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Chap ter  

 4  
Multidimensional Scaling

Leland Wilkinson

Multidimensional Scaling (MDS) offers nonmetric multidimensional scaling of a 
similarity or dissimilarity matrix in one to five dimensions. Multidimensional scaling 
is a powerful data reduction procedure that can be used on a direct similarity or 
dissimilarity matrix or on one derived from rectangular data with Correlations. 
SYSTAT provides three MDS loss functions (Kruskal, Guttman, and Young) that 
produce results comparable to those from three of the major MDS packages (KYST, 
SSA, and ALSCAL). All three methods perform a similar function: to compute 
coordinates for a set of points in a space such that the distances between pairs of these 
points fit as closely as possible to measured dissimilarities between a corresponding 
set of objects.

The family of procedures called principal components or factor analysis is related 
to multidimensional scaling in function, but multidimensional scaling differs from 
this family in important respects. Usually, but not necessarily, multidimensional 
scaling can fit an appropriate model in fewer dimensions than can these other 
procedures. Furthermore, if it is implausible to assume a linear relationship between 
distances and dissimilarities, multidimensional scaling nevertheless provides a simple 
dimensional model.

MDS also computes the INDSCAL (individual differences multidimensional 
scaling) model (Carroll and Chang, 1970). The INDSCAL model fits dissimilarity or 
similarity matrices for multiple subjects into one common space, with jointly 
estimated weight parameters for each subject (that is, a dissimilarity matrix is input 
for each subject and separate (monotonic) regression functions are computed). MDS 
can fit the INDSCAL model using any of the three loss functions, although we 
recommend using Kruskal’s STRESS for this purpose.
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Finally, MDS can fit the nonmetric unfolding model. This allows one to analyze 
rank-order preference data.

Statistical Background
Multidimensional scaling (MDS) is a procedure for fitting a set of points in a space 
such that the distances between points correspond as closely as possible to a given set 
of dissimilarities between a set of objects. Dissimilarities may be measured directly, as 
in psychological judgments, or derived indirectly as in correlation matrices computed 
on rectangular data. 

Assumptions

Because MDS, like cluster analysis, operates directly on dissimilarities, no statistical 
distribution assumptions are necessary. There are, however, other important 
assumptions. First, multidimensional scaling is a spatial model. To fit points in the kind 
of spaces that MDS covers, assume that your data satisfy metric conditions:

� The distance from an object to itself is 0,

� The distance from object A to object B is the same as that from B to A,

� The distance from object A to C is less than or equal to the distance from A to B 
plus B to C. This is sometimes called the triangle inequality.

You may think these conditions are obvious, but there are numerous counter-examples 
in psychological perception and elsewhere. For example, commuters often view the 
distance from home to the city as closer than the distance from the city to home because 
of traffic patterns, terrain, and psychological expectations related to time of day. 
Framing or context effects can also disrupt the metric axioms, as Amos Tversky has 
shown. For example, Miami is similar to Havana. Havana is similar to Moscow. Is 
Miami similar to Moscow? If your data (objects) are not consistent with these three 
axioms, do not use MDS.

Second, there are ways of deriving distances from rectangular data that do not 
satisfy the metric axioms. The ones available in Correlations do, but if you are thinking 
of using some other derived measure of similarity, check it carefully.

Finally, it is assumed that all your objects will fit in the same metric space. It is best 
if they diffuse somewhat evenly through this space as well. Do not expect to get 
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interpretable results for 25 nearly indistinguishable objects and one that is radically 
different.

Collecting Dissimilarity Data

You can collect dissimilarities directly or compute them indirectly. 

Direct Methods

Examples of direct dissimilarities are:

Distances. Take distances between objects (for example, cities) directly off a map. If 
the scale is local, MDS will reproduce the map nicely. If the scale is global, you will 
need three dimensions for an MDS fit. Two or three dimensional spatial distances can 
be measured directly. Direct measures of social distance might include spatial 
propinquity or the number of times or amount of time one individual interacts with 
another. 

Judgments. Ask subjects to give a numerical rating of the dissimilarity (for example, 
0 to 10) between all pairs of objects.

Clusters. Ask people to sort objects into piles; or examine naturally occurring 
aggregates, such as paragraphs, communities, and associations. Record 0 if two objects 
occur in the same group and 1 if they do not. Sum these counts over replications or 
judges.

Triads. Ask subjects to compare three objects at a time and report which two are most 
similar (or which is the odd one out). Do this over all possible triads of objects. To 
compute dissimilarities, sum over all triads, as for the clustering method. There are 
usually many more triads than pairs of objects, so this method is more tedious. 
However, it allows you to independently assess possible violations of the triangle 
inequality.

Indirect Methods

Indirect dissimilarities are computed over a rectangular matrix whose columns are 
objects and rows are attributes. You can transpose this matrix if you want to scale rows 
instead. Possible indirect dissimilarities include:
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Computed Euclidean distances. These are the square root of the sum-of-squared 
discrepancies between columns of the rectangular matrix. 

