
srpm fina
2005/10/6
page i

�

�

�

�

�

�

�

�

i

The Structural
Representation of

Proximity Matrices With
MATLAB

srpm fina
2005/10/6
page ii

�

�

�

�

�

�

�

�

ii

srpm fina
2005/10/6
page iii

�

�

�

�

�

�

�

�

Contents

Preface xi

I (Multi- and Uni-dimensional) City-Block Scaling 1

1 Linear Unidimensional Scaling 3
1.1 LUS in the L2-Norm . 4

1.1.1 A Data Set for Illustrative Purposes 5
1.2 L2 Optimization Methods . 6

1.2.1 Iterative Quadratic Assignment 6
1.3 Confirmatory and Nonmetric LUS 12

1.3.1 The Confirmatory Fitting of a Given Order Using
linfit.m . 12

1.3.2 The Monotonic Transformation of a Proximity Ma-
trix Using proxmon.m 13

1.4 The Dykstra-Kaczmarz Method 18

2 Linear Multidimensional Scaling 19
2.1 The Incorporation of Additive Constants in LUS 21

2.1.1 The L2 Fitting of a Single Unidimensional Scale
(with an Additive Constant) 21

2.2 Finding and Fitting Multiple Unidimensional Scales 24
2.3 Incorporating Monotonic Transformations of a Proximity Matrix 27
2.4 Confirmatory Extensions to City-Block Individual Differences

Scaling . 29

3 Circular Scaling 31
3.1 The Mechanics of CUS . 33

3.1.1 The Estimation of c and min{|xj−xi|, x0−|xj−xi|}
for a Fixed Permutation and Set of Inflection Points 33

3.1.2 Obtaining Object Orderings and Inflection Points
Around a Closed Continuum 34

3.1.3 The Circular Unidimensional Scaling Utilities, cir-
fit.m and cirfitac.m 35

iii

srpm fina
2005/10/6
page iv

�

�

�

�

�

�

�

�

iv Contents

3.2 Circular Multidimensional Scaling 43

4 LUS for Two-Mode Proximity Data 49
4.1 Reordering Two-Mode Proximity Matrices 50
4.2 Fitting a Two-Mode Unidimensional Scale 51
4.3 Multiple LUS Reorderings and Fittings 56
4.4 Some Useful Two-Mode Utilities 60
4.5 Two-mode Nonmetric Bidimensional Scaling 62

II The Representation of Proximity Matrices by Tree Structures 67

5 Ultrametrics for Symmetric Proximity Data 73
5.1 Fitting a Given Ultrametric in the L2 Norm 75
5.2 Finding an Ultrametric in the L2 Norm 76
5.3 Graphically Representing an Ultrametric 78

5.3.1 LATEX Code for the Dendrogram of Figure 5.1 81
5.3.2 Plotting the Dendrogram with ultraplot.m 84

6 Additive Trees for Symmetric Proximity Data 87
6.1 Fitting a Given Additive Tree in the L2-Norm 88
6.2 Finding an Additive Tree in the L2-Norm 89
6.3 Decomposing an Additive Tree 91
6.4 Graphically Representing an Additive Tree 93
6.5 An Alternative for Finding an Additive Tree in the L2-Norm . . 94

7 Fitting Multiple Tree Structures for a Symmetric Matrix 99
7.1 Multiple Ultrametrics . 99
7.2 Multiple Additive Trees . 101

8 Ultrametrics and Additive Trees for Two-Mode Data 105
8.1 Fitting and Finding Two-Mode Ultrametrics 106
8.2 Finding Two-Mode Additive Trees 108
8.3 Completing a Two-Mode Ultrametric to One Defined on SA ∪ SB 111

8.3.1 The goldfish receptor Data 115

III The Representation of Proximity Matrices by Structures
Dependent on Order (Only) 117

9 Anti-Robinson (AR) Matrices for Symmetric Proximity Data 121
9.0.2 Incorporating Transformations 122
9.0.3 Interpreting the Structure of an AR matrix 123

9.1 Fitting a Given AR Matrix in the L2-Norm 125
9.1.1 Fitting the (In)-equality Constraints Implied by a

Given Matrix in the L2-Norm 126
9.2 Finding an AR Matrix in the L2-Norm 128

srpm fina
2005/10/6
page v

�

�

�

�

�

�

�

�

Contents v

9.3 Fitting and Finding a Strongly Anti-Robinson (SAR) Matrix in
the L2-Norm . 130

9.4 The Use of Optimal Transformations and the M-function prox-
mon.m . 133

9.5 Graphically Representing SAR Structures 138
9.6 Representation Through Multiple (Strongly) AR Matrices . . . 141

10 Circular-Anti-Robinson (CAR) Matrices 149
10.1 Fitting a Given CAR Matrix in the L2-Norm 151
10.2 Finding a CAR Matrix in the L2-Norm 153
10.3 Finding a Circular Strongly-Anti-Robinson (CSAR) Matrix in

the L2-Norm . 154
10.4 Graphically Representing CSAR Structures 158
10.5 Representation Through Multiple (Strongly) CAR Matrices . . 158

11 Anti-Robinson (AR)
Matrices for Two-Mode
Proximity Data 167
11.1 Fitting and Finding Two-Mode AR Matrices 168
11.2 Multiple Two-Mode AR Reorderings and Fittings 171

Bibliography 177

A Header Commentsfor the Mentioned M-files 183

Indices 218
Author Index . 218
Subject Index . 220

srpm fina
2005/10/6
page vi

�

�

�

�

�

�

�

�

vi Contents

srpm fina
2005/10/6
page vii

�

�

�

�

�

�

�

�

List of Tables

1.1 The number.dat data file extracted from Shepard, Kilpatric, and
Cunningham (1975) . 6

3.1 A proximity matrix, morse digits.dat, for the ten Morse code sym-
bols representing the first ten digits (data from Rothkopf, 1957) . 33

4.1 The goldfish receptor.dat data file constructed from Schiffman and
Falkenberg (1968) . 50

4.2 The two unidimensional scalings of the goldfish receptor data . . . 57

9.1 Order-constrained least-squares approximations to the digit prox-
imity data of Shepard et al. (1975); the upper-triangular portion
is anti-Robinson and the lower-triangular portion is strongly-anti-
Robinson . 139

9.2 The 45 subsets listed according to increasing diameter values that
are contiguous in the object ordering used to display the upper-
triangular portion of Table 9.1. The 22 subsets given in italics
are redundant in the sense that they are proper subsets of another
listed subset with the same diameter. 140

9.3 The fourteen (nonredundant) subsets listed according to increasing
diameter values are contiguous in the linear object ordering used
to display the lower-triangular SAR portion of Table 9.1. 143

10.1 The fifteen (nonredundant) subsets listed according to increasing
diameter values are contiguous in the circular object ordering used
to display the CSAR entries in Table 10.2. 159

10.2 A circular strongly-anti-Robinson order-constrained least-squares
approximation to the digit proximity data of Shepard et al. (1975). 159

vii

srpm fina
2005/10/6
page viii

�

�

�

�

�

�

�

�

viii List of Tables

srpm fina
2005/10/6
page ix

�

�

�

�

�

�

�

�

List of Figures

3.1 Two-dimensional circular plot for the morse digits data obtained
using circularplot.m . 43

4.1 Two-dimensional joint biplot for the goldfish receptor data ob-
tained using biplottm.m . 61

4.2 Two-dimensional joint biplot for the goldfish receptor data ob-
tained using bimonscaltmac.m and biplottm.m 65

5.1 A dendrogram (tree) representation for the ultrametric described
in the text having VAF of .4941 82

5.2 Dendrogram plot for the number data obtained using ultraplot.m 86

6.1 A dendrogram (tree) representation for the ultrametric component
of the additive tree described in the text having VAF of .6359 . . 95

6.2 A graph-theoretic representation for the additive tree described in
the text having VAF of .6359 . 96

9.1 Two 4 × 4 submatrices and the object subsets they induce, taken
from the anti-Robinson matrix in the upper-triangular portion of
Table 9.1. For (a), a graphical representation of the fitted values
is possible; for (b), the anomaly indicated by the dashed lines pre-
vents a consistent graphical representation from being constructed. 142

9.2 A graphical representation for the fitted values given by the strongly-
anti-Robinson matrix in the lower-triangular portion of Table 9.1. 143

10.1 A graphical representation for the fitted values given by the circular
strongly-anti-Robinson matrix in the lower-triangular portion of
Table 10.2 (VAF = 72.96%). Note that digit 3 is placed both in
the first and the last positions in the ordering of the objects with
the implication that the sequence continues in a circular manner.
This circularity is indicated by the curved dashed line. 160

ix

srpm fina
2005/10/6
page x

�

�

�

�

�

�

�

�

x List of Figures

srpm_f
2005/10/
page xi

�

�

�

�

�

�

�

�

Preface

As the title of this monograph implies, our main goal is to provide and il-
lustrate the use of functions (by way of M-files) within a MATLABR© computa-
tional environment to effect a variety of structural representations for proximity
information assumed available on a set of objects.1 The structural representations
that will be of interest have been discussed and developed primarily in the applied
(behavioral science) statistical literature (e.g., in psychometrics and classification),
although interest in these topics has now extended much more widely (for exam-
ple, to bioinformatics and chemometrics). We subdivide the monograph into three
main sections depending on the general class of representations being discussed.
Part I will develop linear and circular uni- and multi-dimensional scaling using the
city-block metric as the major representational device; Part II is concerned with
characterizations based on various graph-theoretic tree structures, and specifically
with those usually referred to as ultrametrics and additive trees; Part III uses rep-
resentations defined solely by order properties, and particularly to what are called
(strongly) anti-Robinson forms. Irrespective of the part of the monograph being
discussed, there generally will be two kinds of proximity information analyzed: one-
mode and two-mode. One-mode proximity data are defined between the n objects
from a single set, and usually given in the form of a square (n × n) symmetric
matrix with a zero main diagonal; two-mode proximity data are defined between
the objects from two distinct sets containing, say, na and nb objects, respectively,
and given in the form of a rectangular (na × nb) matrix. Also, there will generally
be the flexibility to allow the fitting (additively) of multiple structures to either the
given one- or two-mode proximity information.

It is not the intent of the monograph to present formal demonstrations of the
various assertions we might make along the way, such as for the convergence of a
particular algorithm or approach. All of this is generally available in the literature
(and much of it by the authors of the current monograph), and the references to this
source material are given when appropriate. The primary interest here is to present
and demonstrate how to actually find and fit these structures computationally with
the help of some sixty-five functions (though M-files) we provide that are usable
within a MATLAB computational environment. The usage header information for
each of these functions is given in Appendix A (listed alphabetically). The M-files
themselves can be downloaded individually from

1MATLABR© is a registered trademark of The MathWorks, Inc.

xi

srpm fina
2005/10/6
page xii

�

�

�

�

�

�

�

�

xii Preface

http://cda.psych.uiuc.edu/srpm_mfiles

Here, the acronym “srpm” stands (obviously) for “structural representation (of)
proximity matrices”. Also, there is a “zipped” file called srpm_mfiles.zip at this
site that includes them all, as well as the few small data sets used throughout the
monograph to illustrate the results of invoking the various M-files (or equivalently
for us, M-functions); thus, the reader should be able to reproduce all of the examples
given in the monograph (assuming, obviously, access to a MATLAB environment).
If additional examples are desired, the reader is directed to Michael Lee’s web site
and the some fifty or so proximity matrices he has collected and made available in
the MATLAB MAT-file format:

www.psychology.adelaide.edu.au/personalpages/staff/michaellee/homepage

The computational approach implemented in the provided M-files for obtain-
ing the sundry representations, are by choice, invariably least-squares, and based
on what is called the Dykstra-Kaczmarz (DK) method for solving linear inequality
constrained least-squares tasks. The latter iterative strategy is reviewed in Chapter
1 (Section 1.4, in particular). All of the representations of concern (over all three
monograph Parts) can be characterized by explicit linear inequalities; thus, once the
latter constraints are known (by, for example, the identification of certain object
permutations through secondary optimization problems such as quadratic assign-
ment), the actual representing structure can be obtained by using the iterative DK
strategy. Also, as we will see particularly in Part II dealing with graph-theoretic
tree structures (ultrametrics and additive trees), the DK approach can even be
adopted heuristically to first identify the inequality constraints that we might wish
to impose in the first place. And once identified in this exploratory fashion, a sec-
ond application of DK could then do a confirmatory fitting of the now fixed and
identified inequality constraints.

As noted above, our purpose in writing this monograph is to provide an ap-
plied documentation source for a collection of M-files that would be of interest to
applied statisticians and data analysts but also accessible to a notationally sophis-
ticated but otherwise substantively focused user. Such a person would typically
be most interested in analyzing a specific data set by adopting one (or some) of
the structural representations we discuss. The background we have tried to assume
is at the same level required to follow the documentation for good, commercially
available optimization subroutines, such as the Numerical Algorithms Group (NAG)
Fortran subroutine library, or at the level of one of the standard texts in applied
multivariate analysis usually used for a graduate second-year methodology course
in the behavioral and social sciences. An excellent example of the latter would be
the widely used text now in its fifth edition by Johnson and Wichern (2002). Draft
versions of the current monograph have been used as supplementary material for a
course relying on the latter text as the primary reference.

The research reported in this monograph has been partially supported by
the National Science Foundation through Grant No. SES-981407 (to LH), and by
the Netherlands Organization for Scientific Research (NWO) through Grant No.
575-67-053 for the ‘PIONEER’ project ‘Subject Oriented Multivariate Analysis’ (to
JM).

srpm fina
2005/10/6
page xiii

�

�

�

�

�

�

�

�

Preface xiii

Lawrence Hubert
Phipps Arabie

Jacqueline Meulman

January, 2006

srpm fina
2005/10/6
page xiv

�

�

�

�

�

�

�

�

xiv Preface

srpm fina
2005/10/6
page 1

�

�

�

�

�

�

�

�

Part I

(Multi- and Uni-dimensional)
City-Block Scaling

1

srpm fina
2005/10/6
page 2

�

�

�

�

�

�

�

�

srpm fina
2005/10/6
page 3

�

�

�

�

�

�

�

�

Chapter 1

Linear Unidimensional
Scaling

The task of linear unidimensional scaling (LUS) can be characterized as a specific
data analysis problem: given a set of n objects, S = {O1, ..., On}, and an n×n sym-
metric proximity matrix, P = {pij}, arrange the objects along a single dimension
such that the induced n(n − 1)/2 interpoint distances between the objects reflect
the proximities in P. The term “proximity” refers to any symmetric numerical
measure of relationship between each object pair (pij = pji for 1 ≤ i, j ≤ n) and for
which all self-proximities are considered irrelevant and set equal to zero (pii = 0 for
1 ≤ i ≤ n). As a technical convenience, proximities are assumed nonnegative and
are given a dissimilarity interpretation, so that large proximities refer to dissimilar
objects.

As a starting point to be developed exclusively in this first chapter, we consider
the most common formalization of measuring how close the interpoint distances are
to the given proximities by the sum of squared discrepancies. Specifically, we wish
to find the n coordinates, x1, x2, . . . , xn, such that the least-squares (or L2) criterion

∑
i<j

(pij − |xj − xi|)2 (1.1)

is minimized. Although there is some arbitrariness in the selection of this measure
of goodness-of-fit for metric scaling, the choice is traditional and has been discussed
in some detail in the literature by Guttman (1968), Defays (1978), de Leeuw and
Heiser (1977), and Hubert and Arabie (1986), among others. In the various sections
that follow, we will develop a particular heuristic strategy for the minimization of
(1.1) based on the iterative use of a quadratic assignment improvement technique.
Other methods are possible but will not be explicitly discussed here; the reader is
referred to Hubert, Arabie, and Meulman (2002) for a comparison among several
optimization alternatives for the basic LUS task.

In addition to developing the combinatorial optimization task of actually iden-
tifying a best unidimensional scaling, Section 1.3 introduces two additional prob-
lems within the LUS context: (a) the confirmatory fitting of a unidimensional scale
(through coordinate estimation) based on a fixed (and given) object ordering; (b)

3

srpm fina
2005/10/6
page 4

�

�

�

�

�

�

�

�

4 Chapter 1. Linear Unidimensional Scaling

the extension to nonmetric unidimensional scaling incorporating an additional op-
timal monotonic transformation of the proximities. Both these optimization tasks
are formulated through the L2-norm and implemented using applications of what
is called the Dykstra-Kaczmarz method of solving linear (in)equality constrained
least-squares tasks (Kaczmarz, 1937; Dykstra, 1983). The latter strategy is reviewed
briefly in a short addendum (in Section 1.4) to this chapter.

1.1 LUS in the L2-Norm
As a reformulation of the L2 unidimensional scaling task that will prove crucial as
a point of departure in our development of a computational routine, the optimiza-
tion suggested by (1.1) can be subdivided into two separate problems to be solved
simultaneously: find a set of n numbers, x1 ≤ x2 ≤ · · · ≤ xn, and a permutation
on the first n integers, ρ(·) ≡ ρ, for which∑

i<j

(pρ(i)ρ(j) − (xj − xi))2 (1.2)

is minimized. Thus, a set of locations (coordinates) is defined along a continuum
as represented in ascending order by the sequence x1, x2, . . . , xn; the n objects are
allocated to these locations by the permutation ρ, so that object Oρ(i) is placed at
location i. Without loss of generality we will impose the one additional constraint
that

∑
i xi = 0; i.e., any set of values, x1, x2, . . . , xn, can be replaced by x1− x̄, x2−

x̄, . . . , xn − x̄, where x̄ = (1/n)
∑

i xi, without altering the value of (1.1) or (1.2).
Formally, if ρ∗ and x∗

1 ≤ x∗
2 ≤ · · · ≤ x∗

n define a global minimum of (1.2), and Ω
denotes the set of all permutations of the first n integers, then∑

i<j

(pρ∗(i)ρ∗(j) − (x∗
j − x∗

i))
2 =

min[
∑
i<j

(pρ(i)ρ(j) − (xj − xi))2 | ρ ∈ Ω; x1 ≤ · · · ≤ xn;
∑

i

xi = 0].

The measure of loss in (1.2) can be reduced algebraically:∑
i<j

p2
ij + n(

∑
i

x2
i − 2

∑
i

xit
(ρ)
i), (1.3)

subject to the constraints that x1 ≤ · · · ≤ xn and
∑

i xi = 0, and letting

t
(ρ)
i = (u(ρ)

i − v
(ρ)
i)/n,

where

u
(ρ)
i =

i−1∑
j=1

pρ(i)ρ(j) for i ≥ 2,

v
(ρ)
i =

n∑
j=i+1

pρ(i)ρ(j) for i < n,

srpm fina
2005/10/6
page 5

�

�

�

�

�

�

�

�

1.1. LUS in the L2-Norm 5

and
u

(ρ)
1 = v(ρ)

n = 0.

Verbally, u
(ρ)
i is the sum of the entries within row ρ(i) of {pρ(i)ρ(j)} from the extreme

left up to the main diagonal; v
(ρ)
i is the sum from the main diagonal to the extreme

right. Or, we might rewrite (1.3) as

∑
i<j

p2
ij + n

(∑
i

(xi − t
(ρ)
i)2 −

∑
i

(t(ρ)
i)2

)
. (1.4)

In (1.4), the two terms
∑

i(xi − t
(ρ)
i)2 and

∑
i(t

(ρ)
i)2 control the size of the discrep-

ancy index since
∑

i<j p2
ij is constant for any given data matrix. Thus, to minimize

the original index in (1.2), we should simultaneously minimize
∑

i(xi − t
(ρ)
i)2 and

maximize
∑

i(t
(ρ)
i)2. If the equivalent form of (1.3) is considered, our concern would

be in minimizing
∑

i x2
i and maximizing

∑
i xit

(ρ)
i .

As noted first by Defays (1978), the minimization of (1.4) can be carried
out directly by the maximization of the single term,

∑
i(t

(ρ)
i)2 (under the mild

regularity condition that all off-diagonal proximities in P are positive and not merely
nonnegative). Explicitly, if ρ∗ is a permutation that maximizes

∑
i(t

(ρ)
i)2, then

we can let xi = t
(ρ∗)
i , which eliminates the term

∑
i(xi − t

(ρ∗)
i)2 from (1.4). In

short, because the order induced by t
(ρ∗)
1 , . . . , t

(ρ∗)
n is consistent with the constraint

x1 ≤ x2 ≤ · · · ≤ xn, the minimization of (1.4) reduces to the maximization of the
single term

∑
i(t

(ρ)
i)2, with the coordinate estimation completed as an automatic

byproduct.

1.1.1 A Data Set for Illustrative Purposes

It is convenient to have a small numerical example available as we discuss opti-
mization strategies in the unidimensional scaling context. Toward this end we list
a data file in Table 1.1, called ‘number.dat’, that contains a dissimilarity matrix
taken from Shepard, Kilpatric, and Cunningham (1975). The stimulus domain is
the first ten single-digits {0,1,2, . . . , 9} considered as abstract concepts; the 10×10
proximity matrix (with an ith row or column corresponding to the i − 1 digit) was
constructed by averaging dissimilarity ratings for distinct pairs of those integers
over a number of subjects and conditions. Given the various analyses of this prox-
imity matrix that have appeared in the literature (e.g., see Hubert, Arabie, and
Meulman, 2001), the data reflect two types of very regular patterning based on
absolute digit magnitude and the structural characteristics of the digits (e.g., the
powers or multiples of 2 or of 3, the salience of the two additive/multiplicative
identities [0/1], oddness/evenness). These data will be relied on to provide con-
crete numerical illustrations of the various MATLAB functions we introduce, and
will be loaded as a proximity matrix (and importantly, as one that is symmetric
and has zero values along the main diagonal) in the MATLAB environment by the
command ‘load number.dat’. As we will see, the dominant single unidimensional
scale found for these data is most consistent with digit magnitude.

srpm fina
2005/10/6
page 6

�

�

�

�

�

�

�

�

6 Chapter 1. Linear Unidimensional Scaling

Table 1.1. The number.dat data file extracted from Shepard, Kilpatric, and
Cunningham (1975)

.000 .421 .584 .709 .684 .804 .788 .909 .821 .850

.421 .000 .284 .346 .646 .588 .758 .630 .791 .625

.584 .284 .000 .354 .059 .671 .421 .796 .367 .808

.709 .346 .354 .000 .413 .429 .300 .592 .804 .263

.684 .646 .059 .413 .000 .409 .388 .742 .246 .683

.804 .588 .671 .429 .409 .000 .396 .400 .671 .592

.788 .758 .421 .300 .388 .396 .000 .417 .350 .296

.909 .630 .796 .592 .742 .400 .417 .000 .400 .459

.821 .791 .367 .804 .246 .671 .350 .400 .000 .392

.850 .625 .808 .263 .683 .592 .296 .459 .392 .000

1.2 L2 Optimization Methods
This section shows how a well-known combinatorial optimization task, called quad-
ratic assignment, can be used iteratively for LUS in the L2-norm. Based on the
reformulation in (1.3), we concentrate on maximizing

∑
i xit

(ρ)
i , with iterative re-

estimation of the coordinates x1, . . . , xn. Various function implementations within
MATLAB are given for both the basic quadratic assignment task and how it is used
for LUS.

1.2.1 Iterative Quadratic Assignment

Because of the manner in which the discrepancy index for the unidimensional scaling
task can be rephrased as in (1.3) and (1.4), the two optimization subproblems to be
solved simultaneously of identifying an optimal permutation and a set of coordinates
can be separated:

(a) assuming that an ordering of the objects is known (and denoted, say, as
ρ0 for the moment), find those values x0

1 ≤ · · · ≤ x0
n to minimize

∑
i(x

0
i − t

(ρ0)
i)2. If

the permutation ρ0 produces a monotonic form for the matrix {pρ0(i)ρ0(j)} in the

sense that t
(ρ0)
1 ≤ t

(ρ0)
2 ≤ · · · ≤ t

(ρ0)
n , the coordinate estimation is immediate by

letting x0
i = t

(ρ0)
i , in which case

∑
i(x

0
i − t

(ρ0)
i)2 is zero.

(b) assuming that the locations x0
1 ≤ · · · ≤ x0

n are known, find the permuta-
tion ρ0 to maximize

∑
i xit

(ρ0)
i . We note from the work of Hubert and Arabie (1986,

p. 189) that any such permutation which even only locally maximizes
∑

i xit
(ρ0)
i ,

in the sense that no adjacently placed pair of objects in ρ0 could be interchanged
to increase the index, will produce a monotonic form for the non-negative matrix
{pρ0(i)ρ0(j)}. Also, the task of finding the permutation ρ0 to maximize

∑
i xit

(ρ0)
i

is actually a quadratic assignment (QA) task which has been discussed extensively
in the literature of operations research, e.g., see Francis and White (1974), Lawler

srpm_f
2005/10/
page 7

�

�

�

�

�

�

�

�

1.2. L2 Optimization Methods 7

(1975), Hubert and Schultz (1976), among others. As usually defined, a QA prob-
lem involves two n×n matrices A = {aij} and B = {bij}, and we seek a permutation
ρ to maximize

Γ(ρ) =
∑
i,j

aρ(i)ρ(j)bij. (1.5)

If we define bij = |xi − xj| and let aij = pij, then

Γ(ρ) =
∑
i,j

pρ(i)ρ(j)|xi − xj| = 2n
∑

i

xit
(ρ)
i ,

and thus, the permutation that maximizes Γ(ρ) also maximizes
∑

xit
(ρ)
i .

The QA optimization task as formulated through (1.5) has an enormous lit-
erature attached to it, and the reader is referred to Pardalos and Wolkowicz (1994)
for an up-to-date and comprehensive review. For current purposes and as pro-
vided in three general M-functions of the next section (pairwiseqa.m, rotateqa.m,
and insertqa.m), one might consider the optimization of (1.5) through simple
object interchange/rearrangement heuristics. Based on given matrices A and B,
and beginning with some permutation (possibly chosen at random), local inter-
changes/rearrangements of a particular type are implemented until no improvement
in the index can be made. By repeatedly initializing such a process randomly, a
distribution over a set of local optima can be achieved. At least within the con-
text of some common data analysis applications, such a distribution may be highly
relevant diagnostically for explaining whatever structure might be inherent in the
matrix A. We give an example of how random starts might be studied for the con-
text of unidimensional scaling toward the end of this current section. This should
serve as a general template for other applications (M-files) as well.

In a subsequent subsection below, we introduce the main M-function for unidi-
mensional scaling (uniscalqa.m) based on these earlier QA optimization strategies.
In effect, we begin with an equally-spaced set of fixed coordinates with their inter-
point distances defining the B matrix of the general QA index in (1.5) and a random
object permutation; a locally-optimal permutation is then identified through a col-
lection of local interchanges/rearrangements; the coordinates are re-estimated based
on this identified permutation, and the whole process repeated until no change can
be made in either the identified permutation or coordinate collection.

The QA interchange/rearrangement heuristics

The three M-functions that carry out general QA interchange/rearrangement heuris-
tics all have the same general usage syntax (note the use of three dots to indicate
a statement continuation in MATLAB):

[outperm,rawindex,allperms,index] = pairwiseqa(prox,targ,inperm)

[outperm,rawindex,allperms,index] = ...
rotateqa(prox,targ,inperm,kblock)

srpm fina
2005/10/6
page 8

�

�

�

�

�

�

�

�

8 Chapter 1. Linear Unidimensional Scaling

[outperm,rawindex,allperms,index] = ...
insertqa(prox,targ,inperm,kblock)

pairwiseqa.m carries out a QA maximization task using the pairwise interchanges
of objects in the current permutation defining the row and column order of the
data matrix. All possible such interchanges are generated and considered in turn,
and whenever an increase in the cross-product index would result from a particular
interchange, it is made immediately. The process continues until the current per-
mutation cannot be improved upon by any such pairwise object interchange; this
final locally optimal permutation is OUTPERM. The input beginning permutation is
INPERM (a permutation of the first n integers); PROX is the n × n input proximity
matrix and TARG is the n × n input target matrix (which are respective analogues
of the matrices A and B of (1.5)); the final OUTPERM row and column permutation
of PROX has the cross-product index RAWINDEX with respect to TARG; RAWINDEX is
Γ(ρ) in (1.5), where ρ is now given as OUTPERM. The cell array ALLPERMS contains
INDEX entries corresponding to all the permutations identified in the optimization,
from ALLPERMS{1} = INPERM to ALLPERMS{INDEX} = OUTPERM. (Note that within
a MATLAB environment, entries of a cell array must be accessed through the curly
braces, { }.) rotateqa.m carries out a similar iterative QA maximization task but
now uses the rotation (or inversion) of from 2 to KBLOCK (which is less than or
equal to n−1) consecutive objects in the current permutation defining the row and
column order of the data matrix. insertqa.m relies on the reinsertion of from 1 to
KBLOCK consecutive objects somewhere in the permutation defining the current row
and column order of the data matrix.

The function uniscalqa.m

The function M-file, uniscalqa.m, carries out a unidimensional scaling of a symmet-
ric dissimilarity matrix (with a zero main diagonal) using an iterative quadratic as-
signment strategy. We begin with an equally-spaced target, a (random) starting per-
mutation, and use a sequential combination of the pairwise interchange/rotation/in-
sertion heuristics; the target matrix is re-estimated based on the identified (locally
optimal) permutation. The whole process is repeated until no changes can be made
in the target or the identified (locally optimal) permutation. The explicit usage
syntax is

[outperm,rawindex,allperms,index,coord,diff] = ...
uniscalqa(prox,targ,inperm,kblock)

where all terms are (mostly) present in the three QA heuristic M-functions of the
previous subsection. Here, COORD gives the final coordinates achieved, and DIFF
provides the attained value for the least-squares loss function. A recording of a
MATLAB session using number.dat follows; note the application of the built-in
MATLAB function randperm(10) to obtain a random input permutation of the
first 10 digits, and the use of the utility M-function, targlin.m (and the command
targlin(10)), to generate a target matrix, targlinear, based on an equally (and

srpm fina
2005/10/6
page 9

�

�

�

�

�

�

�

�

1.2. L2 Optimization Methods 9

unit) spaced set of coordinates. In the output given below, semicolons are placed
after the invocation of the M-functions to initially suppress the output; transposes(’)
are then used on the output vectors to conserve space by only using row (as opposed
to column) vectors in the listing.

load number.dat
targlinear = targlin(10);
inperm = randperm(10);
kblock = 2;
[outperm,rawindex,allperms,index,coord,diff] = ...

uniscalqa(number,targlinear,inperm,kblock);

outperm

outperm =

1 2 3 5 4 6 7 9 10 8

coord’

ans =

Columns 1 through 6

-0.6570 -0.4247 -0.2608 -0.1492 -0.0566 0.0842

Columns 7 through 10

0.1988 0.3258 0.4050 0.5345

diff

diff =

1.9599

Random restarts for uniscalqa.m

One of our comments indicated that by allowing random starts for some of the
routines we would be developing, a possibly diagnostic set of local optima might be
generated. To illustrate this in more detail and to provide a template that could be
emulated more generally throughout the monograph, we will show how this might
be done for the just-introduced unidimensional scaling routine uniscalqa.m. The
M-file, uniscalqa_montecarlo.m is listed below, and takes as input three matrices:
PROX, the original input proximity matrix; KBLOCK to control the QA optimization
routines; and NSTART to denote the number of random permutations for which
uniscalqa.m is to be invoked. As output, there are two cell arrays containing the

srpm_f
2005/10/
page 10

�

�

�

�

�

�

�

�

10 Chapter 1. Linear Unidimensional Scaling

final permutations and coordinates observed during the random starts (OUTPERMS
and COORDS), and three vectors containing the output cross-products, RAWINDICES,
the number of permutations visited to obtain the latter, INDICES, and the least-
squares loss criterion values, DIFFS.

function [outperms,rawindices,indices,coords,diffs] = ...
uniscalqa_montecarlo(prox,kblock,nstart)

rand(’state’,sum(100*clock));
n = size(prox,1);
targ = targlin(n);

for i = 1:nstart
inperm = randperm(n);
[outperm,rawindex,allperms,index,coord,diff] = ...

uniscalqa(prox,targ,inperm,kblock);
outperms{i} = outperm;
rawindices(i) = rawindex;
indices(i) = index;
coords{i} = coord;
diffs(i) = diff;

end

Note that the state of the random number generator is reset “randomly”
at the start of the session so the same sequence of random permutations is not
obtained (using rand(’state’,sum(100clock))); also, the equally-spaced target
matrix generated from targlin.m is automatically used as input to the call to
uniscalqa.m.

In the small examples that follow, ten random starts were given for our number
data, with only one local optima observed (at an index value of 26.1594); an addi-
tional ten random starts for a random proximity matrix (with uniform distribution
on [0,1] for the entries constructed with the utility function randprox.m), shows
two local optima at index values of 24.9350 and 25.1622. Obviously, these types of
examples could be extended.

load number.dat
kblock = 2;
nstart = 10;
[outperms,rawindices,indices,coords,diffs] = ...

uniscalqa_montecarlo(number,kblock,nstart);

rawindices

rawindices =

Columns 1 through 6

srpm_f
2005/10/
page 11

�

�

�

�

�

�

�

�

1.2. L2 Optimization Methods 11

26.1594 26.1594 26.1594 26.1594 26.1594 26.1594

Columns 7 through 10

26.1594 26.1594 26.1594 26.1594

data = randprox(10);
data

data =

Columns 1 through 6

0 0.8649 0.2503 0.4106 0.8525 0.3221
0.8649 0 0.4737 0.5080 0.4470 0.9500
0.2503 0.4737 0 0.5019 0.5958 0.8028
0.4106 0.5080 0.5019 0 0.1841 0.4619
0.8525 0.4470 0.5958 0.1841 0 0.8704
0.3221 0.9500 0.8028 0.4619 0.8704 0
0.2710 0.7454 0.3279 0.2878 0.3647 0.5435
0.8550 0.3273 0.1561 0.4915 0.6460 0.9158
0.6985 0.2331 0.2319 0.9252 0.8957 0.2553
0.4754 0.3112 0.4829 0.3670 0.5238 0.8076

Columns 7 through 10

0.2710 0.8550 0.6985 0.4754
0.7454 0.3273 0.2331 0.3112
0.3279 0.1561 0.2319 0.4829
0.2878 0.4915 0.9252 0.3670
0.3647 0.6460 0.8957 0.5238
0.5435 0.9158 0.2553 0.8076

0 0.9291 0.0794 0.8903
0.9291 0 0.4160 0.0510
0.0794 0.4160 0 0.2751
0.8903 0.0510 0.2751 0

[outperms,rawindices,indices,coords,diffs] = ...
uniscalqa_montecarlo(data,kblock,nstart);
rawindices

rawindices =

Columns 1 through 6

24.9350 25.1622 24.9350 25.1622 25.1622 25.1622

srpm_f
2005/10/
page 12

�

�

�

�

�

�

�

�

12 Chapter 1. Linear Unidimensional Scaling

Columns 7 through 10

25.1622 24.9350 25.1622 25.1622

1.3 Confirmatory and Nonmetric LUS

In developing linear unidimensional scaling (as well as other types of) representa-
tions for a proximity matrix, it is convenient to have a general mechanism avail-
able for solving linear (in)equality constrained least-squares tasks. The two such
instances discussed in this section involve (a) the confirmatory fitting of a given
object order to a proximity matrix (through an M-file called linfit.m), and (b)
the construction of an optimal monotonic transformation of a proximity matrix in
relation to a given unidimensional ordering (through an M-file called proxmon.m).
In both these cases, we rely on what can be called the Dykstra-Kaczmarz method.
An equality constrained least-squares task may be rephrased as a linear system
of equations, with the later solvable through a strategy of iterative projection as
attributed to Kaczmarz (1937; see Bodewig, 1956, pp. 163–164); a more general
inequality constrained least-squares task can also be approached through iterative
projection as developed by Dykstra (1983). The Kaczmarz and Dykstra strategies
are reviewed very briefly in the chapter addendum (Section 1.4), and implemented
within the two M-files, linfit.m and proxmon.m, discussed below.

1.3.1 The Confirmatory Fitting of a Given Order Using linfit.m

The M-function, linfit.m, fits a set of coordinates to a given proximity matrix
based on some given input permutation, say, ρ(0). Specifically, we seek x1 ≤ x2 ≤
· · · ≤ xn such that

∑
i<j(pρ0(i)ρ0(j) − |xj − xi|)2 is minimized (and where the per-

mutation ρ(0) may not even put the matrix {pρ0(i)ρ0(j)} into a monotonic form).
Using the syntax

[fit,diff,coord] = linfit(prox,inperm)

the matrix {|xj − xi|} is referred to as the fitted matrix (FIT); COORD gives the
ordered coordinates; and DIFF is the value of the least-squares criterion. The fit-
ted matrix is found through the Dykstra-Kaczmarz method where the equality
constraints defined by distances along a continuum are imposed to find the fitted
matrix, i.e., if i < j < k, then |xi − xj | + |xj − xk| = |xi − xk|. Once found, the

actual ordered coordinates are retrieved by the usual t
(ρ0)
i formula used in (1.3) but

computed on FIT.
The example below of the use of linfit.m fits two separate orders: the identity

permutation, inperm_identity, and the one that we know is least-squares optimal,
inperm_optimal (see Hubert, Arabie, and Meulman, 2002, for an explicit justifi-
cation of optimality using a dynamic programming routine). We note that, as it
should, diff is smaller (at a value of 1.9599) using inperm_optimal compared to
inperm_identity (at a value of 2.1046).

srpm_f
2005/10/
page 13

�

�

�

�

�

�

�

�

1.3. Confirmatory and Nonmetric LUS 13

load number.dat
inperm_identity = [1 2 3 4 5 6 7 8 9 10];
[fit,diff,coord] = linfit(number,inperm_identity);
coord’

ans =

Columns 1 through 6

-0.6570 -0.4247 -0.2608 -0.1392 -0.0666 0.0842

Columns 7 through 10

0.1988 0.3627 0.4058 0.4968

diff

diff =

2.1046

inperm_optimal = [1 2 3 5 4 6 7 9 10 8];
[fit,diff,coord] = linfit(number,inperm_optimal);
coord’

ans =

Columns 1 through 6

-0.6570 -0.4247 -0.2608 -0.1492 -0.0566 0.0842

Columns 7 through 10

0.1988 0.3258 0.4050 0.5345

diff

diff =

1.9599

1.3.2 The Monotonic Transformation of a Proximity Matrix
Using proxmon.m

The function, proxmon.m, provides a monotonically transformed proximity matrix
that is closest in a least-squares sense to a given input matrix. The syntax is

srpm fina
2005/10/6
page 14

�

�

�

�

�

�

�

�

14 Chapter 1. Linear Unidimensional Scaling

[monproxpermut,vaf,diff] = proxmon(proxpermut,fitted)

Here, PROXPERMUT is the input proximity matrix (which may have been subjected
to an initial row/column permutation, hence the suffix ‘PERMUT’) and FITTED is
a given target matrix; the output matrix MONPROXPERMUT is closest to FITTED in
a least-squares sense and obeys the order constraints obtained from each pair of
entries in (the upper-triangular portion of) PROXPERMUT (and where the inequal-
ity constrained optimization is carried out using the Dykstra-Kaczmarz iterative
projection strategy); VAF denotes ‘variance-accounted-for’ and indicates how much
variance in MONPROXPERMUT can be accounted for by FITTED; finally, DIFF is the
value of the least-squares loss function and is the sum of squared differences be-
tween the entries in FITTED and MONPROXPERMUT (actually, DIFF is one-half of such
a sum because the loss function in (1.1) is over i < j).

In the notation of the previous section when fitting a given order, FITTED
would correspond to the matrix {|xj − xi|}, where x1 ≤ x2 ≤ · · · ≤ xn; the in-
put PROXPERMUT would be {pρ0(i)ρ0(j)}; MONPROXPERMUT would be {f(pρ0(i)ρ0(j))},
where the function f(·) satisfies the monotonicity constraints, i.e., if pρ0(i)ρ0(j) <
pρ0(i′)ρ0(j′) for 1 ≤ i < j ≤ n and 1 ≤ i′ < j′ ≤ n, then f(pρ0(i)ρ0(j)) ≤
f(pρ0(i′)ρ0(j′)). The transformed proximity matrix {f(pρ0(i)ρ0(j))} minimizes the
least-squares criterion (DIFF) of∑

i<j

(f(pρ0(i)ρ0(j)) − |xj − xi|)2,

over all functions f(·) that satisfy the monotonicity constraints. The VAF is a
normalization of this loss value by the sum of squared deviations of the transformed
proximities from their mean:

VAF = 1 −
∑

i<j(f(pρ0(i)ρ0(j)) − |xj − xi|)2∑
i<j(f(pρ0(i)ρ0(j)) − f̄)2

,

where f̄ denotes the mean of the off-diagonal entries in {f(pρ0(i)ρ0(j))}.

An application incorporating proxmon.m

The script M-file listed below gives an application of proxmon.m using the (globally
optimal) permutation found previously for our number.dat matrix. First, linfit.m
is invoked to obtain a fitted matrix (fit); proxmon.m then generates the monotoni-
cally transformed proximity matrix (monproxpermut) with VAF = .5821 and diff =
1.0623. The strategy is then repeated cyclically (i.e., finding a fitted matrix based
on the monotonically transformed proximity matrix, finding a new monotonically
transformed matrix, and so on). To avoid degeneracy (where all matrices would con-
verge to zeros), the sum of squares of the fitted matrix is normalized; convergence
is based on observing a minimal change (less than 1.0e-006) in the VAF. As indi-
cated in the output below, the final VAF is .6672 with a diff of .9718. (Although
the permutation found earlier for number.dat remains the same throughout the
construction of the optimal monotonic transformation, in this particular example

srpm_f
2005/10/
page 15

�

�

�

�

�

�

�

�

1.3. Confirmatory and Nonmetric LUS 15

it would also remain optimal with the same VAF if the unidimensional scaling were
repeated with monproxpermut now considered the input proximity matrix. Even
though probably rare, other data sets might not have such an invariance, and it may
be desirable to initiate an iterative routine that finds both a unidimensional scaling
[i.e., an object ordering] in addition to monotonically transforming the proximity
matrix.)

load number.dat
inperm = [8 10 9 7 6 4 5 3 2 1];
[fit diff coord] = linfit(number,inperm);
[monproxpermut vaf diff] = ...

proxmon(number(inperm,inperm),fit);
sumfitsq = sum(sum(fit.^2));
prevvaf = 2;
while (abs(prevvaf-vaf) >= 1.0e-006)

prevvaf = vaf;
[fit diff coord] = linfit(monproxpermut,1:10);
sumnewfitsq = sum(sum(fit.^2));
fit = sqrt(sumfitsq)*(fit/sqrt(sumnewfitsq));
[monproxpermut vaf diff] = proxmon(number(inperm,inperm), fit);

end

fit
diff
coord’
monproxpermut
vaf

fit =

Columns 1 through 6

0 0.0824 0.1451 0.3257 0.4123 0.5582
0.0824 0 0.0627 0.2432 0.3298 0.4758
0.1451 0.0627 0 0.1806 0.2672 0.4131
0.3257 0.2432 0.1806 0 0.0866 0.2325
0.4123 0.3298 0.2672 0.0866 0 0.1459
0.5582 0.4758 0.4131 0.2325 0.1459 0
0.5834 0.5010 0.4383 0.2578 0.1711 0.0252
0.7244 0.6419 0.5793 0.3987 0.3121 0.1662
0.8696 0.7872 0.7245 0.5440 0.4573 0.3114
1.2231 1.1406 1.0780 0.8974 0.8108 0.6649

Columns 7 through 10

0.5834 0.7244 0.8696 1.2231

srpm_f
2005/10/
page 16

�

�

�

�

�

�

�

�

16 Chapter 1. Linear Unidimensional Scaling

0.5010 0.6419 0.7872 1.1406
0.4383 0.5793 0.7245 1.0780
0.2578 0.3987 0.5440 0.8974
0.1711 0.3121 0.4573 0.8108
0.0252 0.1662 0.3114 0.6649

0 0.1410 0.2862 0.6397
0.1410 0 0.1452 0.4987
0.2862 0.1452 0 0.3535
0.6397 0.4987 0.3535 0

diff =

0.9718

ans =

Columns 1 through 6

-0.4558 -0.3795 -0.3215 -0.1544 -0.0742 0.0609

Columns 7 through 10

0.0842 0.2147 0.3492 0.6764

monproxpermut =

Columns 1 through 6

0 0.2612 0.2458 0.2612 0.2458 0.5116
0.2612 0 0.2458 0.2458 0.4286 0.2458
0.2458 0.2458 0 0.2458 0.5116 0.6899
0.2612 0.2458 0.2458 0 0.2458 0.2458
0.2458 0.4286 0.5116 0.2458 0 0.2612
0.5116 0.2458 0.6899 0.2458 0.2612 0
0.6080 0.5116 0.2458 0.2458 0.2458 0.2458
0.6899 0.7264 0.2458 0.2612 0.5116 0.2458
0.5116 0.5116 0.6899 0.6080 0.4286 0.2458
1.2231 1.1406 1.0780 0.6899 0.7264 0.6080

Columns 7 through 10

0.6080 0.6899 0.5116 1.2231
0.5116 0.7264 0.5116 1.1406

srpm fina
2005/10/6
page 17

�

�

�

�

�

�

�

�

1.3. Confirmatory and Nonmetric LUS 17

0.2458 0.2458 0.6899 1.0780
0.2458 0.2612 0.6080 0.6899
0.2458 0.5116 0.4286 0.7264
0.2458 0.2458 0.2458 0.6080

0 0.1410 0.5116 0.6080
0.1410 0 0.2458 0.4286
0.5116 0.2458 0 0.2612
0.6080 0.4286 0.2612 0

vaf =

0.6672

srpm fina
2005/10/6
page 18

�

�

�

�

�

�

�

�

18 Chapter 1. Linear Unidimensional Scaling

1.4 Appendix: The Dykstra-Kaczmarz Method for
Solving Linear (In)equality Constrained
Least-Squares Tasks

Kaczmarz’s method can be characterized as follows:
Given A = {aij} of order m×n, x′ = {x1, . . . , xn}, b′ = {b1, . . . , bm}, and as-

suming the linear system Ax = b is consistent, define the set Ci = {x | ∑n
j=1 aijxj =

bi, 1 ≤ j ≤ n}, for 1 ≤ i ≤ m. The projection of any n × 1 vector y onto Ci is
simply y− (a′

iy− bi)ai(a′
iai)−1, where a′

i = {ai1, . . . , ain}. Beginning with a vector
x0, and successively projecting x0 onto C1, and that result onto C2, and so on,
and cyclically and repeatedly reconsidering projections onto the sets C1, . . . , Cm,
leads at convergence to a vector x∗

0 that is closest to x0 (in vector 2-norm, so
that

∑n
j=1(x0j − x∗

0j)
2 is minimized) and Ax∗

0 = b. In short, Kaczmarz’s method
iteratively solves least-squares tasks subject to equality restrictions.

