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Chap ter  

 1  
Perceptual Mapping  

Leland Wilkinson

PERMAP offers two types of tools. The first is a group of procedures for fitting 
subjects and objects in a common space. This group includes Carroll’s (1972) internal 
and external unfolding models, MDPREF and PREFMAP, as well as Gabriel’s (1971) 
BIPLOT, which is a minor modification of MDPREF. The second is a set of procedures 
for relating one dimensional configuration to another, generally called a procrustes 
rotation. Both the orthogonal procrustes and the more general canonical rotations are 
available.

PERMAP is a misnomer. Although most of the techniques it incorporates have 
been used for perceptual mapping, they have applications outside of market research 
or psychology and, like the biplot technique, may even have their origins elsewhere. 
Furthermore, classical perceptual mapping techniques, such as multidimensional 
scaling, correspondence analysis, and principal components, are found elsewhere in 
SYSTAT. In the end, since almost all of the methods in this module involve a singular 
value decomposition and are not bulky enough to deserve their own modules, they 
have been collected into a single grab bag.

Statistical Background
Perceptual mapping involves a variety of techniques for displaying the judgments of 
a set of objects by a group of subjects. Most of these techniques were developed in the 
1970’s by psychometricians, but they were soon adopted by market researchers and 
scientists for analyzing a variety of preference and similarity data. 

In applied usage, especially among market researchers, perceptual mapping is an 
even more general term. Some commercial perceptual mapping programs are based 
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on classical statistical or psychometric models. Some of these methods include 
Fisher’s linear discriminant function, correspondence analysis, factor analysis, and 
multidimensional scaling. Indeed, any procedure that produces a set of coordinates in 
a q dimensional space from an  matrix, , can be considered 
perceptual mapping in the broad, applied sense. Quantitative theoretical market 
researchers (for example, Green and Tull, 1975, and Lilien, Kotler, and Moorthy, 
1992) use the term in this more general sense as well.

The origin of the term can be found in classical psychometrics (see Cliff, 1973, for 
a review). Soon after the development of psychometric spatial models, some 
psychologists thought scaling methods could be used to derive “cognitive maps” from 
the subject’s ratings of stimuli. These maps would be “pictures” of the mental 
structures used to perceive and integrate information. Following the classic linguistic 
studies of Osgood, Suci, and Tannenbaum (1957), researchers produced intriguing 
cognitive maps of stimuli such as countries, cities, adjectives, colors, and consumer 
products (for example, Wish, Deutsch, and Biener, 1972, and Milgram and Jodelet, 
1976). 

Not long afterwards, perceptual and memory psychologists abandoned the cognitive 
map model and developed theories based on information processing, problem solving, 
and associative memory. Research by Shepard and Cooper (1982) and Kosslyn (1981), 
for example, focused specifically on the storage and processing of mental images 
rather than inferring spatial structure among nonspatial stimuli from associations 
between responses to attributes. Shepard’s psychometric findings on mental rotations, 
for example, were subsequently confirmed at the physiological level (Dow, 1990).

While no longer an active theoretical model, perceptual mapping can be useful as a 
general collection of procedures for presenting statistical analyses to nontechnical 
clients. Like classification trees, perceptual maps can show complex relations 
relatively simply without algebra or statistical parameters. It is easier for many clients 
to judge a distance on a map than to evaluate a conditional probability. Thus, 
perceptual mapping techniques can be useful for data that have nothing to do with 
perception. 

Preference Mapping

A variety of algebraic and geometric models of preferences have been developed over 
the last century. The unidimensional preference model (Coombs, 1950) is presented in 
the following figure. Imagine that three subjects have expressed their preferences for 
each of five objects (A, B, C, D, E). If their preferences can be represented by a single 

n p× q min n p,( )≤
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dimension, the following figure is one of several possible models. Each subject’s 
preference strength on the single attribute dimension is represented by a normal 
distribution. In this model, the farther an object is from the mean of the subject’s 
preference distribution, the less that object is preferred. Based on this rule, in the 
following figure, the ordering of preferences for the five objects shows above each 
subject’s curve. Thus, the left most subject prefers object B most and E least, while the 
right most subject prefers E most and A least. The following figure is the 
unidimensional preference model for normal curves. 