Negatives of correlations. For standardized data (mean of 0 and standard deviation of 
1), Pearson correlations are proportional to Euclidean distances. For unstandardized 
data, Pearson correlations are comparable to computing Euclidean distances after 
standardizing. MDS automatically negates correlations if you do not. Other types of 
correlations for example, Spearman and gamma are analogous to standardized 
distances, but only approximately. Also, be aware that large negative correlations will 
be treated as large distances and large positive correlations as small distances. Make 
sure that all variables are scored in the same direction before computing correlations. 
If you find that a whole row of a correlation matrix is negative, reverse the variable by 
multiplying by –1, and recompute the correlations.

Counts of discrepancies. Counting discrepancies between columns or using some of 
the binary association measures in Correlations is closely related to computing the 
Euclidean distance. These methods are also related to the clustering distance 
calculations mentioned above for direct distances.

Scaling Dissimilarities

Once you have dissimilarities (or similarities, correlations, etc., which MDS 
automatically transforms to dissimilarities), you may scale them. You do not need to 
know how the computer does the calculations in order to use the program intelligently 
as long as you pay attention to the following:

Stress and Iterations

Stress is the goodness-of-fit statistic that MDS tries to minimize. It consists of the 
square root of the normalized squared discrepancies between interpoint distances in the 
MDS plot and the smoothed distances predicted from the dissimilarities. Stress varies 
between 0 and 1, with values near 0 indicating better fit. It is printed for each iteration, 
which is one movement of all the points in the plot toward a better solution. Make sure 
that iterations proceed smoothly to a minimum. This is true for the examples in this 
chapter. If you find that the stress values increase or decrease in uneven steps, you 
should be suspicious.
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The Shepard Diagram

The Shepard diagram is a scatterplot of the distances between points in the MDS plot 
against the observed dissimilarities (or similarities). The points in the plot should 
adhere cleanly to a curve or straight line (which would be the smoothed distances). In 
other words, you should look at a good Shepard plot and think it resembles the outcome 
of a well-designed experiment. For more information refer examples in the chapter. 

If the Shepard diagram resembles a stepwise or L-shaped function, beware, you may 
have achieved a degenerate solution. Publish it and you will be excoriated by the 
clergy.

The MDS Plot

The plot of points is what you seek. The points should be scattered fairly evenly 
through the space. The orientation of axes is arbitrary—remember we are scaling 
distances, not axes. Feel free to reverse axes or rotate the solution. MDS rotates it to 
the largest dimensions of variation, but these do not necessarily mean anything for your 
data.

You may interpret the axes as in principal components or factor analysis. More 
often, however, you should look for clusters of objects or regular patterns among the 
objects, such as circles, curved manifolds, and other structures. See the Guttman loss 
function example for a good view of a circle. 

For more information, see Borg and Lingoes (1981, 1987), Carroll and Arabie 
(1980), Davison (1983), Green and Rao (1972), Kruskal, Wish and Uslaner (2006), 
Schiffman, Reynolds, and Young (1981), and Shepard, Romney and Nerlove (1972).

Multidimensional Scaling in SYSTAT

Multidimensional Scaling Dialog Box

To open the Multidimensional Scaling dialog box, from the menus choose:

Advanced 
Multidimensional Scaling...
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The following options are available:

Selected variable(s). Select the variables that contain the matrix of data to be analyzed.

Shape. Specify the type of matrix input. For a similarities model, select Square. For an 
unfolding model, select Rectangular and enter the number of rows in your matrix.

Loss function. MDS scales similarity and dissimilarity matrices using three loss 
functions:

� Kruskal. Uses Kruskal’s STRESS formula 1 scaling method.

� Young. Uses Young’s S-STRESS scaling method, which allows you to scale using 
the loss function featured in ALSCAL.

� Guttman. Uses Guttman’s coefficient of alienation scaling method.

Note: Iterations with Kruskal’s method are faster but usually take longer to converge 
to a minimum value than those with the Guttman method. The procedure used in the 
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latter has been found in simulations to be less susceptible to local minima than that 
used in the Kruskal method (Lingoes and Roskam, 1973). We do not recommend 
Young’s S-STRESS loss function. Because it weights squares of distances, large 
distances have more influence than smaller ones. Weinberg and Menil (1993) 
summarized why this is a problem: “…error variances of dissimilarities tend to be 
positively correlated with their means. If this is the case, large distances should be, if 
anything, down-weighted relative to small distances.” 

When using the Kruskal or Young loss functions, choose the form of the function 
relating distances to similarities (or dissimilarities):

� Mono. Specifies nonmetric scaling.

� Linear. Specifies metric scaling.

� Log. Specifies a log function, allowing a smooth curvilinear relation between 
dissimilarities and distances.

