme B at the other.

Measurement off Change in Structure

Some of the most impressive applications of MDS
have been in demonstrating a change in the rep-
resentation of stimuli. For example, by examining
a set of stimuli in several conditions, it may be

possible either to show an effect of context and/or
to extract a more complicated multidimensional so-
lution. Less dramatically, it may be demonstrated
that context does have an effect.

One straightforward application of this strategy
was performed by LaPorte and Voss (1979), who
presented subjects with 20 nouns taken from one
of two simple stories. For one story, these nouns
included fields, clouds, vegetation, train, ap-
proach, decade, troops, plague, eggs, and food.
Initially, subjects all performed a pairwise rating
of similarity for all pairs of nouns. The resulting
matrices were subjected to a three-way 1~~5 anal-
ysis, and a two-dimensional solution was obtained
where one dimension separated man-made objects
(train, approach, and troops) from natural ones
(fields, vegetation, and food). The second dimen-
sion was interpreted by the authors as separating
animals from nonanimals, with eggs and food at
one extreme and fields and clouds at the other.

Subsequent to this initial rating, subjects either
repeated the task (a control condition) or read a
story about how grasshoppers become a pest every
10 years. These experimental subjects then per-
formed the rating task on the same words once
again. Interestingly, the resulting space had both
similarities and dissimilarities to the original so-
lution.

The first dimension was virtually the same as
before and could be characterized as a man-made

vs. natural dimension. However, the second di-

mension now reflected the temporal ordering of
events in the story such that nouns that occurred

early in the story appeared at one extreme and

nouns that appeared at the end of the story appeared
at the other end of the dimension. Thus, it seems
that a story context can alter the relationship among
terms. The results for a second story used by LaPorte
and Voss showed similar, although more compli-
cated, results.
A more extensive framework for studying prose

representations has been developed by Bisanz,
LaPorte, Vesonder, and Voss (1978). They pre-
sented subjects with stories involving animal names
that had a clear thematic structure. In one condi-

tion, for example, the animals varied along a lead-
ership dimension and along a ~el~f a~l~~ss~ dimen-
sion. Bisanz et al. compared the MDS solution
obtained prior to reading the story with one derived
after reading the story. In the former case, they
obtained a typical animals solution, similar to the
one obtained by Rips et al. (1973) in which the

two dimensions could be characterized as size and

ferocity. After reading the story, and being in-

structed to rate the animals in terms of their sim-

ilarity to each other in the story, the themes (such
as helpfulness and leadership) were recovered. In-
t~r~stir~~ly, these two dimensions were not re-

covered equally well.
In addition to recovering the story structure,

Bisanz et al. were also able to demonstrate that the

recovered structure could predict performance in a
memory task. In particular, they asked subjects to
determine if pairs of animals were both helpful or
both not helpful. At least for affirmative responses,
it was clear that distance in the multidimensional

space was predictive of RT, and the authors were
able to formulate a regression model (where dis-
tance in the multidimensional space was one of the

independent variables) that predicted the latencies
of all the trials quite well.

Actually, it is possible that Bisanz et al. might
have been able to obtain greater predictability by
looking at another distance in the space they ob-
tained. The only distance that Bisanz et al. ex-

amined is the distance between the two stimuli. For

example, in the pair lion-tiger, they looked only
at the distance between the two animals. Assume
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for the moment that lion is helpful and that tiger
is not, and further assume that the subject processes
lion first. In this case it might be profitable to ex-
amine the distance between the point for lion and
the point for helpful and between tiger and helpful,
if the decision required is whether both are helpful.
Logically, these are the distances that should be
involved in the model that Bisanz et al. proposed,
and it is surprising that they appear not to have
looked at these distances. In this case, a small lion-

helpful distance should be facilitory and a small
tiger-helpful distance should be inhibitory. This

kind of analysis (used earlier by Shoben, 1976, in
a Same-Different task with semantic categories)
would provide additional support for the model
espoused by Bisanz et al.

Cognitive Development

One obvious place to look for examples of MDS
as an index of change is in work with children.