Coombs devised a method for recovering a unidimensional preference scale from the 
subject’s ranking of the objects. His procedure is called unfolding. If we assume that 
the distances to objects from a subject’s ideal point on the scale are all positive and 
follow the usual distance axioms (see Chapter “Multidimensional Scaling” on 
page 185 in Statistics III), then direction does not enter into the calculation of 
preference. We can therefore imagine folding the scale about the subject’s ideal point 
to see the point of view of that subject. Coombs discovered that if there are enough 
subjects and objects, we can unfold the scale from the given ordering of the subject’s 
preferences without knowing the strengths of the preferences. In general, the more the 
subjects and objects, the less room there is to represent the preference ordering 
correctly by moving the locations of the preference curves. Like MDS itself, the system 
becomes highly constrained to allow only one solution. The MDS procedure in 
SYSTAT can be used to compute Coombs’s solution for unidimensional data.

Students of Coombs (Bennet and Hays, 1960) extended the unfolding model to 
higher dimensions. The multidimensional preference model for normal curves shows 
how this works. As in the unidimensional preference model for normal curves, there 
are three subjects and five objects. The closest subject’s preference curve leads to 
preferences of BCEAD, in left-to-right order. The other two subjects have preference 
curves nearest object E in the center of the configuration. Consequently, their most 
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preferred object is E. In the multidimensional model, distance is calculated in all 
directions from the center of the subject’s preference curve. Again, the SYSTAT MDS 
module can be used to find solutions for multidimensional unfolding problems. The 
following figure is the multidimensional preference model for normal curves. 

Preference curves do not have to be normal, symmetric, or even probability 
distributions. Carroll (1972) devised an unfolding procedure based on a quadratic 
preference curve model. He called the procedure “external” because it relied on 
quantitative ratings of the subject’s preferences and a previously determined fixed 
configuration of objects in a space. While ordinary unfolding begins with an  
matrix of n subjects’ rank ordering of p objects, external unfolding begins with a  
matrix of p objects’ coordinates in q dimensions and a  matrix of n subjects’ 
ratings of their preferences for the p objects. 

The unidimensional preference model for quadratic curves shows Carroll’s model 
in one dimension. Unlike the normal curve model, the quadratic preference curves 
involve negative preferences. The subject on the left in the unidimensional preference 
model for normal curves, for example, is indifferent about object E (or more indifferent 
than she is about object D). The subject on the left in the unidimensional preference 
model for quadratic curves, on the other hand, likes object E least. Carroll’s model is 
therefore appropriate for data following a bipolar (approach-avoidance) preference 
model. The following is the unidimensional preference model for quadratic curves.

n p×
p q×

p n×
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Carroll fits each subject’s vector of preferences to a configuration of objects via 
ordinary least-squares. In fact, the preference curves in the previous unidimensional 
preference model for quadratic curves are really inverted (negative) quadratic loss for 
each subject when Carroll’s least-squares fitting method is used to fit her vector of 
preferences to the coordinates of the objects.

Carroll offers four fitting methods, three of which appear in SYSTAT. The first, 
called the vector model in SYSTAT, is simply a multiple regression of the preference 
vector on the coordinates themselves:

 

where  is the preference scale value of the jth stimulus for the ith subject. The 
coefficients  are estimated by regressing y (the vector of preferences) on X (the 

 matrix of coordinates) and then transforming the coefficients. 
This is called a vector model because the resulting fit is displayed as a vector 

superimposed on the object configuration. Preferences are predicted from the 
perpendicular projections of the object’s coordinates onto each vector. 

The second model, called the CIRCLE model in SYSTAT, is the one in the figures 
above. It is fit by regressing each subject’s preferences on the coordinates and squared 
coordinates of the object configuration. From the coefficients in this regression, the 
ideal points are established in the coordinate space of the object configuration. In two 
dimensions, the intersection of each preference surface with the zero preference plane 
is a circle. The basic algebraic model is
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where

The third model, called the ELLIPSE model in SYSTAT, allows for differential 
weighting of preference dimensions. It uses weights in computing the distances instead 
of the ordinary regression in the circular model. As a result, each preference curve may 
be elliptical at the zero preference plane. The model is

 

where

Biplots and MDPREF

The CORAN procedure in SYSTAT performs a correspondence analysis on a 
rectangular matrix. The singular value decomposition is used to compute row and 
column coordinates in a single configuration. These coordinates are popularly 
represented as a set of vectors for the columns and a set of points for the rows.