� Power. Specifies a power function. (This option is available only with Kruskal loss 
function.)

By default, SYSTAT takes it as Kruskal MONOTONIC loss function.

Note: If you use the Kruskal loss function, you can fit a MONOTONIC, LINEAR, or 
LOG function of distances onto input dissimilarities. The standard option is 
MONOTONIC multidimensional scaling. To avoid degenerate solutions, however, log 
or linear scaling is sometimes handy. Log scaling is recommended for this purpose 
because it allows a smooth curvilinear relation between dissimilarities and distances.

Split loss. For an individual differences of unfolding model, split the calculation of the 
loss function by rows of the matrix or by matrices. Splitting by rows is possible only 
for a rectangular matrix.

Dimension. Number of dimensions in which to scale. The number of dimensions must 
be a positive integer less than or equal to the number of variables that you scale and 5. 
The default value is 2.

R-metric. Constant for the Minkowski power metric for computing distances. For 
ordinary Euclidean distance, enter 2. For city-block distance, enter 1. For values other 
than 1 or 2, computation is slower because logarithms and exponentials are used. The 
default value is 2.

The general formula for calculating distances is:
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where r is the specified power and p is the number of dimensions.

Iterations. Limit for the number of iterations.

Convergence. Iterations terminate when the maximum absolute difference between 
any coordinate in the solution at iteration i versus iteration  is less than the 
specified convergence criterion. Because the configuration is standardized to unit 
variance on every iteration, iteration stops when no coordinate moves more than the 
specified convergence criterion (0.005 by default) from its value on the previous 
iteration. 

Most MDS programs terminate when stress reaches a predetermined value or 
changes by less than a small amount. These programs can terminate prematurely, 
however, because comparable stress values can result from different configurations. 
The SYSTAT convergence criterion allows you to stop iterating when the 
configuration ceases to change. 

Weight. Adds weights for each dimension and each matrix (subject) into the 
calculation of separate distances that are used in the minimization. For an individual 
differences model, select Weight.

Save. You can save three sets of output to a data file:

� Configuration. Saves the final configuration.

� Distances. Saves the matrix of distances between points in the final scaled 
configuration.

� Residuals. Saves the data, distances, estimated distances, residuals, and the row 
and column number of the original distance in the rectangular SYSTAT file.

With the residuals, MDS displays the root-mean-squared residuals for each point in its 
output. Because STRESS is a function of the sum-of-squared residuals, the root-mean-
squared residuals are a measure of the influence of each point on the STRESS statistic. 
This can help you identify ill-fitting points.
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Multidimensional Scaling Configuration

SYSTAT offers several alternative initial configurations.

Compute configuration from data. By default, the configuration is computed from the 
data. The method used depends on the loss function.

Use previous configuration. Uses the configuration from the previous scaling.

Define custom configuration. You can specify a custom starting configuration for the 
scaling. There must be as many rows as items and columns as dimensions. When you 
type a matrix, SYSTAT reads as many numbers in each row as you specify. It reads as 
many rows as there are points to scale.

You can specify a configuration for confirmatory analysis. Enter a hypothesized 
configuration and let the program iterate only once. Then look at the stress.
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Using Commands

First, specify your data with USE filename. Continue with:

Usage Considerations

Types of data. MDS uses a data file that contains an SSCP, covariance, correlation, or 
dissimilarity matrix. When you open the data file, MDS automatically recognizes its 
type.

Print options. The output is standard for all PLENGTH options.

Quick Graphs. MDS produces a Shepard diagram for each matrix analyzed and a plot 
of the final configuration. For solutions containing four or more dimensions, the final 
configuration appears as a scatterplot matrix of all dimension pairs.

Saving files. You can save the final configuration, matrix of distances between points 
in the final scaled configuration, distances, estimated distances, residuals, and the row 
and column number of the original distance in SYSTAT data files.

BY groups. MDS produces a separate analysis for each level of a BY variable.

Case frequencies. FREQ is not available in MDS.

Case weights. WEIGHT is not available in MDS.

MDS
     MODEL varlist / ROWS=n SHAPE=SQUARE or RECT
     CONFIG LAST 
          or 
     CONFIG [matrix]
     ESTIMATE / DIM=n  R=n  ITER=n  WEIGHT  CONVERGE=n , 
                LOSS=GUTTMAN or KRUSKAL or YOUNG ,  
                REGRESS=MONO or LINEAR or LOG or POWER ,  
                SPLIT=ROW or MATRIX 
     SAVE filename / CONFIG or DIST or RESID
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Examples

Example 1  
Kruskal Method

The data in the ROTHKOPF file are adapted from an experiment by Rothkopf (1957). 
They were originally obtained from 598 subjects who judged whether or not pairs of 
Morse code signals presented in succession were the same. Morse code signals for 
letters and digits were used in the experiment, and all pairs were tested in each of two 
possible sequences. For multidimensional scaling, the data for letter signals have been 
averaged across sequence, and the diagonal (pairs of the same signal) has been omitted. 
The data in this form were first scaled by Shepard.