Dykstra’s method can be characterized as follows:
Given A = {aij} of order m × n, x′

0 = {x01, . . . , x0n}, b′ = {b1, . . . , bm},
and w′ = {w1, . . . , wn}, where wj > 0 for all j, find x∗

0 such that a′
ix

∗
0 ≤ bi for

1 ≤ i ≤ m and
∑n

j=1 wj(x0j − x∗
0j)

2 is minimized. Again, (re)define the (closed
convex) sets Ci = {x | ∑n

j=1 aijxj ≤ bi, 1 ≤ j ≤ n} and when a vector y /∈ Ci,
its projection onto Ci (in the metric defined by the weight vector w) is y− (a′

iy −
bi)aiW−1(a′

iW
−1ai)−1, where W−1 = diag{w−1

1 , . . . , w−1
n }. We again initialize

the process with the vector x0 and each set C1, . . . , Cm is considered in turn. If the
vector being carried forward to this point when Ci is (re)considered does not satisfy
the constraint defining Ci, a projection onto Ci occurs. The sets C1, . . . , Cm are
cyclically and repeatedly considered but with one difference from the operation of
Kaczmarz’s method — each time a constraint set Ci is revisited, any changes from
the previous time Ci was reached are first “added back”. This last process ensures
convergence to a (globally) optimal solution x∗

0 (see Dykstra, 1983). Thus, Dykstra’s
method generalizes the equality restrictions that can be handled by Kaczmarz’s
strategy to the use of inequality constraints.

srpm fina
2005/10/6
page 19

�

�

�

�

�

�

�

�

Chapter 2

Linear Multidimensional
Scaling

Chapter 1 gave an optimization strategy based on iterative quadratic assignment for
the linear unidimensional scaling (LUS) task in the L2-norm, with all implementa-
tions carried out within a MATLAB computational environment. The central LUS
task involves arranging the n objects in a set S = {O1, O2, . . . , On} along a single
dimension, defined by coordinates x1, x2, . . . , xn, based on an n×n symmetric prox-
imity matrix P = {pij}, whose (exclusively non-diagonal) non-negative entries are
given a dissimilarity interpretation (pij = pji for 1 ≤ i, j ≤ n; pii = 0 for 1 ≤ i ≤ n).
The L2 criterion ∑

i<j

(pij − |xj − xi|)2, (2.1)

is minimized by the choice of the coordinates. The present chapter will give exten-
sions to multidimensional scaling in the city-block metric (see Arabie, 1991, for a
review of uses of this metric) for the L2 norm. The computational routines to be
discussed and illustrated are again freely available as MATLAB M-files. We also
note that most of the references given in Chapter 1 would also be relevant here as
background material on the basic LUS task, but that review will not be repeated.
Also, we will not discuss (in this chapter) comparisons to other methods (or strate-
gies) for multidimensional scaling in the city-block metric — for the development
of some of these alternatives, see Brusco (2001), Brusco and Stahl (2005), Groenen,
Heiser, and Meulman (1999), Hubert, Arabie, and Meulman (1997), and Hubert,
Arabie, and Hesson-McInnis (1992).

In the extensions to city-block multidimensional scaling being pursued, a slight
generalization to the basic unidimensional task that incorporates an additional ad-
ditive constant will prove extremely convenient. So, in Section 2.1 we emphasize
the more general least-squares loss function of the form∑

i<j

(pij − {|xj − xi| − c})2, (2.2)

where c is some constant to be estimated along with the coordinates x1, . . . , xn. Sec-
tion 2.2 removes the restriction to fitting only a single unidimensional structure to

19

srpm fina
2005/10/6
page 20

�

�

�

�

�

�

�

�

20 Chapter 2. Linear Multidimensional Scaling

a symmetric proximity matrix, and relies on the type of computational approaches
developed in Section 2.1 that include the augmentation by estimated additive con-
stants. Based on these latter strategies, extensions are given to the use of multiple
unidimensional structures through a procedure of successive residualization of the
original proximity matrix (even though in this process, negative residuals are en-
countered and have to be fitted). For example, the fitting of two LUS structures
to a proximity matrix {pij} could be rephrased as the minimization of an L2 loss
function generalizing (2.2) to the form

∑
i<j

(pij − [|xj1 − xi1| − c1] − [|xj2 − xi2| − c2])2. (2.3)

The attempt to minimize (2.3) could proceed with the fitting of a single LUS struc-
ture to {pij}, [|xj1 − xi1| − c1], and once obtained, fitting a second LUS structure,
[|xj2−xi2|−c2], to the residual matrix, {pij − [|xj1−xi1|−c1]}. The process would
then cycle by repetitively fitting the residuals from the second linear structure by
the first, and the residuals from the first linear structure by the second, until the
sequence converges. In any case, obvious extensions would also exist to (2.3) for
the inclusion of more than two LUS structures.

The explicit inclusion of two constants, c1 and c2, in (2.3) rather than adding
these two together and including a single additive constant c, deserves some ad-
ditional introductory explanation. As would be the case in fitting a single LUS
structure using the loss functions in (2.2), two interpretations exist for the role of
the additive constant c. We could consider {|xj −xi|} to be fitted to the translated
proximities {pij + c}, or alternatively, {|xj − xi| − c} to be fitted to the original
proximities {pij}, where the constant c becomes part of the actual model. Although
these two interpretations do not lead to any algorithmic differences in how we would
proceed with minimizing the loss function in (2.2), a consistent use of the second
interpretation suggests that we frame extensions to the use of multiple LUS struc-
tures as we did in (2.3), where it is explicit that the constants c1 and c2 are part
of the actual models to be fitted to the (untransformed) proximities {pij}. Once c1

and c2 are obtained, they could be summed as c = c1 + c2, and an interpretation
made that we have attempted to fit a transformed set of proximities {pij + c} by
the sum {|xj1−xi1|+ |xj2−xi2|} (and in this latter case, a more usual terminology
would be one of a two-dimensional scaling (MDS) based on the city-block distance
function). However, such a further interpretation is unnecessary and could lead to
at least some small terminological confusion in further extensions that we might
wish to pursue. For instance, if some type of (optimal nonlinear) transformation,
say f(·), of the proximities is also sought (e.g., a monotonic function of some form as
we do in Section 2.3), in addition to fitting multiple LUS structures, and where pij

in (2.3) is replaced by f(pij), and f(·) is to be constructed, the first interpretation
would require the use of a ‘doubly transformed’ set of proximities {f(pij) + c} to
be fitted by the sum {|xj1 − xi1| + |xj2 − xi2|}. In general, it seems best to avoid
the need to incorporate the notion of a double transformation in this context, and
instead merely consider the constants c1 and c2 to be part of the models being fitted
to a transformed set of proximities f(pij).

srpm fina
2005/10/6
page 21

�

�

�

�

�

�

�

�

2.1. The Incorporation of Additive Constants in LUS 21

2.1 The Incorporation of Additive Constants in LUS
In Section 2.1.1 below, we present and illustrate an M-function, linfitac.m, that
fits in L2 a given single unidimensional scale (by providing the coordinates x1, . . . , xn)
and the additive constant (c) for some fixed input object ordering along the contin-
uum defined by a permutation ρ(0). This approach directly parallels the M-function
given in the previous chapter, called linfit.m, but now with an included additive
constant estimation. The computational mechanisms implemented in linfitac.m
are reviewed in Section 2.1.1.

2.1.1 The L2 Fitting of a Single Unidimensional Scale (with an
Additive Constant)

Given a fixed object permutation, ρ(0), we denote the set of all n × n matrices
that are additive translations of the off-diagonal entries in the reordered symmetric
proximity matrix {pρ(0)(i)ρ(0)(j)} by ∆ρ(0) , and let Ξ be the set of all n× n matrices
that represent the interpoint distances between all pairs of n coordinate locations
along a line. Explicitly,

∆ρ(0) ≡ {{qij}}, where qij = pρ(0)(i)ρ(0)(j) + c, for some constant c, i �= j; qii =
0, for 1 ≤ i, j ≤ n;

Ξ ≡ {{rij}}, where rij = |xj−xi| for some set of n coordinates, x1 ≤ · · · ≤ xn;∑
i xi = 0.

Alternatively, we could define Ξ through a set of linear inequality (for non-negativity
restrictions) and equality constraints (to represent the additive nature of distances
along a line – as we did in linfit.m in the previous chapter). In either case, both
∆ρ(0) and Ξ are closed convex sets (in a Hilbert space), and thus, given any n × n
symmetric matrix with a zero main diagonal, its projection onto either ∆ρ(0) or
Ξ exists, i.e., there is a (unique) member of ∆ρ(0) or Ξ at a closest (Euclidean)
distance to the given matrix (e.g., see Cheney and Goldstein, 1959). Moreover,
if a procedure of alternating projections onto ∆ρ(0) and Ξ is carried out (where a
given matrix is first projected onto one of the sets, and that result is then projected
onto the second which result is in turn projected back onto the first, and so on),
the process is convergent and generates members of ∆ρ(0) and Ξ that are closest to
each other (again, this last statement is justified in Cheney and Goldstein, 1959,
Theorems 2 and 4).

Given any n × n symmetric matrix with a main diagonal of all zeros, which
we denote arbitrarily as U = {uij}, its projection onto ∆ρ(0) may be obtained by a
simple formula for the sought constant c. Explicitly, the minimum over c of∑

i<j

({pρ(0)(i)ρ(0)(j)} + c − uij)2,

is obtained for
ĉ = (2/n(n − 1))

∑
i<j

(uij − pρ(0)(i)ρ(0)(j)),

srpm_f
2005/10/
page 22

�

�

�

�

�

�

�

�

22 Chapter 2. Linear Multidimensional Scaling

and thus, this last value defines a constant translation of the proximities necessary
to generate that member of ∆ρ(0) closest to U = {uij}. For the second necessary
projection and given any n × n symmetric matrix (again with a main diagonal of
all zeros), that we denote arbitrarily as V = {vij} (but which in our applications
will generally have the form vij = pρ(0)(i)ρ(0)(j) + c for i �= j and some constant c),
its projection onto Ξ is somewhat more involved and requires minimizing∑

i<j

(vij − rij)2,

over rij, where {rij} is subject to the linear inequality non-negativity constraints,
and the linear equality constraints of representing distances along a line (of the set
Ξ). Although this is a (classic) quadratic programming problem for which a wide
variety of optimization techniques has been published, we adopt (as we did in fitting
a LUS without an additive constant in linfit.m), the Dykstra-Kaczmarz iterative
projection strategy reviewed in the addendum (Section 1.4) to Chapter 1.

The function linfitac.m

As discussed above, the M-function, linfitac.m, fits a set of coordinates to a given
proximity matrix based on some given input permutation, say, ρ(0), plus an additive
constant, c. The usage syntax of

[fit,vaf,coord,addcon] = linfitac(prox,inperm)

is similar to that of linfit.m except for the inclusion (as output) of the additive
constant ADDCON, and the replacement of the least-squares criterion of DIFF by the
variance-accounted-for (VAF) given by the general formula

VAF = 1 −
∑

i<j(pρ(0)(i)ρ(0)(j) + c − |xj − xi|)2∑
i<j(pij − p̄)2

,

where p̄ is the mean of the proximity values under consideration.
To illustrate the invariance of VAF to the use of linear transformations of the

proximity matrix (although COORD and ADDCON obviously will change depending on
the transformation used), we fitted the permutation found optimal to two differ-
ent matrices: the original proximity matrix for number.dat, and one standardized
to mean zero and variance one. The latter matrix is obtained with the utility
proxstd.m, with usage explained in its M-file header comments given in Appendix
A.

In the recording below (as well as earlier in Chapter 1), semicolons are placed
after the invocation of the M-functions to suppress the output initially; transposes(’)
are then used on the output vectors to conserve space by only using row (as opposed
to column) vectors in the listing. Note that for the two proximity matrices employed,
the VAF values are the same (.5612) but the coordinates and additive constants
differ; a listing of the standardized proximity matrix is given in the output to show
explicitly how negative proximities pose no problem for the fitting process that
allows the incorporation of additive constants within the fitted model.

srpm_f
2005/10/
page 23

�

�

�

�

�

�

�

�

2.1. The Incorporation of Additive Constants in LUS 23

load number.dat
inperm = [1 2 3 5 4 6 7 9 10 8];
[fit,vaf,coord,addcon] = linfitac(number,inperm);
vaf

vaf =

0.5612

coord’
ans =

Columns 1 through 6

-0.3790 -0.2085 -0.1064 -0.0565 -0.0257 0.0533

Columns 7 through 10

0.1061 0.1714 0.1888 0.2565

addcon

addcon =

-0.3089

numberstan = proxstd(number,0.0)

numberstan =

Columns 1 through 6

0 -0.5919 0.2105 0.8258 0.7027 1.2934
-0.5919 0 -1.2663 -0.9611 0.5157 0.2302
0.2105 -1.2663 0 -0.9217 -2.3739 0.6387
0.8258 -0.9611 -0.9217 0 -0.6313 -0.5525
0.7027 0.5157 -2.3739 -0.6313 0 -0.6510
1.2934 0.2302 0.6387 -0.5525 -0.6510 0
1.2147 1.0670 -0.5919 -1.1876 -0.7544 -0.7150
1.8103 0.4369 1.2541 0.2498 0.9882 -0.6953
1.3771 1.2294 -0.8577 1.2934 -1.4534 0.6387
1.5199 0.4123 1.3131 -1.3697 0.6978 0.2498

Columns 7 through 10

1.2147 1.8103 1.3771 1.5199

srpm_f
2005/10/
page 24

�

�

�

�

�

�

�

�

24 Chapter 2. Linear Multidimensional Scaling

1.0670 0.4369 1.2294 0.4123
-0.5919 1.2541 -0.8577 1.3131
-1.1876 0.2498 1.2934 -1.3697
-0.7544 0.9882 -1.4534 0.6978
-0.7150 -0.6953 0.6387 0.2498

0 -0.6116 -0.9414 -1.2072
-0.6116 0 -0.6953 -0.4049
-0.9414 -0.6953 0 -0.7347
-1.2072 -0.4049 -0.7347 0

[fit,vaf,coord,addcon] = linfitac(numberstan,inperm);
vaf

vaf =

0.5612

coord’

ans =

Columns 1 through 6

-1.8656 -1.0262 -0.5235 -0.2783 -0.1266 0.2624

Columns 7 through 10

0.5224 0.8435 0.9292 1.2626

addcon

addcon =

1.1437

2.2 Finding and Fitting Multiple Unidimensional
Scales

As reviewed in this chapter’s introduction, the fitting of multiple unidimensional
structures will be done by (repetitive) successive residualization, along with a re-
liance on the M-function, linfitac.m, to fit each separate unidimensional structure,
including its associated additive constant. The M-function for this two-dimensional
scaling, biscalqa.m, is a bidimensional strategy for the L2 loss function of (2.3).
It has the syntax

srpm_f
2005/10/
page 25

�

�

�

�

�

�

�

�

2.2. Finding and Fitting Multiple Unidimensional Scales 25

[outpermone,outpermtwo,coordone,coordtwo,fitone,fittwo, ...
addconone,addcontwo,vaf] = biscalqa(prox,...
targone,targtwo,inpermone,inpermtwo,kblock,nopt)

where the variables are similar to linfitac.m, but with a suffix of ONE or TWO to in-
dicate which one of the two unidimensional structures is being referenced. The new
variable NOPT controls the confirmatory or exploratory fitting of the two unidimen-
sional scales; a value of NOPT = 0 will fit the two scales indicated by INPERMONE and
INPERMTWO in a confirmatory manner; if NOPT = 1, iterative quadratic assignment
(QA) is used to locate the better permutations to fit.

In the example given below, the input PROX is the standardized (to a mean of
zero and a standard deviation of one) 10×10 proximity matrix based on number.dat
(referred to as STANNUMBER); TARGONE and TARGTWO are identical 10 × 10 equally-
spaced target matrices; INPERMONE and INPERMTWO are different random permu-
tations of the first 10 integers; KBLOCK is set at 2 (for the iterative QA subfunc-
tions). In the output, OUTPERMONE and OUTPERMTWO refer to the object orders;
COORDONE and COORDTWO give the coordinates; FITONE and FITTWO are based on the
absolute coordinate differences for the two unidimensional structures; ADDCONONE
and ADDCONTWO are the two associated additive constraints; and finally, VAF is the
variance-accounted-for in PROX by the two-dimensional structure. (Generally, the
VAF in fitting multiple additive structures should be no less than in fitting a single
structure. Moreover, one expects an increase in VAF till convergence; this is true
throughout the various sections of the monograph.)

load number.dat
stannumber = proxstd(number,0.0);
inpermone = randperm(10);
inpermtwo = randperm(10);
kblock = 2;
nopt = 1;
targone = targlin(10);
targtwo = targone;
[outpermone,outpermtwo,coordone,coordtwo,fitone,fittwo,...

addconone,addcontwo,vaf] = biscalqa(stannumber,targone,...
targtwo,inpermone,inpermtwo,kblock,nopt);

outpermone

outpermone =

10 8 9 7 6 5 4 3 2 1

outpermtwo

outpermtwo =

6 8 2 10 4 7 1 3 5 9

srpm fina
2005/10/6
page 26

�

�

�

�

�

�

�

�

26 Chapter 2. Linear Multidimensional Scaling

coordone’

ans =

Columns 1 through 6

-1.4191 -1.0310 -1.0310 -0.6805 -0.0858 -0.0009

Columns 7 through 10

0.2915 0.5418 1.2363 2.1786

coordtwo’

ans =

Columns 1 through 6

-1.1688 -0.9885 -0.3639 -0.2472 -0.2472 0.1151

Columns 7 through 10

0.2629 0.8791 0.8791 0.8791

addconone

addconone =

1.3137

addcontwo

addcontwo =

0.8803

vaf

vaf =

0.8243

Although we have used the proximity matrix in number.dat primarily as a
convenient numerical example to illustrate our various M-functions, the substantive
interpretation for this particular two-dimensional structure is rather remarkable

srpm_f
2005/10/
page 27

�

�

�

�

�

�

�

�

2.3. Incorporating Monotonic Transformations of a Proximity Matrix 27

and worth noting. The first dimension reflects number magnitude perfectly (in
its coordinate order) with two objects (the actual digits 7 8) at the same (tied)
coordinate value. The second axis reflects the structural characteristics perfectly,
with the coordinates split into the odd and even numbers (the digits 6 0 2 4 8 in the
second five positions; 5 7 1 9 3 in the first five); there is a grouping of 2 4 8 at the
same coordinates (reflecting powers of 2); a grouping of 9 3 6 (reflecting multiples
of three) and of 9 3 at the same coordinates (reflecting the powers of 3); the odd
numbers 7 5 that are not powers of 3 are at the extreme two coordinates of this
second dimension.

We will not explicitly illustrate its use here, but a tridimensional M-function,
triscalqa.m, is an obvious generalization of biscalqa.m. Also, the pattern of
programming shown could be used directly as a pattern for extensions beyond three
unidimensional structures.

2.3 Incorporating Monotonic Transformations of a
Proximity Matrix

As a direct extension of the M-function, biscalqa.m, discussed in the last section,
the file bimonscalqa.m, provides an optimal monotonic transformation (by incor-
porating the use of proxmon.m discussed in Chapter 1) of the original proximity
matrix given as input in addition to the later’s bidimensional scaling. To prevent
degeneracy, the sum-of-squares value for the initial input proximity matrix is main-
tained in the optimally transformed proximities; the overall strategy is iterative
with termination dependent on a change in the VAF being less than 1.0e-005. The
usage syntax is almost identical to that of biscalqa.m except for the inclusion of
the monotonically transformed proximity matrix MONPROX as an output matrix:

[... monprox] = bimonscalqa(...)

The ellipses directly above indicate that the same items should be used as in
biscalqa.m. If bimonscalqa.m had been used in the numerical example of the
previous section, the same results given would have been output initially plus the
results for the optimally transformed proximity matrix. We give this additional
output below, which shows that the incorporation of an optimal monotonic trans-
formation provides an increase in the VAF from .8243 to .9362; the orderings on the
two dimensions remain the same as well as the nice substantive explanation of the
previous section.

outpermone

outpermone =

10 8 9 7 6 5 4 3 2 1

outpermtwo

outpermtwo =

srpm_f
2005/10/
page 28

�

�

�

�

�

�

�

�

28 Chapter 2. Linear Multidimensional Scaling

6 8 2 4 10 7 1 3 5 9

coordone’

ans =

Columns 1 through 7

-1.6247 -1.1342 -1.1342 -0.5857 -0.1216 -0.0775 0.3565

Columns 8 through 10

0.6409 1.3290 2.3514

coordtwo’

ans =

Columns 1 through 7

-1.0035 -0.8467 -0.3480 -0.3242 -0.3242 0.1196 0.3891

Columns 8 through 10

0.7793 0.7793 0.7793

addconone

addconone =

1.4394

addcontwo

addcontwo =

0.7922

vaf

vaf =

0.9362

monprox

srpm fina
2005/10/6
page 29

�

�

�

�

�

�

�

�

2.4. Confirmatory Extensions to City-Block Individual Differences Scaling 29

monprox =

Columns 1 through 7

0 -0.7387 -0.1667 0.5067 0.5067 1.4791 1.0321
-0.7387 0 -0.8218 -0.8218 0.5067 -0.1667 0.5067
-0.1667 -0.8218 0 -0.8218 -1.6174 0.5067 -0.7387
0.5067 -0.8218 -0.8218 0 -0.7387 -0.7387 -0.8218
0.5067 0.5067 -1.6174 -0.7387 0 -0.7387 -0.8218
1.4791 -0.1667 0.5067 -0.7387 -0.7387 0 -0.8218
1.0321 0.5067 -0.7387 -0.8218 -0.8218 -0.8218 0
2.6590 0.5067 1.0321 -0.1667 0.5067 -0.8218 -0.7387
1.7609 1.0321 -0.8218 1.0321 -1.2541 0.5067 -0.8218
2.6231 0.5067 1.4791 -0.8218 0.5067 -0.0534 -0.8218

Columns 8 through 10

2.6590 1.7609 2.6231
0.5067 1.0321 0.5067
1.0321 -0.8218 1.4791

-0.1667 1.0321 -0.8218
0.5067 -1.2541 0.5067

-0.8218 0.5067 -0.0534
-0.7387 -0.8218 -0.8218

0 -0.7387 -0.7387
-0.7387 0 -0.8218
-0.7387 -0.8218 0

Although we will not provide an example of its use here, trimonscalqa.m,
extends triscalqa.m to include an optimal monotonic transformation of whatever
is given as the original input proximity matrix.

2.4 Confirmatory Extensions to City-Block Individual
Differences Scaling

An obvious conclusion to this chapter is that if one is interested in (nonmetric)
city-block scaling in two or three dimensions within L2, the routines referred to
in two dimensions as biscalqa.m and bimonscalqa.m; or in three dimensions as
triscalqa.m and trimonscalqa.m, would be natural alternatives to consider. One
aspect of all of these given M-files that we have not emphasized but will in this
chapter’s concluding comments, is their possible usage in the confirmatory context
(by setting the NOPT switch to 0), and fitting various fixed object orderings in multi-
ple dimensions. One possible application of this type of confirmatory fitting would
be in an individual differences scaling context. Explicitly, we begin with a collection
of, say, K proximity matrices, P1, . . . ,PK, obtained from K separate sources, and

srpm fina
2005/10/6
page 30

�

�

�

�

�

�

�

�

30 Chapter 2. Linear Multidimensional Scaling

through some weighting and averaging process construct a single aggregate proxim-
ity matrix, PA. On the basis of PA, suppose a two-dimensional city-block scaling
is constructed (using, say, biscalqa.m); we label the latter the “common space”
consistent with what is usually done in the weighted Euclidean model (e.g., see the
INDSCAL model of Carroll and Chang [1970, Arabie, Carroll, & DeSarbo, 1987;
Carroll & Arabie, 1988], or the PROXSCAL program in the Categories Module of
SPSS — Busing, Commandeur, and Heiser, 1997). Each of the K proximity ma-
trices then can be used in a confirmatory fitting of the object orders along the two
axes. Thus, a very general “subject/private space” is generated for each source and
where the actual coordinates along both axes are unique to that source, subject only
to the object order constraints of the group space. This strategy provides an in-
dividual differences model generalization over the usual weighted Euclidean model
where the latter allows only differential axes scaling (stretching or shrinking) in
generating the private spaces. These kinds of individual difference generalizations
exist both for multiple unidimensional scalings in L2 as well as for other types of
proximity matrix representations such as ultrametrics and additive trees (given in
Parts II and III).

srpm fina
2005/10/6
page 31

�

�

�

�

�

�

�

�

Chapter 3

Circular Scaling

This chapter will discuss circular unidimensional scaling (CUS), where the objective
is to place the n objects around a closed continuum such that the reconstructed
distance between each pair of objects, defined by the minimum length over the two
possible paths that join the objects, reflects the given proximities as well as possible.
Explicitly, and in analogy with the loss function for linear unidimensional scaling
(LUS) in (2.2), we wish to find a set of coordinates, x1, . . . , xn, and an (n + 1)st

value, x0 ≥ |xj − xi| for all 1 ≤ i �= j ≤ n, minimizing
∑
i<j

(pij + c − min{|xj − xi|, x0 − |xj − xi|})2, (3.1)

or equivalently, ∑
i<j

(pij − [min{|xj − xi|, x0 − |xj − xi|} − c])2, (3.2)

where c is again some constant to be estimated. The value x0 represents the total
length of the closed continuum, and the expression, min{|xj − xi|, x0 − |xj − xi|},
gives the minimum length over the two possible paths joining objects Oi and Oj.
In theory, the CUS task could again be solved by complete enumeration of the loss
function in (3.1) over a finite but also typically enormous set for even moderate
n. Here, we have all possible distinct object orderings around a closed continuum,
(n − 1)!/2, as well as for each such ordering, all the possible inflection patterns for
where the directionality of the minimum distance calculation changes for the ob-
ject pairs. These latter inflection points are a necessary condition of using circular
unidimensional scaling, and is one obvious point of departure from linear unidi-
mensional scaling. Obviously, for general use and analogous to LUS, some type of
search strategy is called for to generate the better orderings and inflection patterns
around a closed continuum but with feasible computational effort.

The current chapter is organized around the optimization problems posed by
CUS and the two main subtasks of obtaining an appropriate object ordering around

31

srpm fina
2005/10/6
page 32

�

�

�

�

�

�

�

�

32 Chapter 3. Circular Scaling

a closed continuum, and the additional relative placement of the objects according
to the directionality of minimum distance calculations. Once these orderings and
relative placements have been identified, the estimation of the additive constant in
both loss functions (3.1) and (3.2), as well as the identification of the actual coordi-
nates, proceeds through a process of alternating projections onto two closed convex
sets. One is defined by the set of all translations of the original proximity values
by a constant; the second closed convex set is characterized by the collection of
all coordinate structures consistent with the given object ordering and the relative
object placement that provides the directionality of minimum distance calculations
around the closed continuum. In the specific contexts we consider, the process of
alternating projections is convergent (see Cheney & Goldstein, 1956), and generates
a final solution defined by two points within the two convex sets that are closest to
each other. Although the emphasis in the present chapter is on a single symmet-
ric proximity matrix defined for one set of objects to be fitted by a CUS model,
Section 3.2 will also develop a fairly direct extension to the use of sums of such cir-
cular structures that can be fitted to a single proximity matrix through successive
residualizations of the given matrix (this strategy is analogous to what was done in
Chapter 2 for multiple LUS representations).

As a final preliminary note on the data that will be used in this chapter for
numerical illustrations, a rather well-known proximity matrix is given in Table 3.1
(and called ‘morse_digits.dat’). The later is a 10 × 10 proximity matrix for the
ten Morse Code symbols that represent the first ten digits: (0: − − − − −; 1:
• − − − −; 2: • • − − −; 3: • • • − −; 4: • • • • −; 5: • • • • • ; 6: −
• • • • ; 7: − − • • • ; 8: − − − • • ; 9: − − − − •). The entries in Table
3.1 have a dissimilarity interpretation and are defined for each object pair by 2.0
minus the sum of the two proportions for a group of subjects used by Rothkopf
(1957) representing “same” judgments to the two symbols when given in the two
possible presentation orders of the signals. Based on previous multidimensional
scalings of the complete data set involving all of the Morse code symbols and in
which the data of Table 3.1 are embedded (e.g., see Shepard, 1963; Kruskal &
Wish, 1978), it might be expected that the symbols for the digits would form a
clear linear unidimensional structure that would be interpretable according to a
regular progression in the number of dots to dashes. It turns out, as discussed in
greater detail below, that a circular model (or actually, a sum of circular structures)
is probably more consistent with the patterning of the proximities in Table 3.1 than
are representations based on linear unidimensional scalings. (For completeness,
we might note that the possible usefulness of a circular model for these specific
proximities [but not to the consideration of multiple circular structures] has been
pointed out before in the literature, most notably in the two-dimensional metric
scaling given as an illustrative example by Mardia, Kent, and Bibby, 1979, p. 404,
or in the combinatorial optimization approach of quadratic assignment discussed
by Hubert and Schultz, 1976, which is based on permuting the rows and columns
of a proximity matrix to achieve a best fit against a fixed target matrix.)

srpm fina
2005/10/6
page 33

�

�

�

�

�

�

�

�

3.1. The Mechanics of CUS 33

Table 3.1. A proximity matrix, morse digits.dat, for the ten Morse code
symbols representing the first ten digits (data from Rothkopf, 1957)

0.00 .75 1.69 1.87 1.76 1.77 1.59 1.26 .86 .95
.75 0.00 .82 1.54 1.85 1.72 1.51 1.50 1.45 1.63

1.69 .82 0.00 1.25 1.47 1.33 1.66 1.57 1.83 1.81
1.87 1.54 1.25 0.00 .89 1.32 1.53 1.74 1.85 1.86
1.76 1.85 1.47 .89 0.00 1.41 1.64 1.81 1.90 1.90
1.77 1.72 1.33 1.32 1.41 0.00 .70 1.56 1.84 1.64
1.59 1.51 1.66 1.53 1.64 .70 0.00 .70 1.38 1.70
1.26 1.50 1.57 1.74 1.81 1.56 .70 0.00 .83 1.22
.86 1.45 1.83 1.85 1.90 1.84 1.38 .83 0.00 .41
.95 1.63 1.81 1.86 1.90 1.64 1.70 1.22 .41 0.00

3.1 The Mechanics of CUS
The CUS task as characterized by the loss function in (3.1) can be considered in
two stages as with the presentation of LUS. One subtask is the identification of an
ordering of the n objects around a closed continuum that again will be denoted
by a permutation of the first n integers, ϕ(·), such that ϕ(i) = j if object Oj is
placed at position i; here, position 1 is arbitrarily specified at some point along the
closed continuum, and the order of the positions from 1 to n is, for convenience,
taken clockwise. In addition to ϕ(·), a set of inflection points must be identified for
the n positions to indicate where the minimum distance calculation must change
direction around the closed continuum. Explicitly, a set of n− 1 integers, 1 ≤ k1 ≤
· · · ≤ kn−1 ≤ n, is sought, where ki is associated with position i, 1 ≤ i ≤ n− 1. For
positions i < j, the minimum distance is in the clockwise direction when j ≤ ki,
and in the counterclockwise direction when j > ki (we note that an integer kn

for position n is unnecessary, and any ki equal to n merely indicates that for all
positions j, for i < j, the minimum distance is always in the clockwise direction).
The second subtask, once given ϕ(·) and k1, . . . , kn−1, is the estimation of the set
of coordinates and the additive constant c to fit the proximities. We again discuss
these two subtasks in the reverse order.

3.1.1 The Estimation of c and min{|xj − xi|, x0 − |xj − xi|} for a
Fixed Permutation and Set of Inflection Points

For notational convenience, the set of all n×n matrices that are additive translations
of the off-diagonal entries in the reordered proximity matrix, {pϕ(i)ϕ(j)}, will again
be denoted by ∆ϕ (see Section 2.1.1); the set of all n×n matrices that represent the
distances around the closed continuum based on the inflection points k1, . . . , kn−1

will be more fully denoted by Ξ(k1, . . . , kn−1) and explicitly defined as follows:

Ξ(k1, . . . , kn−1) ≡ {{rij}},

srpm fina
2005/10/6
page 34

�

�

�

�

�

�

�

�

34 Chapter 3. Circular Scaling

where

rij = |xj − xi| for i < j ≤ ki;
rij = x0 − |xj − xi| for i < j and j > ki;
rji = rij for 1 ≤ i < j ≤ n;
rii = 0 for 1 ≤ i ≤ n,

for some collection of coordinates, x1, . . . , xn, and an (n + 1)st value, x0, where

x1 ≤ · · · ≤ xn ≤ x0;
x1 ≡ 0.0;
|xj − xi| ≤ x0 − |xj − xi| for i < j ≤ ki;
|xj − xi| ≥ x0 − |xj − xi| for i < j and j > ki.

As noted in this definition, the first position, x1, is specified without loss of gener-
ality to be 0.0; the value, x0, can either be interpreted as the length of the closed
continuum or as a second coordinate value attached to the first position but taken
in the clockwise direction. Given ∆ϕ and Ξ(k1, . . . , kn−1) (where the latter can
be defined through a set of linear inequality/equality constraints), the process of
alternating projections onto ∆ϕ and Ξ(k1, . . . , kn−1) would proceed exactly as in
LUS.

3.1.2 Obtaining Object Orderings and Inflection Points Around
a Closed Continuum

Identifying an object ordering around a closed continuum to be used in the min-
imization of the loss function in (3.1) follows the same pattern as for LUS. The
cross-product statistic in (1.5) is again maximized but with a different n × n (tar-
get) matrix, T = {tij}, initially defined by n positions equally-spaced around a
closed continuum, i.e., tij = min{|i− j|, n− |i− j|} for 1 ≤ i, j ≤ n (as in LUS, this
target could eventually be replaced, now by tij = min{|xj−xi|, x0−|xj−xi|} based
on the outcome of the minimization of (3.1)). Given some best permutation, ϕK(·),
obtained through the initial target and set of local operations on some randomly
given initial permutation, a collection of inflection points, k1, . . . , kn−1, still must
be generated before the optimization of (3.1) can continue. This latter task will
be approached through a heuristic application of an iterative projection strategy of
the same general type developed by Hubert and Arabie (1995b) for the fitting of
various graph-theoretic structures to a symmetric proximity matrix.

To attempt an identification of k1, . . . , kn−1 given the permutation ϕK(·),
we begin with the reordered proximity matrix {pϕK(i)ϕK(j)}, and initialize a pro-
cess of iterative projection onto the class of constraints given by the structure
Ξ(k1, . . . , kn−1) but with one exception necessitated by the fact that an appro-
priate set of values for k1, . . . , kn−1 is not yet known. Explicitly, when considering

srpm_f
2005/10/
page 35

�

�

�

�

�

�

�

�

3.1. The Mechanics of CUS 35

a pair of positions, i < j (2 ≤ j − i), and the two possible constraints that could be
imposed, i.e., either ri(i+1) + · · ·+ r(j−1)j = rij or r − (ri(i+1) + · · ·+ r(j−1)j) = rij

for r = r12 + · · · + r(n−1)n + r1n, we select according to which left side is smaller,
based on the current entries in the matrix being carried forward to this point, and
impose that specific constraint. Otherwise, the process continues cyclically through
the whole set of constraints, and for each time a constraint is reconsidered, any
changes that were made the previous time the constraint was encountered are first
“undone”.

Because of the procedure of redressing the (immediately) previous changes
each time a constraint is reconsidered, the process just described may not con-
verge and could eventually oscillate through a finite collection of distinct matri-
ces. If such nonconvergence is observed, and previous changes from that point on
are not redressed, the process will then converge to a matrix in Ξ(k1, . . . , kn−1)
for some specific values of k1, . . . , kn−1. A justification for this last assertion
of convergence is given by the general results presented in Hubert and Arabie
(1995b); also, that source provides empirical evidence that as a heuristic opti-
mization strategy, it is generally better to begin with the procedure of redressing
previous changes until an oscillation is observed, rather than immediately starting
without the process of redressing previous changes (which would also produce a
matrix in Ξ(k1, . . . , kn−1) for some specific k1, . . . , kn−1). It should also be noted
that although convergence to some matrix in Ξ(k1, . . . , kn−1) is guaranteed by the
strategy just described, and thus to an identified fixed collection of inflection points,
k1, . . . , kn−1, the latter matrix may now not be optimal for this collection of inflec-
tion points in the minimization of (3.1). Specifically, even though the identification
of the collection k1, . . . , kn−1 can proceed by a process of iterative projection and
an updating of a matrix {rij} to produce a member of Ξ(k1, . . . , kn−1), because
of the possible nonconvergence noted above and the subsequent lack of redress-
ing previous changes from that point on, the matrix identified in Ξ(k1, . . . , kn−1)
may not be the best achievable even for this particular collection of inflection
points (although in our computational experience it is typically very close to be-
ing optimal). Thus, as a “polishing” step to ensure that an optimal member of
Ξ(k1, . . . , kn−1) is identified, the collection k1, . . . , kn−1 and the permutation ϕK(·)
should be used anew in the optimization of (3.1) to obtain the optimal target matrix,
{min{|xj − xi|, x0 − |xj − xi|}}.

3.1.3 The Circular Unidimensional Scaling Utilities, cirfit.m and
cirfitac.m

The two circular unidimensional scaling utilities, that implement the mechanics
of fitting the CUS model (including the identification of inflection points), paral-
lel the LUS utilities of linfit.m and linfitac.m. The M-file cirfit.m does a
confirmatory fitting of a given order (assumed to be an object ordering around a
closed unidimensional structure) using the Dykstra-Kaczmarz iterative projection
least-squares method. The usage syntax for cirfit.m and cirfitac.m is:

[fit, diff] = cirfit(prox,inperm)

srpm_f
2005/10/
page 36

�

�

�

�

�

�

�

�

36 Chapter 3. Circular Scaling

[fit,vaf,addcon] = cirfitac(prox,inperm)

where INPERM is the given order; FIT is an n×n matrix fitted to PROX(INPERM,INPERM)
with a least-squares value DIFF. The syntax for the routine, cirfitac.m, is the same
except for the inclusion of an additive constant, ADDCON, and the use of VAF rather
than DIFF.

In brief, then, the type of matrix being fitted to the proximity matrix has the
form

{min(| xρ(j) − xρ(i) |, x0− | xρ(j) − xρ(i) |) − c},
where c is an estimated additive constant (assumed equal to zero in cirfit.m),
xρ(1) ≤ xρ(2) ≤ · · · ≤ xρ(n) ≤ x0, and the last coordinate, x0, is the circumference
of the circular structure. We can obtain these latter coordinates from the adjacent
spacings in the output matrix FIT.