Particularly in cognitive development, it should be
possible to use MDS to assess changes in people’s
subjective representations over time. It would be

particularly desirable, for example, if it were pos-
sible to show that young subjects tended to organize
concepts along perceptual dimensions, whereas

adults tended to employ more abstract dimensions.
One fairly straightforward illustration of this ap-

proach is a study by Howard and Howard (1977).
They obtained similarity judgments for a set of 10
animals that were chosen from Henley’s (1969)
original set. The subjects were first-graders, third-
graders, sixth-graders, and college students. The
resulting matrices obtained from all subjects were
analyzed with Carroll and Chang’s (1970) IND-
SCAL program. A three-dimensional space was
obtained in which the three dimensions extracted

were size, clojnesticaty, and predativity. These last
two dimensions are usually thought of as equivalent
(see Rips et al., 1973), but Howard and Howard
(1977) make a good case that these dimensions are
distinguishable although not uncorrelated. For the
domesticity dimension, mouse, rabbit, lion, deer,
and bear are on one side of the midpoint, and horse,
cow, sheep, dog, and pig are on the other side.
For the predativity dimension, lion and bear are at

one extreme; mouse, rabbit, and deer all cluster
near the other pole of this dimension.
Howard and Howard assessed age differences

by looking at the weight assigned to each dimen-
sion in the subject space. Averaging over subjects
within age groups, they found that younger subjects
tended to emphasize the size dimension, while older
subjects emphasized the more abstract domesticity
and predativity dimensions. More specifically, first-
and third-grade subjects placed much greater weight
on the size dimension than on either of the other
two. Sixth-graders placed equal weight on the size
and predativity dimensions and less weight on the
domesticity dimensions. College students were es-
sentially the opposite of the young children; they
placed greatest weight on the predativity dimension
and least weight on the size dimension. Thus, it

does indeed seem that increasing age is accom-

panied by an increasing reliance on abstract di-
mensions, at least for this stimulus domain.
A more complex analysis along similar lines has

been performed by Miller and Gelman (1983). They
used techniques developed by Arable, l~~ssly~, and
Nelson (1975) to investigate the development of
the concept of number. As in Howard and Howard
(1977), four age groups were used: kindergartners, 9
third-graders, sixth-graders, and graduate students.
Using a modification of the method of triads, Miller
and Gelman (1983) had subjects judge which of
three digits was most similar and which was least
similar. To cut down on the number of triads to be

judged by very young children, Miller and Gelman
used a balanced incomplete sampling procedure
developed by Arable et al. (1975). The resulting
similarity matrices were analyzed separately for
each age group using KYST2A (Kruskal, Young,
& Seery, 1977). Additional analyses were also per-
formed; these will be discussed briefly later.

For the 10 digits, two-dimensional solutions were
obtained for all four age groups. For the young
children, the solution can be described as a semi-
circle in which the digits are ordered by magnitude.
The kindergartners appear to have some difficulty
with zero, but they and the third-graders otherwise
provide a perfect ordering in terms of magnitude
along the semicircle. Older children and adults, in
contrast, reveal more than magnitude information
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in their solutions. For sixth-graders, the odd-even
dimension is clearly present in addition to a mag-
nitude dimension. Particularly for adults, other re-
lationships are also present; and their solution, in
some cases, does not order the digits perfectly along
the magnitude dimension. For example, the powers
of two (2, 4, 8) are closer together in the two-
dimensional solution than they should be according
to the magnitude dimension.

Thus, Miller and Gelman (1983) were able to
demonstrate rather elegantly that there is increasing
complexity in children’s conception of number as
age increases. For young children, the concept of
number is strongly associated with counting. With
age, the concept becomes richer, as other relations
(oddness, or powers) become part of the concept.

Supporting these conclusions, Miller and Gel-
man (1983) employed the ll~I~CLIJS’ program
(Arabie & Carroll, 1983) as a further means of

investigating the change with age. In this analysis,
all age groups must have the same clusters; what
differed (in addition to the additive constant) were
the weights assigned to these clusters by each group
of subjects. Five of the seven clusters pertained to
counting, and the other two were the odd numbers
excluding 1 (3, 5, 7, 9) and the powers of 2 (2,
4, 8). For the kindergartners and the third-graders,
the five counting clusters were all assigned higher
weights than these last two clusters. For the adults,
on the other hand, the powers-of-2 cluster had the
highest weight, and the weight for the odd-num-
bers-excluding-I cluster was fourth, only slightly
behind the large-numbers (6, 7, 8, 9) cluster. Sixth-
graders were between these two extremes. The
weight for the powers-of-2 cluster ranked third,
and the weight for the &reg;dd-r~~~nbers-ea~cludin~-1
cluster ranked fifth.