The input is:

Use the shortcut notation (..) in MODEL for listing consecutive variables in the file 
(otherwise, simply list each variable name separated by a space).

The program begins by generating an initial configuration of points whose 
interpoint distances are a linear function of the input data. For this estimation, MDS 
uses a metric multidimensional scaling. To do this, missing values in the input matrix 
are replaced by mean values for the whole matrix. Then the values are converted to 
distances by adding a constant.

The output is:

MDS
   USE ROTHKPF1
   MODEL a .. z
   IDVAR code$
   ESTIMATE / LOSS=KRUSKAL

Monotonic Multidimensional Scaling

Kruskal Method
The data are analyzed as similarities
Minimizing Kruskal STRESS (form 1) in 2 dimensions

Iteration History

  Iteration     STRESS
 ---------------------
          0   0.263539
          1   0.237909
          2   0.218820
          3   0.202184
          4   0.190513
          5   0.184341
          6   0.181174
          7   0.179394
          8   0.178269
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Stress of Final Configuration    : 0.178269 
Proportion of Variance (RSQ)     : 0.845020 

Coordinates in 2 Dimensions

  Variable         Dimension      
                     1           2
  .-         -1.211291   -0.310037
  -...        0.587818   -0.449746
  -.-.        0.667949    0.050103
  -..         0.061532   -0.439883
  .          -1.542846    0.893490
  ..-.        0.475856   -0.571910
  --.         0.224256    0.645882
  ....        0.032423   -1.047075
  ..         -1.447269   -0.381961
  .---        0.776074    0.765947
  -.-         0.224747    0.024567
  .-..        0.603292   -0.269646
  --         -0.621882    0.757884
  -.         -1.153966   -0.042454
  ---         0.468887    1.024640
  .--.        0.629749    0.305905
  --.-        0.897228    0.555671
  .-.        -0.283513   -0.343725
  ...        -0.655589   -1.038669
  -          -1.469059    0.948010
  ..-        -0.310876   -0.750825
  ...-        0.365593   -0.869607
  .--         0.041743    0.131315
  -..-        0.832711   -0.148606
  -.--        0.870719    0.381966
  --..        0.935717    0.178765

Shepard Diagram
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The solution required eight iterations. Notice that STRESS reduces at each iteration. 
Final STRESS values near zero may indicate the presence of a degenerate solution.

The Shepard diagram is a scatterplot of distances between points in the MDS plot 
against the observed dissimilarities or similarities. In monotonic scaling, the regression 
function has steps at various points. For most solutions, the function in this plot should 
be relatively smooth (without large steps). If the function looks like one or two large 
steps, you should consider setting REGRESSION to LOG or LINEAR under ESTIMATE.

Notice that large values of the data tend to have small distances in the configuration. 
The diagram displays an overall decreasing trend because we are using similarities 
(large data values indicate similar objects). For dissimilarities, the Shepard diagram 
displays an increasing trend.

In the configuration plot, the points should be scattered fairly evenly through the 
space. If you are scaling in more than two dimensions, you should examine plots of 
pairs of axes or rotate the solution in three dimensions. The solution has been rotated 
to principal axes (that is, the major variation is on the first dimension). This rotation is 
not performed unless the scaling is in Euclidean space, as in the present example.

The two-dimensional solution clearly distinguishes short signals from long and dots 
from dashes. Dashes tend to appear in the upper right and dots in the lower left. Long 
codes tend to appear in the lower right and short in the upper left.
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Example 2  
Guttman Loss Function

To illustrate the Guttman loss function, this example uses judged similarities among 14 
spectral colors (from Ekman, 1954). Nanometer wavelengths (W434, …, W674) are 
used to name the variables for each color. Blue-violets are in the 400’s; reds are in the 
600’s. The judgments are averaged across 31 subjects; the larger the number for a pair 
of colors, the more similar the two colors are. The file (EKMAN) has no diagonal 
elements, and its type is SIMILARITY.

The Guttman method is used to scale these judgments in two dimensions to 
determine whether the data fit a perceptual color wheel. The Kruskal loss function will 
give you a similar result. 