As an example, we applied cirfit.m to the morse_digits proximity matrix
with an assumed identity input permutation; the spacings around the circular struc-
ture between the placements for objects 1 and 2 is .5337; 2 and 3: .7534; 3 and 4:
.6174; 4 and 5: .1840; 5 and 6: .5747; 6 and 7: .5167; 7 and 8: .3920; 8 and 9: .5467;
9 and 10: .1090; and back around between 10 and 1: .5594 (the sum of all these
adjacent spacings is 4.787 and is the circumference (x0) of the circular structure).
For cirfitac.m the additive constant was estimated as -.8031 with a VAF of .7051;
here, the spacings around the circular structure between the placements for objects
1 and 2 is .2928; 2 and 3: .4322; 3 and 4: .2962; 4 and 5: .0234; 5 and 6: .3338;
6 and 7: .2758; 7 and 8: .2314; 8 and 9: .2800; 9 and 10: .0000; and back around
between 10 and 1: .2124 (here, x0 has a value of 2.378).

load morse_digits.dat
[fit,diff] = cirfit(morse_digits,1:10)

fit =

Columns 1 through 5

0 0.5337 1.2871 1.9044 2.0884
0.5337 0 0.7534 1.3707 1.5547
1.2871 0.7534 0 0.6174 0.8014
1.9044 1.3707 0.6174 0 0.1840
2.0884 1.5547 0.8014 0.1840 0
2.1237 2.1294 1.3761 0.7587 0.5747
1.6071 2.1407 1.8927 1.2754 1.0914
1.2151 1.7487 2.2847 1.6674 1.4834
0.6684 1.2021 1.9554 2.2141 2.0301
0.5594 1.0931 1.8464 2.3231 2.1391

Columns 6 through 10

2.1237 1.6071 1.2151 0.6684 0.5594

srpm_f
2005/10/
page 37

�

�

�

�

�

�

�

�

3.1. The Mechanics of CUS 37

2.1294 2.1407 1.7487 1.2021 1.0931
1.3761 1.8927 2.2847 1.9554 1.8464
0.7587 1.2754 1.6674 2.2141 2.3231
0.5747 1.0914 1.4834 2.0301 2.1391

0 0.5167 0.9087 1.4554 1.5644
0.5167 0 0.3920 0.9387 1.0477
0.9087 0.3920 0 0.5467 0.6557
1.4554 0.9387 0.5467 0 0.1090
1.5644 1.0477 0.6557 0.1090 0

diff =

7.3898

[fit,vaf,addcon] = cirfitac(morse_digits,1:10)

fit =

Columns 1 through 5

0 0.2928 0.7250 1.0212 1.0446
0.2928 0 0.4322 0.7284 0.7518
0.7250 0.4322 0 0.2962 0.3196
1.0212 0.7284 0.2962 0 0.0234
1.0446 0.7518 0.3196 0.0234 0
0.9996 1.0856 0.6534 0.3572 0.3338
0.7238 1.0166 0.9292 0.6330 0.6096
0.4924 0.7852 1.1606 0.8644 0.8410
0.2124 0.5052 0.9374 1.1444 1.1210
0.2124 0.5052 0.9374 1.1444 1.1210

Columns 6 through 10

0.9996 0.7238 0.4924 0.2124 0.2124
1.0856 1.0166 0.7852 0.5052 0.5052
0.6534 0.9292 1.1606 0.9374 0.9374
0.3572 0.6330 0.8644 1.1444 1.1444
0.3338 0.6096 0.8410 1.1210 1.1210

0 0.2758 0.5072 0.7872 0.7872
0.2758 0 0.2314 0.5114 0.5114
0.5072 0.2314 0 0.2800 0.2800
0.7872 0.5114 0.2800 0 0.0000
0.7872 0.5114 0.2800 0.0000 0

srpm_f
2005/10/
page 38

�

�

�

�

�

�

�

�

38 Chapter 3. Circular Scaling

vaf =

0.7051

addcon =

-0.8031

As a variation on cirfitac.m, the M-file cirfitac_ftarg.m uses an ad-
ditional fixed target matrix TARG to obtain the inflection points (and therefore,
TARG should provide a circular ordering). The syntax is otherwise the same as for
cirfitac.m:

[fit,vaf,addcon] = cirfitac_ftarg(prox,inperm,targ)

In the example below, an equally-(unit)-spaced circular ordering is used for TARG
that is obtained from the utility function targcir.m; this strategy leads to a
(slightly lower compared to cirfitac.m) VAF of .6670; here, the spacings around
the circular structure between the placements for objects 1 and 2 is .3294; 2 and
3: .3204; 3 and 4: .2544; 4 and 5: .0344; 5 and 6: .2837; 6 and 7: .2084; 7 and 8:
.3124; 8 and 9: .2701; 9 and 10: .0000; and back around between 10 and 1: .2109
(the circumference x0 is 2.2241).

load morse_digits.dat
targcircular = targcir(10)

targcircular =

0 1 2 3 4 5 4 3 2 1
1 0 1 2 3 4 5 4 3 2
2 1 0 1 2 3 4 5 4 3
3 2 1 0 1 2 3 4 5 4
4 3 2 1 0 1 2 3 4 5
5 4 3 2 1 0 1 2 3 4
4 5 4 3 2 1 0 1 2 3
3 4 5 4 3 2 1 0 1 2
2 3 4 5 4 3 2 1 0 1
1 2 3 4 5 4 3 2 1 0

[fit,vaf,addcon] = cirfitac_ftarg(morse_digits,1:10,targcircular)

fit =

Columns 1 through 7

srpm fina
2005/10/6
page 39

�

�

�

�

�

�

�

�

3.1. The Mechanics of CUS 39

0 0.3294 0.6498 0.9043 0.9387 1.2224 0.7934
0.3294 0 0.3204 0.5748 0.6093 0.8929 1.1014
0.6498 0.3204 0 0.2544 0.2888 0.5725 0.7809
0.9043 0.5748 0.2544 0 0.0344 0.3181 0.5265
0.9387 0.6093 0.2888 0.0344 0 0.2837 0.4921
1.2224 0.8929 0.5725 0.3181 0.2837 0 0.2084
0.7934 1.1014 0.7809 0.5265 0.4921 0.2084 0
0.4810 0.8104 1.0934 0.8389 0.8045 0.5208 0.3124
0.2109 0.5403 0.8607 1.1091 1.0747 0.7910 0.5826
0.2109 0.5403 0.8607 1.1151 1.0747 0.7910 0.5826

Columns 8 through 10

0.4810 0.2109 0.2109
0.8104 0.5403 0.5403
1.0934 0.8607 0.8607
0.8389 1.1091 1.1151
0.8045 1.0747 1.0747
0.5208 0.7910 0.7910
0.3124 0.5826 0.5826

0 0.2701 0.2701
0.2701 0 -0.0000
0.2701 -0.0000 0

vaf =

0.6670

addcon =

-0.8317

The use of a fixed circular target matrix in cirfitac_ftarg.m (as opposed
to finding one internally as is done in cirfit.m and cirfitac.m), could lead to
small anomalies in the results, and the user should be thus prepared when using
cirfitac_ftarg.m. In the example just given, for instance, the (4,10) value (of
1.1151) should probably be 1.1091 to match the (4,9) entry and the fact that 9 and
10 are at tied locations — however, the equally-spaced-circular-target distance from
10 to 4 is shorter clockwise (at a value of 4) than counter-clockwise (at a value of 6),
and so the (4,10) value of 1.1151 is taken clockwise (as opposed to 1.1091 if taken
counter-clockwise).

srpm_f
2005/10/
page 40

�

�

�

�

�

�

�

�

40 Chapter 3. Circular Scaling

The function unicirac.m

The function M-file, unicirac.m, carries out a circular unidimensional scaling of a
symmetric dissimilarity matrix (with the estimation of an additive constant) using
an iterative quadratic assignment strategy (and thus, is an analogue of uniscalqa.m
for the LUS task). We begin with an equally-spaced circular target constructed us-
ing the M-file targcir.m (that could be invoked with the command targcir(10)),
a (random) starting permutation, and then use a sequential combination of the
pairwise interchange/rotation/insertion heuristics; the target matrix is re-estimated
based on the identified (locally optimal) permutation. The whole process is repeated
until no changes can be made in the target or the identified (locally optimal) per-
mutation. The explicit usage syntax is

[find, vaf, outperm, addcon] = unicirac(prox, inperm, kblock)

where the various terms should now be familiar. INPERM is a given starting per-
mutation (assumed to be around the circle) of the first n integers; FIND is the
least-squares optimal matrix (with variance-accounted-for of VAF) to PROX having
the appropriate circular form for the row and column object ordering given by the
final permutation OUTPERM. The spacings between the objects are given by the diag-
onal entries in FIND (and the extreme (1, n) entry in FIND). KBLOCK defines the block
size in the use the iterative quadratic assignment routine. The additive constant
for the model is given by ADDCON.

The problem of local optima is much more severe in CUS than in LUS. The
heuristic identification of inflection points and the relevant spacings can vary slightly
depending on the “equivalent” orderings identified around a circular structure. The
example given below was identified as the best achievable (and for some multiple
number of times) over 100 random starting permutations for INPERM; with its VAF
of 71.90%, it is apparently the best “attainable”. Given the (equivalent to the)
identity permutation identified for outperm, the substantive interpretation for this
representation is fairly clear — we have a nicely interpretable ordering of the Morse
code symbols around a circular structure involving a regular replacement of dashes
by dots moving clockwise until the symbol containing all dots is reached, and then
a subsequent replacement of the dots by dashes until the initial symbol containing
all dashes is reached.

[find,vaf,outperm,addcon] = unicirac(morse_digits,randperm(10),2)

find =

Columns 1 through 6

0 0.0247 0.3620 0.6413 0.9605 1.1581
0.0247 0 0.3373 0.6165 0.9358 1.1334
0.3620 0.3373 0 0.2793 0.5985 0.7961
0.6413 0.6165 0.2793 0 0.3193 0.5169
0.9605 0.9358 0.5985 0.3193 0 0.1976
1.1581 1.1334 0.7961 0.5169 0.1976 0

srpm fina
2005/10/6
page 41

�

�

�

�

�

�

�

�

3.1. The Mechanics of CUS 41

1.1581 1.1334 0.7961 0.5169 0.1976 0.0000
1.0358 1.0606 1.0148 0.7355 0.4163 0.2187
0.7396 0.7643 1.1016 1.0318 0.7125 0.5149
0.3883 0.4131 0.7503 1.0296 1.0638 0.8662

Columns 7 through 10

1.1581 1.0358 0.7396 0.3883
1.1334 1.0606 0.7643 0.4131
0.7961 1.0148 1.1016 0.7503
0.5169 0.7355 1.0318 1.0296
0.1976 0.4163 0.7125 1.0638
0.0000 0.2187 0.5149 0.8662

0 0.2187 0.5149 0.8662
0.2187 0 0.2963 0.6475
0.5149 0.2963 0 0.3513
0.8662 0.6475 0.3513 0

vaf =

0.7190

outperm =

4 5 6 7 8 9 10 1 2 3

addcon =

-0.7964

The plotting function circularplot.m

To assist in the visualization of the results from a circular unidimensional scaling,
circularplot.m, provides the coordinates of a scaling around a circular structure
plus a plot of the (labeled) objects around the circle. The usage syntax is

[circum,radius,coord,degrees,cumdegrees] = circularplot(circ,inperm)

The coordinates are derived from the n × n interpoint distance matrix (around a
circle) given by CIRC; the positions are labeled by the order of objects given in
INPERM. Output consists of a plot, the circumference of the circle (CIRCUM) and
radius (RADIUS); the coordinates of the plot positions (COORD), and the degrees
and cumulative degrees induced between the plotted positions (in DEGREES and

srpm_f
2005/10/
page 42

�

�

�

�

�

�

�

�

42 Chapter 3. Circular Scaling

CUMDEGREES). The positions around the circle are numbered from 1 (at the “noon”
position) to n, moving clockwise around the circular structure.

As an example, Figure 3.1 provides an application of circularplot.m to the
just given example of unicirac.m. The text output also appears below:

[circum,radius,coord,degrees,cumdegrees] = circularplot(find,outperm);
circum

circum =

2.4126

radius

radius =

0.3840

coord’

ans =

Columns 1 through 7

0 0.0247 0.3107 0.3821 0.2293 0.0481 0.0481
0.3840 0.3832 0.2256 -0.0380 -0.3080 -0.3810 -0.3810

Columns 8 through 10

-0.1649 -0.3600 -0.3254
-0.3468 -0.1336 0.2038

degrees’

ans =

Columns 1 through 7

0.0644 0.8783 0.7273 0.8315 0.5146 0.0000 0.5695

Columns 8 through 10

0.7716 0.9148 1.0113

cumdegrees’

srpm fina
2005/10/6
page 43

�

�

�

�

�

�

�

�

3.2. Circular Multidimensional Scaling 43

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4 4 5

6

7

8

910
1

2

3

Figure 3.1. Two-dimensional circular plot for the morse digits data ob-
tained using circularplot.m

ans =

Columns 1 through 7

0.0644 0.9428 1.6700 2.5015 3.0161 3.0161 3.5856

Columns 8 through 10

4.3571 5.2719 6.2832

3.2 Circular Multidimensional Scaling
The discussion in previous sections has been restricted to the fitting of a single
circular unidimensional structure to a symmetric proximity matrix. Given the type

srpm fina
2005/10/6
page 44

�

�

�

�

�

�

�

�

44 Chapter 3. Circular Scaling

of computational approach developed for carrying out this task (and, in particular,
because of its lack of dependence on the presence of non-negative proximities),
extensions are very direct to the use of multiple unidimensional structures through
a process of successive residualization of the original proximity matrix. The fitting
of two CUS structures to a proximity matrix generalizes (3.1) to the form∑
i<j

(pij−[min{|xj1−xi1|, x01−|xj1−xi1}−c1]−[min{|xj2−xi2|, x02−|xj2−xi2}−c2])2.

(3.3)
The attempt to minimize (3.3) could proceed with the fitting of a single CUS
structure to {pij}, [min{|xj1 − xi1|, x01 − |xj1 − xi1} − c1], using the computa-
tional strategy of Section 3.1, and once obtained, fitting a second CUS structure,
[min{|xj2 − xi2|, x02 − |xj2 − xi2|} − c2] to the residual matrix, {pij − [min{|xj1 −
xi1|, x01 − |xj1 − xi1|}] − c1}. The process would then cycle by repetitively fitting
the residuals from the second circular structure by the first, and the residuals from
the first circular structure by the second, until the sequence converges. In any
event, obvious extensions exist for (3.3) to the inclusion of more than two CUS
structures, or to some mixture of, say, LUS and CUS forms in the spirit of Carroll
and Pruzansky’s (1975, 1980) hybrid models.

The M-function, bicirac.m, is a two-(or bi-)dimensional scaling strategy for
the L2 loss function of (3.3), and relies heavily on the M-function unicirac.m to
fit each separate circular structure, including its associated additive constant. The
syntax is

[find,vaf,targone,targtwo,outpermone,outpermtwo,addconone, ...
addcontwo] = bicirac(prox,inperm,kblock)

where most of the terms should be familiar from previous usage in, say, biscalqa.m.
Again, PROX is the input proximity matrix (n × n with a zero main diagonal and a
dissimilarity interpretation); INPERM is a given starting permutation of the first n
integers; FIND is the least-squares optimal matrix (with variance-accounted-for of
VAF) to PROX and is the sum of the two circular (anti-Robinson) matrices TARGONE
and TARGTWO based on the two row and column object orderings given by the final
permutations OUTPERMONE and OUTPERMTWO. KBLOCK defines the block size in the
use of the iterative quadratic assignment routine and ADDCONONE and ADDCONTWO
are the two additive constants for the two model components.

As an illustration of the results obtainable from the process just described,
using the Morse code data, the MATLAB output below gives the best (according
to a VAF of 92.18%) two-CUS representation obtained from 100 random starting
permutations for each of the circular components. The two CUS structures have
rather clear substantive interpretations: as with our example using unicirac.m,
the first shows the regular replacement of dots by dashes moving around the closed
continuum; the second provides a perfect ordering around the closed continuum
according to ratios of dots to dashes or of dashes to dots and where adjacent pairs
of stimuli have dashes and dots exchanged one-for-one; i.e., for the adjacent stimuli
pairs moving clockwise, we have:

0:5 for {− − − − −; • • • • ••} (0,5); 1:4 for {• − − − −;− • • • •} (1,6); 2:3

srpm_f
2005/10/
page 45

�

�

�

�

�

�

�

�

3.2. Circular Multidimensional Scaling 45

for {• • − − −;− − • • •} (2,7); 3:2 for {• • • − −;− − − • •} (3,8); and 1:4 for
{−− −− •; • • • • −}(9,4).

The two additive constants c1 and c2 in (3.3) have values of -.7002 and .3521,
respectively. (As mentioned, the output given below represents the best two-CUS
structures obtained for 100 random starting permutations, but as might be expected
given the earlier computational results, the same type of local optima were observed
here as found in the fitting of a single CUS structure, i.e., several local optima
were generated from small differences in the estimation of inflection points and the
adjacent object spacings but with the identical object orderings around the closed
continua).

[find,vaf,targone,targtwo,outpermone,outpermtwo,addconone, ...
addcontwo] = bicirac(morse_digits,randperm(10),2)

find =

Columns 1 through 6

0 0.9765 1.4869 1.9626 1.7586 1.7461
0.9765 0 0.8585 1.5836 1.7815 1.7340
1.4869 0.8585 0 1.0732 1.4824 1.4414
1.9626 1.5836 1.0732 0 0.7573 1.3885
1.7586 1.7815 1.4824 0.7573 0 1.2468
1.7461 1.7340 1.4414 1.3885 1.2468 0
1.5637 1.5408 1.6238 1.5709 1.6832 0.7846
1.4012 1.3783 1.6709 1.7334 1.9374 1.3120
0.9767 1.4861 1.7787 1.8316 1.8296 1.8771
0.8569 1.4853 1.8352 1.8882 1.7731 1.8206

Columns 7 through 10

1.5637 1.4012 0.9767 0.8569
1.5408 1.3783 1.4861 1.4853
1.6238 1.6709 1.7787 1.8352
1.5709 1.7334 1.8316 1.8882
1.6832 1.9374 1.8296 1.7731
0.7846 1.3120 1.8771 1.8206

0 0.8755 1.4561 1.5759
0.8755 0 0.9287 1.0485
1.4561 0.9287 0 0.4679
1.5759 1.0485 0.4679 0

vaf =

0.9218

srpm_f
2005/10/
page 46

�

�

�

�

�

�

�

�

46 Chapter 3. Circular Scaling

targone =

Columns 1 through 6

0 0.2364 0.2680 0.4852 0.7880 1.1894
0.2364 0 0.0316 0.2488 0.5516 0.9530
0.2680 0.0316 0 0.2172 0.5199 0.9214
0.4852 0.2488 0.2172 0 0.3028 0.7042
0.7880 0.5516 0.5199 0.3028 0 0.4015
1.1894 0.9530 0.9214 0.7042 0.4015 0
1.1826 1.3420 1.3104 1.0933 0.7905 0.3890
1.0800 1.3164 1.3480 1.1958 0.8931 0.4916
0.6544 0.8908 0.9224 1.1396 1.3187 0.9172
0.3450 0.5814 0.6130 0.8302 1.1329 1.2266

Columns 7 through 10

1.1826 1.0800 0.6544 0.3450
1.3420 1.3164 0.8908 0.5814
1.3104 1.3480 0.9224 0.6130
1.0933 1.1958 1.1396 0.8302
0.7905 0.8931 1.3187 1.1329
0.3890 0.4916 0.9172 1.2266

0 0.1026 0.5282 0.8376
0.1026 0 0.4256 0.7350
0.5282 0.4256 0 0.3094
0.8376 0.7350 0.3094 0

targtwo =

Columns 1 through 6

0 0.0491 0.1825 0.3852 0.5267 0.6148
0.0491 0 0.1334 0.3361 0.4776 0.5657
0.1825 0.1334 0 0.2027 0.3442 0.4324
0.3852 0.3361 0.2027 0 0.1415 0.2296
0.5267 0.4776 0.3442 0.1415 0 0.0882
0.6148 0.5657 0.4324 0.2296 0.0882 0
0.6001 0.6427 0.5094 0.3066 0.1652 0.0770
0.3855 0.4346 0.5679 0.5212 0.3798 0.2916
0.1270 0.1761 0.3095 0.5122 0.6382 0.5500
0.0598 0.1089 0.2423 0.4450 0.5865 0.6173

Columns 7 through 10

srpm fina
2005/10/6
page 47

�

�

�

�

�

�

�

�

3.2. Circular Multidimensional Scaling 47

0.6001 0.3855 0.1270 0.0598
0.6427 0.4346 0.1761 0.1089
0.5094 0.5679 0.3095 0.2423
0.3066 0.5212 0.5122 0.4450
0.1652 0.3798 0.6382 0.5865
0.0770 0.2916 0.5500 0.6173

0 0.2146 0.4731 0.5403
0.2146 0 0.2585 0.3257
0.4731 0.2585 0 0.0672
0.5403 0.3257 0.0672 0

outpermone =

8 9 10 1 2 3 4 5 6 7

outpermtwo =

7 3 8 4 9 10 5 1 6 2

addconone =

-0.7002

addcontwo =

0.3521

srpm fina
2005/10/6
page 48

�

�

�

�

�

�

�

�

48 Chapter 3. Circular Scaling

srpm fina
2005/10/6
page 49

�

�

�

�

�

�

�

�

Chapter 4

LUS for Two-Mode
Proximity Data

The proximity data considered thus far for obtaining some type of structural repre-
sentation have been assumed to be on one intact set of objects, S = {O1, . . . , On},
and complete in the sense that proximity values are present between all object pairs.
Suppose now that the available proximity data are two-mode, that is, between two
distinct object sets, SA = {O1A, . . . , OnaA} and SB = {O1B, . . . , OnbB}, containing
na and nb objects, respectively, and defined through an na × nb proximity matrix
Q = {qrs}, where again, for convenience, we assume that the entries in Q are keyed
as dissimilarities. We may wish to seek a joint structural representation of the set
SA ∪ SB (considered as a single object set S containing na + nb = n objects), but
one that is based only on the available proximities between the sets SA and SB .

A two-mode (dissimilarity matrix) data set for illustrative
purposes

To provide a specific example that will be used throughout this chapter as an illus-
tration, Table 4.1 presents an 11×9 two-mode proximity matrix Q on the absorption
of light at 9 different wavelengths by 11 different cones (receptors) in goldfish retina
(but in a row and column reordered form that will reflect the discussion to follow).
These data are from Schiffman and Falkenberg (1968) (and reanalyzed by Schiff-
man, Reynolds, and Young, 1981, pp. 328–329), and were originally based on an
unpublished doctoral dissertation by Marks (1965). The proximities in the table are
(200 minus) the heights of ordinates for particular spectral frequencies as labeled
by the columns, and thus, can be considered dissimilarities reflecting the closeness
of a particular receptor to a particular wavelength. Using the original labeling of
the rows as given in Schiffman and Falkenberg, the row permutation in Table 4.1
is (3,8,9,2,6,4,1,7,5,11,10); the column permutation is (4,9,6,5,1,7,2,8,3). The latter
column permutation in its given order corresponds to wavelengths of (458):blue-
indigo, (430):violet, (485):blue, (498):blue-green, (530):green, (540):green, (585):yel-
low, (610):orange, (660):red.

49

srpm fina
2005/10/6
page 50

�

�

�

�

�

�

�

�

50 Chapter 4. LUS for Two-Mode Proximity Data

Table 4.1. The goldfish receptor.dat data file constructed from Schiffman
and Falkenberg (1968)

47 53 111 143 188 196 200 200 200
48 55 75 100 186 200 200 200 200
46 47 90 125 168 176 177 183 200
99 101 78 60 46 67 107 156 200

122 127 115 79 49 46 91 143 200
115 154 97 73 48 52 84 125 174
198 186 154 148 103 94 63 108 155
135 156 123 127 116 98 49 46 80
141 113 142 148 114 121 61 47 54
173 140 177 176 144 128 64 56 89
200 200 160 161 145 138 80 53 68

4.1 Reordering Two-Mode Proximity Matrices
Given an na × nb two-mode proximity matrix, Q, defined between the two distinct
sets, SA and SB , it may be desirable to reorder separately the rows and columns
of Q to display some type of pattern that may be present in its entries, or to
obtain some joint permutation of the n (= na + nb) row and column objects to
effect some further type of simplified representation. These kinds of reordering
tasks will be approached with a variant of the quadratic assignment heuristics of
the LUS discussion in Chapter 1 applied to a square, (na+nb)×(na +nb), proximity
matrix, P(tm), in which a two-mode matrix Q(dev) and its transpose (where Q(dev)

is constructed from Q by deviating its entries from the mean proximity), form the
upper-right- and lower-left-hand portions, respectively, with zeros placed elsewhere.
(This use of zero in the presence of deviated proximities, appears a reasonable choice
generally in identifying good reorderings of P(tm). Without this type of deviation
strategy, there would typically be no “mixing” of the row and column objects in
the permutations that we would identify for the combined [row and column] object
set.) Thus, for 0 denoting (an appropriately dimensioned) matrix of all zeros,

P(tm) =
[

0na×na Q(dev)na×nb

Q′
(dev)nb×na

0nb×nb

]
,

is the (square) n×n proximity matrix subjected to a simultaneous row and column
reordering, which in turn will induce separate row and column reorderings for the
original two-mode proximity matrix Q.

The M-file, ordertm.m, implements a quadratic assignment reordering heuris-
tic on the derived matrix P(tm), with usage

[outperm,rawindex,allperms,index,squareprox] = ...
ordertm(proxtm,targ,inperm,kblock)

where the two-mode proximity matrix PROXTM (with its entries deviated from the

srpm fina
2005/10/6
page 51

�

�

�

�

�

�

�

�

4.2. Fitting a Two-Mode Unidimensional Scale 51

mean proximity within the use of the M-file) forms the upper-right- and lower-left-
hand portions of a defined square (n × n) proximity matrix (SQUAREPROX) with a
dissimilarity interpretation, and with zeros placed elsewhere (n = number of rows
+ number of columns of PROXTM = na + nb); three separate local operations are
used to permute the rows and columns of the square proximity matrix to maximize
the cross-product index with respect to a square target matrix TARG: (a) pairwise
interchanges of objects in the permutation defining the row and column order of the
square proximity matrix; (b) the insertion of from 1 to KBLOCK (which is less than or
equal to n−1) consecutive objects in the permutation defining the row and column
order of the data matrix; (c) the rotation of from 2 to KBLOCK (which is less than or
equal to n−1) consecutive objects in the permutation defining the row and column
order of the data matrix. INPERM is the beginning input permutation (a permutation
of the first n integers); PROXTM is the two-mode na×nb input proximity matrix; TARG
is the n × n input target matrix. OUTPERM is the final permutation of SQUAREPROX
with the cross-product index RAWINDEX with respect to TARG. ALLPERMS is a cell
array containing INDEX entries corresponding to all the permutations identified in
the optimization from ALLPERMS{1} = INPERM to ALLPERMS{INDEX} = OUTPERM.

In the example to follow, ordertm.m, is used on the dissimilarity matrix of
Table 4.1. The square equally-spaced target matrix is obtained from the LUS utility,
targlin.m. A listing of the (reordered) matrix, squareprox(outperm,outperm),
if given, would show clearly the unidimensional pattern for a two-mode data matrix
that will be explicitly fitted in the next section of this chapter.

load goldfish_receptor.dat
[outperm,rawindex,allperms,index,squareprox] = ...

ordertm(goldfish_receptor,targlin(20),randperm(20),2);
outperm

outperm =

Columns 1 through 10

20 11 10 19 9 18 8 7 17 16

Columns 11 through 20

6 5 4 15 14 13 3 12 2 1

4.2 Fitting a Two-Mode Unidimensional Scale
It is possible to fit through iterative projection, best-fitting (in the L2-norm) uni-
dimensional scales to two-mode proximity data based on a given permutation of
the combined row and column object set. Specifically, if ρ(·) denotes some given
permutation of the first n integers (where the first na integers denote row objects
labeled 1, 2, . . . , na, and the remaining nb integers denote column objects, labeled
na + 1, na + 2, . . . , na + nb(= n)), we seek a set of coordinates, x1 ≤ x2 ≤ · · · ≤ xn,

srpm_f
2005/10/
page 52

�

�

�

�

�

�

�

�

52 Chapter 4. LUS for Two-Mode Proximity Data

such that using the reordered square proximity matrix, P(tm)
ρ0 = {p(tm)

ρ0(i)ρ0(j)
}, the

least-squares criterion

n∑
i,j=1

wρ0(i)ρ0(j)(p
(tm)
ρ0(i)ρ0(j)

− |xj − xi|)2,

is minimized, where wρ0(i)ρ0(j) = 0 if ρ0(i) and ρ0(j) are both row or both column
objects, and = 1 otherwise. The entries in the matrix fitted to P(tm)

ρ0 are based on
the absolute coordinate differences (and which correspond to nonzero values of the
weight function wρ0(i)ρ0(j)), and thus satisfy certain linear inequality constraints
generated from how the row and column objects are intermixed by the given per-
mutation ρ0(·). To give a schematic representation of how these constraints are
generated, suppose r1 and r2 (c1 and c2) denote two arbitrary row (column) ob-
jects, and suppose the following 2 × 2 matrix represents what is to be fitted to the
four proximity values present between r1, r2 and c1, c2:

c1 c2

r1 a b
r2 c d

Depending on how these four objects are ordered (and intermixed) by the permu-
tation ρ0(·), certain constraints must be satisfied by the entries a, b, c, and d. The
representative constraints are given schematically below according to the types of
intermixing that might be present:

(a) r1 ≺ r2 ≺ c1 ≺ c2 implies a + d = b + c;
(b) r1 ≺ c1 ≺ r2 ≺ c2 implies a + c + d = b;
(c) r1 ≺ c1 ≺ c2 ≺ r2 implies a + c = b + d;
(d) r1 ≺ r2 ≺ c1 implies c ≤ a;
(e) r1 ≺ c1 ≺ c2 implies a ≤ b.
The confirmatory unidimensional scaling of a two-mode proximity matrix

(based on iterative projection using a given permutation of the row and column
objects) is carried out with the M-file, linfittm, with usage

[fit,diff,rowperm,colperm,coord] = linfittm(proxtm,inperm)

Here, PROXTM is the two-mode proximity matrix, and INPERM is the given order-
ing of the row and column objects pooled together; FIT is an na × nb matrix
of absolute coordinate differences fitted to PROXTM(ROWPERM,COLPERM), with DIFF
being the (least-squares criterion) sum of squared discrepancies between FIT and
PROXTM(ROWPERM,COLMEAN); ROWPERM and COLPERM are the row and column object
orderings derived from INPERM. The (na + nb) = n coordinates (ordered with the
smallest such coordinate set at a value of zero) are given in COORD.

The example given below uses a permutation obtained from ordertm.m on the
data matrix goldfish_receptor.dat.

[fit,diff,rowperm,colperm,coord] = ...

srpm_f
2005/10/
page 53

�

�

�

�

�

�

�

�

4.2. Fitting a Two-Mode Unidimensional Scale 53

linfittm(goldfish_receptor,outperm);
fit

fit =

Columns 1 through 6

27.7467 19.6170 49.8824 105.1624 113.7988 174.4352
38.8578 8.5059 38.7712 94.0513 102.6877 163.3241
64.4133 17.0497 13.2157 68.4958 77.1321 137.7685
82.0890 34.7253 4.4600 50.8201 59.4565 120.0928
84.6355 37.2719 7.0065 48.2735 56.9099 117.5463
151.4133 104.0497 73.7843 18.5042 9.8679 50.7685
156.0800 108.7163 78.4510 23.1709 14.5345 46.1018
172.9689 125.6052 95.3399 40.0598 31.4234 29.2129
259.6356 212.2720 182.0066 126.7265 118.0901 57.4538
286.9689 239.6052 209.3399 154.0598 145.4234 84.7871
295.1911 247.8275 217.5621 162.2820 153.6456 93.0093

Columns 7 through 9

189.5261 212.4352 231.8897
178.4150 201.3241 220.7786
152.8594 175.7685 195.2230
135.1837 158.0928 177.5473
132.6372 155.5463 175.0008
65.8594 88.7685 108.2230
61.1927 84.1018 103.5563
44.3039 67.2129 86.6674
42.3629 19.4538 0.0007
69.6961 46.7871 27.3326
77.9184 55.0093 35.5548

diff

diff =

1.4372e+005

rowperm’

ans =

Columns 1 through 10

11 10 9 8 7 6 5 4 3 2

srpm fina
2005/10/6
page 54

�

�

�

�

�

�

�

�

54 Chapter 4. LUS for Two-Mode Proximity Data

Column 11

1

colperm’

ans =

9 8 7 6 5 4 3 2 1

coord’

ans =

Columns 1 through 6

0 27.7467 38.8578 47.3636 64.4133 77.6290

Columns 7 through 12

82.0890 84.6355 132.9091 141.5455 151.4133 156.0800

Columns 13 through 18

172.9689 202.1818 217.2727 240.1818 259.6356 259.6363

Columns 19 through 20

286.9689 295.1911

In complete analogy with the LUS discussion (where the M-file linfitac.m
generalizes linfit.m by fitting an additive constant along with the absolute coordi-
nate differences), the more general unidimensional scaling model can be fitted with
an additive constant using the M-file, linfittmac.m. Specifically, we now seek a set
of coordinates, x1 ≤ x2 ≤ · · · ≤ xn, and an additive constant c, such that using the
reordered square proximity matrix, P(tm)

ρ0 = {p(tm)
ρ0(i)ρ0(j)

}, the least-squares criterion

n∑
i,j=1

wρ0(i)ρ0(j)(p
(tm)
ρ0(i)ρ0(j) + c − |xj − xi|)2,

is minimized, where again wρ0(i)ρ0(j) = 0 if ρ0(i) and ρ0(j) are both row or both
column objects, and = 1 otherwise. The M-file usage is

[fit,vaf,rowperm,colperm,addcon,coord] = linfittmac(proxtm,inperm)

and does a confirmatory two-mode fitting of a given unidimensional ordering of the

srpm_f
2005/10/
page 55

�

�

�

�

�

�

�

�

4.2. Fitting a Two-Mode Unidimensional Scale 55

row and column objects of a two-mode proximity matrix PROXTM using the Dykstra-
Kaczmarz iterative projection least-squares method. The M-file linfittmac.m dif-
fers from linfittm.m by including the estimation of an additive constant, and
thus allowing VAF to be legitimately given as the goodness-of-fit index (as op-
posed to just DIFF as we did in linfittm.m). Again, INPERM is the given or-
dering of the row and column objects together; FIT is an na (number of rows)
by nb (number of columns) matrix of absolute coordinate differences fitted to
PROXTM(ROWPERM,COLPERM); ROWPERM and COLPERM are the row and column ob-
ject orderings derived from INPERM. The estimated additive constant ADDCON can be
interpreted as being added to PROXTM (or alternatively subtracted from the fitted
matrix FIT).

The same exemplar permutation is used below (as was for linfittm.m); fol-
lowing the MATLAB output that now includes the additive constant of -55.0512
and the VAF of .8072, the two unidimensional scalings (in their coordinate forms)
are provided in tabular form with an explicit indication of what is a row object (R)
and what is a column object (C).

[fit,vaf,rowperm,colperm,addcon,coord] = ...
linfittmac(goldfish_receptor,outperm);
vaf

vaf =

0.8072

rowperm’

ans =

Columns 1 through 10

11 10 9 8 7 6 5 4 3 2

Column 11

1

colperm’

ans =

9 8 7 6 5 4 3 2 1

addcon

addcon =

srpm fina
2005/10/6
page 56

�

�

�

�

�

�

�

�

56 Chapter 4. LUS for Two-Mode Proximity Data

-55.0512

coord’

ans =

Columns 1 through 6

0 16.7584 27.1305 27.9496 41.1914 46.4762

Columns 7 through 12

47.9363 49.2521 82.8626 91.1532 91.9133 96.1573

Columns 13 through 18

113.0462 122.1074 137.1983 160.1074 166.6057 166.6124

Columns 19 through 20

178.1118 186.3341

4.3 Multiple LUS Reorderings and Fittings

Two M-files are provided that put together the (quadratic assignment) reorder-
ing of a two-mode rectangular proximity matrix with the fitting of the unidimen-
sional scale(s). The first, uniscaltmac.m, combines the use of ordertm.m and
linfittmac.m along with (re)estimations of the (originally equally-spaced) target
matrix using the coordinates obtained until the identified permutation stabilizes.
The usage includes the same terms as for the encompassing M-files:

[find, vaf, outperm, rowperm, colperm, addcon, coord] = ...
uniscaltmac(proxtm, inperm, kblock)

The second M-file, biscaltmac.m, finds and fits, through successive residualization,
the sum of two linear unidimensional scales using iterative projection to a two-mode
proximity matrix in the L2-norm based on permutations identified through the use
of iterative quadratic assignment. The usage has the form

[find,vaf,targone,targtwo,outpermone,outpermtwo, ...
rowpermone,colpermone,rowpermtwo,colpermtwo,addconone,...
addcontwo,coordone,coordtwo,axes] = ...

biscaltmac(proxtm,inpermone,inpermtwo,kblock,nopt)

Most of the terms should be obvious from earlier usage statements; the n×2 matrix,
AXES, gives the two-dimensional plotting coordinates for the combined row and col-
umn object set. As was allowed in the bidimensional scaling routine biscalqa.m,

srpm_f
2005/10/
page 57

�

�

�

�

�

�

�

�

4.3. Multiple LUS Reorderings and Fittings 57

Table 4.2. The two unidimensional scalings of the goldfish receptor data

color number R or C no constant with constant
red (660) 20 C 0.0 0.0

11 R 27.7467 16.7584
10 R 38.8578 27.1305

orange (610) 19 C 47.3636 27.9496
9 R 64.4133 41.1914

yellow (585) 18 C 77.6290 46.4762
8 R 82.0890 47.9363
7 R 84.6355 49.2521

green (540) 17 C 132.9091 82.8626
green (530) 16 C 141.5455 91.1532

6 R 151.4133 91.9133
5 R 156.0800 96.1573
4 R 172.9689 113.0462

blue-green (490) 15 C 202.1818 122.1074
blue (485) 14 C 217.2727 137.1983
violet (430) 13 C 240.1818 160.1074

3 R 259.6356 166.6057
blue-indigo (458) 12 C 259.6363 166.6124

2 R 286.9689 178.1118
1 R 295.1911 186.3341

the variable NOPT controls the confirmatory or exploratory fitting of the unidimen-
sional scales; a value of NOPT = 0 will fit in a confirmatory mode the two scales
indicated by INPERMONE and INPERMTWO; a value of NOPT = 1 uses iterative QA to
locate the better permutations to fit.

An example of using biscaltmac.m follows, leading to a two-dimensional scal-
ing of the goldfish_receptor data with a VAF of .9620. A two-dimensional graph-
ical representation of the coordinates will be given in the next section after the
necessary plotting utility, biplottm.m, is introduced.

load goldfish_receptor.dat
[find,vaf,targone,targtwo,outpermone,outpermtwo,...

rowpermone,colpermone,rowpermtwo,colpermtwo,addconone,...
addcontwo,coordone,coordtwo,axes] = ...
biscaltmac(goldfish_receptor,randperm(20),randperm(20),2,1);
vaf

vaf =

0.9620

srpm_f
2005/10/
page 58

�

�

�

�

�

�

�

�

58 Chapter 4. LUS for Two-Mode Proximity Data

outpermone

outpermone =

Columns 1 through 10

20 11 10 19 9 18 8 7 17 16

Columns 11 through 20

6 5 4 15 14 13 3 12 2 1

coordone’

ans =

Columns 1 through 6

0 5.3813 29.6923 29.6923 47.3362 47.3362

Columns 7 through 12

47.3362 47.3362 80.1506 88.7578 91.1164 100.5008

Columns 13 through 18

115.5844 131.4868 141.7676 149.8850 160.3825 160.3825

Columns 19 through 20

173.7454 181.0428

outpermtwo

outpermtwo =

Columns 1 through 10

3 20 1 2 13 10 9 19 12 8

Columns 11 through 20

14 11 18 6 15 4 5 16 17 7

coordtwo’

srpm fina
2005/10/6
page 59

�

�

�

�

�

�

�

�

4.3. Multiple LUS Reorderings and Fittings 59

ans =

Columns 1 through 6

0 6.7276 6.7277 7.8975 14.0132 14.0891

Columns 7 through 12

14.0891 27.5247 27.5247 30.1025 40.4679 40.4710

Columns 13 through 18

49.4002 58.0796 58.0796 66.8364 72.2495 72.7100

Columns 19 through 20

72.8142 90.6794

axes

axes =

181.0428 6.7277
173.7454 7.8975
160.3825 0
115.5844 66.8364
100.5008 72.2495
91.1164 58.0796
47.3362 90.6794
47.3362 30.1025
47.3362 14.0891
29.6923 14.0891
5.3813 40.4710

160.3825 27.5247
149.8850 14.0132
141.7676 40.4679
131.4868 58.0796
88.7578 72.7100
80.1506 72.8142
47.3362 49.4002
29.6923 27.5247

0 6.7276

srpm fina
2005/10/6
page 60

�

�

�

�

�

�

�

�

60 Chapter 4. LUS for Two-Mode Proximity Data

4.4 Some Useful Two-Mode Utilities
This section gives several miscellaneous M-functions that carry out various oper-
ations on a two-mode proximity matrix, and for which no other section of this
monograph seemed appropriate. The first two, proxstdtm.m and proxrandtm.m,
are very simple and provide standardized and randomly (entry-)permuted two-mode
proximity matrices, respectively, that might be useful, for example, in testing the
various M-functions we give. The syntax

[stanproxtm,stanproxmulttm] = proxstdtm(proxtm,mean)

is intended to suggest that STANPROXTM provides a linear transformation of the en-
tries in PROXTM to a standard deviation of one and a mean of MEAN; STANPROXMULTTM
is a multiplicative transformation so that the entries in this na × nb matrix have a
sum-of-squares of nanb. For the second utility M-function

[randproxtm] = proxrandtm(proxtm)

implies that the two-mode matrix RANDPROXTM has its entries as a random permu-
tation of the entries in PROXTM.

A third utility function, proxmontm.m, provides a monotonically transformed
two-mode proximity matrix that is close in a least-squares sense to a given input
two-mode matrix. The syntax is

[monproxpermuttm, vaf, diff] = proxmontm(proxpermuttm,fittedtm)

Here, PROXPERMUTTM is the original input two-mode proximity matrix (which may
have been subjected to initial row and column permutations, hence the suffix
‘PERMUTTM’), and FITTEDTM is a given two-mode target matrix; the output ma-
trix MONPROXPERMUTTM is closest to FITTEDTM in a least-squares sense and obeys
the order constraints obtained from each pair of entries in PROXPERMUTTM (and
where the inequality constrained optimization is carried out using the Dykstra-
Kaczmarz iterative projection strategy); as usual, VAF indicates how much variance
in MONPROXPERMUTTM can be accounted for by FITTEDTM; finally, DIFF is the value
of the least-squares loss function and is the sum of squared differences between the
entries in MONPROXPERMUTTM and FITTEDTM. We will give an application of an M-
file incorporating proxmontm.m when we suggest in the next Section 4.5, a way of
implementing two-dimensional, two-mode nonmetric multidimensional scaling.

A final utility function, biplottm.m, plots the combined row and column
object set using the coordinates given in, for example, the n×2 output matrix AXES
as output from the M-file of the last section, biscaltmac.m. The usage syntax is

biplottm(axes,nrow,ncol)

Here, the number of rows (columns) is NROW (NCOL), and n is the sum of NROW and
NCOL. The first NROW rows of the n×2 matrix AXES give the row object coordinates;
the last NCOL rows of AXES give the column object coordinates. The plotting symbol
for rows is a circle (o); for columns it is an asterisk (*). The labels for rows are
from 1 to NROW; those for columns are from 1 to NCOL. (It should be noted that

srpm fina
2005/10/6
page 61

�

�

�

�

�

�

�

�

4.4. Some Useful Two-Mode Utilities 61

0 20 40 60 80 100 120 140 160 180 200
0

10

20

30

40

50

60

70

80

90

100

12

3

4

5

6

7

8

910

11

1

2

3

4

56

7

8

9

Figure 4.1. Two-dimensional joint biplot for the goldfish receptor data
obtained using biplottm.m

Release 14 for MATLAB and of the Statistics Toolbox (5.0) includes a somewhat
similar M-function called biplot.m. Our biplottm.m routine is tailored to the two-
mode context we have been discussing, and therefore, may be the preferred plotting
strategy within this chapter.)

Figure 4.1 give an application of biplottm.m for the AXES matrix of the last
example given in section 4.3 (for the goldfish_receptor data). Again, the appro-
priate colors appear close to the relevant cones.

srpm_f
2005/10/
page 62

�

�

�

�

�

�

�

�

62 Chapter 4. LUS for Two-Mode Proximity Data

4.5 Two-mode Nonmetric Bidimensional Scaling
By uniting the utility function proxmon.m with biscaltmac.m, we can construct
an M-file, bimonscaltmac.m, that carries out a nonmetric bidimensional scaling
of a two-mode proximity matrix in the city-block metric. The usage is the same
as that of biscaltmac.m in Section 4.3, except for the additional output matrix
MONPROXTM that is a monotonic transformation of the original two-mode proximity
matrix PROXTM:

[..., monproxtm] = bimonscaltmac(...)

We give an example below using the same goldfish_receptor.dat matrix; the
VAF has increased (slightly) to .9772. The joint plot of the row and column object
set is given in Figure 4.2, and closely resembles Figure 4.1 obtained without the use
of a monotonic transformation.