Thus, this clustering analysis very nicely com-
plements the MDS analysis in that it shows an

increasing complexity in the concept of number
with increasing age. Young children’s conception
of number is almost entirely dependent on count-
ing ; greater complexity occurs with increasing

age. Methodologically, it is interesting to note that
the clustering analysis performed by Miller and
Gelman (1983) parallels the scaling work done by
Howard and Howard (1977). In both cases, one
representation was obtained: a three-dimensional
solution in the former and a set of seven clusters
in the latter. In both cases, the argument for de-

velopmental change relies on an orderly change in
the weights assigned to each dimension (in the for-
mer case) or each cluster (in the latter case). The
Miller and Gelman (1983) paper is particularly con-
vincing because, in addition to this logic, these
authors also examined another representational
measure (in this case MDS solutions) indepen-
dently, in which the representation was obtained
independently for each age group.

~~~~°~a~e~ Dimensionality from
Examination of Different Contexts

Previous examples have described a few of the
studies that have used MDS to index change. Phrased
more generally, these studies have looked at the
representation of a stimulus domain in several dif-
ferent contexts. One of the interesting byproducts
of this approach is that it may be possible to extract
more dimensions in this circumstance than if the
same stimulus domain is examined in only one
context. It is suggestive, for example, that Howard
and Howard (1977) were able to extract three di-
mensions from a set of 10 animal names, where

Rips et al. (1973) were able to extract only two
from a set of 14 animal names, with both using
the INDSCAL model.

The most striking example of this higher di-
mensionality is an analysis of consonant phonemes
performed by Soli and Arabie (1979). In this study,
they used the data from Miller and Nicely (1955),
which they fir st transformed to conform more closely
to the INDSCAL model (see Arabie & Soli, 1982,
for the details and justification of this procedure).
In contrast to earlier studies, Soli and Arabie (1979)
also used the full set of confusion matrices (in-
cluding those with relatively severe distortion) in
their analysis. They obtained a four-dimensional
solution that accounted for 69% of the variance.

1INDCLUS (for INdividual Differences CLUStering) is the three-

way version of MAPCLUS, the Arabie and Carroll (1980) al-

gorithm for fitting the Shepard-Arabie (1979) ADCLUS model.
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Their first dimension ordered the phonemes in
terms of periodicity/burst order with /n/ and /m/ at
one end of the dimension and /p/, /t/, /k/, /f/, and
/s/ at the other extreme. The second dimension

ordered the phonemes in terms of their first for-
mants, with the voiced consonants at one extreme

and the nasals and voiceless stops at the other. The
third dimension was ordered in terms of the second

fornants, with phonemes with falling second for-
mants at one end and phonemes with rising second
formants at the other extreme. Finally, the fourth
dimension was ordered in terms of spectral dis-
persion. This dimension separates two groups of
fricatives from the other phonemes and is largely
relevant to a particular listening condition.

Soli and Arabie (1979) have also been able to
show that the salience of these dimensions varied

markedly with the kind of listening condition. For
example, both the periodicity/burst dimension and
the first formant dimension were salient under ex-
treme degradation. For the second fornant and
spectral dispersion dimensions, increasing degra-
dation decreased the weight given to these dimen-
sions.

Thus, by their ability to make the Miller-Nicely
data conform to the INDSCAL model, Soli and
Arabie have been able to extract higher dimen-
sionality from this data set than had been previously
done. l~~re&reg;ver9 this higher dimensionality has en-
abled them to make some arguments concerning
the relative importance of acoustic as opposed to
phonemic properties in the underlying representa-
tion. By examining a wide variety of listening con-
texts, Soli and Arable seem to have obtained ad-
ditional information out of an old, and often

analyzed, set of data.

MDS the Underlying Representation

There have been some efforts to use MDS and
related techniques to determine the appropriate un-
derlying representation. Friendly (1977) for ex-

ample, examined three possible representations of
information in memory: dimensional representa-
tions, tree-structure representations, and network
representations. According to his definitions, di-

mensional representations are structures where each
stimulus is represented by a continuous value on a
number of dimensions. Tree structures are hierar-

chical representations, and networks are undirected
graphs. Friendly has argued that there is a uniquely
appropriate method for analyzing data for each of