The input is:

The output is:

MDS
   USE EKMAN
   MODEL w434 .. w674
   ESTIMATE / LOSS=GUTTMAN

Monotonic Multidimensional Scaling

Guttman loss function
The data are analyzed as similarities
Minimizing Guttman/Lingoes Coefficient of Alienation in 2 dimensions

Iteration History

  Iteration   Alienation
 -----------------------
          0     0.070826
          1     0.042072
          2     0.037764
          3     0.036151
          4     0.035074

Alienation of Final Configuration  : 0.035074 
Proportion of Variance (RSQ)       : 0.996227 

Coordinates in 2 Dimensions

  Variable         Dimension      
                     1           2
  W434        0.311713   -0.905203
  W445        0.400413   -0.840312
  W465        0.893585   -0.574320
  W472        0.952088   -0.484501
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  W490        0.975491    0.112340
  W504        0.814841    0.640540
  W537        0.547614    0.888347
  W555        0.329882    0.974307
  W584       -0.536487    0.734375
  W600       -0.826975    0.381875
  W610       -1.010004    0.056985
  W628       -1.005072   -0.181708
  W651       -0.944729   -0.332423
  W674       -0.902358   -0.470305

Shepard Diagram
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The fit of configuration distances to original data is extremely close, as evidenced by 
the low coefficient of alienation and clean Shepard diagram. 

The resulting configuration is almost circular, denoting a “circumplex” by Guttman 
(1954). There is a large gap at the bottom of the figure, however, because the perceptual 
color between deep red and dark purple is not a spectral color.

Example 3  
Individual Differences Multidimensional Scaling

The data in the COLAS file are taken from Schiffman, Reynolds, and Young (1981). 
The data in this file have an unusual structure. The file consists of 10 dissimilarity 
matrices stacked on top of each other. They are judgments by 10 subjects of the 
dissimilarity (0–100) between pairs of colas. The example will fit the INDSCAL 
(individual differences scaling) model to these data, seeking a common group space for 
the 10 different colas and a parallel weight space for the 10 different judges. 

The input is:

The WEIGHT option tells SYSTAT to weight each matrix separately. Without this 
option, all matrices would be weighted equally, and you would have a single pooled 
solution. You want to use weighting so that you can see which subjects favor one 
dimension over the others in their judgments. The MATRIX option of SPLIT tells 
SYSTAT to compute separate (monotonic) regression functions for each subject 
(matrix). Finally, scale the result in three dimensions, as did Schiffman et al. (1981).

The output is:

MDS
   USE COLAS
   MODEL dietpeps .. dietrite
   ESTIMATE / LOSS=KRUSKAL  WEIGHT  SPLIT=MATRIX  DIM=3

Monotonic Multidimensional Scaling
Kruskal Method
The data are analyzed as dissimilarities
There are 10 replicated data matrices
Dimensions are weighted separately for each matrix
Fitting is split between data matrices
Minimizing Kruskal STRESS (form 1) in 3 dimensions

Iteration History
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  Iteration     STRESS
 ---------------------
          0   0.220898
          1   0.184422
          0   0.221309
          1   0.184508

Stress of Final Configuration    : 0.184508 
Proportion of Variance (RSQ)     : 0.535014 

Coordinates in 3 Dimensions

  Variable               Dimension            
                     1           2           3
  DIETPEPS   -0.608199    0.195575    0.777055
  RC          0.521748    0.052353    0.756390
  YUKON       0.415860   -0.089042   -0.867859
  PEPPER      0.271872   -1.265870    0.059119
  SHASTA      0.797845    0.024902   -0.143788
  COKE        0.390732    0.836586   -0.347338
  DIETPEPR   -0.747107   -0.842914   -0.173399
  TAB        -0.790969    0.438430   -0.609165
  PEPSI       0.570666    0.221001    0.381030
  DIETRITE   -0.822448    0.428980    0.167955

  Matrix ¦   Stress        RSQ             Dimension           
         ¦                              1          2          3
 --------+-----------------------------------------------------
       1 ¦ 0.188374   0.547755   0.697761   0.433686   0.526788
       2 ¦ 0.199808   0.416268   0.452105   0.465357   0.721233
       3 ¦ 0.196430   0.467821   0.347855   0.522989   0.739323
       4 ¦ 0.170677   0.564314   0.591235   0.492475   0.608234
       5 ¦ 0.178156   0.594393   0.704482   0.370109   0.563840
       6 ¦ 0.171913   0.621371   0.704169   0.367609   0.570188
       7 ¦ 0.181071   0.551692   0.419485   0.582263   0.659122
       8 ¦ 0.180465   0.559729   0.483517   0.597254   0.608641
       9 ¦ 0.163263   0.624525   0.562688   0.495564   0.625805
      10 ¦ 0.211658   0.402270   0.435248   0.609372   0.617438



III-202

Chapter 4

The solution required four iterations. Notice that the second two iterations appear to be 
a restart. This is true, because the fourth matrix has a missing value. SYSTAT uses the 
EM algorithm to reestimate this value, compute a new metric solution, and iterate two 
more times until convergence. This extra set of iterations did not do much for you in 
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this example because the stress is insignificantly higher than it would have been had 
you stopped at only two iterations. With many missing values, however, the EM 
algorithm will improve MDS solutions substantially. 

For the INDSCAL model, you have a set of coordinates for the colas and one for the 
subjects. In the three-dimensional graph of the coordinates, the colas are represented 
by symbols and the subjects by vectors. The first dimension separates the diet colas 
from the others. The second dimension differentiates between Dr. Pepper/diet Dr. 
Pepper and the remaining colas.