[find,vaf,targone,targtwo,outpermone,outpermtwo,...
rowpermone,colpermone,rowpermtwo,colpermtwo,addconone,...
addcontwo,coordone,coordtwo,axes,monproxtm] = ...
bimonscaltmac(goldfish_receptor,1:20,1:20,1,1);

vaf

vaf =

0.9772

outpermone

outpermone =

Columns 1 through 12

1 2 12 3 13 14 15 4 5 6 16 17

Columns 13 through 20

7 8 18 9 19 10 11 20

outpermtwo

outpermtwo =

Columns 1 through 12

3 20 1 2 13 10 9 19 8 12 14 11

srpm_f
2005/10/
page 63

�

�

�

�

�

�

�

�

4.5. Two-mode Nonmetric Bidimensional Scaling 63

Columns 13 through 20

18 6 15 4 5 16 17 7

coordone’

ans =

Columns 1 through 7

0 9.3971 24.9145 25.6090 33.0810 41.8175 52.5796

Columns 8 through 14

64.9000 81.8939 86.7370 91.3614 95.4814 128.0062 129.3501

Columns 15 through 20

129.3501 129.3501 144.3894 144.6789 166.2783 172.0484

coordtwo’

ans =

Columns 1 through 7

0 9.0068 10.0288 11.4579 13.7505 13.7515 14.3479

Columns 8 through 14

25.9193 25.9193 25.9193 35.1740 37.0213 48.2031 53.3228

Columns 15 through 20

53.3228 62.5256 66.5361 67.7899 67.7899 83.2680

monproxtm

monproxtm =

Columns 1 through 7

58.7038 63.2885 108.3069 141.6262 189.0671 189.0671 203.9042
58.7038 63.2885 82.1362 108.3069 181.2299 189.0671 192.8095
58.7038 58.7038 85.7059 124.9383 167.7111 167.7111 181.2299
108.3069 108.3069 82.1362 63.2885 58.7038 72.2093 108.3069

srpm fina
2005/10/6
page 64

�

�

�

�

�

�

�

�

64 Chapter 4. LUS for Two-Mode Proximity Data

124.9383 136.7608 120.4397 82.1362 58.7038 48.4205 91.1332
120.4397 141.6262 97.3034 72.2093 58.7038 58.7038 82.1362
189.0671 189.0671 154.9866 141.6262 108.3069 91.1332 70.2554
138.5167 154.9866 124.9383 138.5167 120.4397 108.3069 58.7038
141.6262 120.4397 141.6262 141.6262 120.4397 121.7048 67.2074
167.7111 141.6262 167.7111 167.7111 141.6262 138.5167 72.2093
189.1641 193.2795 162.2199 166.2670 141.6262 138.5167 82.1362

Columns 8 through 9

196.9665 208.6756
189.0671 200.9956
181.2299 191.5023
154.9866 197.4823
141.6262 189.0671
124.9383 167.7111
108.3069 154.9866
48.4214 82.1362
58.7038 63.2885
63.2885 82.1362
63.2885 72.2093

srpm fina
2005/10/6
page 65

�

�

�

�

�

�

�

�

4.5. Two-mode Nonmetric Bidimensional Scaling 65

0 20 40 60 80 100 120 140 160 180
0

10

20

30

40

50

60

70

80

90

1 2

3

4

5

6

7

8

9 10

11

1

2

3

4

5 6

7

8

9

Figure 4.2. Two-dimensional joint biplot for the goldfish receptor data
obtained using bimonscaltmac.m and biplottm.m

srpm fina
2005/10/6
page 66

�

�

�

�

�

�

�

�

66 Chapter 4. LUS for Two-Mode Proximity Data

srpm fina
2005/10/6
page 67

�

�

�

�

�

�

�

�

Part II

The Representation of
Proximity Matrices by Tree

Structures

67

srpm fina
2005/10/6
page 68

�

�

�

�

�

�

�

�

srpm fina
2005/10/6
page 69

�

�

�

�

�

�

�

�

Introduction to
Graph-Theoretic

Representational Structures

Various methods of data representation based on graph-theoretic structures have
been developed over the last several decades for explaining the pattern of infor-
mation potentially present in a single (or possibly, in a collection of) numerically
given proximity matri(ces), each defined between pairs of objects from a single set,
or in some cases, between the objects from several distinct sets (for example, see
Carroll, 1976; Carroll, Clark, & DeSarbo, 1984; Carroll & Pruzansky, 1980; De
Soete, 1983, 1984a,b,c; De Soete, Carroll, & DeSarbo, 1987; De Soete, DeSarbo,
Furnas, & Carroll, 1984; Hutchinson, 1989; Klauer & Carroll, 1989, 1991; Hubert &
Arabie, 1995b). Typically, a specific class of graph-theoretic structures is assumed
capable of representing the proximity information, and the proposed method seeks
a member from the class producing a reconstructed set of proximities that are as
close as possible to the original. The most prominent graph-theoretic structures
used are those usually referred to as ultrametrics and additive trees, and these will
be the primary emphasis here as well.

Although a variety of strategies have been proposed for locating good ex-
emplars from whatever class of graph-theoretic structures is being considered, one
approach has been to adopt a least squares criterion in which the class exemplar
is identified by attempting to minimize the sum of squared discrepancies between
the original proximities and their reconstructions obtained through the use of the
particular structure selected by the data analyst. One common implementation of
the least-squares optimization strategy has been defined by the usual least-squares
criterion but augmented by some collection of penalty functions that seek to impose
whatever constraints are mandated by the structural representation being sought.
Then, through the use of some unconstrained optimization scheme (e.g., steepest
descent, conjugate gradients), an attempt is made to find both (a) the particular
constraints that should be imposed to define the specific structure from the class,
and (b) the reconstructed proximities based on the structure finally identified. The
resulting optimization strategy is heuristic in the sense that there is no guarantee
of global optimality for the final structural representation identified even within the
chosen graph-theoretic class, because the particular constraints defining the selected

69

srpm fina
2005/10/6
page 70

�

�

�

�

�

�

�

�

70

structure were located by a possibly reasonable but not verifiably optimal search
strategy that was (implicitly) implemented in the course of the process of optimiza-
tion. A second implementation of the least-squares optimization approach, and the
one that we will concentrate on exclusively, is based on the type of iterative projec-
tion strategy already illustrated in conjunction with linear unidimensional scaling
(LUS) (see the addendum Section 1.4 on solving linear inequality constrained least-
squares tasks), and developed in detail for the graph-theoretic context by Hubert
and Arabie (1995b). In its non-heuristic form, iterative projection allows the recon-
struction of a set of proximities based on a fixed collection of constraints implied
by whatever specific graph-theoretic structure has been selected for their represen-
tation. As in LUS, successive (or iterative) projections onto closed convex sets are
carried out that are defined by the collection of given constraints implied by the
structural representation chosen. Thus, the need for penalty terms is avoided and
there is no explicit use of gradients in the attendant optimization strategy; also,
it is fairly straightforward to incorporate a variety of different types of constraints
that may be auxiliary to those generated from the given structural representation
but none-the-less of interest to impose on the reconstruction.

As a least squares optimization strategy (in a non-heuristic form), iterative
projection assumes that whatever constraint set is to be applied is completely known
prior to its application. However, just as the various penalty-function and gradient-
optimization techniques have been turned into heuristic search strategies for the
particular structures of interest by allowing the collection of constraints to vary
over the course of the optimization process, we attempt the same in using itera-
tive projection to find the better-fitting ultrametrics and additive trees for a given
proximity matrix. Thus, in addition to carrying out a least squares task subject to
given structural constraints, iterative projection will be considered as one possible
heuristic search strategy (and an alternative to those heuristic methods that have
been suggested in the literature and based exclusively on the use of some type of
penalty function) for locating the actual constraints to impose, and therefore, to
identify the specific form of the structural representation sought.

The various least squares optimization tasks entailing both the identification
of the specific form of the structural representation to adopt and the subsequent
least squares fitting itself generally fall into the class of NP-hard problems (e.g., for
ultrametric and additive trees, see Day, 1987, 1996; Kr̆ivánek, 1986; Kr̆ivánek &
Morávek, 1986); thus, the best we can hope for is a heuristic extension of the itera-
tive projection strategy leading to good but not necessarily optimal final structural
representations within the general class of representations desired. As is standard
with a reliance on such heuristic optimization methods, the use of multiple start-
ing points will hopefully determine a set of local optima characterizing the better
solutions attainable for a given data set. The presence of local optima in the use of
any heuristic and combinatorially based optimization strategy is unavoidable, given
the NP-hardness of the basic optimization tasks of interest and the general inability
of (partial) enumeration methods (when available) to be computationally feasible
for use on even moderate-sized data sets. The number of and variation in the lo-
cal optima observable for any specific situation will obviously depend on the given
data, the structural representation sought, and the heuristic search strategy used.

srpm fina
2005/10/6
page 71

�

�

�

�

�

�

�

�

71

But whenever present, local optima may actually be diagnostic for the structure(s)
potentially appropriate for characterizing a particular data set. Thus, their iden-
tification may even be valuable in explaining the patterning of the data and/or in
noting the difficulties with adopting a specific representational form to help discern
underlying structure.

srpm fina
2005/10/6
page 72

�

�

�

�

�

�

�

�

72

srpm_f
2005/10/
page 73

�

�

�

�

�

�

�

�

Chapter 5

Ultrametrics for
Symmetric Proximity
Data

The task of hierarchical clustering can be characterized as a specific data analysis
problem: given a set of n objects, S = {O1, . . . , On}, and an n × n symmetric
proximity matrix P = {pij} (non-negative and with a dissimilarity interpretation),
find a sequence of partitions of S, denoted as P1,P2, . . . ,Pn, satisfying the following:

(a) P1 is the (trivial) partition where all n objects from S are placed into n
separate classes;

(b) Pn is the (also trivial) partition where a single subset contains all n objects;
(c) Pk is obtained from Pk−1 by uniting some pair of classes present in Pk−1;
(d) the minimum levels at which object pairs first appear together within

the same class should reflect the proximities in P. Or more formally, if we define
U0 = {u0

ij} = min{k − 1 | objects Oi and Oj appear within the same class in Pk},
then if the partition hierarchy is representing the given proximities well, the entries
in U0 and P should be, for example, similarly ordered. We discuss the properties
of matrices such as U0 in more detail below.

To give an example, we preformed a complete-link hierarchical clustering (us-
ing SYSTAT) on the number.dat proximity matrix used extensively in Part I, and
obtained the following partitions of the object indices from 1 to 10 (remembering
that these correspond to the digits 0 to 9):

P1: {{1},{2},{3},{4},{5},{6},{7},{8},{9},{10}}
P2: {{3,5},{1},{2},{4},{6},{7},{8},{9},{10}}
P3: {{3,5},{4,10},{1},{2},{6},{7},{8},{9}}
P4: {{3,5},{4,7,10},{1},{2},{6},{8},{9}}
P5: {{3,5,9},{4,7,10},{1},{2},{6},{8}}
P6: {{3,5,9},{4,7,10},{6,8},{1},{2}}
P7: {{3,5,9},{4,7,10},{6,8},{1,2}}
P8: {{3,5,9},{4,6,7,8,10},{1,2}}
P9: {{3,4,5,6,7,8,9,10},{1,2}}
P10: {{1,2,3,4,5,6,7,8,9,10}}

The matrix U0 was constructed and saved as a 10×10 matrix in the file numcltarg.dat,
which will be used later in an example:

73

srpm fina
2005/10/6
page 74

�

�

�

�

�

�

�

�

74 Chapter 5. Ultrametrics for Symmetric Proximity Data

0 6 9 9 9 9 9 9 9 9
6 0 9 9 9 9 9 9 9 9
9 9 0 8 1 8 8 8 4 8
9 9 8 0 8 7 3 7 8 2
9 9 1 8 0 8 8 8 4 8
9 9 8 7 8 0 7 5 8 7
9 9 8 3 8 7 0 7 8 3
9 9 8 7 8 5 7 0 8 7
9 9 4 8 4 8 8 8 0 8
9 9 8 2 8 7 3 7 8 0

We note that this same hierarchical clustering could have been obtained alterna-
tively with the cluster.m routine from the Statistics Toolbox for MATLAB, al-
lowing the user to remain completely within a MATLAB environment (assuming,
obviously, that the Statistics Toolbox is available).

A concept routinely encountered in discussions of hierarchical clustering is that
of an ultrametric, which can be characterized here as any non-negative symmetric
dissimilarity matrix for the objects in S, denoted generically by U = {uij}, where
uij = 0 if and only if i = j, and uij ≤ max[uik, ujk] for all 1 ≤ i, j, k ≤ n (this
last inequality, called the three-point or three-object condition, is equivalent to the
statement that for any distinct triple of subscripts, i, j, and k, the largest two
proximities among uij, uik, and ujk are equal and [therefore] not less than the
third). Any ultrametric can be associated with the specific partition hierarchy it
induces, having the form P1,P2, . . . ,PT , where P1 and PT are now the two trivial
partitions that respectively contain all objects in separate classes and all objects
in the same class, and Pk is formed from Pk−1 (2 ≤ k ≤ T) by (agglomeratively)
uniting certain (and possibly more than two) subsets in Pk−1. For those subsets
merged in Pk−1 to form Pk, all between-subset ultrametric values must be equal,
and no less than any other ultrametric value associated with an object pair within
a class in Pk−1. Thus, individual partitions in the hierarchy can be identified by
merely increasing a threshold variable starting at zero, and observing that Pk for
1 ≤ k ≤ T is defined by a set of subsets in which all within-subset ultrametric
values are less than or equal to some specific threshold value, and all ultrametric
values between subsets are strictly greater. Conversely, any partition hierarchy of
the form P1, . . . ,PT can be identified with the equivalence class of all ultrametric
matrices that induce it. We note that if only a single pair of subsets can be united
in Pk−1 to form Pk for 2 ≤ k ≤ T , then T = n, and we could then revert to the
characterization of a full partition hierarchy P1, . . . ,Pn used earlier.

Given some fixed partition hierarchy P1, . . . ,PT , there are an infinite num-
ber of ultrametric matrices that induce it, but all can be generated by (restricted)
monotonic functions of what might be called the basic ultrametric matrix U0 de-
fined earlier. Explicitly, any ultrametric in the equivalence class whose members
induce the same fixed hierarchy, P1, . . . ,PT , can be obtained by a strictly increas-
ing monotonic function of the entries in U0, where the function maps zero to zero.
Moreover, because u0

ij for i �= j can be only one of the integer values from 1 to
T − 1, each ultrametric in the equivalence class that generates the fixed hierarchy

srpm_f
2005/10/
page 75

�

�

�

�

�

�

�

�

5.1. Fitting a Given Ultrametric in the L2 Norm 75

may be defined by one of T −1 distinct values. When these T −1 values are ordered
from the smallest to the largest, the (k − 1)st smallest value corresponds to the
partition Pk in the partition hierarchy P1, . . . ,PT , and implicitly to all object pairs
that appear together for the first time within a subset in Pk.

To provide an alternative interpretation, the basic ultrametric matrix can also
be characterized as defining a collection of linear equality and inequality constraints
that any ultrametric in a specific equivalence class must satisfy. Specifically, for each
object triple there is (a) a specification of which ultrametric values among the three
must be equal plus two additional inequality constraints so that the third is not
greater; (b) an inequality or equality constraint for every pair of ultrametric values
based on their order relationship in the basic ultrametric matrix; and (c) an equality
constraint of zero for the main diagonal entries in U. In any case, given these fixed
equality and inequality constraints, standard Lp regression methods (such as those
given in Späth, 1991), could be adapted to generate a best-fitting ultrametric, say
U∗ = {u∗

ij}, to the given proximity matrix P = {pij}. Concretely, we might find
U∗ by minimizing∑

i<j

(pij − uij)2,
∑
i<j

| pij − uij |, or possibly, maxi<j | pij − uij | .

(As a convenience here and later, it is assumed that pij > 0 for all i �= j, to avoid
the technicality of possibly locating best-fitting ‘ultrametrics’ that could violate the
condition that uij = 0 if and only if i = j.)

5.1 Fitting a Given Ultrametric in the L2 Norm
The function, ultrafit.m, with usage

[fit,vaf] = ultrafit(prox,targ)

generates (using iterative projection based on the linear (in)equality constraints
obtained from the fixed ultrametric — see Section 1.4) the best-fitting ultrametric
in the L2-norm (FIT) within the same equivalence class as that of a given ultrametric
matrix TARG. The matrix PROX contains the symmetric input proximities and VAF is
the variance-accounted-for (defined, as usual, by normalizing the obtained L2-norm
loss value):

VAF = 1 −
∑

i<j(pij − u∗
ij)

2∑
i<j(pij − p̄)2

,

where p̄ is the mean off-diagonal proximity in P, and U∗ = {u∗
ij} is the best-fitting

ultrametric.
In the example below, the target matrix is numcltarg obtained from the

complete-link hierarchical clustering of number; the VAF generated by these ultra-
metric constraints is .4781. Comparing the target matrix numcltarg and fit, the
particular monotonic function, say f(·), of the entries in the basic ultrametric ma-
trix that generates the fitted matrix are: f(1) = .0590, f(2) = .2630, f(3) = .2980,
f(4) = .3065, f(5) = .4000, f(6) = .4210, f(7) = .4808, f(8) = .5535, f(9) = .6761.

srpm fina
2005/10/6
page 76

�

�

�

�

�

�

�

�

76 Chapter 5. Ultrametrics for Symmetric Proximity Data

load number.dat
load numcltarg.dat
[fit,vaf] = ultrafit(number,numcltarg)

fit =

Columns 1 through 6

0 0.4210 0.6761 0.6761 0.6761 0.6761
0.4210 0 0.6761 0.6761 0.6761 0.6761
0.6761 0.6761 0 0.5535 0.0590 0.5535
0.6761 0.6761 0.5535 0 0.5535 0.4808
0.6761 0.6761 0.0590 0.5535 0 0.5535
0.6761 0.6761 0.5535 0.4808 0.5535 0
0.6761 0.6761 0.5535 0.2980 0.5535 0.4808
0.6761 0.6761 0.5535 0.4808 0.5535 0.4000
0.6761 0.6761 0.3065 0.5535 0.3065 0.5535
0.6761 0.6761 0.5535 0.2630 0.5535 0.4808

Columns 7 through 10

0.6761 0.6761 0.6761 0.6761
0.6761 0.6761 0.6761 0.6761
0.5535 0.5535 0.3065 0.5535
0.2980 0.4808 0.5535 0.2630
0.5535 0.5535 0.3065 0.5535
0.4808 0.4000 0.5535 0.4808

0 0.4808 0.5535 0.2980
0.4808 0 0.5535 0.4808
0.5535 0.5535 0 0.5535
0.2980 0.4808 0.5535 0

vaf =

0.4781

5.2 Finding an Ultrametric in the L2 Norm

The M-file, ultrafnd.m, implements a heuristic search strategy using iterative pro-
jection to locate a best-fitting ultrametric in the L2-norm. The method used is from
Hubert and Arabie (1995b); this latter source should be consulted for the explicit
algorithmic details implemented in ultrafnd.m (as well as for many of the other
M-files to be presented). The M-file usage has the form

[find,vaf] = ultrafnd(prox,inperm)

srpm_f
2005/10/
page 77

�

�

�

�

�

�

�

�

5.2. Finding an Ultrametric in the L2 Norm 77

where FIND is the ultrametric identified having variance-accounted-for VAF. The
matrix PROX contains the symmetric input proximities; INPERM is a permutation
that defines an order in which the constraints are considered over all object triples.
In the example below, for instance, INPERM is simply set as the MATLAB built-in
random permutation function randperm(n) (using the size n = 10 explicitly for
the number illustration). Thus, the search can be rerun with the same specification
but now using many different random starting sequences. Two such searches are
shown below leading to VAFs of .4941 and .4781 (the latter is the same as obtained
from fitting the best ultrametric in Section 5.1 using numcltarg for a fixed set of
constraints; the former provides a slightly different and better-fitting ultrametric).

[find,vaf] = ultrafnd(number,randperm(10))

find =

Columns 1 through 6

0 0.7300 0.7300 0.7300 0.7300 0.7300
0.7300 0 0.5835 0.5835 0.5835 0.5835
0.7300 0.5835 0 0.5535 0.0590 0.5535
0.7300 0.5835 0.5535 0 0.5535 0.4808
0.7300 0.5835 0.0590 0.5535 0 0.5535
0.7300 0.5835 0.5535 0.4808 0.5535 0
0.7300 0.5835 0.5535 0.2980 0.5535 0.4808
0.7300 0.5835 0.5535 0.4808 0.5535 0.4000
0.7300 0.5835 0.3065 0.5535 0.3065 0.5535
0.7300 0.5835 0.5535 0.2630 0.5535 0.4808

Columns 7 through 10

0.7300 0.7300 0.7300 0.7300
0.5835 0.5835 0.5835 0.5835
0.5535 0.5535 0.3065 0.5535
0.2980 0.4808 0.5535 0.2630
0.5535 0.5535 0.3065 0.5535
0.4808 0.4000 0.5535 0.4808

0 0.4808 0.5535 0.2980
0.4808 0 0.5535 0.4808
0.5535 0.5535 0 0.5535
0.2980 0.4808 0.5535 0

vaf =

0.4941

srpm fina
2005/10/6
page 78

�

�

�

�

�

�

�

�

78 Chapter 5. Ultrametrics for Symmetric Proximity Data

[find,vaf] = ultrafnd(number,randperm(10))

find =

Columns 1 through 6

0 0.4210 0.6761 0.6761 0.6761 0.6761
0.4210 0 0.6761 0.6761 0.6761 0.6761
0.6761 0.6761 0 0.5535 0.0590 0.5535
0.6761 0.6761 0.5535 0 0.5535 0.4808
0.6761 0.6761 0.0590 0.5535 0 0.5535
0.6761 0.6761 0.5535 0.4808 0.5535 0
0.6761 0.6761 0.5535 0.2980 0.5535 0.4808
0.6761 0.6761 0.5535 0.4808 0.5535 0.4000
0.6761 0.6761 0.3065 0.5535 0.3065 0.5535
0.6761 0.6761 0.5535 0.2630 0.5535 0.4808

Columns 7 through 10

0.6761 0.6761 0.6761 0.6761
0.6761 0.6761 0.6761 0.6761
0.5535 0.5535 0.3065 0.5535
0.2980 0.4808 0.5535 0.2630
0.5535 0.5535 0.3065 0.5535
0.4808 0.4000 0.5535 0.4808

0 0.4808 0.5535 0.2980
0.4808 0 0.5535 0.4808
0.5535 0.5535 0 0.5535
0.2980 0.4808 0.5535 0

vaf =

0.4781

5.3 Graphically Representing an Ultrametric

Once an ultrametric matrix has been identified, there are two common ways in
which the information within the matrix might be displayed. The first is to perform
a simple reordering of the rows and columns of the given matrix to make apparent
the sequence of partitions being induced by the ultrametric. The form desired is
typically called anti-Robinson (see, for example, Hubert and Arabie, 1994 [or Part
III of this current text], for a very complete discussion of using and fitting such
matrix orderings). When a matrix is in anti-Robinson form, the entries within each
row (and column) are non-decreasing moving away from the main diagonal in either

srpm_f
2005/10/
page 79

�

�

�

�

�

�

�

�

5.3. Graphically Representing an Ultrametric 79

direction. As the example given below will show, any ultrametric matrix can be
put into such a form easily (but nonuniquely). The second strategy for representing
an ultrametric relies on the graphical form of an inverted tree (or as it is typically
called in the classification literature, a dendrogram), and where one can read the
values of the ultrametric directly from the displayed structure. We give an example
of such a tree below (and provide at the end of this Chapter the LATEX code [within
the picture environment] to generate this particular graphical structure).

To give the illustration of reordering an ultrametric matrix to display its anti-
Robinson form, the example found in Section 5.2 with a VAF of .4941 will be used,
along with a short M-file, ultraorder.m. This function implements a simple mech-
anism of first generating a unidimensional equally-spaced target matrix from the
utility M-file targlin.m, and then reorders heuristically the given ultrametric ma-
trix against this given target with the quadratic assignment functions pairwiseqa.m
and insertqa.m (the latter uses the maximum block size of n−1 for kblock). The
explicit usage is

[orderprox,orderperm] = ultraorder(prox)

where PROX is assumed to be an ultrametric matrix; ORDERPERM is a permutation
used to display the anti-Robinson form in ORDERPROX, where

orderprox = prox(orderperm,orderperm).

load number.dat
[find,vaf] = ultrafnd(number,randperm(10));

[orderprox,orderperm] = ultraorder(find)

orderprox =

Columns 1 through 6

0 0.7300 0.7300 0.7300 0.7300 0.7300
0.7300 0 0.3065 0.3065 0.5535 0.5535
0.7300 0.3065 0 0.0590 0.5535 0.5535
0.7300 0.3065 0.0590 0 0.5535 0.5535
0.7300 0.5535 0.5535 0.5535 0 0.2630
0.7300 0.5535 0.5535 0.5535 0.2630 0
0.7300 0.5535 0.5535 0.5535 0.2980 0.2980
0.7300 0.5535 0.5535 0.5535 0.4808 0.4808
0.7300 0.5535 0.5535 0.5535 0.4808 0.4808
0.7300 0.5835 0.5835 0.5835 0.5835 0.5835

Columns 7 through 10

0.7300 0.7300 0.7300 0.7300
0.5535 0.5535 0.5535 0.5835
0.5535 0.5535 0.5535 0.5835

srpm fina
2005/10/6
page 80

�

�

�

�

�

�

�

�

80 Chapter 5. Ultrametrics for Symmetric Proximity Data

0.5535 0.5535 0.5535 0.5835
0.2980 0.4808 0.4808 0.5835
0.2980 0.4808 0.4808 0.5835

0 0.4808 0.4808 0.5835
0.4808 0 0.4000 0.5835
0.4808 0.4000 0 0.5835
0.5835 0.5835 0.5835 0

orderperm =

1 9 3 5 10 4 7 8 6 2

The reordered matrix using the row and column order of 0 ≺ 8 ≺ 2 ≺ 4 ≺
9 ≺ 3 ≺ 6 ≺ 7 ≺ 5 ≺ 1 is given below; here the blocks of equal-valued entries are
highlighted, indicating the partition hierarchy (also given below) induced by the
ultrametric.

0 8 2 4 9 3 6 7 5 1
0 x .73 .73 .73 .73 .73 .73 .73 .73 .73
8 .73 x .31 .31 .55 .55 .55 .55 .55 .58
2 .73 .31 x .06 .55 .55 .55 .55 .55 .58
4 .73 .31 .06 x .55 .55 .55 .55 .55 .58
9 .73 .55 .55 .55 x .26 .30 .48 .48 .58
3 .73 .55 .55 .55 .26 x .30 .48 .48 .58
6 .73 .55 .55 .55 .30 .30 x .48 .48 .58
7 .73 .55 .55 .55 .48 .48 .48 x .40 .58
5 .73 .55 .55 .55 .48 .48 .48 .40 x .58
1 .73 .58 .58 .58 .58 .58 .58 .58 .58 x

Partition Level Formed

{{0,8,2,4,9,3,6,7,5,1}} .73
{{0},{8,2,4,9,3,6,7,5,1}} .58
{{0},{8,2,4,9,3,6,7,5},{1}} .55

{{0},{8,2,4},{9,3,6,7,5},{1}} .48
{{0},{8,2,4},{9,3,6},{7,5},{1}} .40

{{0},{8,2,4},{9,3,6},{7},{5},{1}} .31
{{0},{8},{2,4},{9,3,6},{7},{5},{1}} .30

{{0},{8},{2,4},{9,3},{6},{7},{5},{1}} .26
{{0},{8},{2,4},{9},{3},{6},{7},{5},{1}} .06

{{0},{8},{2},{4},{9},{3},{6},{7},{5},{1}} —

For the partition hierarchy just given, the alternative structure of a dendro-
gram (or tree) for its representation is given in the figure that follows. The terminal

srpm_f
2005/10/
page 81

�

�

�

�

�

�

�

�

5.3. Graphically Representing an Ultrametric 81

“nodes” of this structure, indicated by open circles, correspond to the ten digits;
the filled circles are internal “nodes” reflecting the level at which certain new classes
in a partition hierarchy are constructed. For instance, using the calibration given
on the long vertical line at the left, a new class consisting of the digits {9,3,6,7,5}
is formed at level .48 by uniting the two classes {9,3,6} and {7,5}. Thus, in the
ultrametric matrix given earlier, the values between the entries in these two classes
are all a constant .48.

The dendrogram just given can be modified (or at least in how it should
be interpreted) to motivate the representational form of an additive tree to be
introduced in Chapter 6: (a) the values in the calibration along the long vertical
axis need to be halved; (b) all horizontal lines are now to be understood as having
no interpretable length and are present only for graphical convenience; (c) a spot
on the dendrogram is indicated (here, by a large open circle), called the “root”. A
crucial characterization feature of an ultrametric is that the root is equidistant from
all terminal nodes. Given these interpretive changes, the ultrametric values for each
object pair can now be reconstructed by the length of the path in the tree connecting
the two relevant objects. Thus, an ultrametric is reconstructed from the lengths of
paths between objects in a tree; and the special form of a tree for an ultrametric
is one in which there exists a root that is equidistant from all terminal nodes. In
the generalization to an additive tree of Chapter 6, the condition of requiring the
existence of an equidistant root is removed, thus allowing the branches attached to
the terminal nodes to be stretched or shrunk at will.

5.3.1 LATEX Code for the Dendrogram of Figure 5.1

\begin{figure}

\caption{A dendrogram (tree) representation for the
ultrametric described in the text having VAF of .4941}

\setlength{\unitlength}{.5pt}

\begin{picture}(500,1000)

\put(50,0){\makebox(0,0){0}}
\put(100,0){\makebox(0,0){8}}
\put(150,0){\makebox(0,0){2}}
\put(200,0){\makebox(0,0){4}}
\put(250,0){\makebox(0,0){9}}
\put(300,0){\makebox(0,0){3}}
\put(350,0){\makebox(0,0){6}}
\put(400,0){\makebox(0,0){7}}
\put(450,0){\makebox(0,0){5}}
\put(500,0){\makebox(0,0){1}}

srpm_f
2005/10/
page 82

�

�

�

�

�

�

�

�

82 Chapter 5. Ultrametrics for Symmetric Proximity Data

Figure 5.1. A dendrogram (tree) representation for the ultrametric de-
scribed in the text having VAF of .4941

0 8 2 4 9 3 6 7 5 1

� � � � � � � � � �

�

�

��

�

�

�
�

�

�.06

�.26

�.30
�.31

�.40

�.48

�.55
�.58

�.73

�.06

srpm_f
2005/10/
page 83

�

�

�

�

�

�

�

�

5.3. Graphically Representing an Ultrametric 83

\put(50,50){\circle{20}}
\put(100,50){\circle{20}}
\put(150,50){\circle{20}}
\put(200,50){\circle{20}}
\put(250,50){\circle{20}}
\put(300,50){\circle{20}}
\put(350,50){\circle{20}}
\put(400,50){\circle{20}}
\put(450,50){\circle{20}}
\put(500,50){\circle{20}}

\put(175,110){\circle*{20}}
\put(275,310){\circle*{20}}
\put(312.5,350){\circle*{20}}
\put(137.5,360){\circle*{20}}
\put(425,450){\circle*{20}}
\put(368.75,530){\circle*{20}}
\put(253.125,600){\circle*{20}}
\put(376.5625,630){\circle*{20}}
\put(213.28125,780){\circle{30}}

\put(0,50){\line(0,1){800}}
\put(50,60){\line(0,1){720}}
\put(100,60){\line(0,1){300}}
\put(150,60){\line(0,1){50}}
\put(200,60){\line(0,1){50}}
\put(250,60){\line(0,1){250}}
\put(300,60){\line(0,1){250}}
\put(350,60){\line(0,1){290}}
\put(400,60){\line(0,1){390}}
\put(450,60){\line(0,1){390}}
\put(500,60){\line(0,1){570}}
\put(175,110){\line(0,1){250}}
\put(275,310){\line(0,1){40}}
\put(312.5,350){\line(0,1){180}}
\put(425,450){\line(0,1){80}}
\put(368.75,530){\line(0,1){70}}
\put(137.5,360){\line(0,1){240}}
\put(253.125,600){\line(0,1){30}}
\put(376.5625,630){\line(0,1){150}}

\put(150,110){\line(1,0){50}}
\put(250,310){\line(1,0){50}}
\put(275,350){\line(1,0){75}}
\put(100,360){\line(1,0){75}}
\put(400,450){\line(1,0){50}}

srpm_f
2005/10/
page 84

�

�

�

�

�

�

�

�

84 Chapter 5. Ultrametrics for Symmetric Proximity Data

\put(312.5,530){\line(1,0){112.5}}
\put(137.5,600){\line(1,0){231.25}}
\put(253.125,630){\line(1,0){246.875}}
\put(50,780){\line(1,0){326.5625}}

\put(-50,110){\vector(1,0){50}}
\put(-50,115){\makebox(0,0)[b]{.06}}
\put(-50,310){\vector(1,0){50}}
\put(-50,315){\makebox(0,0)[b]{.26}}
\put(-50,350){\vector(1,0){50}}
\put(-70,345){\makebox(0,0)[b]{.30}}
\put(-50,360){\vector(1,0){50}}
\put(-70,365){\makebox(0,0)[b]{.31}}
\put(-50,450){\vector(1,0){50}}
\put(-50,455){\makebox(0,0)[b]{.40}}
\put(-50,530){\vector(1,0){50}}
\put(-50,535){\makebox(0,0)[b]{.48}}
\put(-50,600){\vector(1,0){50}}
\put(-50,605){\makebox(0,0)[b]{.55}}
\put(-50,630){\vector(1,0){50}}
\put(-50,635){\makebox(0,0)[b]{.58}}
\put(-50,780){\vector(1,0){50}}
\put(-50,785){\makebox(0,0)[b]{.73}}
\put(-50,110){\vector(1,0){50}}
\put(-50,115){\makebox(0,0)[b]{.06}}

\end{picture}
\end{figure}

5.3.2 Plotting the Dendrogram with ultraplot.m

The M-file, ultraplot.m, uses two of the routines (dendrogram.m and linkage.m)
from the Statistics Toolbox for MATLAB to plot the dendrogram associated with
an ultrametric matrix. Because the input matrix is assumed perfectly ultrametric
in form, without loss of generality, linkage.m is invoked within ultraplot.m with
the complete(-link) option; the resulting output matrix is then used immediately to
obtain the final plot by a call to dendrogram.m.

So, if the user has the Statistics Toolbox available, a graphical representation
of the ultrametric can be generated directly with the syntax

ultraplot(ultra)

where ULTRA is the ultrametric matrix. A figure window opens in MATLAB display-
ing the appropriate tree, which can then be saved in one of the common graphics
file formats and included in a printed document (we have typically used the encap-
sulated postscript form (*.eps)). The example below is how the tree looks obtained
from number.dat and ultrafnd.m.

srpm fina
2005/10/6
page 85

�

�

�

�

�

�

�

�

5.3. Graphically Representing an Ultrametric 85

load number.dat
[find,vaf] = ultrafnd(number,randperm(10));

vaf =

0.4941

ultraplot(find)

additive_constant =

0

If there are any negative values in the input matrix ultra (as obtained, for exam-
ple, when fitting multiple ultrametrics to a single proximity matrix), an additive
constant equal to the negative of the minimum value in ultra is added to the
off-diagonal entries in ultra before the plot is carried out.

srpm fina
2005/10/6
page 86

�

�

�

�

�

�

�

�

86 Chapter 5. Ultrametrics for Symmetric Proximity Data

 3 5 9 4 10 7 6 8 2 1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 5.2. Dendrogram plot for the number data obtained using ultraplot.m

srpm fina
2005/10/6
page 87

�

�

�

�

�

�

�

�

Chapter 6

Additive Trees for
Symmetric Proximity
Data

A currently popular alternative to the use of a simple ultrametric in classifica-
tion, and which might be considered a natural extension of the notion of an ul-
trametric, is that of an additive tree; comprehensive discussions can be found in
Mirkin (1996, Chapter 7) or throughout Barthélemy and Guénoche (1991). Gen-
eralizing the earlier characterization of an ultrametric, an n × n matrix A = {aij}
can be called an additive tree (metric or matrix) if the three-object (or three-
point) ultrametric condition is replaced by a four-object (or four-point) condition:
aij +akl ≤ max{aik +ajl, ail +ajk} for 1 ≤ i, j, k, l ≤ n; equivalently, for any object
quadruple Oi, Oj, Ok, and Ol, the largest two values among the sums aij + akl,
aik + ajl, and ail + ajk must be equal.

Any additive tree matrix A can be represented (in many ways) as a sum of
two matrices, say U = {uij} and C = {cij}, where U is an ultrametric matrix, and
cij = gi + gj for 1 ≤ i �= j ≤ n and cii = 0 for 1 ≤ i ≤ n, based on some set of
values g1, . . . , gn (Carroll, Clark, & DeSarbo, 1984, pp. 71–72). The multiplicity of
such possible decompositions results from the choice of where essentially to place
the root in the type of graphical tree representation we will use. Generally, for us,
the root will be placed half-way along the longest path in the tree, generating a
decomposition of the matrix A using a procedure from Barthélemy and Guénoche
(1991, Section 3.3.3):

(a) Given A, let Oi∗, Oj∗ ∈ S denote the two objects between which the
longest path is defined in the tree, i.e., the pair of objects Oi∗ and Oj∗ is associated
with the largest entry in A, say ai∗j∗.

(b) Define U by letting

uij = aij − (gi + gj), where gi = max{aii∗, ajj∗} − M,

with M chosen so that uij > 0 for i �= j. The matrix C = {cij} is then constructed
by letting cii = 0 for 1 ≤ i ≤ n, and cij = gi + gj for 1 ≤ i �= j ≤ n. (If M is set
equal to the largest entry ai∗j∗, the values in U would have to be positive, and two
values among g1, . . . , gn would be zero with the remainder less than or equal to zero.
Thus, a value for M less than ai∗j∗ is usually found by trial-and-error that will give

87

srpm_f
2005/10/
page 88

�

�

�

�

�

�

�

�

88 Chapter 6. Additive Trees for Symmetric Proximity Data

positive entries within U and as many positive values as possible for g1, . . . , gn.)
To construct the type of graphical additive tree representation we will give

below, the process followed is first to graph the dendrogram induced by U, where
(as for any ultrametric) the chosen root is equidistant from all terminal nodes. The
branches connecting the terminal nodes are then lengthened or shortened depending
on the signs and absolute magnitudes of g1, . . . , gn. If one were willing to consider
the (arbitrary) inclusion of a sufficiently large additive constant to the entries of A,
the values of g1, . . . , gn could be assumed non-negative. In this case, the matrix C
would represent what is now commonly called a centroid metric (see, for example,
the usage in Barthélemy and Guénoche, 1991, Chapter 3); although having some ad-
vantages (particularly for some of the graphical representations we give in avoiding
the issue of presenting negative branch lengths), such a restriction is not absolutely
necessary for what we do in the remaining sections and chapters of Part II. In fact,
even though some of the entries among g1, . . . , gn may be negative, for convenience
we will still routinely refer to a centroid metric (component) even though some of
the defined “distances” may actually be negative.

6.1 Fitting a Given Additive Tree in the L2-Norm

The function, atreefit.m, with usage

[fit,vaf] = atreefit(prox,targ)

parallels that of ultrafit.m of Section 5.1, and generates (again using iterative
projection based on the linear (in)equality constraints obtained from a fixed additive
tree — see Section 1.4) the best-fitting additive tree in the L2-norm (FIT) within
the same equivalence class as that of a given additive tree matrix TARG. Thus, both
FIT and TARG satisfy the exact same set of four-point conditions. The matrix PROX
contains the symmetric input proximities and VAF is the variance-accounted-for.

In the example below, the target matrix is again numcltarg obtained from
the complete-link hierarchical clustering of number.dat; the VAF generated by these
(now considered as additive tree) constraints is .6249 (and, as to be expected, is a
value larger than for the corresponding best-fitting ultrametric value of .4781).

[fit,vaf] = atreefit(number,numcltarg)

fit =

Columns 1 through 6

0 0.4210 0.7185 0.7371 0.7092 0.8188
0.4210 0 0.5334 0.5520 0.5241 0.6337
0.7185 0.5334 0 0.4882 0.0590 0.5700
0.7371 0.5520 0.4882 0 0.4790 0.4337
0.7092 0.5241 0.0590 0.4790 0 0.5607
0.8188 0.6337 0.5700 0.4337 0.5607 0
0.7116 0.5265 0.4627 0.2506 0.4535 0.4082

srpm_f
2005/10/
page 89

�

�

�

�

�

�

�

�

6.2. Finding an Additive Tree in the L2-Norm 89

0.8670 0.6818 0.6181 0.4818 0.6089 0.4000
0.7549 0.5698 0.3111 0.5247 0.3019 0.6064
0.8318 0.6467 0.5830 0.2630 0.5737 0.5284

Columns 7 through 10

0.7116 0.8670 0.7549 0.8318
0.5265 0.6818 0.5698 0.6467
0.4627 0.6181 0.3111 0.5830
0.2506 0.4818 0.5247 0.2630
0.4535 0.6089 0.3019 0.5737
0.4082 0.4000 0.6064 0.5284

0 0.4563 0.4992 0.3454
0.4563 0 0.6546 0.5766
0.4992 0.6546 0 0.6194
0.3454 0.5766 0.6194 0

vaf =

0.6249

6.2 Finding an Additive Tree in the L2-Norm

Analogous to the M-file, ultrafnd.m, from Section 5.2 for identifying best-fitting ul-
trametrics, atreefnd.m implements the Hubert and Arabie (1995b) heuristic search
strategy using iterative projection but now for constructing the best-fitting additive
trees in the L2-norm. The usage has the form

[find,vaf] = atreefnd(prox,inperm)

where FIND is the identified additive tree having variance-accounted-for, VAF. Again,
the matrix PROX contains the symmetric input proximities, and INPERM is a permu-
tation that defines an order in which the constraints are considered over all object
quadruples. In the example below, two such searches are shown starting with ran-
dom permutations (through the use of randperm(10)) that give VAFs of .6359 and
.6249.

[find,vaf] = atreefnd(number,randperm(10))

find =

Columns 1 through 6

0 0.4210 0.6467 0.6448 0.6374 0.8049
0.4210 0 0.4616 0.4596 0.4523 0.6198
0.6467 0.4616 0 0.3634 0.0590 0.5235
0.6448 0.4596 0.3634 0 0.3542 0.4385

srpm_f
2005/10/
page 90

�

�

�

�

�

�

�

�

90 Chapter 6. Additive Trees for Symmetric Proximity Data

0.6374 0.4523 0.0590 0.3542 0 0.5143
0.8049 0.6198 0.5235 0.4385 0.5143 0
0.7523 0.5671 0.4709 0.3858 0.4617 0.4132
0.9263 0.7412 0.6449 0.5599 0.6357 0.5872
0.8634 0.6783 0.5820 0.4970 0.5728 0.5244
0.8733 0.6881 0.5919 0.5068 0.5827 0.5342

Columns 7 through 10

0.7523 0.9263 0.8634 0.8733
0.5671 0.7412 0.6783 0.6881
0.4709 0.6449 0.5820 0.5919
0.3858 0.5599 0.4970 0.5068
0.4617 0.6357 0.5728 0.5827
0.4132 0.5872 0.5244 0.5342

0 0.3930 0.3301 0.3400
0.3930 0 0.4000 0.4569
0.3301 0.4000 0 0.3941
0.3400 0.4569 0.3941 0

vaf =

0.6359

[find,vaf] = atreefnd(number,randperm(10))

find =

Columns 1 through 6

0 0.4210 0.7185 0.7371 0.7092 0.8188
0.4210 0 0.5334 0.5520 0.5241 0.6337
0.7185 0.5334 0 0.4882 0.0590 0.5700
0.7371 0.5520 0.4882 0 0.4790 0.4337
0.7092 0.5241 0.0590 0.4790 0 0.5607
0.8188 0.6337 0.5700 0.4337 0.5607 0
0.7116 0.5265 0.4627 0.2506 0.4535 0.4082
0.8670 0.6818 0.6181 0.4818 0.6089 0.4000
0.7549 0.5698 0.3111 0.5247 0.3019 0.6064
0.8318 0.6467 0.5830 0.2630 0.5737 0.5284

Columns 7 through 10

0.7116 0.8670 0.7549 0.8318
0.5265 0.6818 0.5698 0.6467
0.4627 0.6181 0.3111 0.5830

srpm_f
2005/10/
page 91

�

�

�

�

�

�

�

�

6.3. Decomposing an Additive Tree 91

0.2506 0.4818 0.5247 0.2630
0.4535 0.6089 0.3019 0.5737
0.4082 0.4000 0.6064 0.5284

0 0.4563 0.4992 0.3454
0.4563 0 0.6546 0.5766
0.4992 0.6546 0 0.6194
0.3454 0.5766 0.6194 0

vaf =

0.6249

6.3 Decomposing an Additive Tree
The M-file, atreedec.m, decomposes a given additive tree matrix into an ultramet-
ric and a centroid metric matrix (where the root is half-way along the longest path).
The form of the usage is

[ulmetric,ctmetric] = atreedec(prox,constant)

where PROX is the input (additive tree) proximity matrix (with a zero main diag-
onal and a dissimilarity interpretation); CONSTANT is a non-negative number (less
than or equal to the maximum proximity value) that controls the positivity of the
constructed ultrametric values; ULMETRIC is the ultrametric component of the de-
composition; CTMETRIC is the centroid metric component (given by values g1, . . . , gn

assigned to each of the objects, some of which may actually be negative depending
on the input proximity matrix used). In the example below, the additive tree matrix
identified earlier with a VAF of .6359, is decomposed using a value of .70 for the
constant to control the positivity of the ultrametric values.