these three types of memory models. Specifically,
MDS is the proper procedure for dimensional rep-
resentations, and hierarchical clustering is the ap-
propriate representation for tree structures. For pur-
poses of this discussion, Friendly has restricted
himself to minimum-spanning trees (thereby im-
posing a hierarchical requirement) as the appro-
priate tool of analysis for network representations.

Unfortunately, the most straightforward conclu-
sion does not appear to be warranted. That is, it is
not the case that data are analyzed with all three
procedures and then the correct representation de-
termined on the basis of which procedure best fits
the data. In fact, Friendly was careful to make this
point. However, it does appear that such a pro-
cedure can provide some evidence in favor of one
method or another and that the methods are rea-

sonably sensitive to variations in underlying struc-
ture.

Friendly’ approach can be characterized as the-
ory driven. Instead of examining the data in an
effort to infer the appropriate underlying represen-
tation, he starts with a theoretical structure and then
looks to see if that hypothesized theoretical orga-
nization was evident in the data. In his examples,
he assumes a particular structure and then analyzes
the data by an appropriate method to ascertain if
the results are consistent with the hypothesized
structure. In his examples, the data are always free
recall, where the proximity matrix is derived by
the method summarized earlier in this paper. How-

ever, this methodology is suitable for any prox-

imity matrix.
This general approach has been carried a step

further by Reitman and Rueter (1980). They held
a particular theory of free recall and wished to
obtain some confirming evidence. In their theory,
chunks are an important component, and the order
in which the stimuli should be recalled is also pre-
scribed. Their technique, only peripherally related
to MDS, 9 first identifies the chunks, and then par-
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titions these chunks into a lattice. Lastly, this lattice
is converted into an ordered tree. Although the
details of this procedure are not important here,
Reitman and Reuter have been able to show that
their method can recover the structure of a known
stimulus set. In a subsequent example, they were
able to illustrate nicely the differences in the or-
ganization of ALGOL terms for novice and expert
users. Hirtle (1982) has recently extended this work.

Thus, it appears that one useful application of
~1~5 and related techniques is in evaluating the-
ories. If the underlying representation is suffi-

ciently well specified, then it should be possible to
obtain data from which the underlying represen-
tation could be recovered. At a minimum, a suc-
cessful outcome argues for the plausibility of the
theory.

The Nature off the Underlying Representations

Although the examples cited in the preceding
section suggest that these techniques can profitably
be used to assess the viability of a particular theory,
they explicitly do not attempt to compare compet-
ing theories directly. However, a recent paper by
~ruz~i~sl~y9 Tversky, and Carroll (1982) has sug-
gested that such comparisons may be both possible
and profitable. Pruzansky et al. compared MDS (as
exemplified by KYST2A) with tree structures (as
exemplified by Sattath & Tversky’s, 1979, ADD-
TREE). Pruzansky et al. first demonstrated that
each provided a better fit to artificial data generated
from its appropriate representation than the other
method did. Specifically, KYST provided a better
fit when the data set was generated from a plane,
and ADDTREE provided a better fit when the data
set was generated by a tree. Moreover, this rela-
tionship held over varying numbers of stimuli and
levels of noise.

Subsequently, Pruzansky et al. found two em-
pirical measures that predicted which procedure
would provide the better fit (as measured by either
the product-moment correlation or by Stress For-
mula 2). The first measure is the skewness of the
data, as determined by the standard measure of
skewness: the third central moment divided by the
cubed standard deviation. The second measure,

elongation, is more complicated. This statistic is
motivated theoretically by the nature of binary rooted
trees. For any triple of terminal nodes, it is usually
the case that two of the terms form a subcluster
that does not include the third. Thus, ~l; = ~~
<{)~ if i and j are the two terms that form the sub-
cluster. It would thus also be expected that the
differences would have the relationship t)~ - ~;,<
-- (~ - Looking at the triangle of distances,
the middle side is closer in length to the long side
than it is to the short side. The elongation measure
used by Pruzansky et al. is simply the proportion
of triangles in which this difference relation holds.

Pruzansky et al. (1982) examined the utility of
these measures by calculating them for 20 data sets.
Generally, when the proportion of elongated tri-