For each subject, you have a contribution to overall stress and a separate squared 
correlation (RSQ) between the predicted and obtained distances in the configuration. 
Notice that subject 10 is fit worst (STRESS = 0.211658) and subject 9 best  
(STRESS = 0.163263). Furthermore, subjects 1, 5, and 6 have a high loading on the 
first dimension, indicating that they place a higher emphasis on diet/nondiet 
differences than on cherry cola/cola differences. Subjects 7, 8, and 10, on the other 
hand, emphasize the second dimension more.

Example 4  
Nonmetric Unfolding

The COLRPREF data set contains color preferences among 15 SYSTAT employees for 
five primary colors. This example uses the MDS unfolding model to scale the people 
and the colors in two dimensions, such that each person’s coordinate is near his or her 
favorite color’s coordinate and far from his or her least favorite color’s coordinate. For 
this example, use ROWS to specify the number of rows for a rectangular matrix and 
SHAPE to specify the type of matrix input to use. When you enter these data for the 
first time, you must remember to specify their type as DISSIMILARITY so that small 
numbers are understood as meaning most similar (preferred).

To scale these with the unfolding model, specify:

Notice that you are using the Kruskal loss function as the default.

MDS
   USE COLRPREF
   MODEL red .. blue / SHAPE=RECT
   IDVAR name$
   ESTIMATE / SPLIT=ROWS
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The output is:

Monotonic Multidimensional Scaling
Kruskal Method
The data are analyzed as dissimilarities
The data are rectangular (lower corner matrix)
Fitting is split between rows of data matrix
Minimizing Kruskal STRESS (form 1) in 2 dimensions

Iteration History

  Iteration     STRESS
 ---------------------
          0   0.148373
          1   0.135423
          2   0.125152
          3   0.117255
          4   0.111131
          5   0.106394
          6   0.102622
          7   0.099539
          8   0.096883
          9   0.094498
          0   0.107455
          1   0.100496
          2   0.096037
          3   0.092747
          4   0.090087

Stress of Final Configuration    : 0.090087 
Proportion of Variance (RSQ)     : 0.940008 

Coordinates in 2 Dimensions

  Variable          Dimension      
                      1           2
  RED          0.252839   -0.486827
  ORANGE       0.530030   -1.697840
  YELLOW      -1.312679   -0.563914
  GREEN        1.388778    0.255362
  BLUE        -0.548163    0.785062
  Patrick      0.560619    0.782517
  Laszlo      -0.728868   -0.132010
  Mary        -1.005806    0.113803
  Jenna        0.194159   -0.247226
  Julie       -0.702923   -0.219116
  Steve        1.176419   -0.756052
  Phil         0.612587    0.614672
  Mike        -0.802781   -0.017760
  Keith        0.273582    0.758853
  Kathy        0.048997    0.756548
  Leah        -0.718963    0.004649
  Stephanie    0.498464    0.577649
  Lisa         0.784008    0.209336
  Mark        -0.565003    0.500289
  John         0.064703   -1.237996

Row Fit Measures

  Row       ¦   Stress        RSQ
 -----------+--------------------
  Patrick   ¦ 0.000000   1.000000
  Laszlo    ¦ 0.068318   0.969913
  Mary      ¦ 0.004396   0.999893
  Jenna     ¦ 0.048405   0.983337
  Julie     ¦ 0.271710   0.508263
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  Steve     ¦ 0.033042   0.992776
  Phil      ¦ 0.061234   0.972002
  Mike      ¦ 0.083004   0.958462
  Keith     ¦ 0.171898   0.773657
  Kathy     ¦ 0.000000   1.000000
  Leah      ¦ 0.067386   0.971396
  Stephanie ¦ 0.028564   0.993661
  Lisa      ¦ 0.055084   0.980702
  Mark      ¦ 0.000000   1.000000
  John      ¦ 0.024703   0.996053

Shepard Diagram
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Nonmetric Unfolding and the EM Algorithm

The nonmetric unfolding model has often presented problems to MDS programs 
because so much data are missing. If you think of the unfolding matrix as the lower 
corner matrix in a larger triangular matrix of subjects + objects, you can visualize how 
much data (namely, all of the subject-object comparisons) are missing. Since SYSTAT 
uses the EM algorithm for missing values, unfolding models do not degenerate as 
frequently. SYSTAT does a complete MDS using all available data and then estimates 
missing dissimilarities/similarities using the distances in the solution. These estimated 
values are then used to get a starting configuration for another complete iteration cycle. 
This process continues until there are no changes between EM cycles. 

The following example, from Borg and Lingoes (1987) adapted from Green and 
Carmone (1970), shows how this works. This unfolding data set contains 
dissimilarities only between the points delineating A and M, and these dissimilarities 
are treated only as rank orders. Borg and Lingoes discuss the problems in fitting an 
unfolding model to these data.