[find,vaf] = atreefnd(number,randperm(10));
[ulmetric,ctmetric] = atreedec(find,.70);
ulmetric

ulmetric =

Columns 1 through 6

0 0.1536 0.4737 0.4737 0.4737 0.4737
0.1536 0 0.4737 0.4737 0.4737 0.4737
0.4737 0.4737 0 0.4720 0.1749 0.4720
0.4737 0.4737 0.4720 0 0.4720 0.3888
0.4737 0.4737 0.1749 0.4720 0 0.4720
0.4737 0.4737 0.4720 0.3888 0.4720 0
0.4737 0.4737 0.4720 0.3888 0.4720 0.2560
0.4737 0.4737 0.4720 0.3888 0.4720 0.2560

srpm_f
2005/10/
page 92

�

�

�

�

�

�

�

�

92 Chapter 6. Additive Trees for Symmetric Proximity Data

0.4737 0.4737 0.4720 0.3888 0.4720 0.2560
0.4737 0.4737 0.4720 0.3888 0.4720 0.2560

Columns 7 through 10

0.4737 0.4737 0.4737 0.4737
0.4737 0.4737 0.4737 0.4737
0.4720 0.4720 0.4720 0.4720
0.3888 0.3888 0.3888 0.3888
0.4720 0.4720 0.4720 0.4720
0.2560 0.2560 0.2560 0.2560

0 0.1144 0.1144 0.1144
0.1144 0 0.0103 0.0574
0.1144 0.0103 0 0.0574
0.1144 0.0574 0.0574 0

ctmetric’

ans =

Columns 1 through 6

0.2263 0.0412 -0.0533 -0.0552 -0.0626 0.1049

Columns 7 through 10

0.0523 0.2263 0.1634 0.1733

[orderprox,orderperm] = ultraorder(ulmetric)

orderprox =

Columns 1 through 7

0 0.1536 0.4737 0.4737 0.4737 0.4737 0.4737
0.1536 0 0.4737 0.4737 0.4737 0.4737 0.4737
0.4737 0.4737 0 0.1749 0.4720 0.4720 0.4720
0.4737 0.4737 0.1749 0 0.4720 0.4720 0.4720
0.4737 0.4737 0.4720 0.4720 0 0.2560 0.2560
0.4737 0.4737 0.4720 0.4720 0.2560 0 0.1144
0.4737 0.4737 0.4720 0.4720 0.2560 0.1144 0
0.4737 0.4737 0.4720 0.4720 0.2560 0.1144 0.0574
0.4737 0.4737 0.4720 0.4720 0.2560 0.1144 0.0574
0.4737 0.4737 0.4720 0.4720 0.3888 0.3888 0.3888

srpm fina
2005/10/6
page 93

�

�

�

�

�

�

�

�

6.4. Graphically Representing an Additive Tree 93

Columns 8 through 10

0.4737 0.4737 0.4737
0.4737 0.4737 0.4737
0.4720 0.4720 0.4720
0.4720 0.4720 0.4720
0.2560 0.2560 0.3888
0.1144 0.1144 0.3888
0.0574 0.0574 0.3888

0 0.0103 0.3888
0.0103 0 0.3888
0.3888 0.3888 0

orderperm =

2 1 3 5 6 7 10 9 8 4

6.4 Graphically Representing an Additive Tree

The information present in an additive tree can be provided in several ways. First,
given the decomposition into an ultrametric and a centroid metric, the partition
hierarchy induced by the ultrametric could be given explicitly, along with the levels
at which the various new subsets in the partitions are formed. The fitted additive
tree values could then be identified as a sum of (a) the level at which an object pair,
say Oi and Oj, first appear together within a common subset of the hierarchy, and
(b) the sum of gi and gj for the pair from the centroid metric component. As an
illustration using the example just given in Section 6.3, the partition hierarchy has
the form:

Partition Level Formed

{{1,0,2,4,5,6,9,8,7,3}} .47
{{1,0},{2,4},{5,6,9,8,7,3}} .39

{{1,0},{2,4},{5,6,9,8,7},{3}} .26
{{1,0},{2,4},{5},{6,9,8,7},{3}} .17
{{1,0},{2},{4},{5},{6,9,8,7},{3}} .15

{{1},{0},{2},{4},{5},{6,9,8,7},{3}} .11
{{1},{0},{2},{4},{5},{6},{9,8,7},{3}} .06

{{1},{0},{2},{4},{5},{6},{9},{8,7},{3}} .01
{{1},{0},{2},{4},{5},{6},{9},{8},{7},{3}} .00

with centroid metric values of:

srpm fina
2005/10/6
page 94

�

�

�

�

�

�

�

�

94 Chapter 6. Additive Trees for Symmetric Proximity Data

digit gi

0 .23
1 .04
2 -.05
3 -.06
4 -.06
5 .10
6 .05
7 .23
8 .16
9 .17

Thus, the additive tree value for the digit pair (3,6) of .39 [.3858] is formed from
the level .39 [.3888] at which 3 and 6 first appear together in the hierarchy, plus
the sum of the gis for the two digits of -.06 [-.0552] and .05 [.0523]. A dendrogram
representation for the partition hierarchy is given in Figure 6.1.

A graphical representation for the additive tree is given in Figure 6.2 which
was obtained from the dendrogram of Figure 6.1 by stretching and shrinking the
branches attached to the terminal nodes by the gi values (and cutting the vertical
scale given in the dendrogram by half). Thus, the length of a path in the tree from
one terminal node to another (ignoring all horizontal lines as having uninterpretable
lengths), would generate the values given in the additive tree matrix.

6.5 An Alternative for Finding an Additive Tree in
the L2-Norm (Based on Combining a Centroid
Metric and an Ultrametric)

If the four-point condition characterizing an additive tree is strengthened so that
all the sums in the defining conditions for all object quadruples are equal (and
not only for the largest two such sums), the additive tree matrix so obtained has
entries representable as gi + gj, for a collection of values g1, . . . , gn. This specially
constrained additive tree is usually referred to as a centroid metric, and as noted by
Carroll and Pruzansky (1980) and De Soete, DeSarbo, Furnas, and Carroll (1984),
can be fitted to a proximity matrix in the L2-norm through closed-form expressions.
Specifically, if P denotes the proximity matrix, then gi can be given as the ith row
sum of P excluding the diagonal entry, divided by n−2, minus the total off-diagonal
sum divided by 2(n − 1)(n − 2).

The M-file, centfit.m, for obtaining the best-fitting centroid metric in the
L2-norm, has usage

[fit,vaf,lengths] = centfit(prox)

where PROX is the usual input proximity matrix (with a zero main diagonal and
a dissimilarity interpretation); the n values that define the approximating sums,
gi + gj, present in the fitted matrix FIT, are given in the vector LENGTHS of size

srpm fina
2005/10/6
page 95

�

�

�

�

�

�

�

�

6.5. An Alternative for Finding an Additive Tree in the L2-Norm 95

Figure 6.1. A dendrogram (tree) representation for the ultrametric com-
ponent of the additive tree described in the text having VAF of .6359

1 0 2 4 5 6 9 8 7 3

� � � � � � � � � �

�
�

�

�

�

�

�

��

�.01

�.06

�.11

�.15
�.17

�.26

�.39

�.47

srpm fina
2005/10/6
page 96

�

�

�

�

�

�

�

�

96 Chapter 6. Additive Trees for Symmetric Proximity Data

Figure 6.2. A graph-theoretic representation for the additive tree described
in the text having VAF of .6359

1

0

2
4 5

6

9

8

7
3

�

�

�
� �

�

�

�

�
�

�
�

�

�

�

�

�

�

�.00

�.10

�.20

�.30

�.40

�.47

srpm_f
2005/10/
page 97

�

�

�

�

�

�

�

�

6.5. An Alternative for Finding an Additive Tree in the L2-Norm 97

n × 1. The example below uses centfit.m with the number.dat data set, leading
to an additive tree with VAF of .3248; this tree could be represented graphically
as a “star” tree with one internal node and spokes having the lengths given in the
output vector LENGTHS

load number.dat
[fit,vaf,lengths] = centfit(number)

fit =

Columns 1 through 7

0 0.7808 0.6877 0.6709 0.6784 0.7647 0.6589
0.7808 0 0.5026 0.4858 0.4933 0.5796 0.4738
0.6877 0.5026 0 0.3927 0.4002 0.4864 0.3807
0.6709 0.4858 0.3927 0 0.3834 0.4697 0.3639
0.6784 0.4933 0.4002 0.3834 0 0.4772 0.3714
0.7647 0.5796 0.4864 0.4697 0.4772 0 0.4577
0.6589 0.4738 0.3807 0.3639 0.3714 0.4577 0
0.8128 0.6277 0.5346 0.5178 0.5253 0.6116 0.5058
0.7499 0.5648 0.4717 0.4549 0.4624 0.5487 0.4429
0.7657 0.5806 0.4874 0.4707 0.4782 0.5644 0.4587

Columns 8 through 10

0.8128 0.7499 0.7657
0.6277 0.5648 0.5806
0.5346 0.4717 0.4874
0.5178 0.4549 0.4707
0.5253 0.4624 0.4782
0.6116 0.5487 0.5644
0.5058 0.4429 0.4587

0 0.5968 0.6126
0.5968 0 0.5497
0.6126 0.5497 0

vaf =

0.3248

lengths =

Columns 1 through 7

0.4830 0.2978 0.2047 0.1880 0.1955 0.2817 0.1760

srpm fina
2005/10/6
page 98

�

�

�

�

�

�

�

�

98 Chapter 6. Additive Trees for Symmetric Proximity Data

Columns 8 through 10

0.3298 0.2670 0.2827

An alternative strategy for identifying good-fitting additive trees (and one
that will be used in a slightly different form on two-mode proximity data in Section
8.2) relies on the possible decomposition of an additive tree into an ultrametric
and centroid metric. The M-file, atreectul.m, first fits a centroid metric in closed
form; an ultrametric is then identified on the residual matrix. The sum of these two
matrices is an additive tree. The usage would follow that of atreefnd.m:

[find,vaf] = atreectul(prox,inperm)

where FIND is the identified additive tree with variance-accounted-for, VAF. Again,
the matrix PROX contains the symmetric input proximities, and INPERM is a per-
mutation that defines an order in which the constraints are considered over all
object triples in the identification of the ultrametric component. In the example
below, one search is shown starting with a random permutation (through the use
of randperm(10)) that gives the same additive tree identified earlier with a VAF of
.6249.

[find,vaf] = atreectul(number,randperm(10));
vaf

vaf =

0.6249

srpm fina
2005/10/6
page 99

�

�

�

�

�

�

�

�

Chapter 7

Fitting Multiple Tree
Structures to a Symmetric
Proximity Matrix

The use of multiple structures, whether they be ultrametrics or additive trees, to
represent additively a given proximity matrix, proceeds directly through successive
residualization and iteration. We restrict ourselves to the fitting of two such struc-
tures but the same process would apply for any such number. Initially, a first matrix
is fitted to a given proximity matrix and a first residual matrix obtained; a second
structure is then fitted to these first residuals, producing a second residual matrix.
Iterating, the second fitted matrix is now subtracted from the original proximity
matrix and a first (re)fitted matrix obtained; this first (re)fitted matrix in turn is
subtracted from the original proximity matrix and a new second matrix (re)fitted.
This process continues until the VAF by the sum of both fitted matrices no longer
changes by a set amount (the value of 1.0e-006 is used in the M-files of the next
two sections).

7.1 Multiple Ultrametrics
The M-file, biultrafnd.m, fits (additively) two ultrametric matrices in the L2-
norm. The explicit usage is

[find,vaf,targone,targtwo] = biultrafnd(prox,inperm)

where PROX is the given input proximity matrix (with a zero main diagonal and
a dissimilarity interpretation); INPERM is a permutation that determines the order
in which the inequality constraints are considered (and thus can be made random
to search for different locally optimal representations); FIND is the obtained least-
squares matrix (with variance-accounted-for of VAF) to PROX, and is the sum of the
two ultrametric matrices TARGONE and TARGTWO.

In the example to follow, a VAF of .8001 was achieved for the two identified
ultrametrics (and where one needs to add an (arbitrary) constant [e.g., a value of
.40 would suffice in this case, but other examples might require different additive
constants] to the entries in TARGTWO to satisfy the technical requirement here that
ultrametric values should be non-negative). It might be noted substantively that

99

srpm_f
2005/10/
page 100

�

�

�

�

�

�

�

�

100 Chapter 7. Fitting Multiple Tree Structures for a Symmetric Matrix

the first ultrametric matrix (in TARGONE) reflects the structural properties of the
digits; the second ultrametric matrix (in TARGTWO) is completely consistent with
digit magnitude. This result is a very nice mixture of ultrametric structures with a
convenient substantive interpretation for both components.

[find,vaf,targone,targtwo] = biultrafnd(number,randperm(10));

vaf

vaf =

0.8001

[orderproxone,orderpermone] = ultraorder(targone)

orderproxone =

Columns 1 through 6

0 0.7796 0.7796 0.7796 0.7796 0.7796
0.7796 0 0.2168 0.2168 0.5512 0.5512
0.7796 0.2168 0 0.0701 0.5512 0.5512
0.7796 0.2168 0.0701 0 0.5512 0.5512
0.7796 0.5512 0.5512 0.5512 0 0.1733
0.7796 0.5512 0.5512 0.5512 0.1733 0
0.7796 0.5512 0.5512 0.5512 0.2772 0.2772
0.7796 0.5512 0.5512 0.5512 0.4622 0.4622
0.7796 0.5512 0.5512 0.5512 0.4622 0.4622
0.7796 0.5945 0.5945 0.5945 0.5945 0.5945

Columns 7 through 10

0.7796 0.7796 0.7796 0.7796
0.5512 0.5512 0.5512 0.5945
0.5512 0.5512 0.5512 0.5945
0.5512 0.5512 0.5512 0.5945
0.2772 0.4622 0.4622 0.5945
0.2772 0.4622 0.4622 0.5945

0 0.4622 0.4622 0.5945
0.4622 0 0.3103 0.5945
0.4622 0.3103 0 0.5945
0.5945 0.5945 0.5945 0

orderpermone =

srpm fina
2005/10/6
page 101

�

�

�

�

�

�

�

�

7.2. Multiple Additive Trees 101

1 9 3 5 10 4 7 8 6 2

[orderproxtwo,orderpermtwo] = ultraorder(targtwo)

orderproxtwo =

Columns 1 through 6

0 -0.3586 -0.2531 -0.1721 -0.0111 -0.0111
-0.3586 0 -0.2531 -0.1721 -0.0111 -0.0111
-0.2531 -0.2531 0 -0.1721 -0.0111 -0.0111
-0.1721 -0.1721 -0.1721 0 -0.0111 -0.0111
-0.0111 -0.0111 -0.0111 -0.0111 0 -0.1422
-0.0111 -0.0111 -0.0111 -0.0111 -0.1422 0
0.0897 0.0897 0.0897 0.0897 0.0897 0.0897
0.0897 0.0897 0.0897 0.0897 0.0897 0.0897
0.0897 0.0897 0.0897 0.0897 0.0897 0.0897
0.0897 0.0897 0.0897 0.0897 0.0897 0.0897

Columns 7 through 10

0.0897 0.0897 0.0897 0.0897
0.0897 0.0897 0.0897 0.0897
0.0897 0.0897 0.0897 0.0897
0.0897 0.0897 0.0897 0.0897
0.0897 0.0897 0.0897 0.0897
0.0897 0.0897 0.0897 0.0897

0 -0.0982 -0.0982 -0.0479
-0.0982 0 -0.2012 -0.0479
-0.0982 -0.2012 0 -0.0479
-0.0479 -0.0479 -0.0479 0

orderpermtwo =

1 2 3 4 5 6 8 7 9 10

7.2 Multiple Additive Trees
The M-file, biatreefnd.m, fits (additively) two additive tree matrices in the L2-
norm. The explicit usage is

[find,vaf,targone,targtwo] = biatreefnd(prox,inperm)

where PROX is the given input proximity matrix (with a zero main diagonal and a
dissimilarity interpretation); INPERM is a permutation that determines the order in
which the inequality constraints are considered (and thus can be made random to

srpm_f
2005/10/
page 102

�

�

�

�

�

�

�

�

102 Chapter 7. Fitting Multiple Tree Structures for a Symmetric Matrix

search for different locally optimal representations); FIND is the found least-squares
matrix (with variance-accounted-for of VAF) to PROX, and is the sum of the two
additive tree matrices TARGONE and TARGTWO.

In the example to follow, a VAF of .9003 was achieved for the two identified
additive trees (and where one needs as in the multiple ultrametric case, to add
an [arbitrary] constant to the entries in TARGTWO to satisfy the technical require-
ment here that additive tree values should be non-negative; also, sufficiently large
additive constants would need to be imposed on the two ultrametric components
to ensure non-negativity of the resulting values. These additive constants do not
affect the achieved VAF or the resulting representations in any material way.). Sim-
ilarly, as in the interpretation for the example of the last section, it might be noted
substantively that the second additive tree matrix (in TARGTWO) reflects the struc-
tural properties of the digits; the first matrix (in TARGONE) is completely consistent
with digit magnitude. So, again we have a very nice mixture of structures with
convenient substantive interpretations for both components.

[find,vaf,targone,targtwo] = biatreefnd(number,randperm(10));

vaf

vaf =

0.9003

[ulmetricone,ctmetricone] = atreedec(targone,0.0);
[ulmetrictwo,ctmetrictwo] = atreedec(targtwo,0.0);
ctmetricone’

ans =

Columns 1 through 6

0.9652 0.7801 0.6716 0.6164 0.7114 0.7976

Columns 7 through 10

0.7699 0.9652 0.9023 0.9051

ctmetrictwo’

ans =

Columns 1 through 6

0.0373 0.0994 0.1256 0.1256 0.1256 0.1129

srpm_f
2005/10/
page 103

�

�

�

�

�

�

�

�

7.2. Multiple Additive Trees 103

Columns 7 through 10

0.0267 0.1129 0.1105 0.1256

[orderproxone,orderpermone] = ultraorder(ulmetricone)

orderproxone =

Columns 1 through 6

0 -1.1786 -1.1786 -0.9652 -0.9652 -0.9652
-1.1786 0 -1.3014 -0.9652 -0.9652 -0.9652
-1.1786 -1.3014 0 -0.9652 -0.9652 -0.9652
-0.9652 -0.9652 -0.9652 0 -1.2128 -1.1030
-0.9652 -0.9652 -0.9652 -1.2128 0 -1.1030
-0.9652 -0.9652 -0.9652 -1.1030 -1.1030 0
-0.9652 -0.9652 -0.9652 -1.1030 -1.1030 -1.4617
-0.9652 -0.9652 -0.9652 -1.1030 -1.1030 -1.4617
-0.9652 -0.9652 -0.9652 -1.1030 -1.1030 -1.3477
-0.9652 -0.9652 -0.9652 -0.9850 -0.9850 -0.9850

Columns 7 through 10

-0.9652 -0.9652 -0.9652 -0.9652
-0.9652 -0.9652 -0.9652 -0.9652
-0.9652 -0.9652 -0.9652 -0.9652
-1.1030 -1.1030 -1.1030 -0.9850
-1.1030 -1.1030 -1.1030 -0.9850
-1.4617 -1.4617 -1.3477 -0.9850

0 -1.5653 -1.3477 -0.9850
-1.5653 0 -1.3477 -0.9850
-1.3477 -1.3477 0 -0.9850
-0.9850 -0.9850 -0.9850 0

orderpermone =

3 2 1 5 6 10 9 8 7 4

[orderproxtwo,orderpermtwo] = ultraorder(ulmetrictwo)

orderproxtwo =

Columns 1 through 6

0 -0.1539 -0.1539 -0.1539 -0.1256 -0.1256

srpm fina
2005/10/6
page 104

�

�

�

�

�

�

�

�

104 Chapter 7. Fitting Multiple Tree Structures for a Symmetric Matrix

-0.1539 0 -0.4893 -0.4893 -0.1256 -0.1256
-0.1539 -0.4893 0 -0.6099 -0.1256 -0.1256
-0.1539 -0.4893 -0.6099 0 -0.1256 -0.1256
-0.1256 -0.1256 -0.1256 -0.1256 0 -0.4855
-0.1256 -0.1256 -0.1256 -0.1256 -0.4855 0
-0.1256 -0.1256 -0.1256 -0.1256 -0.2524 -0.2524
-0.1256 -0.1256 -0.1256 -0.1256 -0.2524 -0.2524
-0.1256 -0.1256 -0.1256 -0.1256 -0.2524 -0.2524
-0.1256 -0.1256 -0.1256 -0.1256 -0.1596 -0.1596

Columns 7 through 10

-0.1256 -0.1256 -0.1256 -0.1256
-0.1256 -0.1256 -0.1256 -0.1256
-0.1256 -0.1256 -0.1256 -0.1256
-0.1256 -0.1256 -0.1256 -0.1256
-0.2524 -0.2524 -0.2524 -0.1596
-0.2524 -0.2524 -0.2524 -0.1596

0 -0.5246 -0.3151 -0.1596
-0.5246 0 -0.3151 -0.1596
-0.3151 -0.3151 0 -0.1596
-0.1596 -0.1596 -0.1596 0

orderpermtwo =

7 9 5 3 8 6 10 4 2 1

srpm fina
2005/10/6
page 105

�

�

�

�

�

�

�

�

Chapter 8

Ultrametrics and Additive
Trees for Two-Mode
(Rectangular) Proximity
Data

Thus far in this Part II, the proximity data considered for obtaining some type of
structure, such as an ultrametric or an additive tree, have been assumed to be on one
intact set of objects, S = {O1, . . . , On}, and complete in the sense that proximity
values are present between all object pairs. Just as LUS (Linear Unidimensional
Scaling) was generalized for two-mode proximity data in Chapter 4, suppose now
that the available proximity data are two-mode, and between two distinct object
sets, SA = {O1A, . . . , OnaA} and SB = {O1B, . . . , OnbB}, containing na and nb

objects, respectively, given by an na × nb proximity matrix Q = {qrs}. Again,
we assume that the entries in Q are keyed as dissimilarities, and a joint structural
representation is desired for the set SA ∪ SB .

Conditions have been proposed in the literature for when the entries in a
matrix fitted to Q characterize an ultrametric or an additive tree representation.
In particular, suppose an na × nb matrix F = {frs} is fitted to Q through least
squares subject to the constraints that follow:

Ultrametric (Furnas, 1980):
for all distinct object quadruples, OrA, OsA, OrB, OsB, where OrA, OsA ∈ SA and
OrB , OsB, ∈ SB , and considering the entries in F corresponding to the pairs, (OrA,
OrB), (OrA, OsB), (OsA OrB), and (OsA, OsB), say frArB , frAsB , fsArB , fsAsB ,
respectively, the largest two must be equal.

Additive trees (Brossier, 1987):
for all distinct object sextuples, OrA, OsA, OtA, OrB , OsB, OtB, where OrA, OsA,
OtA ∈ SA and OrB, OsB, OtB, ∈ SB , and considering the entries in F corresponding
to the pairs (OrA, OrB), (OrA, OsB), (OrA, OtB), (OsA, OrB), (OsA, OsB), (OsA,
OtB), (OtA, OrB), (OtA, OsB), and (OtA, OtB), say frArB , frAsB , frAtB , fsArB ,
fsAsB , fsAtB , ftArB , ftAsB , ftAtB , respectively, the largest two of the following sums
must be equal:

frArB + fsAsB + ftAtB ;
frArB + fsAtB + ftAsB ;

105

srpm_f
2005/10/
page 106

�

�

�

�

�

�

�

�

106 Chapter 8. Ultrametrics and Additive Trees for Two-Mode Data

frAsB + fsArB + ftAtB ;
frAsB + fsAtB + ftArB ;
frAtB + fsArB + ftAsB ;
frAtB + fsAsB + ftArB .

In both cases of ultrametric and additive trees for two-mode proximity data,
the necessary constraints characterizing a solution are linear and define closed con-
vex sets in which a solution must lie. Thus, the application of iterative projection
as a heuristic search strategy for the best-fitting solutions is fairly direct, and an
example of an ultrametric found and fitted to a two-mode matrix will be given in
Section 8.1. We will not, however, give a comparable example of fitting the addi-
tive tree constraints to such a proximity matrix; the (scratch) storage requirements
necessitated by iterative projection in directly using the additive tree constraints
given above and keeping track of the various augmentations made can become rather
onerous for moderate-sized data matrices in the course of the heuristic search. For
general use, an alternative approach to the fitting of additive trees is preferable that
again uses iterative projection but with the ultrametric conditions in conjunction
with a secondary centroid metric; this strategy avoids any major (scratch) storage
difficulties and will be reviewed and illustrated in Section 8.2. We might note that
the process of fitting two-mode proximity data by additive trees or ultrametrics
using iterative projection heuristics may generate a rather large number of distinct
locally optimal solutions with differing VAF values, particularly in contrast to the
situation usually observed for symmetric proximity data. Although this abundance
is not inevitably the case and obviously depends on the particular data set being
considered, it is not unusual and should be expected by a user.

8.1 Fitting and Finding Two-Mode Ultrametrics

To illustrate the fitting of a given two-mode ultrametric, a two-mode target is
generated by the upper-right 6×4 portion of the 10×10 ultrametric target matrix,
numcltarg, used in Section 5.1. This file will be called numcltarg6x4.dat, and has
contents as follows:

9 9 9 9
9 9 9 9
8 8 4 8
3 7 8 2
8 8 4 8
7 5 8 7

The six rows correspond to the digits 0, 1, 2, 3, 4, and 5; the four columns to 6, 7, 8,
and 9. As the two-mode 6×4 proximity matrix, the appropriate upper-right portion
of the number proximity matrix will be used in the fitting process; the corresponding
file is called number6x4.dat, with contents:

.788 .909 .821 .850

.758 .630 .791 .625

srpm fina
2005/10/6
page 107

�

�

�

�

�

�

�

�

8.1. Fitting and Finding Two-Mode Ultrametrics 107

.421 .796 .367 .808

.300 .592 .804 .263

.388 .742 .246 .683

.396 .400 .671 .592

The M-file, ultrafittm.m, fits a given ultrametric to a two-mode proximity matrix
(using iterative projection in the L2-norm), and has usage

[fit,vaf] = ultrafittm(proxtm,targ)

where PROXTM is the two-mode (rectangular) input proximity matrix (with a dissim-
ilarity interpretation); TARG is an ultrametric matrix of the same size as PROXTM; FIT
is the least-squares optimal matrix (with variance-accounted-for of VAF) to PROXTM
satisfying the two-mode ultrametric constraints implicit in TARG. An example follows
using numcltarg6x4 for TARG and number6x4 as PROXTM:

load number6x4.dat
load numcltarg6x4.dat
[fit,vaf] = ultrafittm(number6x4,numcltarg6x4)

fit =

0.7715 0.7715 0.7715 0.7715
0.7715 0.7715 0.7715 0.7715
0.6641 0.6641 0.3065 0.6641
0.3000 0.5267 0.6641 0.2630
0.6641 0.6641 0.3065 0.6641
0.5267 0.4000 0.6641 0.5267

vaf =

0.6978

A VAF of .6978 was obtained for the fitted ultrametric; we give the hierarchy
below with indications of when the partitions were formed in the L2-norm fitted
ultrametric (in FIT) and in the original target (in cltarg6X4):

Partition Level Level
Formed Formed
(L2) (Target)

{{0,1,2,4,8,3,9,6,5,7}} .7715 9
{{0},{1},{2,4,8,3,9,6,5,7}} .6641 8
{{0},{1},{2,4,8},{3,9,6,5,7}} .5267 7
{{0},{1},{2,4,8},{3,9,6},{5,7}} .4000 5
{{0},{1},{2,4,8},{3,9,6},{5},{7}} .3065 4
{{0},{1},{2},{4},{8},{3,9,6},{5},{7}} .3000 3
{{0},{1},{2},{4},{8},{3,9},{6},{5},{7}} .2630 2
{{0},{1},{2},{4},{8},{3},{9},{6},{5},{7}} — —

srpm fina
2005/10/6
page 108

�

�

�

�

�

�

�

�

108 Chapter 8. Ultrametrics and Additive Trees for Two-Mode Data

The M-file, ultrafndtm.m, relies on iterative projection heuristically to locate
a best-fitting two-mode ultrametric. The usage is

[find,vaf] = ultrafndtm(proxtm,inpermrow,inpermcol)

where PROXTM is the two-mode input proximity matrix (with a dissimilarity interpre-
tation); INPERMROW and INPERMCOL are permutations for the row and column objects
that determine the order in which the inequality constraints are considered; FIND
is the found least-squares matrix (with variance-accounted-for of VAF) to PROXTM
satisfying the ultrametric constraints. The example below for the number6x4 two-
mode data (using random permutations for INPERMROW and INPERMCOL), finds an
ultrametric with VAF of .7448.

[find,vaf] = ultrafndtm(number6x4,randperm(6),randperm(4))

find =

0.8420 0.8420 0.8420 0.8420
0.7010 0.7010 0.7010 0.7010
0.6641 0.6641 0.3670 0.6641
0.3000 0.5267 0.6641 0.2630
0.6641 0.6641 0.2460 0.6641
0.5267 0.4000 0.6641 0.5267

vaf =
0.7448

The partition hierarchy identified is similar to that found for the fixed target
numcltarg6x4, although there is some minor variation in how the digits 0 and 1
are treated:

Partition Level Formed (L2)

{{0,1,2,4,8,3,9,6,5,7}} .8420
{{0},{1,2,4,8,3,9,6,5,7}} .7010
{{0},{1},{2,4,8,3,9,6,5,7}} .6641

{{0},{1},{2,4,8},{3,9,6,5,7}} .5267
{{0},{1},{2,4,8},{3,9,6},{5,7}} .4000

{{0},{1},{2,4,8},{3,9,6},{5},{7}} .3670
{{0},{1},{2},{4,8},{3,9,6},{5},{7}} .3000

{{0},{1},{2},{4,8},{3,9},{6},{5},{7}} .2630
{{0},{1},{2},{4,8},{3},{9},{6},{5},{7}} .2460

{{0},{1},{2},{4},{8},{3},{9},{6},{5},{7}} —

8.2 Finding Two-Mode Additive Trees
As noted in the introductory material to the current Chapter 8, the identification of
a best-fitting two-mode additive tree will be done somewhat differently (because of

srpm_f
2005/10/
page 109

�

�

�

�

�

�

�

�

8.2. Finding Two-Mode Additive Trees 109

storage considerations) than for a two-mode ultrametric representation. Specifically,
a (two-mode) centroid metric and a (two-mode) ultrametric matrix will be identified
so that their sum is a good-fitting two-mode additive tree. Because a centroid metric
can be obtained in closed-form, we first illustrate the fitting of just a centroid metric
to a two-mode proximity matrix with the M-file, centfittm.m. Its usage is of the
form

[fit,vaf,lengths] = centfittm(proxtm)

which gives the least-squares fitted two-mode centroid metric (FIT) to PROXTM, the
two-mode rectangular input proximity matrix (with a dissimilarity interpretation).
The n values (where n = number of rows(na) + number of columns(nb)) serve to
define the approximating sums, ur + vs, where the ur are for the na rows and the
vs for the nb columns; these ur and vs values are given in the vector LENGTHS of
size n × 1, with row values first followed by the column values. The closed-form
formula used for ur (or vs) can be given simply as the rth row (or sth column) mean
of PROXTM minus one-half the grand mean (see Carroll & Pruzansky, 1980, and De
Soete et al., 1984, for a further discussion). In the example given below using the
two-mode matrix, number6x4, a two-mode centroid metric by itself has a VAF of
.4737.

[fit,vaf,lengths] = centfittm(number6x4);
fit

fit =

0.7405 0.9101 0.8486 0.8688
0.5995 0.7691 0.7076 0.7278
0.4965 0.6661 0.6046 0.6248
0.3882 0.5579 0.4964 0.5165
0.4132 0.5829 0.5214 0.5415
0.4132 0.5829 0.5214 0.5415

vaf

vaf =

0.4737

lengths’

ans =

Columns 1 through 6

0.5370 0.3960 0.2930 0.1847 0.2097 0.2097

srpm_f
2005/10/
page 110

�

�

�

�

�

�

�

�

110 Chapter 8. Ultrametrics and Additive Trees for Two-Mode Data

Columns 7 through 10

0.2035 0.3731 0.3116 0.3318

The finding of a two-mode additive tree with the M-file, atreefndtm.m, pro-
ceeds iteratively. A two-mode centroid metric is first found and the original two-
mode proximity matrix residualized; a two-mode ultrametric is then identified for
the residual matrix. The process repeats with the centroid and ultrametric com-
ponents alternatingly being refit until a small change in the overall VAF occurs (a
value less than 1.0e-006 is used). The M-file has the explicit usage

[find,vaf,ultra,lengths] = atreefndtm(proxtm,inpermrow,inpermcol)

and as noted above, relies on iterative projection heuristically to find a two-mode
ultrametric component that is added to a two-mode centroid metric to produce a
two-mode additive tree. Here, PROXTM is the rectangular input proximity matrix
(with a dissimilarity interpretation); INPERMROW and INPERMCOL are permutations
for the row and column objects that determine the order in which the inequality
constraints are considered; FIND is the found least-squares matrix (with variance-
accounted-for of VAF) to PROXTM satisfying the two-mode additive tree constraints.
The vector LENGTHS contains the row followed by column values for the two-mode
centroid metric component; ULTRA is the ultrametric component. In the example
given below, the identified two-mode additive-tree for number6x4 has a VAF of
.9053, with a nice structural interpretation of the digits along with some indication
now of odd and even digit groupings. The partition hierarchy is reported below
the MATLAB output along with an indication of when the various partitions are
formed.

[find,vaf,ultra,lengths] = ...
atreefndtm(number6x4,randperm(6),randperm(4))

find

find =

0.6992 0.9029 0.9104 0.8561
0.6298 0.6300 0.8411 0.7029
0.4398 0.8160 0.3670 0.7692
0.4549 0.5748 0.6661 0.2630
0.3692 0.7453 0.2460 0.6985
0.4582 0.4000 0.6694 0.5313

vaf

vaf =

0.9053

srpm fina
2005/10/6
page 111

�

�

�

�

�

�

�

�

8.3. Completing a Two-Mode Ultrametric to One Defined on SA ∪ SB 111

ultra

ultra =

0.1083 0.0520 0.1083 0.0520
0.1083 -0.1516 0.1083 -0.0318

-0.0078 0.1083 -0.2919 0.1083
0.1083 -0.0318 0.1083 -0.2968

-0.0078 0.1083 -0.3422 0.1083
0.1083 -0.2099 0.1083 -0.0318

lengths’

ans =

Columns 1 through 6

0.4570 0.3876 0.3138 0.2127 0.2431 0.2160

Columns 7 through 10

0.1339 0.3939 0.3451 0.3471

Partition Level Formed

{{6,4,8,2,9,3,5,7,1,0}} .1083
{{6,4,8,2},{9,3,5,7,1,0}} .0520

{{6,4,8,2},{9,3,5,7,1},{0}} -.0078
{{6},{4,8,2},{9,3,5,7,1},{0}} -.0318

{{6},{4,8,2},{9,3},{5,7,1},{0}} -.1516
{{6},{4,8,2},{9,3},{5,7},{1},{0}} -.2099

{{6},{4,8,2},{9,3},{5},{7},{1},{0}} -.2919
{{6},{4,8},{2},{9,3},{5},{7},{1},{0}} -.2968

{{6},{4,8},{2},{9},{3},{5},{7},{1},{0}} -.3422
{{6},{4},{8},{2},{9},{3},{5},{7},{1},{0}} —

8.3 Completing a Two-Mode Ultrametric to One
Defined on SA ∪ SB

Instead of relying only on our general intuition (and problem-solving skills) to trans-
form a fitted two-mode ultrametric to one we could interpret directly as a sequence
of partitions for the joint set SA ∪SB , the M-file, ultracomptm.m, provides the ex-
plicit completion of a given two-mode ultrametric matrix to a symmetric proximity
matrix (defined on SA∪SB and satisfying the usual ultrametric constraints). Thus,

srpm_f
2005/10/
page 112

�

�

�

�

�

�

�

�

112 Chapter 8. Ultrametrics and Additive Trees for Two-Mode Data

this completion, in effect, estimates the (missing) ultrametric values that must be
present between objects from the same cluster but from the different modes. The
general syntax has the form

[ultracomp] = ultracomptm(ultraproxtm)

where ULTRAPROXTM is the na×nb fitted two-mode ultrametric matrix; ULTRACOMPTM
is the completed n × n proximity matrix having the usual ultrametric pattern for
the complete object set of size n = na +nb. As seen in the examples below, the use
of ultrafndtm.m plus ultracomptm.m on the number6x4 data, and the subsequent
application of the ultraorder.m routine leads directly to the partition hierarchy
we identified earlier:

load number6x4.dat
[find,vaf] = ultrafndtm(number6x4,randperm(6),randperm(4));
vaf

vaf =

0.7448

[ultracomp] = ultracomptm(find)

ultracomp =

Columns 1 through 7

0 0.8420 0.8420 0.8420 0.8420 0.8420 0.8420
0.8420 0 0.7010 0.7010 0.7010 0.7010 0.7010
0.8420 0.7010 0 0.6641 0.3670 0.6641 0.6641
0.8420 0.7010 0.6641 0 0.6641 0.5267 0.3000
0.8420 0.7010 0.3670 0.6641 0 0.6641 0.6641
0.8420 0.7010 0.6641 0.5267 0.6641 0 0.5267
0.8420 0.7010 0.6641 0.3000 0.6641 0.5267 0
0.8420 0.7010 0.6641 0.5267 0.6641 0.4000 0.5267
0.8420 0.7010 0.3670 0.6641 0.2460 0.6641 0.6641
0.8420 0.7010 0.6641 0.2630 0.6641 0.5267 0.3000

Columns 8 through 10

0.8420 0.8420 0.8420
0.7010 0.7010 0.7010
0.6641 0.3670 0.6641
0.5267 0.6641 0.2630
0.6641 0.2460 0.6641
0.4000 0.6641 0.5267
0.5267 0.6641 0.3000

srpm_f
2005/10/
page 113

�

�

�

�

�

�

�

�

8.3. Completing a Two-Mode Ultrametric to One Defined on SA ∪ SB 113

0 0.6641 0.5267
0.6641 0 0.6641
0.5267 0.6641 0

[orderprox,orderperm] = ultraorder(ultracomp)

orderprox =

Columns 1 through 7

0 0.8420 0.8420 0.8420 0.8420 0.8420 0.8420
0.8420 0 0.2460 0.3670 0.6641 0.6641 0.6641
0.8420 0.2460 0 0.3670 0.6641 0.6641 0.6641
0.8420 0.3670 0.3670 0 0.6641 0.6641 0.6641
0.8420 0.6641 0.6641 0.6641 0 0.3000 0.3000
0.8420 0.6641 0.6641 0.6641 0.3000 0 0.2630
0.8420 0.6641 0.6641 0.6641 0.3000 0.2630 0
0.8420 0.6641 0.6641 0.6641 0.5267 0.5267 0.5267
0.8420 0.6641 0.6641 0.6641 0.5267 0.5267 0.5267
0.8420 0.7010 0.7010 0.7010 0.7010 0.7010 0.7010

Columns 8 through 10

0.8420 0.8420 0.8420
0.6641 0.6641 0.7010
0.6641 0.6641 0.7010
0.6641 0.6641 0.7010
0.5267 0.5267 0.7010
0.5267 0.5267 0.7010
0.5267 0.5267 0.7010

0 0.4000 0.7010
0.4000 0 0.7010
0.7010 0.7010 0

orderperm =

1 9 5 3 7 10 4 8 6 2

Similarly, for the two-mode additive tree example, we have the partition hierarchy
we gave initially, and what was retrieved immediately from the use of ultracomptm.m
and ultraorder.m on the output ultrametric matrix, ultra:

[find,vaf,ultra,lengths] = ...
atreefndtm(number6x4,randperm(6),randperm(4));

vaf

srpm_f
2005/10/
page 114

�

�

�

�

�

�

�

�

114 Chapter 8. Ultrametrics and Additive Trees for Two-Mode Data

vaf =

0.9053

[ultracomp] = ultracomptm(ultra)

ultracomp =

Columns 1 through 7

0 0.0520 0.1083 0.0520 0.1083 0.0520 0.1083
0.0520 0 0.1083 -0.0318 0.1083 -0.1516 0.1083
0.1083 0.1083 0 0.1083 -0.2919 0.1083 -0.0078
0.0520 -0.0318 0.1083 0 0.1083 -0.0318 0.1083
0.1083 0.1083 -0.2919 0.1083 0 0.1083 -0.0078
0.0520 -0.1516 0.1083 -0.0318 0.1083 0 0.1083
0.1083 0.1083 -0.0078 0.1083 -0.0078 0.1083 0
0.0520 -0.1516 0.1083 -0.0318 0.1083 -0.2099 0.1083
0.1083 0.1083 -0.2919 0.1083 -0.3422 0.1083 -0.0078
0.0520 -0.0318 0.1083 -0.2968 0.1083 -0.0318 0.1083

Columns 8 through 10

0.0520 0.1083 0.0520
-0.1516 0.1083 -0.0318
0.1083 -0.2919 0.1083

-0.0318 0.1083 -0.2968
0.1083 -0.3422 0.1083

-0.2099 0.1083 -0.0318
0.1083 -0.0078 0.1083

0 0.1083 -0.0318
0.1083 0 0.1083

-0.0318 0.1083 0

[orderprox,orderperm] = ultraorder(ultracomp)

orderprox =

Columns 1 through 7

0 -0.0078 -0.0078 -0.0078 0.1083 0.1083 0.1083
-0.0078 0 -0.3422 -0.2919 0.1083 0.1083 0.1083
-0.0078 -0.3422 0 -0.2919 0.1083 0.1083 0.1083
-0.0078 -0.2919 -0.2919 0 0.1083 0.1083 0.1083
0.1083 0.1083 0.1083 0.1083 0 -0.2968 -0.0318

srpm_f
2005/10/
page 115

�

�

�

�

�

�

�

�

8.3. Completing a Two-Mode Ultrametric to One Defined on SA ∪ SB 115

0.1083 0.1083 0.1083 0.1083 -0.2968 0 -0.0318
0.1083 0.1083 0.1083 0.1083 -0.0318 -0.0318 0
0.1083 0.1083 0.1083 0.1083 -0.0318 -0.0318 -0.1516
0.1083 0.1083 0.1083 0.1083 -0.0318 -0.0318 -0.1516
0.1083 0.1083 0.1083 0.1083 0.0520 0.0520 0.0520

Columns 8 through 10

0.1083 0.1083 0.1083
0.1083 0.1083 0.1083
0.1083 0.1083 0.1083
0.1083 0.1083 0.1083

-0.0318 -0.0318 0.0520
-0.0318 -0.0318 0.0520
-0.1516 -0.1516 0.0520

0 -0.2099 0.0520
-0.2099 0 0.0520
0.0520 0.0520 0

orderperm =

7 9 5 3 10 4 2 6 8 1

8.3.1 The goldfish receptor Data

We could also illustrate the results of using our various M-files from this chapter on
the two-mode goldfish_receptor data, but given the extensiveness of the output,
we just give the commands we would use and have the reader so provide the output.
The VAF value for the best ultrametric found was .6209; the best additive tree had
VAF .8663. As to be expected, the various colors are associated with the appropriate
cones.

load goldfish_receptor.dat
[find,vaf] = ultrafndtm(goldfish_receptor,randperm(11),randperm(9));

vaf =

0.6209

[ultracomp] = ultracomptm(find);
[orderprox,orderperm] = ultraorder(ultracomp);

[find,vaf,ultra,lengths] = ...
atreefndtm(goldfish_receptor,randperm(11),randperm(9));

srpm fina
2005/10/6
page 116

�

�

�

�

�

�

�

�

116 Chapter 8. Ultrametrics and Additive Trees for Two-Mode Data

vaf =

0.8663

[ultracomp] = ultracomptm(ultra);

srpm fina
2005/10/6
page 117

�

�

�

�

�

�

�

�

Part III

The Representation of
Proximity Matrices by

Structures
Dependent on Order (Only)

117

srpm fina
2005/10/6
page 118

�

�

�

�

�

�

�

�

srpm fina
2005/10/6
page 119

�

�

�

�

�

�

�

�

An Introduction to
Order-Theoretic

Representational Structures

Nonmetric multidimensional scaling (NMDS) as developed by Shepard (1962a,b)
and Kruskal (1964a,b), has become a very familiar method in the psychological
research literature for representing structure that may be inherent among a set of
objects. Judging by the number of published substantive applications, whenever
data are given in the form of a symmetric proximity matrix containing numerical
relationship information between distinct object pairs, NMDS may have now be-
come the default method of analysis. This routine use of NMDS, however, when
faced with elucidating whatever pattern of relationships may underly a given set of
proximities, does have interpretive implications and consequences. For one, there
is an implicit choice made that whatever major generality will be allowed should
reside in the particular proximities being fitted by the explicitly parameterized (Eu-
clidean) spatial structure. Thus, an optimal (usually monotonic) transformation of
the proximities is sought in conjunction with the construction of a spatial represen-
tation. Second, the parameterized spatial structure implicitly involves fitting the
(transformed) proximities by some function of the differences in object placement
along a set of coordinate axes that may be best suited for representing object varia-
tion that could, at least in theory, be allowed to vary continuously. For instance, in
the common Euclidean model we use the square root of the sum of squared coordi-
nate differences along a set of axes (although the particular axis system selected is
open to some arbitrariness). The tacit implication is that if the structure underlying
the proximities is more classificatory (and discrete) in nature, we may not do well
in representing it by a spatial model that should do much better in the presence
of more continuous variation (cf. Pruzansky, Tversky, and Carroll, 1982). In fact,
in the limiting case where there exists a partition of the object set in which all
proximities for object pairs within an object class are smaller than for object pairs
between classes (and where proximities are keyed as dissimilarities so that larger
values represent more dissimilar objects), NMDS will typically give a degenerate
representation in which all objects within each class are located at the same spa-
tial location and the optimally transformed proximities consist of just two values,

119

srpm fina
2005/10/6
page 120

�

�

�

�

�

�

�

�

120

one for the within-class proximities and one for the between-class proximities (cf.
Shepard, 1974).