angles exceeded .65, ADDTREE provided a better
.fit to the data; otherwise, KYST did. Similarly,
when the skewness was less than -.4, ADDTREE
provided a better fit. Generally, these two measures
tended to be negatively correlated, and there where
no cases where the two measures truly conflicted.
The result of greatest interest is that the data sets

for which ADDTREE provided the better fit could
generally be described as conceptual stimuli, whereas
the data sets that could be classified as perceptual
were almost always better fit by KYST. The data
sets that involved colors, forms, or letters were

usually fit better by KYST, but data sets that con-
tained names of category exemplars were usually
better fit by ADDTREE. Although Pruzansky et
al. noted that factorial designs (as commonly used
in perceptual data sets) tended to favor KYST and
that natural selection (as commonly used in con-
ceptual data sets) tended to favor ADDTREE, they
offered no other explanation for this dichotomy.
One problem in fitting the conceptual data sets

could be in the nature of the stimuli. Although most
of the conceptual data sets examined by Pruzansky
et al. are unpublished, there is sufficient familiarity
with the procedural details of the first eight they
studied to offer some speculation. The first seven
data sets (referenced by Pruzansky et al. as the
Mervis et al. data sets) involved 19 exemplar names
and one category label. The eighth data set (Hen-
ley, 1969) consisted of 30 animal names with no
category label. For the first seven data sets, the
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superiority of ADDTREE, as measured by the dif-
ference in both of Pruzansky et al. 9 indices of
goodness of fit averaged .15 for r,2 and .07 for

r~. The superiority of ADDTREE for the eighth
data set was about half these means, .08 and .03,
respectively. Only one of the seven data sets ex-
amined by Mervis et al. (1980) had smaller dif-
ferences between the two procedures than Henley’s s
(1969) data set.

Problems with Categories

Because of the way in which people judge cat-
egories, it is difficult for MDS programs to accom-
modate categorical data sets. In particular, people
seem to regard all exemplars as similar to their
category name. For example, Shoben (1976) found
that the similarity between goose and bird was vir-
tually equivalent to the similarity between hawk
and eagle, which in turn was less than the similarity
between hawk and bird. More abstractly, even
atypical exemplars of a category are regarded as
highly similar to their category name. This general
finding causes problems for scaling algorithms. For
example, the similarity between robin and goose
is quite low, but each is highly similar to the con-
cept of bird. In terms of distances in a multidi-
mensional space, robin and goose should be quite
far from each other, but both must be quite close
to bird. Obviously, it is impossible to satisfy both
conditions. This kind of conflict is not present if

superordinate terms are not among the test stimuli.
It is not clear how this problem can be solved.

One possibility is to adapt a proposal of Krum-
hansl’s (1983) and try to measure typicality of terms
separately. Krumhansl has argued that similarity is
a function, not only of the distance between the
two objects, but also of the distance (typicality) of
each of the objects to the superordinate. In the

context of the musical scale, mhansl was able
to vary the context (which scale is used) and thereby
to show that the vertical structure (typicality) has
an effect on the similarity judgment independent
of the effect of the distance between the two objects
(horizontal structure). In fitting the function that
described the contribution of both horizontal and
vertical structure, Krumhansl used the chroma cir-

cle of tones as the horizontal structure. For other

domains, there may be no comparable underlying
structure available; the applicability of this ap-
proach is thus not immediately obvious.

Another approach is to ask the purpose for which
the MDS solution is obtained. If, for example, one
does not wish to claim that the underlying repre-
sentation is spatial but rather to use the distances
in the multidimensional space to predict some de-
pendent variable (such as RT) in another experi-
ment, then other options may be available. For
example, Shoben (1976) was particularly interested
in the distances obtained by MDS between category
exemplars and their superordinate. His first scaling
solution used three dimensions to depict six mam-
mal exemplars, six bird exemplars, and two su-
perordinate terms. An examination of the Shepard
diagram, which plots fitted distances against the
original data, indicated that the greatest disparity
between the actual data and the fitted distances
occurred for pairs that involved superordinate terms.
To use precisely these distances in subsequent anal-
yses, Shoben rescaled the data and used the weights
option to ensure that the disparity between actual