The input is:

Notice that the example uses the Guttman loss function, but the others provide similar 
results. 

The output is:

MDS
   USE AM
   IDVAR row$
   MODEL / SHAPE=RECT
   ESTIMATE / LOSS=GUTTMAN  SPLIT=ROWS

Monotonic Multidimensional Scaling
Guttman loss function
The data are analyzed as dissimilarities
The data are rectangular (lower corner matrix)
Fitting is split between rows of data matrix
Minimizing Guttman/Lingoes Coefficient of Alienation in 2 dimensions

Iteration History

  Iteration   Alienation
 -----------------------
          0     0.076137
          1     0.037826
          2     0.023535
          3     0.017735
          4     0.013271
          5     0.009960
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Alienation of Final Configuration    : 0.009960 
Proportion of Variance (RSQ)         : 0.999247 
Coordinates in 2 Dimensions

  Variable         Dimension      
                     1           2
  A1         -0.938673   -1.018145
  A2         -0.892414   -0.975977
  A3         -1.090552   -0.414280
  A4         -1.066410   -0.398294
  A5         -1.187946    0.146240
  A6         -1.227090    0.337007
  A7         -1.543054    0.668773
  A8         -0.997198    0.552347
  A9         -0.694101    0.467134
  A10        -0.305124    0.356277
  A11         0.014600    0.102324
  A12         0.104769    0.102859
  A13         0.130734    0.092203
  A14        -0.845901    0.094247
  A15        -0.739913    0.136811
  A16        -0.569064    0.128649
  M1          0.735047   -1.080081
  M2          0.430679   -0.524410
  M3          0.201071   -0.564505
  M4          0.013212   -0.431126
  M5         -0.154900   -0.326271
  M6         -0.205833   -0.180667
  M7         -0.172336    0.121768
  M8         -0.056279    0.224731
  M9          0.175900    0.267054
  M10         0.560531    0.243136
  M11         0.588937    0.218047
  M12         0.588937    0.218047
  M13         0.831710    0.871193
  M14         0.890298    0.660027
  M15         1.041142    0.212429
  M16         1.238422    0.156627
  M17         1.498853    0.231883
  M18         1.701128   -0.210182
  M19         1.940814   -0.485875

Row Fit Measures

  Row ¦   Stress        RSQ
 -----+--------------------
  M1  ¦ 0.000000   1.000000
  M2  ¦ 0.000000   1.000000
  M3  ¦ 0.000000   1.000000
  M4  ¦ 0.000463   0.999998
  M5  ¦ 0.027442   0.993181
  M6  ¦ 0.022243   0.996393
  M7  ¦ 0.024279   0.997286
  M8  ¦ 0.016153   0.998870
  M9  ¦ 0.000250   1.000000
  M10 ¦ 0.000000   1.000000
  M11 ¦ 0.000000   1.000000
  M12 ¦ 0.000000   1.000000
  M13 ¦ 0.001745   0.999957
  M14 ¦ 0.000000   1.000000
  M15 ¦ 0.000000   1.000000
  M16 ¦ 0.000000   1.000000
  M17 ¦ 0.000000   1.000000
  M18 ¦ 0.000000   1.000000
  M19 ¦ 0.000000   1.000000
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Example 5  
Power Scaling Ratio Data

As similarities or dissimilarities are often collected as rank-order data, the nonmetric 
MDS model has to work “backward” in order to solve for a configuration fitting the 
data. As J. D. Carroll has pointed out, the MDS model should really express observed 
data as a function of distances between points in a configuration rather than the other 
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way around. If your data are direct or derived distances, however, you should try setting 
REGRESSION = POWER with LOSS = KRUSKAL. This way, you can fit a Stevens 
power function to the data using distances between points in the configuration. The 
results may not always differ much from nonmetric or linear or log MDS, but SYSTAT 
will also tell you the exponent of the power function in the Shepard diagram. Notice, 
with this model, that the data and distances are transposed in the Shepard diagram 
because loss is being computed from errors in the data rather than the distances. 
SYSTAT calls the loss for the power model PSTRESS to distinguish it from Kruskal’s 
STRESS. In PSTRESS, you use DATA and its DHAT instead of DIST to compute the 
loss. 

The HELM data set contains highly accurate estimates of distance between color 
pairs by one experimental subject (CB). These are from Helm (1959) and reprinted by 
Borg and Lingoes (1987). 