Biplots (Gabriel, 1971) are a singular value decomposition of a general  
matrix. MDPREF (Carroll, 1972) is the same model except that the vectors (column 
coordinates) are standardized to have equal length. This is because Carroll developed 
the procedure for representing preferences with the vector model based on n subjects’ 
preferences for p objects.
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Procrustes Rotations

Procrustes rotations involve matching a source configuration to a target. SYSTAT 
offers two types of rotations. The first is a classical orthogonal procrustes rotation 
(Schönemann, 1966). This produces a fit by rotating and transposing axes and is 
especially suited for principal components and factor analyses. 

The second method, called canonical rotation in SYSTAT, is a general translation, 
rotation, reflection, and uniform dilation transformation that is ideally suited for 
multidimensional scaling and any procedure where location, scale, and orientation are 
arbitrary. This method is documented in Borg and Groenen (1997).

Perceptual Mapping in SYSTAT

Perceptual Mapping Dialog Box

To open the Perceptual Mapping dialog box, from the menus choose:

Advanced 
 Perceptual Mapping…
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Dependent(s). The dependent variables should be continuous or categorical numeric 
variables (for example, income).

Independent(s). The independent variables should be continuous or categorical 
numeric variables (grouping variables).

Method. The following methods are available:

� Biplot. Requires only a dependent variable. Biplots are a singular value 
decomposition of a general matrix.

� Canonical. Requires both a dependent and an independent variable. It relates an n-
dimensional configuration to another. Canonical rotation is a general translation, 
rotation, reflection, and uniform dilation transformation that is ideally suited for 
multidimensional scaling and any procedure where location, scale, and orientation 
are arbitrary. 

� Circle. Requires both dependent and independent variable(s). The columns of the 
first set are fit to the configuration in the second. 

� Ellipse. Requires both dependent and independent variable(s). The columns of the 
first set are fit to the configuration in the second. 

� MDPREF. Requires only a dependent variable. MDPREF is a biplot except that the 
vectors (column coordinates) are of the same unit length. 

� Procrustes. Requires both a dependent and an independent variable. Procrustes 
rotation relates an n-dimensional configuration to another and involves matching a 
source configuration to a target. It produces a fit by rotating and transposing axes 
and is especially suited for principal components and factor analyses. 

� Vector. Requires both a dependent and an independent variable. The columns of 
the first set are fit to the configuration in the second. 

Standardize. Standardizes the data before fitting.

Dimension. Specifies the number of dimensions to do the scaling. 

Polarity. Specifies the polarity of the preferences when doing preference mapping. If 
the smaller number indicates the least and the higher number the most, select Positive. 
For example, a questionnaire may include the question: “Rate a list of movies where 
one star (*) is the worst and five stars (*****) is the best.” If the higher number 
indicates a lower ranking and the lower number indicates a higher ranking, select 
Negative. For example, a questionnaire may include the question, “Rank your favorite 
sports team where 1 is the best and 10 is the worst.”
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Using Commands

After selecting a file with USE filename, continue with:

Usage Considerations 

Types of data. PERMAP uses only rectangular data. 

Print options. The output is standard for all PLENGTH options.

Quick Graphs. PERMAP produces Quick Graphs for every analysis. 

Saving files. PERMAP does not save coordinates.

BY groups. PERMAP analyzes data by groups.

Case frequencies. PERMAP uses the FREQ variable, if present, to duplicate cases. This 
inflates the total degrees of freedom to be the sum of the number of frequencies. Using 
a FREQ variable however does not require more memory.

Case weights. PERMAP does not use WEIGHT.