and fitted distances would be minimal for pairs
involving a superordinate term. In this case, this
manipulation was successful in that the exemplar-
superordinate distances obtained from the weighted
MDS solution predicted RT in a Same-Different
task quite well.

Choosing an Appropriate Representation

There are no simple rules for choosing the ap-
propriate representation. Instead, there are a num-
ber of criteria whose utility will depend on the
particular circumstance. One obvious benchmark
is the interpretability of the solution. Clearly, an
uninterpretable solution is not convincing evidence
for the plausibility of the underlying representation.
More often, there are competing arguments con-
cerning which of two representations is more in-
terpretable. For example, Sattath and Tversky (1979)
have argued that the ADDTREE representation of
Henley’ animal data is more understandable than
the one provided by MDS.
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Sattath and Tversky have also used another cri-
terion for deciding the appropriate representation:
goodness of fit. Pruzansky et al. (1982) have also
employed this criterion in their comparison of
ADDTREE and KYST. From the two measures

they used, it is clear that different measures of

goodness of fit may give different results, and,
moreover, that a particular index of goodness of
fit may favor one method over another. For ex-

ample, one of the indices used by Pruzansky et al.
is directly related to stress, which is minimized by
KYST. Not surprisingly, KYST fares better when
this particular index is used.

Pruzansky et al. have also suggested that there
are statistical features of the data that may also help
in making a decision. As noted earlier, they sug-
gested that the skewness and the elongation of the
data will enable determining in advance whether
ADDTREE or KYST will yield a representation
that is more faithful to the original data. These two
values can therefore be measured with the expec-
tation of having some idea of the procedure that
will give a better fit.

All of these procedures are useful, but it can be
argued that they do not provide a definitive answer,
either individually or collectively. As Krumhansi
(1983) has n&reg;ted9 thcrc are often theoretical reasons
for adopting a particular approach. She has given
an excellent example of this theoretical motivation
in her work with music. As noted earlier, in the
absence of specific context, the notes of a scale
may be conceived as a chroma much like
the results for colors. With context, however, she
was able to show that the similarity of a pair of
tones depended not only on the distance in the
chroma circle, but also on the distance to the su-

perordinate, which in this case was the scale. In a
C major scale, for example, G is closer to C than
might be expected from the chroma circle alone.
Similarly, in this scale, C# is further from C than
would be expected in the absence of explicit con-
text.

This approach has proven very fruitful. Not only
was Krumhansl able to provide a satisfactory spa-
tial representation of her own data, but with some
additional assumptions related to those in her spa-
tial density model (Krunhansl, 1979), she was able

to account for her data at more microcosmic levels

as well. For example, she could account for the
similarity of i to j being greater than the similarity
of j to a when j was closer to the superordinate
term.

Thus, it seems that there is no easy answer to
the question of the single most appropriate repre-
sentation. All of the methods individually have
problems, and there is no magic rule for combining
approaches. Moreover, slight variations in tech-

nique can have fairly substantial effects on the out-
come. Perhaps the most dramatic example of the
large improvement in the scaling solution as a func-
tion of a relatively small (to a cognitive psychol-
ogist) change in procedure is the work of Soli and
Arabie (1979) on the Miller-Nicely data. By using
INDSCAL rather than MDSCAL and employing a
transformation of the original data to make them
better conform to the assumptions of the INDSCAL
model, they were able to recover many more di-
mensions than Shepard (1972) did in his seminal
work on this data set. Conscquently, it is premature
to specify any rule or rules for determining the
preferred underlying representation for any partic-
ular data set.

~~&reg;b~e and Pitfalls in 1~~~ Analysis

It might be speculated that one of the reasons
why MDS analysis is applied so infrequently to
cognitive problems is that it is a complicated set
of techniques with which few cognitive psychol-
ogists are familiar. Because of this complexity,
there are a number of pitfalls into which cognitive
psychologists are prone to fall and there are a num-
ber of interesting cognitive problems to which the
power and potential applicability of MDS analysis
have not been applied.

Number of ~~~~uh

The to avoid is using too fewThe simplest problem to avoid is using too few