This part of the book concentrates on an alternative approach to understand-
ing what a given proximity matrix may be depicting about the objects on which
it was constructed, and one that does not require a prior commitment to the sole
use of either some form of dimensional model (as in NMDS), or one that is strictly
classificatory (as in the use of a partition hierarchy and the implicit fitting of an
ultrametric that serves as the representational mechanism for the hierarchical clus-
tering). The method of analysis is based on approximating a given proximity matrix
additively by a sum of matrices, where each component in the sum is subject to
specific patterning restrictions on its entries. The restrictions imposed on each
component of the decomposition (to be referred to as matrices with anti-Robinson
forms) are very general and encompass interpretations that might be dimensional,
or classificatory, or some combination of both (e.g., through object classes that
are themselves placed dimensionally in some space). Thus, as one special case —
and particularly when an (optimal) transformation of the proximities is also per-
mitted (as we will generally allow), proximity matrices that are well interpretable
through NMDS should also be interpretable through an additive decomposition of
the (transformed) proximity matrix. Alternatively, when classificatory structures
of various kinds might underlie a set of proximities (and the direct use of NMDS
could possibly lead to a degeneracy), additive decompositions may still provide an
analysis strategy for elucidating the structure.

The algorithmic details of fitting to a given proximity matrix a sum of matrices
each having the desired general patterning to its entries (or even more explicitly
parameterized forms that may be of help in providing a detailed interpretation,
such as those given by partition hierarchies or unidimensional scales), are available
in a series of papers (i.e., Hubert and Arabie, 1994, 1995a, 1995b; Hubert, Arabie,
and Meulman, 1997, 1998). Thus, in this sequel we can merely refer to these
sources for the actual mechanics of carrying out the various decompositions. More
unique aspects that will be incorporated in the documentation to follow are (a)
the possible integration of (optimal) transformations for use with the originally
given proximities to be fitted by an additive matrix decomposition, and (b) the
fitting of more restrictive parameterized forms (such as in Parts I and II) to the
various components of a decomposition in attempting to give a detailed substantive
interpretation of what each separate matrix in the decomposition may be depicting.
In this latter instance, one of our concerns might be directed toward the issue
of whether a particular matrix as part of a decomposition is indicating primarily
dimensional or classificatory aspects of the original proximities (or possibly and
what may be more typical, some combination of the two). In these latter cases,
the M-files discussed as part of the documentation given in the earlier parts of this
monograph for linear unidimensional scaling and for the fitting of tree structures
are particularly relevant.

srpm fina
2005/10/6
page 121

�

�

�

�

�

�

�

�

Chapter 9

Anti-Robinson (AR)
Matrices for Symmetric
Proximity Data

Denoting an arbitrary symmetric n × n matrix by A = {aij}, where the main
diagonal entries are considered irrelevant and assumed to be zero (i.e., aii = 0 for
1 ≤ i ≤ n), A is said to have an anti-Robinson (AR) form if after some reordering
of the rows and columns of A, the entries within each row and column have a
distinctive pattern: moving away from the zero main diagonal entry within any row
or any column, the entries never decrease. Generally, matrices having AR forms
can appear both in spatial representations for a set of proximities as functions of
the absolute differences in coordinate values along some axis, or for classificatory
structures that are characterized through an ultrametric.

To illustrate, we first let P = {pij} be a given n × n proximity (dissimilarity)
matrix among the distinct pairs of n objects in a set S = {O1, O2, . . . , On} (where
pii = 0 for 1 ≤ i ≤ n). Then, suppose, for example, a two-dimensional Euclidean
representation is possible for P and its entries are very well representable by the
distances in this space, so

pij ≈
√

(x1i − x1j)2 + (x2i − x2j)2 ,

where xki and xkj are the coordinates on the kth axis (for k = 1 and 2) for objects
Oi and Oj (and the symbol ≈ is used to indicate approximation). Here, a simple
monotonic transformation (squaring) of the proximities should then be fitted well
by the sum of two matrices both having AR forms, i.e.,

{p2
ij} ≈ {(x1i − x1j)2} + {(x2i − x2j)2}.

In a classificatory framework, if {pij} were well representable, say, as a sum of two
matrices, A1 = {a(1)

ij } and A2 = {a(2)
ij }, each satisfying the ultrametric inequality,

i.e., a
(k)
ij ≤ max{a(k)

ih , a
(k)
hj } for k = 1 and 2, then

{pij} ≈ {a(1)
ij } + {a(2)

ij },
and each of the constituent matrices can be reordered to display an AR form. As can
be seen in Part II of this manual, any matrix whose entries satisfy the ultrametric

121

srpm fina
2005/10/6
page 122

�

�

�

�

�

�

�

�

122 Chapter 9. Anti-Robinson (AR) Matrices for Symmetric Proximity Data

inequality can be represented by a sequence of partitions that are hierarchically
related.

Given some proximity matrix P, the task of approximating it as a sum of
matrices each having an AR form is implemented through an iterative optimization
strategy based on a least-squares loss criterion that is discussed in detail by Hubert
and Arabie (1994). Given the manner in which the optimization process is carried
out sequentially, each successive AR matrix in any decomposition generally accounts
for less and less of the patterning of the original proximity information (and very
analogous to what is typically observed in a principal component decomposition
of a covariance matrix). In fact, it has been found empirically that for the many
data sets we have analyzed, only a very small number of such AR matrices are ever
necessary to represent almost all of the patterning in the given proximities. As a
succinct summary that we could give to this empirical experience: no more than
three AR matrices are ever necessary; two are usually sufficient; and sometimes one
will suffice.

The substantive challenge that remains, once a well-fitting decomposition is
found for a given proximity matrix, is to interpret substantively what each term
in the decomposition might be depicting. The strategy that could be followed
would approximate each separate AR matrix by ones having a more restrictive form,
and usually those representing some type of unidimensional scale (a dimensional
interpretation from Part I) or partition hierarchy (a classificatory interpretation
from Part II).

9.0.2 Incorporating Transformations

One generalization that we will now allow to what has already been discussed in the
literature for fitting sums of AR matrices to a proximity matrix P, is the possible
inclusion of an (optimal) transformation of the proximities. Thus, instead of just
representing P as a sum of K matrices (and generally, for K very small) that we
might denote as A1 + · · · + AK , where each Ak, 1 ≤ k ≤ K, has an AR form,
an (optimally) transformed matrix P̃ = {p̃ij} will be fitted by such a sum, say,
Ã1 + · · · + ÃK , where the entries in P̃ are monotonic with respect to those in
P, i.e., for all Oi, Oj, Ok, Ol ∈ S, pij < pkl ⇒ p̃ij ≤ p̃kl. In the sequel we will
rely on the M-file, proxmon.m, documented in Part I, which constructs optimal
monotonic transformations by the same method of isotonic regression commonly
used in NMDS (although using a different type of algorithm based on the Dykstra-
Kaczmarz iterative projection strategy). The method is Kruskal’s (1964a,b) primary
approach to tied proximities in P that are allowed to be untied after transformation.
Such transformations, for example, form the default option in the implementation
of NMDS in the program KYST-2A (Kruskal, Young, and Seery, 1977) and in
SYSTAT (Wilkinson, 1988).

The process of finding P̃ and Ã1 + · · · + ÃK proceeds iteratively, with the
original proximity matrix P first fit by A1 + · · ·+AK; a subsequent optimal (mono-
tonic) transformation of P (through a least-squares approximation to A1+· · ·+AK)
is identified, which is then refitted by the matrix sum. In many cases, this whole
process can now be cycled through iteratively until convergence, i.e., a sequential

srpm fina
2005/10/6
page 123

�

�

�

�

�

�

�

�

123

fitting and refitting of the optimally transformed proximities and its representation
as a sum of matrices each having an AR form.

In some contexts, however (particularly when fitting a single AR matrix [i.e.,
when K = 1]), it is probably best not to proceed to a complete convergence but
instead to terminate the process after only a single optimal monotonic transfor-
mation of P is identified and then to refit by a matrix sum. This usage will be
referred to as a single iteration optimal transformation (SIOT). If carried through
to convergence, a perfect representation may be obtained but only at the expense
of losing almost all the patterning contained within the original proximity matrix.
For example, in fitting a single AR matrix, the optimal transformation identified
after convergence might consist of just two values, with one corresponding to the
smallest proximity in the original matrix and all others equal. Although technically
permissible since this situation does reflect a perfect AR form, most of the detail
present in the original proximity matrix is also lost. Difficulties with such so-called
degeneracies have been pointed out by Carroll (1992), particularly when faced with
fitting classificatory structures to a given proximity matrix.

9.0.3 Interpreting the Structure of an AR matrix

In representing a proximity matrix P as a sum, A1 + · · ·+AK (or an optimal trans-
formation P̃ as Ã1+· · ·+ÃK), the interpretive task remains to explain substantively
what each term of the decomposition might be depicting. We suggest four possible
strategies below, with the first two attempting to understand the structure of an AR
matrix directly and without much loss of detail; the last two require the imposition
of strictly parameterized approximations in the form of either an ultrametric or a
unidimensional scale. In the discussion below, A = {aij} will be assumed to have
an AR form that is displayed by the given row and column order.

(A) Complete representation and reconstruction through a collection of sub-
sets and associated subset diameters:

The entries in any AR matrix A can be reconstructed exactly through a
collection of M subsets of the original object set S = {O1, . . . , On}, denoted by
S1, . . . , SM , and where M is determined by the particular pattern of tied entries, if
any, in A. These M subsets have the following characteristics:

(i) each Sm, 1 ≤ m ≤ M , consists of a sequence of (two or more) consecutive
integers so that M ≤ n(n−1)/2. (This bound holds because the number of different
subsets having consecutive integers for any given fixed ordering is n(n − 1)/2, and
will be achieved if all the entries in the AR matrix A are distinct).

(ii) each Sm, 1 ≤ m ≤ M , has a diameter, denoted by d(Sm), so that for all
object pairs within Sm, the corresponding entries in A are less than or equal to the
diameter. The subsets, S1, . . . , SM , can be assumed ordered as d(S1) ≤ d(S2) ≤
· · · ≤ d(SM), and if Sm ⊆ Sm′ , d(Sm) ≤ d(Sm′).

(iii) each entry in A can be reconstructed from d(S1), . . . , d(SM), i.e., for
1 ≤ i, j ≤ n,

aij = min
1≤m≤M

{d(Sm) | Oi, Oj ∈ Sm},

srpm fina
2005/10/6
page 124

�

�

�

�

�

�

�

�

124 Chapter 9. Anti-Robinson (AR) Matrices for Symmetric Proximity Data

so that the minimum diameter for subsets containing an object pair Oi, Oj ∈ S is
equal to aij. Given A, the collection of subsets S1, . . . , SM and their diameters can
be identified by inspection through the use of an increasing threshold that starts
from the smallest entry in A, and observing which subsets containing contiguous
objects emerge from this process. The substantive interpretation of what A is
depicting reduces to explaining why those subsets with the smallest diameters are
so homogenous. For convenience of reference, the subsets S1, . . . , SM will be referred
to as the set of AR reconstructive subsets.

(B) Representation by a strongly anti-Robinson matrix:
If the matrix A has a somewhat more restrictive form than just being AR, and

is also strongly anti-Robinson (SAR), a convenient graphical representation can be
given to the collection of AR reconstructive subsets S1, . . . , SM and their diameters,
and how they can serve to retrieve A. Specifically, A is said to be strongly anti-
Robinson (SAR) if (considering the above-diagonal entries of A) whenever two
entries in adjacent columns are equal (aij = ai(j+1)), those in the same two adjacent
columns in the previous row are also equal (a(i−1)j = a(i−1)(j+1) for 1 ≤ i−1 < j ≤
n − 1); also, whenever two entries in adjacent rows are equal (aij = a(i+1)j), those
in the same two adjacent rows in the succeeding column are also equal (ai(j+1) =
a(i+1)(j+1) for 2 ≤ i + 1 < j ≤ n − 1).

When A is SAR, the collection of subsets, S1, . . . , SM , and their diameters,
and how these serve to reconstruct A can be modeled graphically as we will see in
Section 9.5. The internal nodes (represented by solid circles) in each of these figures
are at a height equal to the diameter of the respective subset; the consecutive objects
forming that subset are identifiable by downward paths from the internal nodes to
the terminal nodes corresponding to the objects in S = {O1, . . . , On} (represented
by labeled open circles). An entry aij in A can be reconstructed as the minimum
node height of a subset for which a path can be constructed from Oi up to that
internal node and then back down to Oj . (To prevent undue graphical “clutter”,
only the most homogenous subsets from S1, . . . , SM having the smallest diameters
should actually be included in the graphical representation of an SAR matrix; each
figure would explicitly show only how the smallest entries in A can be reconstructed,
although each could be easily extended to include all of A. The calibrated vertical
axis in such figures could routinely include the heights at which the additional
internal nodes would have to be placed to effect such a complete reconstruction.)

Given an arbitrary AR matrix A, a least-squares SAR approximating matrix
to A can be found using the heuristic optimization search strategy illustrated in
Section 9.3 and developed in Hubert, Arabie, and Meulman (1998). This latter
source also discusses in detail (through counterexample) why strongly AR conditions
need to be imposed to obtain a consistent graphical representation.

(C) Representation by a unidimensional scale:
To obtain greater graphical simplicity for an eventual substantive interpreta-

tion than offered by an SAR matrix, one possibility is to use approximating unidi-
mensional scales. To be explicit, one very simple form that an AR matrix A may
assume is interpretable by a single dimension and through a unidimensional scale

srpm_f
2005/10/
page 125

�

�

�

�

�

�

�

�

9.1. Fitting a Given AR Matrix in the L2-Norm 125

in which the entries have the parameterized form, A = {aij} = {| xj − xi | + c},
where the coordinates are ordered as x1 ≤ x2 ≤ · · · ≤ xn and c is an estimated con-
stant. Given any proximity matrix, a least-squares approximating unidimensional
scale can be obtained through the optimization strategies of Part I, and would be
one (dimensional) method that could be followed in attempting to interpret what a
particular AR component of a decomposition might be revealing.

(D) Representation by an ultrametric:
A second simple form that an AR matrix A could have is strictly classificatory

in which the entries in A satisfy the ultrametric condition: aij ≤ max{aik, ajk} for
all Oi, Oj, Ok ∈ S. As a threshold is increased from the smallest entry in A, a
sequence of partitions of S is identified in which each partition is constructed from
the previous one by uniting pairs of subsets from the latter. A partition identified
at a given threshold level has equal values in A between each given pair of subsets,
and all the within subset values are not greater than the between subset values. The
reconstructive subsets S1, . . . , SM that would represent the AR matrix A are now
the new subsets that are formed in the sequence of partitions, and have the property
that if d(Sm) ≤ d(Sm′), then Sm ⊆ Sm′ or Sm∩Sm′ = �. Given any proximity ma-
trix, a least-squares approximating ultrametric can be constructed by the heuristic
optimization routines developed in Part II, and would be another (classificatory)
strategy for interpreting what a particular AR component of a decomposition might
be depicting. As might be noted, there are generally n − 1 subsets (each of size
greater than one) in the collection of reconstructive subsets for any ultrametric, and
thus n − 1 values need to be estimated in finding the least-squares approximation
(which is the same number needed for a least-squares approximating unidimensional
scale, based on obtaining the n − 1 non-negative separation values between xi and
xi+1 for 1 ≤ i ≤ n − 1).

9.1 Fitting a Given AR Matrix in the L2-Norm

The function M-file, arobfit.m, fits an anti-Robinson matrix using iterative pro-
jection to a symmetric proximity matrix in the L2-norm. The usage syntax is of
the form

[fit,vaf] = arobfit(prox,inperm)

where PROX is the input proximity matrix (n × n with a zero main diagonal and a
dissimilarity interpretation); INPERM is a given permutation of the first n integers;
FIT is the least-squares optimal matrix (with variance-accounted-for of VAF) to
PROX having an anti-Robinson form for the row and column object ordering given
by INPERM. A recording of a MATLAB session using the number.dat data file and
object ordering given by the identity permutation follows:

load number.dat
inperm = 1:10

inperm =

srpm fina
2005/10/6
page 126

�

�

�

�

�

�

�

�

126 Chapter 9. Anti-Robinson (AR) Matrices for Symmetric Proximity Data

1 2 3 4 5 6 7 8 9 10

[fit,vaf] = arobfit(number,inperm)

fit =

Columns 1 through 7

0 0.4210 0.5840 0.6965 0.6965 0.7960 0.7960
0.4210 0 0.2840 0.3460 0.6170 0.6170 0.6940
0.5840 0.2840 0 0.2753 0.2753 0.5460 0.5460
0.6965 0.3460 0.2753 0 0.2753 0.3844 0.3844
0.6965 0.6170 0.2753 0.2753 0 0.3844 0.3844
0.7960 0.6170 0.5460 0.3844 0.3844 0 0.3844
0.7960 0.6940 0.5460 0.3844 0.3844 0.3844 0
0.8600 0.6940 0.5853 0.5853 0.5530 0.4000 0.3857
0.8600 0.7413 0.5853 0.5853 0.5530 0.5530 0.3857
0.8600 0.7413 0.7413 0.5853 0.5853 0.5853 0.3857

Columns 8 through 10

0.8600 0.8600 0.8600
0.6940 0.7413 0.7413
0.5853 0.5853 0.7413
0.5853 0.5853 0.5853
0.5530 0.5530 0.5853
0.4000 0.5530 0.5853
0.3857 0.3857 0.3857

0 0.3857 0.3857
0.3857 0 0.3857
0.3857 0.3857 0

vaf =

0.6979

9.1.1 Fitting the (In)-equality Constraints Implied by a Given
Matrix in the L2-Norm

At times it may be useful to fit through iterative projection a given set of equality
and inequality constraints (as represented by the equalities and inequalities present
among the entries in a given target matrix) to a symmetric proximity matrix in
the L2-norm. Whenever the target matrix is AR in form already, the resulting
fitted matrix would also be AR in form; more generally, however, the M-function,

srpm fina
2005/10/6
page 127

�

�

�

�

�

�

�

�

9.1. Fitting a Given AR Matrix in the L2-Norm 127

targfit.m, could be used with any chosen target matrix. The usage follows the
form

[fit,vaf] = targfit(prox,targ)

where, as usual, PROX is the input proximity matrix (with a zero main diagonal
and a dissimilarity interpretation); TARG is a matrix of the same size as PROX; FIT
is the least-squares optimal matrix (with variance-accounted-for of VAF) to PROX
satisfying the equality and inequality constraints implicit among all the entries in
TARG. An example follows in which the given target matrix is a distance matrix
(having an AR form) between equally-spaced object placements along a line; the
resulting fitted matrix obviously has an AR form as well:

load number.dat
[fit,vaf] = targfit(number,targlin(10))

fit =

Columns 1 through 7

0 0.3714 0.3714 0.5363 0.5363 0.6548 0.6548
0.3714 0 0.3714 0.3714 0.5363 0.5363 0.6548
0.3714 0.3714 0 0.3714 0.3714 0.5363 0.5363
0.5363 0.3714 0.3714 0 0.3714 0.3714 0.5363
0.5363 0.5363 0.3714 0.3714 0 0.3714 0.3714
0.6548 0.5363 0.5363 0.3714 0.3714 0 0.3714
0.6548 0.6548 0.5363 0.5363 0.3714 0.3714 0
0.7908 0.6548 0.6548 0.5363 0.5363 0.3714 0.3714
0.7908 0.7908 0.6548 0.6548 0.5363 0.5363 0.3714
0.8500 0.7908 0.7908 0.6548 0.6548 0.5363 0.5363

Columns 8 through 10

0.7908 0.7908 0.8500
0.6548 0.7908 0.7908
0.6548 0.6548 0.7908
0.5363 0.6548 0.6548
0.5363 0.5363 0.6548
0.3714 0.5363 0.5363
0.3714 0.3714 0.5363

0 0.3714 0.3714
0.3714 0 0.3714
0.3714 0.3714 0

vaf =

0.5105

srpm_f
2005/10/
page 128

�

�

�

�

�

�

�

�

128 Chapter 9. Anti-Robinson (AR) Matrices for Symmetric Proximity Data

9.2 Finding an AR Matrix in the L2-Norm
The fitting of a given AR matrix by the M-function of Section 9.1, arobfit.m,
requires the presence of an initial permutation to direct the optimization process.
Thus, the finding of a best-fitting AR matrix reduces to the identification of an ap-
propriate object permutation to use ab initio. We suggest the adoption of order.m,
which carries out an iterative Quadratic Assignment (QA) maximization task using
a given square, n × n, proximity matrix PROX (with a zero main diagonal and a
dissimilarity interpretation) (see Section 1.2.1 and the references given there to the
literature of QA). Three separate local operations are used to permute the rows and
columns of the proximity matrix to maximize the cross-product index with respect
to a given square target matrix TARG: (a) pairwise interchanges of objects in the
permutation defining the row and column order of the square proximity matrix; (b)
the insertion of from 1 to KBLOCK (which is less than or equal to n− 1) consecutive
objects in the permutation defining the row and column order of the data matrix;
and (c) the rotation of from 2 to KBLOCK (which is less than or equal to n − 1)
consecutive objects in the permutation defining the row and column order of the
data matrix. The usage syntax has the form

[outperm,rawindex,allperms,index] = order(prox,targ,inperm,kblock)

where INPERM is the input beginning permutation (a permutation of the first n
integers); OUTPERM is the final permutation of PROX with the cross-product index
RAWINDEX with respect to TARG. The cell array ALLPERMS contains INDEX entries cor-
responding to all the permutations identified in the optimization from ALLPERMS{1}
= INPERM to ALLPERMS{INDEX} = OUTPERM.

A recording of a MATLAB session using order.m is listed below with the
beginning INPERM given as the identity permutation, TARG by an equally-spaced
object placement along a line, and KBLOCK = 3. Using the generated OUTPERM,
arobfit.m is then invoked to fit an AR form having final VAF of .7782.

load number.dat
targlinear = targlin(10);
[outperm,rawindex,allperms,index] = order(number,targlinear,1:10,3)

outperm =

1 2 3 5 4 6 7 9 10 8

rawindex =

206.4920

allperms =

[1x10 double] [1x10 double] [1x10 double] [1x10 double]

srpm fina
2005/10/6
page 129

�

�

�

�

�

�

�

�

9.2. Finding an AR Matrix in the L2-Norm 129

index =

4

[fit, vaf] = arobfit(number, outperm)

fit =

Columns 1 through 7

0 0.4210 0.5840 0.6840 0.7090 0.7960 0.7960
0.4210 0 0.2840 0.4960 0.4960 0.5880 0.7357
0.5840 0.2840 0 0.0590 0.3835 0.4928 0.4928
0.6840 0.4960 0.0590 0 0.3835 0.3985 0.3985
0.7090 0.4960 0.3835 0.3835 0 0.3750 0.3750
0.7960 0.5880 0.4928 0.3985 0.3750 0 0.3750
0.7960 0.7357 0.4928 0.3985 0.3750 0.3750 0
0.8210 0.7357 0.4928 0.4928 0.4928 0.4928 0.3460
0.8500 0.7357 0.7357 0.6830 0.4928 0.4928 0.3460
0.9090 0.7357 0.7357 0.7357 0.5920 0.4928 0.4253

Columns 8 through 10

0.8210 0.8500 0.9090
0.7357 0.7357 0.7357
0.4928 0.7357 0.7357
0.4928 0.6830 0.7357
0.4928 0.4928 0.5920
0.4928 0.4928 0.4928
0.3460 0.3460 0.4253

0 0.3460 0.4253
0.3460 0 0.4253
0.4253 0.4253 0

vaf =

0.7782

The M-file, arobfnd.m is our preferred method for actually identifying a single AR
form, and incorporates an initial equally-spaced target and uses the iterative QA
routine of order.m to generate better permutations; the obtained AR forms are
then used as new targets against which possibly even better permutations might
be identified, until convergence (i.e., the identified permutations remain the same).

srpm_f
2005/10/
page 130

�

�

�

�

�

�

�

�

130 Chapter 9. Anti-Robinson (AR) Matrices for Symmetric Proximity Data

The syntax is as follows:

[find, vaf, outperm] = arobfnd(prox, inperm, kblock)

where PROX is the input proximity matrix (n × n with a zero main diagonal and a
dissimilarity interpretation); INPERM is a given starting permutation of the first n
integers; FIND is the least-squares optimal matrix (with variance-accounted-for of
VAF) to PROX having an anti-Robinson form for the row and column object ordering
given by the ending permutation OUTPERM; KBLOCK defines the block size in the use
the iterative quadratic assignment routine.

As seen from the example below, and starting from a random initial permuta-
tion, the same AR form is found as with just one application of order.m reported
above.

[find, vaf, outperm] = arobfnd(number, randperm(10), 1);

vaf =

0.7782

outperm =

8 10 9 7 6 4 5 3 2 1

9.3 Fitting and Finding a Strongly Anti-Robinson
(SAR) Matrix in the L2-Norm

The M-functions, sarobfit.m and sarobfnd.m, are direct analogues of arobfit.m
and arobfnd.m, respectively, but are concerned with fitting and finding strongly
anti-Robinson forms. The syntax for sarobfit.m, which fits a strongly anti-Robinson
matrix using iterative projection to a symmetric proximity matrix in the L2-norm,
is

[fit, vaf] = sarobfit(prox, inperm)

where, again, PROX is the input proximity matrix (n× n with a zero main diagonal
and a dissimilarity interpretation); INPERM is a given permutation of the first n
integers; FIT is the least-squares optimal matrix (with variance-accounted-for of
VAF) to PROX having a strongly anti-Robinson form for the row and column object
ordering given by INPERM.

An example follows using the same identity permutation as was implemented
in fitting an AR form with arobfit.m; as might be expected from using the more
restrictive strongly anti-Robinson form, the VAF drops to .6128 from .6979.

load number.dat
[fit,vaf] = sarobfit(number,1:10)

srpm fina
2005/10/6
page 131

�

�

�

�

�

�

�

�

9.3. Fitting and Finding a Strongly Anti-Robinson (SAR) Matrix in the L2-Norm 131

fit =

Columns 1 through 7

0 0.4210 0.5840 0.6965 0.6965 0.7960 0.7960
0.4210 0 0.2840 0.4960 0.4960 0.6730 0.6730
0.5840 0.2840 0 0.2753 0.2753 0.4553 0.4553
0.6965 0.4960 0.2753 0 0.2753 0.4553 0.4553
0.6965 0.4960 0.2753 0.2753 0 0.3977 0.3977
0.7960 0.6730 0.4553 0.4553 0.3977 0 0.3977
0.7960 0.6730 0.4553 0.4553 0.3977 0.3977 0
0.8600 0.6820 0.6050 0.6050 0.5557 0.5557 0.3857
0.8600 0.6820 0.6050 0.6050 0.5557 0.5557 0.3857
0.8600 0.6820 0.6050 0.6050 0.5557 0.5557 0.3857

Columns 8 through 10

0.8600 0.8600 0.8600
0.6820 0.6820 0.6820
0.6050 0.6050 0.6050
0.6050 0.6050 0.6050
0.5557 0.5557 0.5557
0.5557 0.5557 0.5557
0.3857 0.3857 0.3857

0 0.3857 0.3857
0.3857 0 0.3857
0.3857 0.3857 0

vaf =

0.6128

The M-function, sarobfnd.m, finds and fits a strongly anti-Robinson matrix us-
ing iterative projection to a symmetric proximity matrix in the L2-norm based on
a permutation identified through the use of iterative quadratic assignment. The
function has the expected syntax

[find, vaf, outperm] = sarobfnd(prox, inperm, kblock)

where, again, PROX is the input proximity matrix (n × n with a zero main diagonal
and a dissimilarity interpretation); INPERM is a given starting permutation of the
first n integers; FIND is the least-squares optimal matrix (with variance-accounted-
for of VAF) to PROX having a strongly anti-Robinson form for the row and column
object ordering given by the ending permutation OUTPERM. As usual, KBLOCK defines
the block size in the use the iterative quadratic assignment routine.

In the MATLAB recording below, and starting from a random permutation,
a strongly anti-Robinson form is found with a VAF of .7210 (an expected drop from

srpm fina
2005/10/6
page 132

�

�

�

�

�

�

�

�

132 Chapter 9. Anti-Robinson (AR) Matrices for Symmetric Proximity Data

the value of .7782 for the anti-Robinson form found using arobfnd.m).

[find,vaf,outperm] = sarobfnd(number,randperm(10),1)

find =

Columns 1 through 7

0 0.4210 0.5840 0.6965 0.6965 0.7960 0.7960
0.4210 0 0.2840 0.4960 0.4960 0.6730 0.6730
0.5840 0.2840 0 0.0590 0.3835 0.4723 0.4723
0.6965 0.4960 0.0590 0 0.3835 0.4723 0.4723
0.6965 0.4960 0.3835 0.3835 0 0.3750 0.3750
0.7960 0.6730 0.4723 0.4723 0.3750 0 0.3750
0.7960 0.6730 0.4723 0.4723 0.3750 0.3750 0
0.8355 0.7080 0.5714 0.5714 0.4275 0.4275 0.2960
0.8355 0.7080 0.5714 0.5714 0.5714 0.5714 0.3710
0.9090 0.7227 0.7227 0.7227 0.5714 0.5714 0.4380

Columns 8 through 10

0.8355 0.8355 0.9090
0.7080 0.7080 0.7227
0.5714 0.5714 0.7227
0.5714 0.5714 0.7227
0.4275 0.5714 0.5714
0.4275 0.5714 0.5714
0.2960 0.3710 0.4380

0 0.3710 0.4380
0.3710 0 0.4000
0.4380 0.4000 0

vaf =

0.7210

outperm =

1 2 3 5 4 6 7 10 9 8

srpm fina
2005/10/6
page 133

�

�

�

�

�

�

�

�

9.4. The Use of Optimal Transformations and the M-function proxmon.m 133

9.4 The Use of Optimal Transformations and the
M-function proxmon.m

As previously discussed in Part I, the function proxmon.m, provides a monotonically
transformed proximity matrix that is close in a least-squares sense to a given input
matrix. The syntax is

[monproxpermut, vaf, diff] = proxmon(proxpermut,fitted)

where PROXPERMUT is the input proximity matrix (which may have been subjected to
an initial row/column permutation, hence the suffix ‘PERMUT’) and FITTED is a given
target matrix; the output matrix MONPROXPERMUT is closest to FITTED in a least-
squares sense and obeys the order constraints obtained from each pair of entries in
(the upper-triangular portion of) PROXPERMUT (and where the inequality constrained
optimization is carried out using the Dykstra-Kaczmarz iterative projection strat-
egy); VAF indicates how much variance in MONPROXPERMUT can be accounted for by
FITTED; finally, DIFF is the value of the least-squares loss function and is (one-half)
the sum of squared differences between the entries in MONPROXPERMUT and FITTED.

In the notation of the introduction when fitting a given order, FITTED would
correspond to the AR matrix A = {aij}; the input PROXPERMUTwould be {pρ0(i)ρ0(j)};
MONPROXPERMUTwould be {f(pρ0(i)ρ0(j))}, where the function f(·) satisfies the mono-
tonicity constraints, i.e., if pρ0(i)ρ0(j) < pρ0(i′)ρ0(j′) for 1 ≤ i < j ≤ n and 1 ≤ i′ <
j′ ≤ n, then f(pρ0(i)ρ0(j)) ≤ f(pρ0(i′)ρ0(j′)). The transformed proximity matrix
{f(pρ0(i)ρ0(j))} minimizes the least-squares criterion (DIFF) of

∑
i<j

(f(pρ0(i)ρ0(j)) − aij)2,

over all functions f(·) that satisfy the monotonicity constraints. The VAF is a
normalization of this loss value by the sum of squared deviations of the transformed
proximities from their mean:

VAF = 1 −
∑

i<j(f(pρ0(i)ρ0(j)) − aij)2∑
i<j(f(pρ0(i)ρ0(j)) − f̄)2

,

where f̄ denotes the mean of the off-diagonal entries in {f(pρ0(i)ρ0(j))}.
The script M-file listed below gives an application of proxmon.m along with

finding a best-fitting AR form for our number.dat matrix. First, arobfnd.m is in-
voked to obtain a best-fitting AR matrix (find); this is the same as found earlier
based on the outperm of [1 2 3 5 4 6 7 9 10 8] and generating a VAF of .7782.
The M-file, proxmon.m, is then used to generate the monotonically transformed
proximity matrix (monproxpermut) with VAF of .8323. Given the SIOT (single-
iteration-optimal-transformation) discussed in the introduction, it might now be
best to fit once more an AR matrix to this now monotonically transformed proxim-
ity matrix, but then stop. Otherwise, as seen in the output below, if the strategy is
repeated cyclically (i.e., finding a fitted matrix based on the monotonically trans-
formed proximity matrix, finding a new monotonically transformed matrix, and so

srpm_f
2005/10/
page 134

�

�

�

�

�

�

�

�

134 Chapter 9. Anti-Robinson (AR) Matrices for Symmetric Proximity Data

on), a perfect VAF of 1.0 can be achieved at the expense of losing most of the detail
in the transformed proximities, i.e., only five distinct values remain that correspond
to the three largest and single smallest of the original proximities with all the re-
maining now tied at a value of .5467. (To avoid another type of degeneracy [where
all matrices would converge to zeros], the sum of squares of the fitted matrix was
maintained stationary; convergence is based on observing a minimal change (less
than 1.0e-010) in the VAF.

load number.dat
[find, vaf, outperm] = arobfnd(number,randperm(10),2)
[monproxpermut vaf diff] = ...

proxmon(number(outperm,outperm),find)
sumfitsq = sum(sum(fit.^2));
prevvaf = 2;
while (abs(prevvaf-vaf) >= 1.0e-010)

prevvaf = vaf;
[fit vaf] = arobfit(monproxpermut,1:10);
sumnewfitsq = sum(sum(fit.^2));
find = sqrt(sumfitsq)*(fit/sqrt(sumnewfitsq));
[monproxpermut, vaf, diff] = proxmon(number(outperm,outperm), find);

end

outperm
find

monproxpermut
vaf
diff

find =

Columns 1 through 7

0 0.4210 0.5840 0.6840 0.7090 0.7960 0.7960
0.4210 0 0.2840 0.4960 0.4960 0.5880 0.7357
0.5840 0.2840 0 0.0590 0.3835 0.4928 0.4928
0.6840 0.4960 0.0590 0 0.3835 0.3985 0.3985
0.7090 0.4960 0.3835 0.3835 0 0.3750 0.3750
0.7960 0.5880 0.4928 0.3985 0.3750 0 0.3750
0.7960 0.7357 0.4928 0.3985 0.3750 0.3750 0
0.8210 0.7357 0.4928 0.4928 0.4928 0.4928 0.3460
0.8500 0.7357 0.7357 0.6830 0.4928 0.4928 0.3460
0.9090 0.7357 0.7357 0.7357 0.5920 0.4928 0.4253

Columns 8 through 10

srpm_f
2005/10/
page 135

�

�

�

�

�

�

�

�

9.4. The Use of Optimal Transformations and the M-function proxmon.m 135

0.8210 0.8500 0.9090
0.7357 0.7357 0.7357
0.4928 0.7357 0.7357
0.4928 0.6830 0.7357
0.4928 0.4928 0.5920
0.4928 0.4928 0.4928
0.3460 0.3460 0.4253

0 0.3460 0.4253
0.3460 0 0.4253
0.4253 0.4253 0

vaf =

0.7782

outperm =

1 2 3 5 4 6 7 9 10 8

monproxpermut =

Columns 1 through 7

0 0.4244 0.5549 0.6840 0.7058 0.7659 0.7058
0.4244 0 0.3981 0.5908 0.4054 0.5549 0.7058
0.5549 0.3981 0 0.0590 0.4054 0.5908 0.4310
0.6840 0.5908 0.0590 0 0.4244 0.4244 0.4054
0.7058 0.4054 0.4054 0.4244 0 0.4310 0.3981
0.7659 0.5549 0.5908 0.4244 0.4310 0 0.4054
0.7058 0.7058 0.4310 0.4054 0.3981 0.4054 0
0.8210 0.7058 0.4054 0.3981 0.7058 0.5908 0.4054
0.8500 0.5908 0.7659 0.6830 0.3981 0.5549 0.3981
0.9090 0.5908 0.7058 0.7058 0.5908 0.4244 0.4244

Columns 8 through 10

0.8210 0.8500 0.9090
0.7058 0.5908 0.5908
0.4054 0.7659 0.7058
0.3981 0.6830 0.7058
0.7058 0.3981 0.5908
0.5908 0.5549 0.4244

srpm_f
2005/10/
page 136

�

�

�

�

�

�

�

�

136 Chapter 9. Anti-Robinson (AR) Matrices for Symmetric Proximity Data

0.4054 0.3981 0.4244
0 0.4054 0.4244

0.4054 0 0.4310
0.4244 0.4310 0

vaf =

0.8323

diff =

0.2075

outperm =

1 2 3 5 4 6 7 9 10 8

find =

Columns 1 through 7

0 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467
0.5467 0 0.5467 0.5467 0.5467 0.5467 0.5467
0.5467 0.5467 0 0.0609 0.5467 0.5467 0.5467
0.5467 0.5467 0.0609 0 0.5467 0.5467 0.5467
0.5467 0.5467 0.5467 0.5467 0 0.5467 0.5467
0.5467 0.5467 0.5467 0.5467 0.5467 0 0.5467
0.5467 0.5467 0.5467 0.5467 0.5467 0.5467 0
0.8474 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467
0.8774 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467
0.9383 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467

Columns 8 through 10

0.8474 0.8774 0.9383
0.5467 0.5467 0.5467
0.5467 0.5467 0.5467
0.5467 0.5467 0.5467
0.5467 0.5467 0.5467
0.5467 0.5467 0.5467
0.5467 0.5467 0.5467

0 0.5467 0.5467

srpm fina
2005/10/6
page 137

�

�

�

�

�

�

�

�

9.4. The Use of Optimal Transformations and the M-function proxmon.m 137

0.5467 0 0.5467
0.5467 0.5467 0

monproxpermut =

Columns 1 through 7

0 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467
0.5467 0 0.5467 0.5467 0.5467 0.5467 0.5467
0.5467 0.5467 0 0.0609 0.5467 0.5467 0.5467
0.5467 0.5467 0.0609 0 0.5467 0.5467 0.5467
0.5467 0.5467 0.5467 0.5467 0 0.5467 0.5467
0.5467 0.5467 0.5467 0.5467 0.5467 0 0.5467
0.5467 0.5467 0.5467 0.5467 0.5467 0.5467 0
0.8474 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467
0.8774 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467
0.9383 0.5467 0.5467 0.5467 0.5467 0.5467 0.5467

Columns 8 through 10

0.8474 0.8774 0.9383
0.5467 0.5467 0.5467
0.5467 0.5467 0.5467
0.5467 0.5467 0.5467
0.5467 0.5467 0.5467
0.5467 0.5467 0.5467
0.5467 0.5467 0.5467

0 0.5467 0.5467
0.5467 0 0.5467
0.5467 0.5467 0

vaf =

1.0000

diff =

8.3999e-011

srpm fina
2005/10/6
page 138

�

�

�

�

�

�

�

�

138 Chapter 9. Anti-Robinson (AR) Matrices for Symmetric Proximity Data

9.5 Graphically Representing SAR Structures
The use of the very general form of representation offered by an AR matrix without
the imposition of any further restrictions has one annoying interpretive difficulty.
Specifically, it is usually necessary to interpret the fitted structures directly (and
enumeratively) through a set of subsets or clusters that are all defined by objects
contiguous in a specific object ordering; each such subset has an attached diameter
that reflects its maximum within-class fitted value. More pointedly, it is generally
not possible to use a more convenient graph-theoretic structure and the lengths of
paths between objects in such a graph to represent visually a fitted AR matrix; this
situation contrasts with opportunities resulting when the approximation matrix is
more restricted and defined, say, by an ultrametric or an additive tree, or by a
(linear or circular) unidimensional scaling (see Hubert, Arabie, & Meulman, 1997,
or Parts I and II of the current monograph).

As noted in the introduction, the imposition of SAR conditions allows a rep-
resentation of the fitted values in a (least-squares) SAR approximating matrix as
lengths of paths in a graph, although this graph will not generally have the simpli-
fied form of a tree. A discussion of these latter SAR constraints is not new here,
and several (theoretical) presentations of their usefulness exist in the literature (for
example, see Critchley and Fichet, 1994; Critchley, 1994; Durand and Fichet, 1988;
Mirkin, 1996, Chapter 7). Here, we give the example based on the number data
from Hubert, Arabie, and Meulman (1998) for interpretative convenience. The lat-
ter data were transformed (in that reference) to a standard deviation of 1.0 and a
mean of 4.0; thus, the numbers within the fitted matrices will differ from the exam-
ples given earlier. Approximating AR and SAR forms for the transformed number
proximity data are given in the upper and lower-triangular portions, respectively, of
the matrix in Table 9.1. For convenience below, we will denote the upper-triangular
AR matrix by Aut and the lower-triangular SAR matrix by Alt.