To scale these with power model, specify: 

The output is: 

MDS
   USE HELM
   MODEL a .. s
   ESTIMATE / REGRESS=POWER

Power regression function, where Dissimilarities=a*Distances^p
Kruskal Method
The data are analyzed as dissimilarities
Minimizing PSTRESS (STRESS with DIST and DATA exchanged) in 2 dimensions

Iteration History

  Iteration    PSTRESS
 ---------------------
          0   0.142062
          1   0.131426
          2   0.127137
          3   0.125205

Stress of Final Configuration              : 0.125205 
Estimated Exponent for Power Regression    : 0.851539 
Proportion of Variance (RSQ)               : 0.910392 

Coordinates in 2 Dimensions

  Variable         Dimension      
                     1           2
  A          -0.828615   -0.792411
  C           0.396618   -1.087634
  E           1.134571   -0.503104
  G           0.977829    0.101019
  I           0.785506    0.483283
  K           0.331216    0.683545
  M          -0.205344    0.804234
  O          -0.725019    0.581419
  Q          -0.999584    0.052736
  S          -0.867177   -0.323088
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SYSTAT estimated the power exponent for the function, fitting distances to 
dissimilarities as 0.85. Color and many other visual judgments show similar power 
exponents less than 1.0. 

Computation
This section summarizes algorithms separately for the Kruskal and Guttman methods. 
The algorithms in these options substantially follow those of Kruskal (1964a, 1964b) 
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and Guttman (1968). MDS output should agree with other nonmetric multidimensional 
scaling except for rotation, dilation, and translation of the configuration. Secondary 
documentation can be found in Schiffman, Reynolds, and Young (1981) and the other 
multidimensional scaling references. The summary assumes that dissimilarities are 
input. If similarities are input, MDS inverts them.

Algorithms

Kruskal Method

The program begins by generating a configuration of points whose interpoint distances 
are a linear function of the input data. For this estimation, MDS uses a metric 
multidimensional scaling. Missing values in the input dissimilarities matrix are 
replaced by mean values for the whole matrix. Then the values are converted to 
distances by adding a constant. A scalar products matrix B is then calculated following 
the procedures described in Torgerson (1958). The initial configuration matrix X in p 
dimensions is computed from the first p eigenvectors of B using the Young-
Householder procedure (Torgerson, 1958)

After an initial configuration is computed by the metric method, nonmetric 
optimization begins (there are no metric pre-iterations). At the beginning of each 
iteration, the configuration is normalized to have zero centroid and unit dispersion. 
Next, Kruskal’s DHAT (fitted) distance values are computed by a monotonic regression 
of distances onto data. Tied data values are ordered according to their corresponding 
distances in the configuration. 

Stress (formula 1) is calculated from fitted distances, observed distances, and input 
data values. If the stress is less than 0.001, or has decreased less than 0.001 per iteration 
in the last five iterations, or the number of iterations equals the number specified by the 
user (default is 50), iterations terminate (that is, go to the next paragraph). Otherwise, 
the negative gradient is computed for each point in the configuration by taking the 
partial derivatives of stress with respect to each dimension. Points in the configuration 
are moved along their gradients with a step size chosen as a function of the rate of 
descent; the steeper the descent, the smaller the step size. This completes an iteration.

After the last iteration, the configuration is shifted so that the origin lies in the 
centroid. Thus, the point coordinates sum to 0 on each dimension. Moreover, the 
configuration is normalized to unit size so that the sum of squares of its coordinates is 
1. If the Minkowski constant is 2 (Euclidean scaling, which is the standard option), the 
final configuration is rotated to its principal axis.
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Guttman Method

The initial configuration for the Guttman option is computed according to Lingoes and 
Roskam (1973). Principal components are computed on a matrix C, 

where rij are the ranks of the input dissimilarities (smallest rank corresponding to 
smallest dissimilarity), and n is the number of points. The diagonal elements of C are 

where the sum is taken over the entire row of the dissimilarity matrix.
For the iteration stage, the initial configuration is normalized as in the Kruskal 

method. Then rank images corresponding to each distance in the configuration are 
computed by permuting the configuration distances so that they mirror the rank order 
of the original input dissimilarities. Ties in the data are handled as in the Kruskal 
method. These rank images are used to compute the Guttman/Lingoes coefficient of 
alienation. Iterations are terminated if this coefficient becomes arbitrarily small, if the 
number of iterations exceeds the maximum, or if the change in its value becomes small. 
Otherwise, the points in the configuration are moved five times using the same rank 
images but different interpoint distances each time to compute a new negative gradient. 
These five cycles within each iteration are what lengthens the calculations in the 
Guttman method. This completes an iteration.

The final configuration is rotated and scaled as with the Kruskal method. 
Guttman/Lingoes programs normalize the extreme values of the configuration to unity 
and thus do not plot the configuration with a zero centroid, so MDS output corresponds 
to their output within rigid motion and configuration size.

Missing Data

Missing values in a similarity/dissimilarity matrix are ignored in the computation of 
the loss function that determines how points in the configuration are moved. For 
information on how this function is computed, see the discussion of algorithms. 
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If you compute a similarity matrix with Correlations for input to MDS, the matrix 
will have no missing values unless all of your cases in the raw data have a constant or 
missing value on one or more variables.
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