stimuli for the number of dimensions. In two di-

mensions, for example, it is trivially easy to ac-
commodate the similarities among six stimuli. It

is very likely that a seemingly low value of stress
will be obtained even if the similarities are gen-
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erated randomly. Klahr (1969), for example, has
performed monte carlo simulations that provide users
with stress values beyond which there can be re-
jection of the hypothesis that the data are random.
These values are provided, of course, for a given
number of stimuli and a given number of dimen-
sions.

As a general rule of thumb, it would appear that
it is very unwise to use fewer than 9 or 10 stimuli
in a two-dimensional solution and fewer than 14
or 15 when three dimensions are employed. More-
over, it should be noted here that the stress values

given in Klahr are artificially high (Arabie & Boor-

man, 19 73) in that they used a now obsolete and
clearly inferior initial configuration. Nevertheless,
these tables (or their equivalent) are the best avail-
able and they should be consulted. The major im-
port of this discussion is that there should be war-
iness of MDS solutions performed with too few
stimuli. Thus, Shafto’s (1973) argument for case
grammar, which depends heavily on a two-dimen-
sional representation of eight stimuli, should be
viewed with a high degree of skepticism.

Although some general guidelines for nonmetric
~1~5 can be formulated, there are no such easy
rules for other commonly used algorithms, such as
INDSCAL or SINDSCAL. Here, the degree of
constraint provided by the data depends, not only
on the number of stimuli, but also on the number
of subjects. For example, it would be incorrect to
fault Soli and Arable (1979) for extracting four
dimensions from the Miller-Nicely data when there
were 16 stimuli and 16 &dquo;subjects&dquo; (actually lis-
tening conditions). Clearly, some kind of simula-
tion work must be done before treating this issue
definitively. At a minimum, however, when the
number of subjects is very small, it would seem

prudent to follow the strictures outlined above for
nonmetric MDS analysis. Moreover, when the
number of subjects is small, the orientation of the
axes may not be well defined.

r Metrics

Nearly all of the applications of MI7S in cog-
nitive psychology have assumed Euclidean dis-
tance. Consistent with Shepard (1964) and with

Gamer (1972), many researchers have gone on to
assume that their stimuli were wholistic or integral,
whereas others never considered any other metric.

There are at least two other metrics that are of
inherent interest to cognitive psychologists. In most
general terms, the Minkowski family of metrics is
described by Equation 4 where r -- 1: e

If the exponent r is equal to 2, Equation 4 gives
the familiar Euclidean case. Two other cases are
of particular interest: when r equals 1 and when r

approaches infinity. In the latter case, the distance
between two objects reduces to the maximum dif-
ference between the objects on any dimension. Thus,
two objects that differ from each other by a mod-
erate amount on each of three dimensions are ac-

tually closer to each other than two objects that are
identical on two dimensions but very different on
a third. Although there are few applications of this
dominance metric, Arnold ( 19~ 1 ~ has for
this particular metric in the semantic te he ex-
amined.

When r equals 1, the distance between two points
is determined by adding the differences on all di-
mensions. In two dimensions, this procedure re-
sembles distances in a city where a person must
travel three blocks north and two blocks east, for

example, to get from 43rd Street and 7th Avenue
to 46th Street and 5th Avenue in New York City.
Because of this analogy, this value of ~ is often

referred to as the city-block metric. This metric is
particularly interesting to cognitive psychologists
because it implies that the dimensions recovered
by MDS are separable, rather than integral.

Despite the inherent appeal of the city-block
metric, there are understandable, though not ex-
cusable, reasons for its lack of prominence. The
first reason is that numerical problems are more
likely to be encountered in non-Euclidean metrics.
For the Euclidean distance model, either a small
number of random initial configurations or a ra-
tional starting configuration can be selected and
there will be reasonable confidence that a near op-
timum solution will be obtained. This procedure
will rarely yield satisfactory results for the city-
block metric. Local minimum problems are far more
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common; it appears that many more random start-

ing configurations must be used (Arabie, 1973)
when r equals 1 than when the Euclidean metric
is used. 0

Fortunately, Arnold ( 1971 ) has developed a pro-
cedure that seems to surmount most of these prob-
lems. In a little noticed paper, Arnold approached
both the city-block metric and the dominance met-