The 10(10 − 1)/2 = 45 subsets defined by objects contiguous in the object
ordering used to display the upper-triangular portion of Table 9.1 are listed in Table
9.2 according to increasing diameter values. For purposes of our later discussion, 22
of the subsets are given in italics to indicate that they are proper subsets of another
listed subset having the same diameter. Substantively, the dominant patterning
of the entries in Aut appears to reflect (primarily) digit magnitude except for the
placement of digit 4 next to 2, and digit 7 being located in the last position. Both
these latter deviations from an interpretation strictly according to digit magnitude
show some of the salient structural properties of the digits. For example, the digit
pair (2,4) has the absolute smallest dissimilarity in the data; besides being relatively
close in magnitude, there are the possible (although redundant) similarity bases that
2+2 = 4, 2×2 = 4, 4 is a power of 2, and both 2 and 4 are even numbers. Similarly,
the placement of the digit 7 in the last position results from the salience of the triple
{6, 8, 9}, which is the third to emerge according to its diameter. In addition to these
three digits all being relatively close in magnitude, 6 and 8 are both even numbers,
6 and 9 are multiples of 3, and 8 is directly adjacent in size to 9. The three original
dissimilarities within the set {6, 8, 9} are all smaller than the dissimilarities digit 7
has to any other digit.

srpm fina
2005/10/6
page 139

�

�

�

�

�

�

�

�

9.5. Graphically Representing SAR Structures 139

Table 9.1. Order-constrained least-squares approximations to the digit
proximity data of Shepard et al. (1975); the upper-triangular portion is anti-
Robinson and the lower-triangular portion is strongly-anti-Robinson

digit 0 1 2 4 3 5 6 8 9 7
0 x 3.41 4.21 4.70 4.83 5.25 5.25 5.38 5.52 5.81
1 3.41 x 2.73 3.78 3.78 4.23 4.96 4.96 4.96 4.96
2 4.21 2.73 x 1.63 3.22 3.76 3.76 3.76 4.96 4.96
4 4.76 3.78 1.63 x 3.22 3.30 3.30 3.76 4.70 4.96
3 4.76 3.78 3.22 3.22 x 3.18 3.18 3.76 3.76 4.25
5 5.25 4.59 3.53 3.53 3.18 x 3.18 3.76 3.76 3.76
6 5.25 4.59 3.53 3.53 3.18 3.18 x 3.04 3.04 3.43
8 5.57 4.96 4.18 4.18 4.18 4.18 3.04 x 3.04 3.43
9 5.57 4.96 4.18 4.18 4.18 4.18 3.04 3.04 x 3.43
7 5.57 4.96 4.18 4.18 4.18 4.18 3.43 3.43 3.43 x

Given just the collection of subsets S1, . . . , SM listed in Table 9.2 and their
associated diameters, it is possible (trivially) to reconstruct the original approx-
imating matrix Aut by identifying for each object pair the smallest diameter for
a subset that contains that pair. (Explicitly, the smallest diameter for a subset
that contains an object pair is equal to the value in Aut associated with that pair,
and the subset itself includes that object pair and all objects in between in the
ordering that is used to display the AR form for Aut.) This type of reconstruction
is generally possible for any matrix that can be row/column reordered to an AR
form through the collection of subsets S1, . . . , SM and their diameters identified by
increasing a threshold variable from the smallest fitted value. In fact, even if all
the italicized subsets were removed (that are proper subsets of another having the
same diameter), exactly the same reconstruction could be carried out because the
italicized subsets are redundant with respect to identifying for each object pair the
smallest diameter for a subset that contains the pair.

Without imposing further restrictions on the approximating matrix other than
just being AR, a more convenient representation using a graph and path lengths in
such a graph is generally not possible. We will select two small (AR) submatrices
from the upper-triangular portion of Table 9.1 to make this point more convinc-
ingly, and in the process indicate by example how a graph representation is to
be constructed and why further restrictions on the approximating matrix may be
necessary to carry out the task.

First, consider the fitted values for the first four placed digits, 0, 1, 2, and 4
in Figure 9.1(a), for which the desired type of graphical representation is possible
without imposing any further constraints. This AR submatrix is given in Figure
9.1(a) along with the six corresponding subsets of contiguous objects and their
diameters, and a graphical representation for the structure. The latter consists of

srpm fina
2005/10/6
page 140

�

�

�

�

�

�

�

�

140 Chapter 9. Anti-Robinson (AR) Matrices for Symmetric Proximity Data

Table 9.2. The 45 subsets listed according to increasing diameter values
that are contiguous in the object ordering used to display the upper-triangular portion
of Table 9.1. The 22 subsets given in italics are redundant in the sense that they
are proper subsets of another listed subset with the same diameter.

subset diameter
{2,4} 1.63
{1,2} 2.73
{6,8},{8,9},{6,8,9} 3.04
{3,5},{5,6},{3,5,6} 3.18
{4,3},{2,4,3} 3.22
{4,3,5},{4,3,5,6} 3.30
{0,1} 3.41
{9,7},{8,9,7},{6,8,9,7} 3.43
{5,6,8},{5,6,8,9},{5,6,8,9,7} 3.76
{3,5,6,8},{3,5,6,8,9} 3.76
{4,3,5,6,8},{2,4,3,5},{2,4,3,5,6},{2,4,3,5,6,8} 3.76
{1,2,4},{1,2,4,3} 3.78
{0,1,2} 4.21
{1,2,4,3,5} 4.23
{3,5,6,8,9,7} 4.25
{0,1,2,4},{4,3,5,6,8,9} 4.70
{0,1,2,4,3} 4.83
{1,2,4,3,5,6},{1,2,4,3,5,6,8} 4.96
{1,2,4,3,5,6,8,9},{2,4,3,5,6,8,9} 4.96
{2,4,3,5,6,8,9,7},{4,3,5,6,8,9,7} 4.96
{1,2,4,3,5,6,8,9,7} 4.96
{0,1,2,4,3,5},{0,1,2,4,3,5,6} 5.25
{0,1,2,4,3,5,6,8} 5.38
{0,1,2,4,3,5,6,8,9} 5.52
{0,1,2,4,3,5,6,8,9,7} 5.81

four nodes corresponding to the original four objects that we represent by open
circles (referred to as “terminal” nodes), plus six nodes represented by solid circles
that denote the six subsets in the given listing (referred to as “internal” nodes).
Based on this graph and the internal node heights provided by the calibrated scale
on the left, a fitted value in the submatrix between any two terminal nodes can be
obtained as one-half the length of the minimum path from one of the terminal nodes
up to an internal node and back down to the other terminal node. All horizontal line
segments are used here for display convenience only and are not actually assumed
to contribute to the length of any path. Thus, if we changed the vertical scaling by
a multiplier of 1/2, each of the fitted values in the submatrix would be exactly the

srpm fina
2005/10/6
page 141

�

�

�

�

�

�

�

�

9.6. Representation Through Multiple (Strongly) AR Matrices 141

length of the minimum path between two terminal nodes, that proceeded upward
from one such node to an internal node and then back down to the other. We might
also note that from the topmost internal node, all paths down to the terminal
nodes have exactly the same length; i.e., there is an internal node equidistant from
all terminal nodes.

Now, consider the fitted values for the four objects placed respectively at
the third through sixth positions: 2, 4, 3, and 5, given in Figure 9.1(b) along
with the corresponding subsets of contiguous objects and their diameters (excluding
the redundant subset {4,3} which is a proper subset of {2,4,3} having the same
diameter), and the beginnings of a graphical representation for its structure. There
is a difficulty encountered, however, in defining a graph that would be completely
consistent with all the fitted values in the 4×4 submatrix; we indicate this anomaly
by the dashed vertical and horizontal lines. If an internal node were to be placed at
the level of 3.30 to represent the cluster {4, 3, 5}, by implication the fitted value for
the digit pair (2,5) should also be 3.30 (and not its current value of 3.76). Because
digit 3 was “joined” to both 2 and 4 at the threshold level 3.22, and thus, there
are two fitted values tied at 3.22, a consistent graphical representation would be
possible only if the fitted values for the pairs (2,5) and (4,5) were equal. This
last observation, that when some fitted values are tied in an approximating matrix
Aut, others must also be tied to allow for the construction of a consistent graphical
representation, is the motivating basis for considering an additional set of SAR
constraints.

When a graphical representation that permits their reconstruction through
path lengths is desired for the collection of fitted values in an approximating matrix
A, the small illustration just provided serves as justification for imposing a stricter
collection of constraints on the approximating matrix than just being row/column
reorderable to an AR form. In particular, the additional restriction will be imposed
that the approximating matrix A is row/column reorderable to one that is SAR,
which will eliminate the type of graphical anomaly present in Figure 9.1(b).

For the SAR approximation given in the lower-triangular portion of Table
9.1, there are now only fourteen (nonredundant) subsets identifiable by increasing a
threshold variable from the smallest fitted value; these are listed in Table 9.3 along
with their diameters. The imposition of the more restrictive SAR constraints allows
the graphical representation given in Figure 9.2. Although we might not change our
substantive comments about the approximating matrix (i.e., mostly digit magnitude
with some structural characteristics for the subsets {2, 4} and {6, 8, 9}), a graphical
representation makes these same observations visually clearer.

9.6 Representation Through Multiple (Strongly) AR
Matrices

The representation of a proximity matrix by a single anti-Robinson structure ex-
tends easily to the additive use of multiple matrices. The M-function, biarobfnd.m,
fits the sum of two anti-Robinson matrices using iterative projection to a symmetric
proximity matrix in the L2-norm based on permutations identified through the use

srpm fina
2005/10/6
page 142

�

�

�

�

�

�

�

�

142 Chapter 9. Anti-Robinson (AR) Matrices for Symmetric Proximity Data

� � � �

�

� �

1.63

3.18
3.22
3.30

�
�
�

....

..
....
.............................

subset
{2,4}
{3,5}
{2,4,3}
{4,3,5}
{2,4,3,5}

diameter
1.63
3.18
3.22
3.30
3.76

2 4 3 5
2
4
3
5

x1.63
x

3.22
3.22

x

3.76
3.30
3.18
x

(b)

� � � �

�

�

�

�
�

�

1.63

2.73

3.41

3.78

4.21

4.70

subset
{2,4}
{1,2}
{0,1}
{1,2,4}
{0,1,2}
{0,1,2,4}

diameter
1.63
2.73
3.41
3.78
4.21
4.70

0 1 2 4
0
1
2
4

x3.41
x

4.21
2.73

x

4.70
3.78
1.63

x

(a)

0 1 2 4

2 4 3 5

Figure 9.1. Two 4×4 submatrices and the object subsets they induce, taken
from the anti-Robinson matrix in the upper-triangular portion of Table 9.1. For
(a), a graphical representation of the fitted values is possible; for (b), the anomaly
indicated by the dashed lines prevents a consistent graphical representation from
being constructed.

of iterative quadratic assignment. The usage syntax is

[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...
biarobfnd(prox,inperm,kblock)

srpm_f
2005/10/
page 143

�

�

�

�

�

�

�

�

9.6. Representation Through Multiple (Strongly) AR Matrices 143

Table 9.3. The fourteen (nonredundant) subsets listed according to in-
creasing diameter values are contiguous in the linear object ordering used to display
the lower-triangular SAR portion of Table 9.1.

subset diameter subset diameter
{2,4} 1.63 {2,4,3,5,6} 3.53
{1,2} 2.73 {1,2,4,3} 3.78
{6,8,9} 3.04 {2,4,3,5,6,8,9,7} 4.18
{3,5,6} 3.18 {0,1,2} 4.21
{2,4,3} 3.22 {0,1,2,4,3} 4.76
{0,1} 3.41 {0,1,2,4,3,5,6} 5.25
{6,8,9,7} 3.43 {0,1,2,4,3,5,6,8,9,7} 5.57

� � � � � � � � � �

�

�

� � � �

�
� � �

� �

�
�

0 1 2 4 3 5 6 8 9 7

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5

�
�
�
�
�
�
�
�
�

Figure 9.2. A graphical representation for the fitted values given by the
strongly-anti-Robinson matrix in the lower-triangular portion of Table 9.1.

where, as before, PROX is the input proximity matrix (n×n with a zero main diagonal
and a dissimilarity interpretation); INPERM is a given starting permutation of the
first n integers; FIND is the least-squares optimal matrix (with variance-accounted-
for of VAF) to PROX and is the sum of the two anti-Robinson matrices TARGONE and
TARGTWO based on the two row and column object orderings given by the ending
permutations OUTPERMONE and OUTPERMTWO. As before, KBLOCK defines the block
size in the use of the iterative quadratic assignment routine.

In the example below, the two resulting AR forms are very clearly interpretable
as number magnitude and digit structural properties; the VAF is, in effect, 100%.

srpm_f
2005/10/
page 144

�

�

�

�

�

�

�

�

144 Chapter 9. Anti-Robinson (AR) Matrices for Symmetric Proximity Data

load number.dat
[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...
biarobfnd(number,1:10,1)

find =

Columns 1 through 7

0 0.4209 0.5840 0.7090 0.6840 0.8040 0.7865
0.4209 0 0.2840 0.3460 0.6460 0.5880 0.7568
0.5840 0.2840 0 0.3540 0.0588 0.6702 0.4225
0.7090 0.3460 0.3540 0 0.4130 0.4290 0.3000
0.6840 0.6460 0.0588 0.4130 0 0.4094 0.3880
0.8040 0.5880 0.6702 0.4290 0.4094 0 0.3960
0.7865 0.7568 0.4225 0.3000 0.3880 0.3960 0
0.9107 0.6300 0.7960 0.5920 0.7420 0.4000 0.4169
0.8210 0.7975 0.3672 0.7975 0.2460 0.6714 0.3499
0.8500 0.6250 0.8080 0.2630 0.6829 0.5920 0.2960

Columns 8 through 10

0.9107 0.8210 0.8500
0.6300 0.7975 0.6250
0.7960 0.3672 0.8080
0.5920 0.7975 0.2630
0.7420 0.2460 0.6829
0.4000 0.6714 0.5920
0.4169 0.3499 0.2960

0 0.4000 0.4587
0.4000 0 0.3922
0.4587 0.3922 0

vaf =

0.9999

targone =

Columns 1 through 7

0 0.3406 0.6710 0.6926 0.6956 0.6956 0.8303
0.3406 0 0.2018 0.5421 0.5423 0.5880 0.6764
0.6710 0.2018 0 0.3333 0.3680 0.4662 0.4662

srpm_f
2005/10/
page 145

�

�

�

�

�

�

�

�

9.6. Representation Through Multiple (Strongly) AR Matrices 145

0.6926 0.5421 0.3333 0 0.3093 0.3206 0.3779
0.6956 0.5423 0.3680 0.3093 0 0.2055 0.3779
0.6956 0.5880 0.4662 0.3206 0.2055 0 0.2876
0.8303 0.6764 0.4662 0.3779 0.3779 0.2876 0
0.8303 0.6764 0.6764 0.6764 0.6383 0.4675 0.3360
0.8303 0.7511 0.7138 0.6764 0.6383 0.4745 0.3366
0.8611 0.7943 0.7943 0.6764 0.6690 0.4836 0.3849

Columns 8 through 10

0.8303 0.8303 0.8611
0.6764 0.7511 0.7943
0.6764 0.7138 0.7943
0.6764 0.6764 0.6764
0.6383 0.6383 0.6690
0.4675 0.4745 0.4836
0.3360 0.3366 0.3849

0 0.2243 0.3783
0.2243 0 0.3783
0.3783 0.3783 0

targtwo =

Columns 1 through 7

0 -0.3923 -0.3092 -0.0093 0.0139 0.0139 0.1211
-0.3923 0 -0.3092 -0.0116 0.0101 0.0139 0.1037
-0.3092 -0.3092 0 -0.0870 -0.0438 0.0137 0.0207
-0.0093 -0.0116 -0.0870 0 -0.0438 -0.0111 0.0164
0.0139 0.0101 -0.0438 -0.0438 0 -0.0889 -0.0779
0.0139 0.0139 0.0137 -0.0111 -0.0889 0 -0.4134
0.1211 0.1037 0.0207 0.0164 -0.0779 -0.4134 0
0.1211 0.1037 0.0822 0.0804 0.0804 -0.1693 -0.1961
0.1757 0.1037 0.0822 0.0804 0.0804 0.0804 -0.0844
0.2039 0.2039 0.2039 0.1084 0.1084 0.1084 0.1084

Columns 8 through 10

0.1211 0.1757 0.2039
0.1037 0.1037 0.2039
0.0822 0.0822 0.2039
0.0804 0.0804 0.1084
0.0804 0.0804 0.1084

-0.1693 0.0804 0.1084
-0.1961 -0.0844 0.1084

srpm_f
2005/10/
page 146

�

�

�

�

�

�

�

�

146 Chapter 9. Anti-Robinson (AR) Matrices for Symmetric Proximity Data

0 -0.1211 0
-0.1211 0 -0.0745

0 -0.0745 0

outpermone =

1 2 3 4 5 6 7 9 8 10

outpermtwo =

9 5 3 1 7 10 4 2 8 6

For finding multiple SAR forms, bisarobfnd.m has usage syntax

[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...
bisarobfnd(prox,inperm,kblock)

with all the various terms the same as for biarobfnd.m but now for strongly AR
(SAR) structures. The example below finds essentially the same representation as
above (involving digit magnitude and structure) with a slight drop in the VAF to
99.06%.

[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...
bisarobfnd(number,randperm(10),1)

find =

Columns 1 through 7

0 0.4210 0.5840 0.7095 0.6838 0.8519 0.7260
0.4210 0 0.2840 0.3460 0.6461 0.5892 0.7565
0.5840 0.2840 0 0.3541 0.0590 0.6090 0.4830
0.7095 0.3460 0.3541 0 0.4131 0.4278 0.3005
0.6838 0.6461 0.0590 0.4131 0 0.4090 0.3882
0.8519 0.5892 0.6090 0.4278 0.4090 0 0.3960
0.7260 0.7565 0.4830 0.3005 0.3882 0.3960 0
0.8998 0.6153 0.8059 0.6067 0.7286 0.4000 0.4168
0.8208 0.8246 0.3670 0.7893 0.2460 0.6711 0.3502
0.8736 0.6250 0.7797 0.2630 0.6965 0.5920 0.2955

Columns 8 through 10

0.8998 0.8208 0.8736
0.6153 0.8246 0.6250
0.8059 0.3670 0.7797
0.6067 0.7893 0.2630

srpm_f
2005/10/
page 147

�

�

�

�

�

�

�

�

9.6. Representation Through Multiple (Strongly) AR Matrices 147

0.7286 0.2460 0.6965
0.4000 0.6711 0.5920
0.4168 0.3502 0.2955

0 0.4000 0.4590
0.4000 0 0.3921
0.4590 0.3921 0

vaf =

0.9906

targone =

Columns 1 through 7

0 0.3148 0.6038 0.6296 0.6296 0.7457 0.7457
0.3148 0 0.1778 0.5201 0.5201 0.6626 0.6626
0.6038 0.1778 0 0.2742 0.3230 0.5028 0.5028
0.6296 0.5201 0.2742 0 0.3192 0.5012 0.5012
0.6296 0.5201 0.3230 0.3192 0 0.2831 0.3340
0.7457 0.6626 0.5028 0.5012 0.2831 0 0.3021
0.7457 0.6626 0.5028 0.5012 0.3340 0.3021 0
0.7936 0.7061 0.6997 0.6974 0.6027 0.5526 0.3229
0.7936 0.7061 0.6997 0.6974 0.6027 0.5526 0.3229
0.7936 0.7061 0.6997 0.6974 0.6027 0.5527 0.4963

Columns 8 through 10

0.7936 0.7936 0.7936
0.7061 0.7061 0.7061
0.6997 0.6997 0.6997
0.6974 0.6974 0.6974
0.6027 0.6027 0.6027
0.5526 0.5526 0.5527
0.3229 0.3229 0.4963

0 0.2815 0.4197
0.2815 0 0.3001
0.4197 0.3001 0

targtwo =

Columns 1 through 7

srpm fina
2005/10/6
page 148

�

�

�

�

�

�

�

�

148 Chapter 9. Anti-Robinson (AR) Matrices for Symmetric Proximity Data

0 -0.3567 -0.2640 0.0542 0.0542 0.0938 0.0938
-0.3567 0 -0.3327 0.0272 0.0272 0.0919 0.0919
-0.2640 -0.3327 0 -0.0198 -0.0198 0.0799 0.0799
0.0542 0.0272 -0.0198 0 -0.0198 0.0799 0.0799
0.0542 0.0272 -0.0198 -0.0198 0 -0.2008 -0.2008
0.0938 0.0919 0.0799 0.0799 -0.2008 0 -0.4344
0.0938 0.0919 0.0799 0.0799 -0.2008 -0.4344 0
0.1260 0.1185 0.1062 0.1062 0.0939 -0.0811 -0.1741
0.1260 0.1185 0.1062 0.1062 0.0939 0.0393 -0.0907
0.1260 0.1185 0.1062 0.1062 0.0939 0.0393 -0.0734

Columns 8 through 10

0.1260 0.1260 0.1260
0.1185 0.1185 0.1185
0.1062 0.1062 0.1062
0.1062 0.1062 0.1062
0.0939 0.0939 0.0939

-0.0811 0.0393 0.0393
-0.1741 -0.0907 -0.0734

0 -0.0907 -0.0734
-0.0907 0 -0.1526
-0.0734 -0.1526 0

outpermone =

1 2 3 4 5 6 7 8 9 10

outpermtwo =

5 9 3 1 7 10 4 2 8 6

srpm fina
2005/10/6
page 149

�

�

�

�

�

�

�

�

Chapter 10

Circular-Anti-Robinson
(CAR) Matrices for
Symmetric Proximity
Data

In the approximation of a proximity matrix P by one that is row/column reorder-
able to an AR form, the interpretation of the fitted matrix in general had to be
carried out by identifying a set of subsets through an increasing threshold variable;
each of the subsets contained objects that were contiguous with respect to a given
linear ordering along a continuum, and had a diameter defined by the maximum
fitted value within the subset. To provide a further representation depicting the
fitted values as lengths of paths in a graph, an approximation was sought that sat-

149

srpm fina
2005/10/6
page 150

�

�

�

�

�

�

�

�

150 Chapter 10. Circular-Anti-Robinson (CAR) Matrices

isfied the additional constraints of an SAR matrix; still, the subsets thus identified
had to contain objects contiguous with respect to a linear ordering. As one possible
generalization of both the AR and SAR constraints, we can define what will be
called circular anti-Robinson (CAR) and circular strongly-anti-Robinson (CSAR)
forms that allow the subsets identified from increasing a threshold variable to be
contiguous with respect to a circular ordering of the objects around a closed con-
tinuum. Approximation matrices that are row/column reorderable to display an
AR or SAR form, respectively, will also be (trivially) row/column reorderable to
display what is formally characterized below as a CAR or a CSAR form, but not
conversely. (Historically, there is a large literature on the possibility of circular
structures emerging from and being identifiable in a given proximity matrix. For
a variety of references, the reader is referred to the American Psychological Asso-
ciation sponsored volume edited by Plutchik and Conte (1997), or the discussion
of metric circular unidimensional scaling from Part I, Chapter 3, and in Hubert,
Arabie, and Meulman [1997]. The extension of CAR forms to those that are also
CSAR, however, has apparently not been a topic discussed in the literature before
the appearance of Hubert, Arabie, and Meulman [1998]; this latter source forms the
basis for much of the present chapter.)

To be explicit, an arbitrary symmetric matrix Q = {qij}, where qii = 0 for 1 ≤
i, j ≤ n, is said to be row/column reorderable to a circular anti-Robinson form (or,
for short, Q is a circular anti-Robinson (CAR) matrix) if there exists a permutation,
ρ(·), on the first n integers such that the reordered matrix Qρ = {qρ(i)ρ(j)} satisfies
the conditions given in (II):

(II): for 1 ≤ i ≤ n − 3, and i + 1 < j ≤ n − 1,
if qρ(i+1)ρ(j) ≤ qρ(i)ρ(j+1), then
qρ(i+1)ρ(j) ≤ qρ(i)ρ(j) and qρ(i+1)ρ(j) ≤ qρ(i+1)ρ(j+1);
if qρ(i+1)ρ(j) ≥ qρ(i)ρ(j+1), then
qρ(i)ρ(j) ≥ qρ(i)ρ(j+1) and qρ(i+1)ρ(j+1) ≥ qρ(i)ρ(j+1),
and, for 2 ≤ i ≤ n − 2,
if qρ(i+1)ρ(n) ≤ qρ(i)ρ(1), then
qρ(i+1)ρ(n) ≤ qρ(i)ρ(n) and qρ(i+1)ρ(n) ≤ qρ(i+1)ρ(1);
if qρ(i+1)ρ(n) ≥ qρ(i)ρ(1), then
qρ(i)ρ(n) ≥ qρ(i)ρ(1) and qρ(i+1)ρ(1) ≥ qρ(i)ρ(1).

Interpretatively, within each row of Qρ moving to the right from the main diagonal
and then wrapping back around to re-enter the same row from the left, the entries
never decrease until a maximum is reached and then never increase moving away
from the maximum until the main diagonal is again reached. Given the symmetry
of P, a similar pattern of entries would be present within each column as well. As
noted above, any AR matrix is CAR but not conversely.

In analogy to the SAR conditions that permit graphical representation, a
symmetric matrix Q is said to be row/column reorderable to a circular strongly-
anti-Robinson form (or, for short, Q is a circular strongly-anti-Robinson (CSAR)
matrix) if there exists a permutation, ρ(·), on the first n integers such that the
reordered matrix Qρ = {qρ(i)ρ(j)} satisfies the conditions given by (II), and

srpm fina
2005/10/6
page 151

�

�

�

�

�

�

�

�

10.1. Fitting a Given CAR Matrix in the L2-Norm 151

for 1 ≤ i ≤ n − 3, and i + 1 < j ≤ n − 1,
if qρ(i+1)ρ(j) ≤ qρ(i)ρ(j+1), then qρ(i+1)ρ(j) = qρ(i)ρ(j) implies qρ(i+1)ρ(j+1) =

qρ(i)ρ(j+1), and qρ(i+1)ρ(j) = qρ(i+1)ρ(j+1) implies qρ(i)ρ(j) = qρ(i)ρ(j+1);
if qρ(i+1)ρ(j) ≥ qρ(i)ρ(j+1), then qρ(i)ρ(j+1) = qρ(i+1)ρ(j+1) implies qρ(i)ρ(j) =

qρ(i+1)ρ(j), and qρ(i)ρ(j) = qρ(i)ρ(j+1) implies qρ(i+1)ρ(j) = qρ(i+1)ρ(j+1),

and for 2 ≤ i ≤ n − 2,
if qρ(i+1)ρ(n) ≤ qρ(i)ρ(1), then qρ(i+1)ρ(n) = qρ(i)ρ(n) implies qρ(i+1)ρ(1) = qρ(i)ρ(1),

and qρ(i+1)ρ(n) = qρ(i+1)ρ(1) implies qρ(i)ρ(n) = qρ(i)ρ(1);
if qρ(i+1)ρ(n) ≥ qρ(i)ρ(1), then qρ(i)ρ(1) = qρ(i+1)ρ(1) implies qρ(i)ρ(n) = qρ(i+1)ρ(n),

and qρ(i)ρ(n) = qρ(i)ρ(1) implies qρ(i+1)ρ(n) = qρ(i+1)ρ(1).

Again, the imposition of the stronger CSAR conditions avoids the type of graphical
anomaly present in Figure 9.1(b) but now in the context of a CAR matrix — when
two fitted values that are adjacent within a row are equal, the fitted values in the
same two adjacent columns must also be equal for a row that is either its immediate
predecessor (if qρ(i+1)ρ(j) ≤ qρ(i)ρ(j+1)), or successor (if qρ(i+1)ρ(j) ≥ qρ(i)ρ(j+1)); a
similar condition is imposed when two fitted values that are adjacent within a
column are equal. As noted, any SAR matrix is CSAR but not conversely.

The computational strategy we suggest for identifying a best-fitting CAR or
CSAR approximation matrix is based on an initial circular unidimensional scal-
ing obtained through the optimization strategy developed by Hubert, Arabie, and
Meulman (1997) that is reviewed in Part I, Chapter 3. Specifically, we first insti-
tute a combination of combinatorial search for good matrix reorderings and heuristic
iterative projection to locate the points of inflection when minimum distance cal-
culations change directionality around a closed circular structure. Approximation
matrices to P are found through a least-squares loss criterion, and they have the
parameterized form

Qρ = {min(| xρ(j) − xρ(i) |, x0− | xρ(j) − xρ(i) |) + c},
where c is an estimated additive constant, xρ(1) ≤ xρ(2) ≤ · · · ≤ xρ(n) ≤ x0, and
the last coordinate, x0, is the circumference of the circular structure. Based on
the inequality constraints implied by such a collection of coordinates, a CAR ap-
proximation matrix can be fitted to P directly; then, beginning with this latter
CAR approximation, the identification and imposition of CSAR constraints pro-
ceeds through the heuristic use of iterative projection, directly analogous to the
way SAR constraints in the linear ordering context were identified and fitted, be-
ginning with a best approximation matrix satisfying just the AR restrictions.

10.1 Fitting a Given CAR Matrix in the L2-Norm

The function M-file, cirarobfit.m, fits a circular anti-Robinson (CAR) matrix
using iterative projection to a symmetric proximity matrix in the L2-norm. Usage
syntax is

[fit, vaf] = cirarobfit(prox,inperm,targ)

srpm_f
2005/10/
page 152

�

�

�

�

�

�

�

�

152 Chapter 10. Circular-Anti-Robinson (CAR) Matrices

where PROX is the input proximity matrix (n × n with a zero main diagonal and a
dissimilarity interpretation); INPERM is a given permutation of the first n integers
(around a circle); TARG is a given n × n matrix having the circular anti-Robinson
form that guides the direction in which distances are taken around the circle. The
matrix FIT is the least-squares optimal approximation (with variance-accounted-
for of VAF) to PROX having an circular anti-Robinson form for the row and column
object ordering given by INPERM.

A recording of a MATLAB session follows that uses the number.dat data file;
an equally-spaced circular anti-Robinson matrix targcircular obtained from the
utility M-file targcir.m first introduced in Part I; and the identity permutation for
the objects around the circular structure. The fitted CAR matrix thus identified in
this way has a VAF of 64.37%.

load number.dat
targcircular = targcir(10);
[fit vaf] = cirarobfit(number,1:10,targcircular)

fit =

Columns 1 through 7

0 0.4210 0.5840 0.6510 0.6835 0.8040 0.7730
0.4210 0 0.2840 0.3460 0.6170 0.6170 0.7730
0.5840 0.2840 0 0.2753 0.2753 0.5460 0.5460
0.6510 0.3460 0.2753 0 0.2753 0.3844 0.3844
0.6835 0.6170 0.2753 0.2753 0 0.3844 0.3844
0.8040 0.6170 0.5460 0.3844 0.3844 0 0.3844
0.7730 0.7730 0.5460 0.3844 0.3844 0.3844 0
0.7695 0.7695 0.7960 0.5920 0.5530 0.4000 0.3857
0.6597 0.6597 0.6597 0.8040 0.5530 0.5530 0.3857
0.6510 0.6510 0.6510 0.6510 0.6835 0.5920 0.3857

Columns 8 through 10

0.7695 0.6597 0.6510
0.7695 0.6597 0.6510
0.7960 0.6597 0.6510
0.5920 0.8040 0.6510
0.5530 0.5530 0.6835
0.4000 0.5530 0.5920
0.3857 0.3857 0.3857

0 0.3857 0.3857
0.3857 0 0.3857
0.3857 0.3857 0

srpm_f
2005/10/
page 153

�

�

�

�

�

�

�

�

10.2. Finding a CAR Matrix in the L2-Norm 153

vaf =

0.6437

10.2 Finding a CAR Matrix in the L2-Norm
The M-file, cirarobfnd.m, is our suggested strategy for identifying a best-fitting
CAR matrix for a symmetric proximity matrix in the L2-norm based on a permu-
tation that is initially identified through the use of iterative quadratic assignment.
Based on an equally-spaced circular target matrix, order.m is first invoked to ob-
tain a good (circular) permutation, which in turn is then used to construct a new
circular target matrix with cirfit.m. (We will mention here but not illustrate with
an example, an alternative to the use of cirarobfnd.m called cirarobfnd_ac.m;
the latter M-file has the same syntax as cirarobfnd.m but uses cirfitac.m rather
than cirfit.m internally to obtain the new circular target matrices.) The final out-
put is generated from cirarobfit.m that no better permutation can be identified
using the newer circular target matrix. The usage syntax for cirarobfnd.m is as
follows:

[find, vaf, outperm] = cirarobfnd(prox, inperm, kblock)

where PROX is the input proximity matrix (n × n with a zero main diagonal and
a dissimilarity interpretation); INPERM is a given starting permutation (assumed
to be around the circle) of the first n integers; FIND is the least-squares optimal
matrix (with variance-accounted-for of VAF) to PROX having a circular anti-Robinson
form for the row and column object ordering given by the concluding permutation
OUTPERM. Again, KBLOCK defines the block size in the use of the iterative quadratic
assignment routine.

An example of the use of cirarobfnd.m is given below that seems to lead to
a circular ordering best interpreted according to the structural properties of the
digits. This solution is only one of several local optima identifiable by repeated
application of the routine using other random starting permutations. In general,
the different local optima observed differ in the way the odd digits, {3, 5, 7, 9}, and
the even digits, {2, 4, 6, 8}, are ordered within these sets when moving clockwise
around a circular structure. Explicitly, all local optima had a general structure of
→ 0 → 1 → {3, 5, 7, 9} → {2, 4, 6, 8} →, but with some variation in order within
the odd and even digits. For example, the CAR matrix given below uses the odd
digits as → 3 → 5 → 9 → 7 → and the even digits as → 6 → 8 → 4 → 2 →.

[find, vaf, outperm] = cirarobfnd(number, randperm(10), 3)

find =

Columns 1 through 7

0 0.3460 0.5315 0.5315 0.6069 0.8040 0.4460
0.3460 0 0.4210 0.4340 0.6069 0.7895 0.7895

srpm fina
2005/10/6
page 154

�

�

�

�

�

�

�

�

154 Chapter 10. Circular-Anti-Robinson (CAR) Matrices

0.5315 0.4210 0 0.4340 0.6069 0.7895 0.7895
0.5315 0.4340 0.4340 0 0.0590 0.3670 0.4210
0.6069 0.6069 0.6069 0.0590 0 0.2460 0.3880
0.8040 0.7895 0.7895 0.3670 0.2460 0 0.3500
0.4460 0.7895 0.7895 0.4210 0.3880 0.3500 0
0.4460 0.6300 0.9090 0.7697 0.6069 0.3960 0.3907
0.4160 0.6250 0.8500 0.7698 0.6069 0.3960 0.3907
0.4160 0.5880 0.7698 0.7698 0.6069 0.6069 0.4160

Columns 8 through 10

0.4460 0.4160 0.4160
0.6300 0.6250 0.5880
0.9090 0.8500 0.7698
0.7697 0.7698 0.7698
0.6069 0.6069 0.6069
0.3960 0.3960 0.6069
0.3907 0.3907 0.4160

0 0.3907 0.4160
0.3907 0 0.4160
0.4160 0.4160 0

vaf =

0.8128

outperm =

4 2 1 3 5 9 7 8 10 6

10.3 Finding a Circular Strongly-Anti-Robinson
(CSAR) Matrix in the L2-Norm

The two M-functions, cirsarobfit.m and cirsarobfnd.m, are direct analogues of
cirarobfit.m and cirarobfnd.m, respectively, but are concerned with fitting and
finding strongly circular-anti-Robinson forms (also, we mention but do not illustrate,
the M-file cirsarobfnd_ac.m which uses cirarobfnd_ac.m to obtain the initial
CAR matrix that is then strengthened into one that is CSAR). The syntax for
cirsarobfit.m, which fits a circular strongly-anti-Robinson matrix using iterative
projection to a symmetric proximity matrix in the L2-norm, is

[fit, vaf] = cirsarobfit(prox, inperm, targ)

srpm fina
2005/10/6
page 155

�

�

�

�

�

�

�

�

10.3. Finding a Circular Strongly-Anti-Robinson (CSAR) Matrix in the L2-Norm 155

where, again, PROX is the input proximity matrix (n × n with a zero main diagonal
and a dissimilarity interpretation); INPERM is a given permutation of the first n
integers; TARG is a given n × n matrix having the circular anti-Robinson form that
guides the direction in which distances are taken around the circle. FIT is the
least-squares optimal matrix (with variance-accounted-for of VAF) to PROX having a
strongly circular-anti-Robinson form for the row and column object ordering given
by INPERM.

An example follows using the same identity permutation as in fitting a CAR
form with cirarobfit.m; as might be expected from using the more restrictive
CSAR form, the variance-accounted-for drops to .4501 from .6437.

[fit, vaf] = cirsarobfit(number,1:10,targcircular)

fit =

Columns 1 through 7

0 0.4210 0.5840 0.6505 0.6505 0.6505 0.6505
0.4210 0 0.2840 0.6505 0.6505 0.6505 0.6505
0.5840 0.2840 0 0.2753 0.2753 0.4306 0.4306
0.6505 0.6505 0.2753 0 0.2753 0.4306 0.4306
0.6505 0.6505 0.2753 0.2753 0 0.4306 0.4306
0.6505 0.6505 0.4306 0.4306 0.4306 0 0.4306
0.6505 0.6505 0.4306 0.4306 0.4306 0.4306 0
0.6505 0.6505 0.6505 0.6505 0.6505 0.6505 0.3857
0.6505 0.6505 0.6505 0.6505 0.6505 0.6505 0.3857
0.6505 0.6505 0.6505 0.6505 0.6505 0.6505 0.3857

Columns 8 through 10

0.6505 0.6505 0.6505
0.6505 0.6505 0.6505
0.6505 0.6505 0.6505
0.6505 0.6505 0.6505
0.6505 0.6505 0.6505
0.6505 0.6505 0.6505
0.3857 0.3857 0.3857

0 0.3857 0.3857
0.3857 0 0.3857
0.3857 0.3857 0

vaf =

0.4501

srpm_f
2005/10/
page 156

�

�

�

�

�

�

�

�

156 Chapter 10. Circular-Anti-Robinson (CAR) Matrices

The M-function, cirsarobfnd.m, finds and fits a CSAR matrix using iterative pro-
jection to a symmetric proximity matrix in the L2-norm based on a permutation
identified through the use of iterative quadratic assignment. It has the expected
syntax

[find, vaf, outperm] = cirsarobfnd(prox, inperm, kblock)

where, again, PROX is the input proximity matrix (n× n with a zero main diagonal
and a dissimilarity interpretation); INPERM is a given starting permutation of the
first n integers; FIND is the least-squares optimal matrix (with variance-accounted-
for of VAF) to PROX having a circular strongly-anti-Robinson form for the row and
column object ordering given by the ending permutation OUTPERM. As usual, KBLOCK
defines the block size in the use the iterative quadratic assignment routine. (Anal-
ogous to the last section, and as noted above, an alternative to cirsarobfnd.m is
available, called cirsarobfnd_ac.m that uses cirfitac.m to obtain the circular
target matrices.)

In the MATLAB recording below, and starting from a random permutation,
a circular strongly anti-Robinson form was found with a VAF of .7296 (again, this
represents an expected drop from the value of .8119 for the CAR form — this result
is also listed below)).

[find, vaf, outperm] = cirsarobfnd(number,randperm(10), 2)

target =

Columns 1 through 6

0 0.4160 0.4160 0.4160 0.6262 0.6262
0.4160 0 0.3907 0.3907 0.3960 0.6263
0.4160 0.3907 0 0.3907 0.3960 0.6263
0.4160 0.3907 0.3907 0 0.3500 0.3880
0.6262 0.3960 0.3960 0.3500 0 0.2460
0.6262 0.6263 0.6263 0.3880 0.2460 0
0.7858 0.7858 0.7858 0.4210 0.3670 0.0590
0.7858 0.7858 0.9090 0.7895 0.7895 0.5810
0.5880 0.6250 0.6300 0.7895 0.7895 0.5810
0.4160 0.4160 0.4460 0.4460 0.8040 0.5810

Columns 7 through 10

0.7858 0.7858 0.5880 0.4160
0.7858 0.7858 0.6250 0.4160
0.7858 0.9090 0.6300 0.4460
0.4210 0.7895 0.7895 0.4460
0.3670 0.7895 0.7895 0.8040
0.0590 0.5810 0.5810 0.5810

0 0.4340 0.4340 0.5315

srpm_f
2005/10/
page 157

�

�

�

�

�

�

�

�

10.3. Finding a Circular Strongly-Anti-Robinson (CSAR) Matrix in the L2-Norm 157

0.4340 0 0.4210 0.5315
0.4340 0.4210 0 0.3460
0.5315 0.5315 0.3460 0

vaf =

0.8119

outperm =

6 10 8 7 9 5 3 1 2 4

find =

Columns 1 through 6

0 0.4246 0.4246 0.4246 0.7304 0.7304
0.4246 0 0.3907 0.3907 0.3960 0.7304
0.4246 0.3907 0 0.3907 0.3960 0.7304
0.4246 0.3907 0.3907 0 0.3500 0.3880
0.7304 0.3960 0.3960 0.3500 0 0.2460
0.7304 0.7304 0.7304 0.3880 0.2460 0
0.7304 0.7304 0.7304 0.4210 0.3670 0.0590
0.7304 0.7304 0.7304 0.7304 0.7304 0.5810
0.7304 0.7304 0.7304 0.7304 0.7304 0.5810
0.4246 0.4246 0.4246 0.4246 0.7304 0.5810

Columns 7 through 10

0.7304 0.7304 0.7304 0.4246
0.7304 0.7304 0.7304 0.4246
0.7304 0.7304 0.7304 0.4246
0.4210 0.7304 0.7304 0.4246
0.3670 0.7304 0.7304 0.7304
0.0590 0.5810 0.5810 0.5810

0 0.4340 0.4340 0.5315
0.4340 0 0.4210 0.5315
0.4340 0.4210 0 0.3460
0.5315 0.5315 0.3460 0

vaf =

srpm fina
2005/10/6
page 158

�

�

�

�

�

�

�

�

158 Chapter 10. Circular-Anti-Robinson (CAR) Matrices

0.7296

outperm =

6 10 8 7 9 5 3 1 2 4

10.4 Graphically Representing CSAR Structures

As in the case of an AR or SAR matrix, the interpretation of the structure that may
be represented by a CAR or CSAR matrix could proceed by first identifying those
subsets and their diameters that emerge by increasing a threshold variable from
the smallest fitted value. And in the case of a more restrictive CSAR matrix, this
collection of subsets and their diameters can then be displayed by a graph where
minimum length paths reconstruct the fitted values. To illustrate this graphical
possibility on the transformed number.dat to mean 4.0 and variance 1.0 given in
Hubert, Arabie, and Meulman (1998) — and used earlier to show the graphical
representation of an SAR matrix — the fifteen (nonredundant) subsets identified
from the CSAR matrix present in Table 10.2 are listed in Table 10.1 according to
increasing diameter. Here, the structural properties of the digits are apparent (e.g.,
various subsets of the odd or even digits, or those that are multiples or powers
of 2 or of 3), but some magnitude adjacencies can also be noted (e.g., {6, 7, 8, 9},
or subsets of {0, 1, 2, 3}). The graph adhering to the CSAR restrictions is given
in Figure 10.1 and again minimum path lengths (that proceed up from a terminal
node to an internal node and then back down to the other terminal node) can be
used to reconstruct the fitted values in Q.

In addition to searching for a best-fitting CSAR matrix directly, we might
comment that the type of indirect approach mentioned in the introduction for the
case of SAR approximations could also be considered, although we will not go into
the details here. For example, based on a best-fitting CAR matrix, the additional
constraints of a circular unidimensional scale could be identified and then imposed
(in fact, this is our starting place in first obtaining the CAR approximation); or
those of an ultrametric (which would lead to an SAR matrix that is trivially CSAR
as well); or possibly, a collection of additive tree restrictions could be identified. In
all cases, CSAR approximations would be automatically obtained.