Examples

Example 1  
Vector Model

The Preference Mapping procedure of Carroll is implemented through a model that 
regresses a set of subjects (the left side of the model equation) onto the coordinates of 

PERMAP
     MODEL varlist or depvarlist = indvarlist
     ESTIMATE / METHOD = BIPLOT 
                         MDPREF 
                         VECTOR 
                         CIRCLE 
                         ELLIPSE 
                         PROCRUSTES 
                         CANONICAL,
               STANDARDIZE,
               DIMENSION = n, 
               POLARITY = POSITIVE 
NEGATIVE
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a set of objects (the right side of the model equation). The file SYMP contains 
coordinates from a multidimensional scaling of disease symptoms from Wilkinson, 
Blank, and Gruber (1996). It also contains, for a selected set of diseases, indicators for 
the presence or absence of a symptom. These are informal ratings. 

The input for fitting the vector model to the data is:

The output is:

USE SYMP
IDVAR SYMPTOM$
PERMAP
     MODEL LYME MALARIA YELLOW RABIES FLU = DIM1 DIM2
     ESTIMATE / METHOD=VECTOR

Configuration has been centered prior to fitting
External unfolding via vector model

  Goodness of Fit for Subjects

  Subject  ¦ R-square    F-ratio      df      p-value
 ----------+-----------------------------------------
         1 ¦     0.007      0.056    2   15     0.946
         2 ¦     0.029      0.226    2   15     0.800
         3 ¦     0.173      1.574    2   15     0.240
         4 ¦     0.059      0.474    2   15     0.632
         5 ¦     0.079      0.642    2   15     0.540

  Regression Coefficients for Subjects

    ¦     1        2        3
 ---+------------------------
  1 ¦ 0.000    0.057   -0.002
  2 ¦ 0.000    0.096   -0.070
  3 ¦ 0.000    0.170    0.177
  4 ¦ 0.000   -0.073    0.161
  5 ¦ 0.000   -0.084    0.147

  Subject Coordinates

    ¦      1        2
 ---+----------------
  1 ¦  0.999   -0.032
  2 ¦  0.806   -0.592
  3 ¦  0.692    0.722
  4 ¦ -0.415    0.910
  5 ¦ -0.496    0.869
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Example 2  
Circle Model

The circle model places the diseases near the symptoms they most involve. 

The input is:

The output is: 

USE SYMP
IDVAR SYMPTOM$
PERMAP
MODEL LYME MALARIA YELLOW RABIES FLU = DIM1 DIM2
ESTIMATE / METHOD=CIRCLE

Configuration has been centered prior to fitting
External unfolding via circular ideal point model

  Goodness of Fit for Subjects

  Subject  ¦ R-square    F-ratio      df      p-value             
 ----------+------------------------------------------------------
         1 ¦     0.271      1.735    3   14     0.206             
         2 ¦     0.385      2.926    3   14     0.071             
         3 ¦     0.265      1.685    3   14     0.216             
         4 ¦     0.257      1.615    3   14     0.231             
         5 ¦     0.079      0.401    3   14     0.755   Anti-Ideal

External Unfolding Vector Model
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Example 3  
Internal Model 

The DIVORCE file includes grounds for divorce in the United States in 1971. It is 
adapted from Wilkinson, Blank, and Gruber (1996), and is originally from Long 
(1971). We will do an MDPREF analysis on these data to plot the rows and columns in 
a common space.

  Regression Coefficients for Subjects

    ¦      1        2        3        4
 ---+----------------------------------
  1 ¦  0.379    0.001   -0.046   -0.380
  2 ¦  0.449    0.029   -0.123   -0.450
  3 ¦  0.191    0.142    0.155   -0.191
  4 ¦  0.334   -0.123    0.122   -0.335
  5 ¦ -0.009   -0.083    0.148    0.009

  Subject Coordinates

    ¦      1        2
 ---+----------------
  1 ¦  0.001   -0.061
  2 ¦  0.033   -0.136
  3 ¦  0.370    0.405
  4 ¦ -0.183    0.182
  5 ¦  4.475   -8.030

External Unfolding Circular Model
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The input is:

The output is:

USE DIVORCE
IDVAR STATE$
PERMAP
     MODEL ADULTERY..SEPARATE
     ESTIMATE / METHOD=MDPREF

Configuration has been centered prior to fitting

MDPREF (Biplot) Analysis

  Eigenvalues

       1        2       3       4       5       6
 ------------------------------------------------
  19.196   18.277   9.792   9.132   8.035   6.483

      7       8       9      10      11      12
 ----------------------------------------------
  4.825   3.595   2.278   0.866   0.581   0.000

  Vector Coordinates

     ¦      1        2
 ----+----------------
   1 ¦  0.657    0.754
   2 ¦  0.540    0.842
   3 ¦  0.661    0.751
   4 ¦  0.078    0.997
   5 ¦  0.746    0.666
   6 ¦  0.969   -0.248
   7 ¦  0.793   -0.610
   8 ¦  0.626    0.780
   9 ¦  0.694   -0.720
  10 ¦ -0.657   -0.754
  11 ¦  0.851   -0.525
  12 ¦ -0.982    0.191

  Object Coordinates

     ¦      1        2
 ----+----------------
   1 ¦  0.102    0.117
   2 ¦  0.048    0.092
   3 ¦ -0.032    0.088
   4 ¦ -0.152    0.178
   . ¦     .        .
   . ¦     .        .
  49 ¦ -0.165    0.007
  50 ¦  0.176    0.057
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The biplot looks similar, with all of the grounds for divorce vectors approximately 
equal in length, because the original data have comparable variances on these 
variables.

Example 4  
Procrustes Rotation

In a profound but seldom-cited dissertation, Wilkinson (1975) scaled perceptions of 
cars and dogs among car club and dog club members. The file CARDOG contains the 
INDSCAL (Individual Differences Scaling) configurations of the scalings of cars and 
dogs. Wilkinson paired cars and dogs by using the subject’s responses on additional 
rating scales of attributes. INDSCAL dimensions, on the other hand, are claimed to 
have an intrinsic canonical orientation that ordinarily precludes rotation (see the 
references in “Multidimensional Scaling”). The question here, then, is whether a 
procrustes rotation guided by the extrinsically based pairings will change the original 
INDSCAL configurations. We will rotate cars to dogs.

The input is:

USE CARDOG
PERMAP
     MODEL C1,C2 = D1,D2
     ESTIMATE/METHOD=PROCRUSTES

MDPREF Plot
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The output is: 

The rotation matrix in the output is nearly an identity matrix. Unlike the nonmetric 
multidimensional scalings in Wilkinson’s dissertation, which required rotation to a 
common orientation, the INDSCAL analyses recovered the apparently canonical 
dimensions. These were agile-clumsy (horizontal) and big-small (vertical).

In place of the procrustes output, which normally consists of separate scatterplots of 
the two sets, we present a plot of the superimposed configurations.

Orthogonal Procrustes Rotation

  Rotation Matrix T

    ¦      1       2
 ---+---------------
  1 ¦  0.984   0.177
  2 ¦ -0.177   0.984

  Target (X) Coordinates

     ¦       1         2
 ----+------------------
   1 ¦  21.000    -1.000
   2 ¦  13.000    -6.000
   3 ¦  -4.000    26.000
   4 ¦  -9.000    20.000
   5 ¦   3.000    15.000
   6 ¦  -2.000    14.000
   7 ¦ -20.000     1.000
   8 ¦  -8.000   -16.000
   9 ¦   4.000   -20.000
  10 ¦   6.000   -15.000
  11 ¦   8.000     6.000

  Rotated (Y) Coordinates

     ¦       1         2
 ----+------------------
   1 ¦  20.216     0.577
   2 ¦  16.353    -6.211
   3 ¦ -14.256    22.842
   4 ¦  -8.452    18.803
   5 ¦  10.047    11.961
   6 ¦  -1.765     9.843
   7 ¦ -12.165    -0.149
   8 ¦ -16.156   -23.216
   9 ¦   3.102   -11.635
  10 ¦  -6.714    -2.220
  11 ¦  11.988     1.134
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Computation

Algorithms

The algorithms are documented in the Statistical Background section above. Most 
involve a singular value decomposition computed in the standard manner.

Missing data

Cases and variables with missing data are omitted from the calculations.
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