ric (he set r = 32 to approximate the dominance
metric) by a successive approximation procedure.
He first obtained a solution in Euclidean space; this

solution was then the initial configuration for r
= 1. ~ and r = 2.5. Approaching = 1, he used
the resulting configuration when r = 1.5 as the

starting configuration for a solution with r set at
1.2~, and so on, until he obtained a solution with
~° = 1. In a similar way, Arnold obtained a rep-
resentation of his stimuli using the dominance met-
ric. Using this procedure, Arnold found that the
Euclidean solution gave the poorest fit (as mea-
sured by stress) to the data. Stress declined mon-
&reg;t&reg;nically as r decreased from 2 to 1, and it also

declined monotonically as r increased from 2 to
32. Interestingly, the best fit was obtained with the
dominance metric.

Although this procedure appears very successful
and well worth using, it does appear that it has one
important limitation: It does not seem to work well
with two-dimensional solutions (Carroll & Arabie,
1980). The reasons for this failure are not presently
known.

Using the Options

Finally, it appears that many users of MDS are

not aware of all the options that most computer
programs permit. For example, although INDS-
CAL is characterized as three-way (stimuli by stim-
uli by subjects), the last way need not be actual
individual subjects. Soli and Arabic (1979), for

example, have used conditions in lieu of subjects
very successfully. Miller and German (1983) used
age as their individual difference variable in their

INDCLUS analysis. It would seem that INDSCAL
might be particularly helpful in examining the ef-
fects of context in cognition.

There are a number of more technical options
within the often used programs that are seldom

used but are potentially useful. For example, KYST
permits the similarities to be weighted so that, for
example, similarities could be weighted according
to their reliability or consistency across subjects.
Friendly (1977) has shown that this kind of weight-
ing procedure can be used in obtaining a satisfac-
tory MDS representation of free recall data. If tied
data are viewed as particularly meaningful, then it
might be desirable to elect the secondary approach
to ties instead of the primary approach. There are
other examples, as a careful reading of the program
documentation will reveal; the important point is
that there are options available that can be usefully
applied to problems in cognitive psychology only
if users are aware of them.

Conclusions

MDS has been usefully and frequently applied
to problems in cognitive psychology. In many areas,
such as the work in music perception and the de-
velopment of models of analogical reasoning, the
applications have been particularly inventive. Some
of the examples described above illustrate that there
are many more problems in cognitive psychology
to which MDS and related procedures might prof-
itably be applied. Particularly with the advent of
new methods for determining the underlying struc-
tural representation, such as the work of Pruzansky
et al. (f9~2) and Krumhansl (1983), it appears that
MDS may become less a method of exploratory
analysis and more a method of theoretical analysis.
In addition, developments in individual difference
models, such as the introduction of INDCLUS,
suggest that it may be possible to examine the struc-
ture of a set of stimuli as a function of condition

or experimental context by using these algorithms.
From the perspective of cognitive psychology,

it appears that the limitation on MDS is that it tells
little about processing. Cognitive psychology has
many examples of problems where two very dif-
ferent structures coupled with two different sets of
processing assumptions can predict the same re-
sults. Two prominent examples are the proposi-
tional imagery debate and semantic memory models.

 at UNIV OF ILLINOIS URBANA on September 3, 2012apm.sagepub.comDownloaded from 

http://apm.sagepub.com/


488

Anderson (1978) has even argued that some of
these fundamental structural questions can never
be resolved. At a minimum, it appears that choices
can certainly not be made without a consideration
of the accompanying processing assumptions.

Thus, if the goal of the cognitive psychologist
is to construct sensible theories of cognition, then
it is clear that MDS analysis can be quite helpful
in half of the battle. Although it may not help
directly in determining the underlying process, it

does provide evidence about the structural prop-
erties of the data and how that structure might change
under various conditions. Moreover, MDS analysis
might actually lead to the development of a pro-
cessing model, as it did for Rumelhart and Abra-

hamsen (1973). With the current interest of cog-
nitive psychology in the nature of the underlying
representation and the current interest in the effects
of context, the potential applicability of 1~175 and
related techniques in this field appears to be large.
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