10.5 Representation Through Multiple (Strongly)
CAR Matrices

Just as we discussed in Section 9.6 on representing of proximity matrices through
multiple (strongly) AR matrices, the analysis of a proximity matrix by a single
(strongly) circular-anti-Robinson structure extends easily to the additive use of
multiple matrices. The M-function, bicirarobfnd.m, fits the sum of two circular-
anti-Robinson matrices using iterative projection to a symmetric proximity ma-
trix in the L2-norm based on permutations identified through the use of iterative

srpm_f
2005/10/
page 159

�

�

�

�

�

�

�

�

10.5. Representation Through Multiple (Strongly) CAR Matrices 159

Table 10.1. The fifteen (nonredundant) subsets listed according to increas-
ing diameter values are contiguous in the circular object ordering used to display
the CSAR entries in Table 10.2.

subset diameter subset diameter
{4,2} 1.63 {6,8,4,2} 3.41
{8,4} 2.55 {0,1} 3.41
{1,3} 3.04 {3,5,9,7,6} 3.43
{6,8} 3.06 {2,0,1} 3.47
{8,4,2} 3.14 {2,0,1,3} 3.95
{6,8,4} 3.25 {4,2,0,1,3} 4.20
{9,7,6} 3.26 {0,1,3,5,9,7,6,8,4,2} 4.93
{9,7,6,8} 3.29

Table 10.2. A circular strongly-anti-Robinson order-constrained least-
squares approximation to the digit proximity data of Shepard et al. (1975).

digit 0 1 3 5 9 7 6 8 4 2
0 x 3.41 3.95 4.93 4.93 4.93 4.93 4.93 4.20 3.47
1 3.41 x 3.04 4.93 4.93 4.93 4.93 4.93 4.20 3.47
3 3.95 3.04 x 3.43 3.43 3.43 3.43 4.93 4.20 3.95
5 4.93 4.93 3.43 x 3.43 3.43 3.43 4.93 4.93 4.93
9 4.93 4.93 3.43 3.43 x 3.26 3.26 3.29 4.93 4.93
7 4.93 4.93 3.43 3.43 3.26 x 3.26 3.29 4.93 4.93
6 4.93 4.93 3.43 3.43 3.26 3.26 x 3.06 3.25 3.41
8 4.93 4.93 4.93 4.93 3.29 3.29 3.06 x 2.55 3.14
4 4.20 4.20 4.20 4.93 4.93 4.93 3.25 2.55 x 1.63
2 3.47 3.47 3.95 4.93 4.93 4.93 3.41 3.14 1.63 x

quadratic assignment. The syntax usage is

[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...
bicirarobfnd(prox,inperm,kblock)

where, as before, PROX is the input proximity matrix (n×n with a zero main diagonal
and a dissimilarity interpretation); INPERM is a given initial permutation of the first
n integers; FIND is the least-squares optimal matrix (with variance-accounted-for of
VAF) to PROX and is the sum of the two circular-anti-Robinson matrices TARGONE
and TARGTWO based on the two row and column object orderings given by the final
permutations OUTPERMONE and OUTPERMTWO. As before, KBLOCK defines the block
size in the use of the iterative quadratic assignment routine.

srpm_f
2005/10/
page 160

�

�

�

�

�

�

�

�

160 Chapter 10. Circular-Anti-Robinson (CAR) Matrices

� � � � � � � � � � �

� � � ��
�

�

�

� � �
�

��

�

3 5 9 7 6 8 4 2 0 1 3
..

.............................
.......................

...................
................

.............
..............

............
...........

..

1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

�
�
�
�
�
�
�
�

Figure 10.1. A graphical representation for the fitted values given by the
circular strongly-anti-Robinson matrix in the lower-triangular portion of Table 10.2
(VAF = 72.96%). Note that digit 3 is placed both in the first and the last positions
in the ordering of the objects with the implication that the sequence continues in a
circular manner. This circularity is indicated by the curved dashed line.

[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...
bicirarobfnd(number,randperm(10),1)

find =

Columns 1 through 6

0 0.4210 0.5632 0.7297 0.6840 0.8040
0.4210 0 0.3048 0.3252 0.6460 0.5880
0.5632 0.3048 0 0.3540 0.0380 0.6535
0.7297 0.3252 0.3540 0 0.4340 0.4154
0.6840 0.6460 0.0380 0.4340 0 0.4401
0.8040 0.5880 0.6535 0.4154 0.4401 0
0.7871 0.7580 0.4208 0.3317 0.3565 0.3963
0.9090 0.6380 0.8131 0.5750 0.7418 0.4000
0.8210 0.7926 0.3881 0.7841 0.2460 0.6710
0.8521 0.6380 0.7841 0.2631 0.6830 0.5899

Columns 7 through 10

0.7871 0.9090 0.8210 0.8521

srpm_f
2005/10/
page 161

�

�

�

�

�

�

�

�

10.5. Representation Through Multiple (Strongly) CAR Matrices 161

0.7580 0.6380 0.7926 0.6380
0.4208 0.8131 0.3881 0.7841
0.3317 0.5750 0.7841 0.2631
0.3565 0.7418 0.2460 0.6830
0.3963 0.4000 0.6710 0.5899

0 0.4176 0.3500 0.2960
0.4176 0 0.4000 0.4590
0.3500 0.4000 0 0.3920
0.2960 0.4590 0.3920 0

vaf =

0.9955

targone =

Columns 1 through 6

0 0.0858 0.0858 0.3086 0.4576 0.4576
0.0858 0 0.0096 0.2443 0.2443 0.3863
0.0858 0.0096 0 0.2133 0.2391 0.2391
0.3086 0.2443 0.2133 0 0.0994 0.1207
0.4576 0.2443 0.2391 0.0994 0 0.1207
0.4576 0.3863 0.2391 0.1207 0.1207 0
0.4818 0.4818 0.3631 0.2195 0.2195 0.2195
0.4818 0.4818 0.4818 0.2195 0.2195 0.2195
0.3153 0.4902 0.4902 0.4902 0.4711 0.3356
0.3153 0.4361 0.4628 0.4902 0.7370 0.7185

Columns 7 through 10

0.4818 0.4818 0.3153 0.3153
0.4818 0.4818 0.4902 0.4361
0.3631 0.4818 0.4902 0.4628
0.2195 0.2195 0.4902 0.4902
0.2195 0.2195 0.4711 0.7370
0.2195 0.2195 0.3356 0.7185

0 -0.0393 0.3356 0.4818
-0.0393 0 0.3356 0.4818
0.3356 0.3356 0 0.2371
0.4818 0.4818 0.2371 0

targtwo =

srpm_f
2005/10/
page 162

�

�

�

�

�

�

�

�

162 Chapter 10. Circular-Anti-Robinson (CAR) Matrices

Columns 1 through 6

0 0.0765 0.1367 0.2969 0.2969 0.2969
0.0765 0 0.0289 0.2395 0.3704 0.3704
0.1367 0.0289 0 0.1609 0.3582 0.4319
0.2969 0.2395 0.1609 0 0.1905 0.2793
0.2969 0.3704 0.3582 0.1905 0 0.0670
0.2969 0.3704 0.4319 0.2793 0.0670 0
0.2678 0.3024 0.3024 0.3024 0.1839 0.1169
0.1122 0.3024 0.3024 0.3555 0.2480 0.1959
0.1122 0.3024 0.3024 0.3555 0.2480 0.1959
0.1122 0.2012 0.2364 0.3555 0.2480 0.1959

Columns 7 through 10

0.2678 0.1122 0.1122 0.1122
0.3024 0.3024 0.3024 0.2012
0.3024 0.3024 0.3024 0.2364
0.3024 0.3555 0.3555 0.3555
0.1839 0.2480 0.2480 0.2480
0.1169 0.1959 0.1959 0.1959

0 -0.0105 -0.0105 0.1558
-0.0105 0 -0.1278 -0.0478
-0.0105 -0.1278 0 -0.0478
0.1558 -0.0478 -0.0478 0

outpermone =

3 5 9 7 6 8 10 4 2 1

outpermtwo =

7 10 9 8 1 6 2 3 4 5

For finding multiple CSAR forms, bicirsarobfnd.m has usage syntax

[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...
bicirsarobfnd(prox,inperm,kblock)

with all the various terms the same as for bicirarobfnd.m but now for strongly
CAR (CSAR) structures. The example below finds essentially the same represen-
tation as above (involving digit magnitude and structure) with a slight drop in the
VAF from 99.55% for CAR to 91.06% for CSAR.

[find,vaf,targone,targtwo,outpermone,outpermtwo] = ...

srpm_f
2005/10/
page 163

�

�

�

�

�

�

�

�

10.5. Representation Through Multiple (Strongly) CAR Matrices 163

bicirsarobfnd(number,randperm(10),1)

find =

Columns 1 through 6

0 0.4212 0.6464 0.6464 0.6840 0.8040
0.4212 0 0.3284 0.3284 0.5122 0.6693
0.6464 0.3284 0 0.3273 0.0947 0.6682
0.6464 0.3284 0.3273 0 0.5111 0.3505
0.6840 0.5122 0.0947 0.5111 0 0.4090
0.8040 0.6693 0.6682 0.3505 0.4090 0
0.8420 0.7215 0.4802 0.4027 0.4493 0.3718
0.8420 0.7215 0.7215 0.6565 0.6906 0.4000
0.8420 0.7215 0.3041 0.7204 0.2732 0.6895
0.8420 0.7215 0.7204 0.2630 0.6895 0.5540

Columns 7 through 10

0.8420 0.8420 0.8420 0.8420
0.7215 0.7215 0.7215 0.7215
0.4802 0.7215 0.3041 0.7204
0.4027 0.6565 0.7204 0.2630
0.4493 0.6906 0.2732 0.6895
0.3718 0.4000 0.6895 0.5540

0 0.4055 0.2292 0.3339
0.4055 0 0.4705 0.4055
0.2292 0.4705 0 0.4694
0.3339 0.4055 0.4694 0

vaf =

0.9106

targone =

Columns 1 through 6

0 0.3924 0.6326 0.6326 0.6326 0.6337
0.3924 0 0.3149 0.3149 0.4970 0.5686
0.6326 0.3149 0 0.3149 0.4970 0.5686
0.6326 0.3149 0.3149 0 0.1752 0.5686
0.6326 0.4970 0.4970 0.1752 0 0.5686
0.6337 0.5686 0.5686 0.5686 0.5686 0

srpm_f
2005/10/
page 164

�

�

�

�

�

�

�

�

164 Chapter 10. Circular-Anti-Robinson (CAR) Matrices

0.6337 0.6337 0.6337 0.6337 0.6337 0.6337
0.6337 0.6337 0.6337 0.6337 0.6337 0.6337
0.2162 0.3924 0.6326 0.6326 0.6326 0.6337
0.2162 0.3924 0.6326 0.6326 0.6326 0.6337

Columns 7 through 10

0.6337 0.6337 0.2162 0.2162
0.6337 0.6337 0.3924 0.3924
0.6337 0.6337 0.6326 0.6326
0.6337 0.6337 0.6326 0.6326
0.6337 0.6337 0.6326 0.6326
0.6337 0.6337 0.6337 0.6337

0 0.4085 0.6337 0.6337
0.4085 0 0.6337 0.6337
0.6337 0.6337 0 0.2162
0.6337 0.6337 0.2162 0

targtwo =

Columns 1 through 6

0 -0.2236 0.0570 0.0570 0.0570 0.0570
-0.2236 0 -0.1686 0.0570 0.0570 0.0570
0.0570 -0.1686 0 -0.1632 -0.1632 -0.1632
0.0570 0.0570 -0.1632 0 -0.1632 -0.1632
0.0570 0.0570 -0.1632 -0.1632 0 -0.1632
0.0570 0.0570 -0.1632 -0.1632 -0.1632 0
0.0503 0.1703 0.2083 0.2083 0.2083 0.2083

-0.1215 0.0356 0.0878 0.0878 0.0878 0.0878
-0.1215 0.0356 0.0878 0.0878 0.0878 0.0878
-0.1215 0.0356 0.0878 0.0878 0.0878 0.0878

Columns 7 through 10

0.0503 -0.1215 -0.1215 -0.1215
0.1703 0.0356 0.0356 0.0356
0.2083 0.0878 0.0878 0.0878
0.2083 0.0878 0.0878 0.0878
0.2083 0.0878 0.0878 0.0878
0.2083 0.0878 0.0878 0.0878

0 0.0127 0.0127 0.0127
0.0127 0 -0.3053 -0.3053
0.0127 -0.3053 0 -0.3053
0.0127 -0.3053 -0.3053 0

srpm fina
2005/10/6
page 165

�

�

�

�

�

�

�

�

10.5. Representation Through Multiple (Strongly) CAR Matrices 165

outpermone =

5 7 6 4 10 8 2 1 9 3

outpermtwo =

5 6 8 9 10 7 1 4 3 2

srpm fina
2005/10/6
page 166

�

�

�

�

�

�

�

�

166 Chapter 10. Circular-Anti-Robinson (CAR) Matrices

srpm fina
2005/10/6
page 167

�

�

�

�

�

�

�

�

Chapter 11

Anti-Robinson (AR)
Matrices for Two-Mode
Proximity Data

In direct analogy to the extensions of Linear Unidimensional Scaling (LUS) in Chap-
ter 4, it is possible to find and fit (more general) anti-Robinson (AR) forms to
two-mode proximity matrices. The same type of reordering strategy implemented
in Section 4.1 by ordertm.m would be used, but the more general AR form would
be fitted to the reordered square proximity matrix, P(tm)

ρ0 = {p(tm)
ρ0(i)ρ0(j)

}; the least-

167

srpm fina
2005/10/6
page 168

�

�

�

�

�

�

�

�

168 Chapter 11. Anti-Robinson (AR) Matrices for Two-Mode Proximity Data

squares criterion
n∑

i,j=1

wρ0(i)ρ0(j)(p
(tm)
ρ0(i)ρ0(j)

− p̂ij)2,

is minimized, where wρ0(i)ρ0(j) = 0 if ρ0(i) and ρ0(j) are both row or both column
objects, and = 1 otherwise. The entries in the matrix {p̂ij} fitted to P(tm)

ρ0 are AR
in form (and which correspond to nonzero values of the weight function wρ0(i)ρ0(j)),
and thus satisfy certain linear inequality constraints generated from how the row
and column objects are intermixed by the given permutation ρ0(·). We note here
and discuss this more completely in the section to follow that the patterning of
entries in {p̂ij} fitted to the original two-mode proximity matrix, with appropriate
row and column permutations extracted from ρ0, is called an anti-Q-form.

11.1 Fitting and Finding Two-Mode AR Matrices
The M-file arobfittm.m does a confirmatory two-mode anti-Robinson fitting of a
given ordering of the row and column objects of a two-mode proximity matrix using
the Dykstra-Kaczmarz iterative projection least-squares method. The usage syntax
has the form

[fit,vaf,rowperm,colperm] = arobfittm(proxtm,inperm)

where PROXTM is the input two-mode proximity matrix; INPERM is the given ordering
of the row and column objects together; FIT is an na × nb (number of rows by
number of columns) matrix fitted to PROXTM(ROWPERM,COLPERM) with VAF being
the variance-accounted-for based on the (least-squares criterion) sum of squared
discrepancies between PROXTM(ROWPERM,COLMEAN) and FIT; ROWPERM and COLPERM
are the row and column object orderings derived from INPERM.

The matrix given by FIT that is intended to approximate the row and column
permuted two-mode proximity matrix, PROXTM(ROWPERM,COLPERM), displays a par-
ticularly important patterning of its entries called an anti-Q-form in the literature
(see Hubert and Arabie, 1995a, for an extended discussion of this type of patterning
for a two-mode matrix). Specifically, a matrix is said to have the anti-Q-form (for
rows and columns) if within each row and column the entries are nonincreasing
to a minimum and thereafter nondecreasing. Matrices satisfying the anti-Q-form
have a convenient interpretation presuming an underlying unidimensional scale that
jointly represents both the row and column objects. Explicitly, suppose a matrix has
been appropriately row-ordered to display the anti-Q-form for columns. Any di-
chotomization of the entries within a column at some threshold value (using 0 for
entries below the threshold and 1 if at or above), produces a matrix that has the
consecutive zeros property within each column, that is, all zeros within a column
occur consecutively, uninterrupted by intervening ones. In turn, any matrix with
the consecutive zeros property for columns suggests the existence of a perfect scale
(error-free), where row objects can be ordered along a continuum (using the same
row order for the matrix that actually reflects the anti-Q-form for columns), and
each column object is representable as an interval along the continuum (encompass-
ing those consecutive row objects corresponding to zeros). Historically, the type of

srpm_f
2005/10/
page 169

�

�

�

�

�

�

�

�

11.1. Fitting and Finding Two-Mode AR Matrices 169

pattern represented by the anti-Q-form has played a major role in the literature
of (unidimensional) unfolding, and for example, is the basis of Coombs’s (1964,
Chapter 4) parallelogram structure for a two-mode proximity matrix. The reader
is referred to Hubert (1974) for a review of some of these connections.

To provide an example of what an anti-Q-form looks like for our two-mode
data matrix, goldfish_receptor, we will use arobfndtm.m both to find and fit an
anti-Robinson form using iterative projection to a two-mode proximity matrix in the
L2-norm based on a permutation identified through the use of iterative quadratic
assignment. The usage syntax is

[find, vaf, outperm, rowperm, colperm] = ...
arobfndtm(proxtm, inperm, kblock)

where, again, INPERM is a given starting permutation of the first n = na + nb

integers; FIND is the least-squares optimal matrix (with variance-accounted-for of
VAF) displaying an anti-Q-form (because of the anti-Robinson form constructed
for the combined row and column object ordering given by the ending permutation
OUTPERM). KBLOCK defines the block size in the use the iterative quadratic assignment
routine. ROWPERM and COLPERM are the resulting row and column permutations
for the objects. In the listing below, the VAF for the given fitted matrix is very
high: .9667 (which can be compared to the alternative representations given earlier
with values of .8072 (linear unidimensional scaling), .6209 (ultrametric), and .8663
(additive tree)).

load goldfish_receptor.dat
[find,vaf,outperm,rowperm,colperm] = ...

arobfndtm(goldfish_receptor,randperm(20),2);
find

find =

Columns 1 through 6

68.0000 54.5000 80.0000 138.0000 145.0000 162.8000
71.5000 54.5000 64.0000 128.0000 144.0000 162.8000
71.5000 47.0000 61.0000 117.5000 117.5000 145.0000
80.0000 47.5000 47.5000 98.0000 116.0000 137.5000
155.0000 108.0000 63.0000 94.0000 103.0000 137.5000
174.0000 125.0000 84.0000 49.0000 47.6667 76.0000
200.0000 143.0000 91.0000 49.0000 47.6667 76.0000
200.0000 156.0000 107.0000 67.0000 47.6667 60.0000
200.0000 183.0000 177.0000 176.0000 168.0000 112.5000
200.0000 200.0000 200.0000 198.0000 186.0000 112.5000
200.0000 200.0000 200.0000 198.0000 188.0000 143.0000

Columns 7 through 9

srpm_f
2005/10/
page 170

�

�

�

�

�

�

�

�

170 Chapter 11. Anti-Robinson (AR) Matrices for Two-Mode Proximity Data

162.8000 200.0000 200.0000
162.8000 162.8000 173.0000
145.0000 151.6667 158.0000
138.5000 151.6667 158.0000
138.5000 151.6667 158.0000
106.0000 134.5000 134.5000
106.0000 124.5000 124.5000
78.0000 100.0000 100.0000
82.5000 47.0000 46.0000
82.5000 54.0000 47.5000

111.0000 54.0000 47.5000

vaf

vaf =

0.9667

outperm

outperm =

Columns 1 through 10

20 11 10 19 9 18 8 7 17 16

Columns 11 through 20

6 5 4 15 14 13 3 12 2 1

rowperm’

ans =

Columns 1 through 10

11 10 9 8 7 6 5 4 3 2

Column 11

1

colperm’

ans =

srpm_f
2005/10/
page 171

�

�

�

�

�

�

�

�

11.2. Multiple Two-Mode AR Reorderings and Fittings 171

9 8 7 6 5 4 3 2 1

11.2 Multiple Two-Mode AR Reorderings and
Fittings

The M-file, biarobfndtm.m, finds and fits the sum of two anti-Q-forms (extracted
from fitting two anti-Robinson matrices) using iterative projection to a two-mode
proximity matrix in the L2-norm based on permutations identified through the use
of iterative quadratic assignment. In the usage

[find,vaf,targone,targtwo,outpermone,outpermtwo, ...
rowpermone,colpermone,rowpermtwo,colpermtwo] = ...

biarobfndtm(proxtm,inpermone,inpermtwo,kblock)

PROXTM is the usual input two-mode proximity matrix (na × nb) with a dissimi-
larity interpretation, and FIND is the least-squares optimal matrix (with variance-
accounted-for of VAF) to PROXTM. The latter matrix PROXTM is the sum of the two
matrices TARGONE and TARGTWO based on the two row and column object orderings
given by the ending permutations OUTPERMONE and OUTPERMTWO. The two ending
permutations of OUTPERMONE and OUTPERMTWO contain the ending row and column
object orderings of ROWPERMONE and ROWPERMTWO and COLPERMONE and COLPERMTWO.
KBLOCK defines the block size in the use the iterative quadratic assignment routine;
the input permutations are INPERMONE and INPERMTWO.

As can be seen in the example below, the sum of two anti-Q-forms fitted to
the goldfish_receptor data provides an almost perfect reconstruction (with a VAF
of .9995).

[find,vaf,targone,targtwo,outpermone,outpermtwo, ...
rowpermone,colpermone,rowpermtwo,colpermtwo] = ...
biarobfndtm(goldfish_receptor,randperm(20),randperm(20),2);

find

find =

Columns 1 through 6

47.3504 54.6226 111.0000 143.0000 188.0000 196.1177
47.3504 54.6226 75.0000 100.0000 186.0000 199.8954
46.0072 47.1738 90.0072 124.9856 167.9981 175.9981
99.0098 101.1738 78.0098 59.9508 46.0000 66.9608
122.0098 127.1738 115.0098 79.0098 48.9981 47.8673
116.6197 152.0595 96.5053 72.7463 48.0000 52.0523
198.0000 186.0000 154.0000 148.0000 103.0000 94.0000
133.8750 156.0000 123.0000 126.7482 115.0000 98.0523
141.0000 113.0000 142.0000 145.4795 115.0000 121.9575

srpm_f
2005/10/
page 172

�

�

�

�

�

�

�

�

172 Chapter 11. Anti-Robinson (AR) Matrices for Two-Mode Proximity Data

173.0000 140.0000 176.5991 176.4009 144.6719 128.6719
200.2992 200.1738 160.7486 160.7486 145.0000 138.0000

Columns 7 through 9

199.9608 200.0000 201.9327
200.0000 199.9924 197.3046
176.9981 182.9981 200.0135
106.9608 156.0000 200.0000
89.1327 142.9981 199.9981
84.0000 124.9924 173.3897
63.0000 108.0000 155.0000
49.0000 46.0153 79.3897
60.0425 47.0000 60.9419
66.5870 56.6719 84.3973
80.0000 53.0000 65.5700

vaf

vaf =

0.9995

targone

targone =

Columns 1 through 6

46.1875 46.1875 111.0900 143.0900 189.1858 197.1531
46.1875 46.1875 83.7500 118.2801 187.1858 197.1531
39.3017 38.7387 83.3017 118.2801 168.0431 176.0431
96.3403 92.7387 75.3403 57.2813 57.2813 67.9962

119.3403 118.7387 112.3403 76.3403 49.0431 49.7778
143.6244 143.6244 123.5100 80.9988 49.1858 49.3100
159.4691 147.4691 138.5000 135.0006 102.8519 94.0000
160.8797 151.8810 138.5000 135.0006 116.1858 95.3100
160.8797 153.7319 153.7319 153.7319 116.1858 113.2992
173.0000 166.2124 164.3730 164.1748 129.4690 113.4690
199.1362 191.7387 164.3730 164.3730 146.1858 138.0000

Columns 7 through 9

200.9962 203.4720 205.5571
200.0000 202.1911 205.5571
177.0431 183.0431 200.0585

srpm_f
2005/10/
page 173

�

�

�

�

�

�

�

�

11.2. Multiple Two-Mode AR Reorderings and Fittings 173

107.9962 156.7769 200.0585
91.0431 143.0431 200.0431
84.0000 127.1911 181.6422
63.0000 107.8519 154.8519
48.2140 48.2140 87.6422
51.3841 48.2140 69.1944
51.3841 41.4690 69.1944
80.0000 55.2081 69.1944

targtwo

targtwo =

Columns 1 through 6

-26.2124 0 12.2261 12.2261 15.2029 15.2029
-40.7319 -19.8797 -11.7319 -8.2525 -8.2525 -1.2140
4.1190 -27.0047 -15.5000 -8.2525 -8.2525 -2.1988
8.4351 -27.0047 -27.0047 -8.2525 -8.2525 -2.1988
8.4351 1.1630 -8.7500 -18.2801 -8.2525 -2.1988
8.4351 1.1630 -3.6244 -3.6244 -3.6244 -2.2081
8.4351 1.1630 -0.0900 -0.0900 -3.6244 -3.4720
8.4351 2.6696 2.6696 2.6696 -0.0585 -0.7769
8.4351 2.6696 2.6696 2.6696 -0.0450 -0.0450
8.4351 6.7055 6.7055 6.7055 -0.0450 -0.0450

38.5309 38.5309 15.5000 12.9994 0.1481 0.1481

Columns 7 through 9

15.2029 15.2029 15.2029
-1.1858 8.6584 8.6584
-1.1858 0.7860 2.7423
-1.1858 0 2.7423
-1.1858 0 2.7423
-1.1858 0 0
-1.1858 -1.0354 -1.0354
-11.2813 -1.0354 -1.0354
-0.0450 -1.9104 -1.9104
-0.0450 -0.0450 -0.0450
0.1481 0 0

outpermone

outpermone =

Columns 1 through 10

srpm_f
2005/10/
page 174

�

�

�

�

�

�

�

�

174 Chapter 11. Anti-Robinson (AR) Matrices for Two-Mode Proximity Data

1 2 12 13 3 14 4 15 5 16

Columns 11 through 20

6 17 7 8 18 9 10 19 11 20

outpermtwo

outpermtwo =

Columns 1 through 10

10 13 9 12 8 14 6 15 2 20

Columns 11 through 20

11 1 19 16 4 5 18 17 3 7

rowpermone’

ans =

Columns 1 through 10

1 2 3 4 5 6 7 8 9 10

Column 11

11

colpermone’

ans =

1 2 3 4 5 6 7 8 9

rowpermtwo’

ans =

Columns 1 through 10

10 9 8 6 2 11 1 4 5 3

Column 11

srpm fina
2005/10/6
page 175

�

�

�

�

�

�

�

�

11.2. Multiple Two-Mode AR Reorderings and Fittings 175

7

colpermtwo’

ans =

2 1 3 4 9 8 5 7 6

srpm fina
2005/10/6
page 176

�

�

�

�

�

�

�

�

176 Chapter 11. Anti-Robinson (AR) Matrices for Two-Mode Proximity Data

srpm fina
2005/10/6
page 177

�

�

�

�

�

�

�

�

Bibliography

[1] Arabie, P. (1991). Was Euclid an unnecessarily sophisticated psychologist?
Psychometrika, 56, 567–587.

[2] Arabie, P., Carroll, J. D., & DeSarbo, W. S. (1987). Three-way scaling and
clustering. Newbury Park, CA: Sage. (Translated into Japanese by A. Okada
& T. Imaizumi, 1990. Tokyo: Kyoritsu Shuppan.)

[3] Barthélemy, J.-P., & Guénoche, A. (1991). Trees and proximity representations.
Chichester: Wiley.

[4] Bodewig, E. (1956). Matrix calculus. Amsterdam: North-Holland.

[5] Brossier, G. (1987). Étude des matrices de proximité rectangulaires en vue de
la classification [A study of rectangular proximity matrices from the point of
view of classification]. Revue de Statistiques Appliquées, 35(4), 43–68.

[6] Brusco, M. J. (2001). A simulated annealing heuristic for unidimensional and
multidimensional (city-block) scaling of symmetric proximity matrices. Journal
of Classification, 18, 3–33.

[7] Brusco, M. J., & Stahl, S. (2005). Optimal least-squares unidimensional scaling:
Improved branch-and-bound procedures and comparison to dynamic program-
ming. Psychometrika, 70, 253–270.

[8] Busing, F. M. T. A., Commandeur, J. J. F., & Heiser, W. J. (1997). PROX-
SCAL: A multidimensional scaling program for individual differences scaling
with constraints. In W. Bandilla & F. Faulbaum (Eds.), Softstat ’97: Advances
in Statistical Software, Volume 6 (pp. 67–74). Stuttgart: Lucius & Lucius.

[9] Carroll, J. D. (1976). Spatial, non-spatial and hybrid models for scaling. Psy-
chometrika, 41, 439–463.

[10] Carroll, J. D. (1992). Metric, nonmetric, and quasi-nonmetric analysis of psy-
chological data. Division 5 Presidential Address, American Psychological As-
sociation, Washington, DC, August, 1992 (published in Score, Newsletter of
Division 5, October, 1992, pp. 4–5).

177

srpm fina
2005/10/6
page 178

�

�

�

�

�

�

�

�

178 Bibliography

[11] Carroll, J. D., & Arabie, P. (1998). Multidimensional scaling. In M. H. Birn-
baum (Ed.), Handbook of perception and cognition, Vol. 3 (pp. 179–250). San
Diego: Academic Press.

[12] Carroll, J. D., & Chang, J. J. (1970). Analysis of individual differences in
multidimensional scaling via an N-way generalization of “Eckhart-Young” de-
composition. Psychometrika, 35, 283–319.

[13] Carroll, J. D., Clark, L. A., & DeSarbo, W. S. (1984). The representation of
three-way proximity data by single and multiple tree structure models. Journal
of Classification, 1, 25–75.

[14] Carroll, J. D., & Pruzansky, S. (1975). Fitting of hierarchical tree structure
(HTS) models, mixtures of HTS models, and hybrid models, via mathemati-
cal programming and alternating least squares. Proceedings of the U.S.-Japan
Seminar on Multidimensional Scaling, 9–19.

[15] Carroll, J. D., & Pruzansky, S. (1980). Discrete and hybrid scaling models.
In E. D. Lantermann & H. Feger (Eds.), Similarity and choice (pp. 108–139).
Bern: Hans Huber.

[16] Cheney, W., & Goldstein, A. (1959). Proximity maps for convex sets. Proceed-
ings of the American Mathematical Society, 10, 448–450.

[17] Coombs, C. H. (1964). A theory of data. New York: Wiley.

[18] Critchley, F. (1994). On exchangeability-based equivalence relations induced
by strongly Robinson and, in particular, by quadripolar Robinson dissimilarity
matrices. In B. van Cutsem (Ed.), Classification and dissimilarity analysis,
Lecture Notes in Statistics (pp. 173–199). New York: Springer-Verlag.

[19] Critchley, F., & Fichet, B. (1994). The partial order by inclusion of the principal
classes of dissimilarity on a finite set, and some of their basic properties. In B.
van Cutsem (Ed.), Classification and dissimilarity analysis, Lecture Notes in
Statistics (pp. 5–65). New York: Springer-Verlag.

[20] Day, W. H. E. (1987). Computational complexity of inferring phylogenies from
dissimilarity matrices. Bulletin of Mathematical Biology, 49, 461–467.

[21] Day, W. H. E. (1996). Complexity theory: An introduction for practitioners
of classification. In P. Arabie, L. J. Hubert, & G. De Soete (Eds.), Clustering
and classification (pp. 199–233). River Edge, New Jersey: World Scientific.

[22] Defays, D. (1978). A short note on a method of seriation. British Journal of
Mathematical and Statistical Psychology, 3, 49–53.

[23] de Leeuw, J., & Heiser, W. J. (1977). Convergence of correction-matrix algo-
rithms for multidimensional scaling. In J. C. Lingoes, E. E. Roskam, & I. Borg
(Eds.), Geometric representations of relational data (pp. 735–752). Ann Arbor,
MI: Mathesis Press.

srpm fina
2005/10/6
page 179

�

�

�

�

�

�

�

�

Bibliography 179

[24] De Soete, G. (1983). A least squares algorithm for fitting additive trees to
proximity data. Psychometrika, 48, 621–626.

[25] De Soete, G. (1984a). A least squares algorithm for fitting an ultrametric tree
to a dissimilarity matrix. Pattern Recognition Letters, 2, 133–137.

[26] De Soete, G. (1984b). Ultrametric tree representations of incomplete dissimi-
larity data. Journal of Classification, 1, 235–242.

[27] De Soete, G. (1984c). Additive tree representations of incomplete dissimilarity
data. Quality and Quantity, 18, 387–393.

[28] De Soete, G., Carroll, J. D., & DeSarbo, W. S. (1987). Least squares algorithms
for constructing constrained ultrametric and additive tree representations of
symmetric proximity data. Journal of Classification, 4, 155–173.

[29] De Soete, G., DeSarbo, W. S., Furnas, G. W., & Carroll, J. D. (1984). The
estimation of ultrametric and path length trees from rectangular proximity
data. Psychometrika, 49, 289–310.

[30] Durand, C., & Fichet, B. (1988). One-to-one correspondences in pyramidal
representations: A unified approach. In H. H. Bock (Ed.), Classification and
related methods of data analysis (pp. 85–90). Amsterdam: North-Holland.

[31] Dykstra, R. L. (1983). An algorithm for restricted least squares regression.
Journal of the American Statistical Association, 78, 837–842.

[32] Francis, R. L., & White, J. A. (1974). Facility layout and location: An analytical
approach. Englewood Cliffs, NJ: Prentice-Hall.

[33] Furnas, G. W. (1980). Objects and their features: The metric representation
of two class data. Unpublished doctoral dissertation, Stanford University.

[34] Groenen, P. J. F., Heiser, W. J., & Meulman, J. J. (1999). Global optimization
in least-squares multidimensional scaling by distance smoothing. Journal of
Classification, 16, 225–254.

[35] Guttman, L. (1968). A general nonmetric technique for finding the smallest
coordinate space for a configuration of points. Psychometrika, 33, 469–506.

[36] Hubert, L. J. (1974). Problems of seriation using a subject by item response
matrix. Psychological Bulletin, 81, 976–983.

[37] Hubert, L. J., & Arabie, P. (1986). Unidimensional scaling and combinatorial
optimization. In J. de Leeuw, W. J. Heiser, J. J. Meulman, & F. Critchley
(Eds.), Multidimensional data analysis (pp. 181–196). Leiden, The Nether-
lands: DSWO Press.

[38] Hubert, L. J., & Arabie, P. (1994). The analysis of proximity matrices through
sums of matrices having (anti-)Robinson forms. British Journal of Mathemat-
ical and Statistical Psychology, 47, 1–40.

srpm fina
2005/10/6
page 180

�

�

�

�

�

�

�

�

180 Bibliography

[39] Hubert, L. J., & Arabie, P. (1995a). The approximation of two-mode proximity
matrices by sums of order-constrained matrices. Psychometrika, 60, 573–605.

[40] Hubert, L. J., & Arabie, P. (1995b). Iterative projection strategies for the
least-squares fitting of tree structures to proximity data. British Journal of
Mathematical and Statistical Psychology, 48, 281–317.

[41] Hubert, L. J., Arabie, P., & Hesson-McInnis, M. (1992). Multidimensional
scaling in the city-block metric: A combinatorial approach. Journal of Classi-
fication, 9, 211–236.

[42] Hubert, L. J., Arabie, P., & Meulman, J. J. (1997). Linear and circular unidi-
mensional scaling for symmetric proximity matrices. British Journal of Math-
ematical and Statistical Psychology, 50, 253–284.

[43] Hubert, L. J., Arabie, P., & Meulman, J. J. (1998) Graph-theoretic repre-
sentations for proximity matrices through strongly-anti-Robinson or circular
strongly-anti-Robinson matrices. Psychometrika, 63, 341–358.

[44] Hubert, L. J., Arabie, P., & Meulman, J. J. (2001). Combinatorial data anal-
ysis: Optimization by dynamic programming. Philadelphia: SIAM.

[45] Hubert, L. J., Arabie, P., & Meulman, J. J. (2002). Linear unidimensional
scaling in the L2-norm: Basic optimization methods using MATLAB . Journal
of Classification, 19, 303–328.

[46] Hubert, L. J., & Schultz, J. W. (1976). Quadratic assignment as a general data
analysis strategy. British Journal of Mathematical and Statistical Psychology,
29, 190–241.

[47] Hutchinson, J. W. (1989). NETSCAL: A network scaling algorithm for non-
symmetric proximity data. Psychometrika, 54, 25–51.

[48] Kaczmarz, S. (1937). Angenäherte Auflösung von Systemen linearer Gleichun-
gen. Bulletin of the Polish Academy of Sciences, A35, 355–357.

[49] Klauer, K. C., & Carroll, J. D. (1989). A mathematical programming approach
to fitting general graphs. Journal of Classification, 6, 247–270.

[50] Klauer, K. C., & Carroll, J. D. (1991). A comparison of two approaches to
fitting directed graphs to nonsymmetric proximity measures. Journal of Clas-
sification, 8, 251–268.

[51] Kr̆ivánek, M. (1986). On the computational complexity of clustering. In E.
Diday, Y. Escoufier, L. Lebart, J. P. Pagès, Y. Schektman, & R. Tomassone
(Eds.), Data analysis and informatics, IV (pp. 89–96). Amsterdam: North-
Holland.

[52] Kr̆ivánek, M., & Morávek, J. (1986). NP-hard problems in hierarchical-tree
clustering. Acta Informatica, 23, 311–323.

srpm fina
2005/10/6
page 181

�

�

�

�

�

�

�

�

Bibliography 181

[53] Johnson, R. A., & Wichern, D. W. (2002). Applied multivariate statistical anal-
ysis. Fifth Edition. Upper Saddle River, NJ: Prentice-Hall.

[54] Kruskal, J. B. (1964a). Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis. Psychometrika, 29, 1–27.

[55] Kruskal, J. B. (1964b). Nonmetric multidimensional scaling: A numerical
method. Psychometrika, 29, 115–129.

[56] Kruskal, J. B., Young, F. W., & Seery, J. B. (1977). How to use KYST2, a
very flexible program to do multidimensional scaling and unfolding. AT&T Bell
Laboratories, Murray Hill, NJ.

[57] Kruskal, J. B., & Wish, M. (1978). Multidimensional scaling. Newbury Park,
CA: Sage.

[58] Lawler, E. L. (1975). The quadratic assignment problem: A brief review. In R.
Roy (Ed.), Combinatorial programming: Methods and applications (pp. 351–
360). Dordrecht, The Netherlands: Reidel.

[59] Mardia, K. V., Kent, J. T., & Bibby, J. M. (1979). Multivariate analysis. New
York: Academic Press.

[60] Marks, W. B. (1965). Difference spectra of the visual pigments in single goldfish
cones. Unpublished doctoral dissertation, John Hopkins University.

[61] Mirkin, B. (1996). Mathematical classification and clustering. Dordrecht:
Kluwer.

[62] Pardalos, P. M., & Wolkowicz, H. (Eds.). (1994). Quadratic assignment and
related problems. DIMACS Series on Discrete Mathematics and Theoretical
Computer Science. Providence, RI: American Mathematical Society.

[63] Plutchik, R. & Conte, H. R. (Eds.). (1997). Circumplex models of personality
and emotions. Washington, DC: American Psychological Association.

[64] Pruzansky, S., Tversky, A., & Carroll, J. D. (1982) Spatial versus tree repre-
sentations of proximity data. Psychometrika, 47, 3–24.

[65] Rothkopf, E. Z. (1957). A measure of stimulus similarity and errors in some
paired-associate learning tasks. Journal of Experimental Psychology, 53, 94–
101.

[66] Schiffman, H., & Falkenberg, P. (1968). The organization of stimuli and sensory
neurons. Physiology and Behavior, 3, 197–201.

[67] Schiffman, S. S., Reynolds, M. L., & Young, F. W. (1981). Introduction to
multidimensional scaling. New York: Academic Press.

[68] Shepard, R. N. (1962a). Analysis of proximities: Multidimensional scaling with
an unknown distance function I. Psychometrika, 27, 125–140.

srpm fina
2005/10/6
page 182

�

�

�

�

�

�

�

�

182 Bibliography

[69] Shepard, R. N. (1962b). Analysis of proximities: Multidimensional scaling with
an unknown distance function II. Psychometrika, 27, 219–246.

[70] Shepard, R. N. (1963). Analysis of proximities as a technique for the study of
information processing in man. Human Factors, 5, 33–48.

[71] Shepard, R. N. (1974). Representation of structure in similarity data: Problems
and prospects. Psychometrika, 39, 373–421.

[72] Shepard, R. N., Kilpatric, D. W., & Cunningham, J. P. (1975). The internal
representation of numbers. Cognitive Psychology, 7, 82–138.

[73] Späth, H. (1991). Mathematical algorithms for linear regression. San Diego:
Academic Press.

[74] Wilkinson, L. (1988). SYSTAT: The System for Statistics. SYSTAT, Inc,
Evanston, IL.

srpm_f
2005/10/
page 183

�

�

�

�

�

�

�

�

Appendix A

Header comments for the
M-files mentioned in the
text and given in
alphabetical order

arobfit.m

function [fit, vaf] = arobfit(prox, inperm)

% AROBFIT fits an anti-Robinson matrix using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm.
%

183

srpm_f
2005/10/
page 184

�

�

�

�

�

�

�

�

184 Appendix A. Header Commentsfor the Mentioned M-files

% syntax: [fit, vaf] = arobfit(prox, inperm)
%
% PROX is the input proximity matrix ($n \times n$ with a zero main
% diagonal and a dissimilarity interpretation);
% INPERM is a given permutation of the first n integers;
% FIT is the least-squares optimal matrix (with variance-
% accounted-for of VAF) to PROX having an anti-Robinson form for
% the row and column object ordering given by INPERM.

arobfittm.m

function [fit,vaf,rowperm,colperm] = arobfittm(proxtm,inperm)

% AROBFITTM does a confirmatory two-mode anti-Robinson fitting of a
% given ordering of the row and column objects of a two-mode
% proximity matrix PROXTM using Dykstra’s (Kaczmarz’s)
% iterative projection least-squares method.
%
% syntax: [fit,vaf,rowperm,colperm] = arobfittm(proxtm,inperm)
%
% INPERM is the given ordering of the row and column objects
% together; FIT is an nrow (number of rows) by ncol (number of
% columns) matrix fitted to PROXTM(ROWPERM,COLPERM)
% with VAF being the variance-accounted for and
% based on the (least-squares criterion) sum of
% squared discrepancies between FIT and PROXTM(ROWPERM,COLMEAN);
% ROWPERM and COLPERM are the row and column object orderings
% derived from INPERM.

arobfnd.m

function [find, vaf, outperm] = arobfnd(prox, inperm, kblock)

% AROBFND finds and fits an anti-Robinson
% matrix using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based on a
% permutation identified through the use of iterative quadratic
% assignment.
%
% syntax: [find, vaf, outperm] = arobfnd(prox, inperm, kblock)
%
% PROX is the input proximity matrix ($n \times n$ with a zero main
% diagonal and a dissimilarity interpretation);
% INPERM is a given starting permutation of the first n integers;
% FIND is the least-squares optimal matrix (with

srpm_f
2005/10/
page 185

�

�

�

�

�

�

�

�

185

% variance-accounted-for of VAF) to PROX having an anti-Robinson
% form for the row and column object ordering given by the ending
% permutation OUTPERM. KBLOCK defines the block size in the use the
% iterative quadratic assignment routine.

arobfndtm.m
function [find, vaf, outperm, rowperm, colperm] = ...

arobfndtm(proxtm, inperm, kblock)

% AROBFNDTM finds and fits an anti-Robinson
% form using iterative projection to
% a two-mode proximity matrix in the L_{2}-norm based on a
% permutation identified through the use of iterative quadratic
% assignment.
%
% syntax: [find, vaf, outperm, rowperm, colperm] = ...
% arobfndtm(proxtm, inperm, kblock)
%
% PROXTM is the input two-mode proximity matrix
% ($n_{a} \times n_{b}$ with a dissimilarity interpretation);
% INPERM is a given starting permutation
% of the first $n = n_{a} + n_{b}$ integers;
% FIND is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROXTM having the anti-Robinson
% form for the row and column
% object ordering given by the ending permutation OUTPERM. KBLOCK
% defines the block size in the use the iterative quadratic
% assignment routine. ROWPERM and COLPERM are the resulting
% row and column permutations for the objects.

atreectul.m
function [find,vaf] = atreectul(prox,inperm)

% ATREECTUL finds and fits an additive tree by first fitting
% a centroid metric (using centfit.m) and
% secondly an ultrametric to the residual
% matrix (using ultrafnd.m).
%
% syntax: [find,vaf] = atreectul(prox,inperm)
%
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation);
% INPERM is a permutation that determines the order in which the

srpm_f
2005/10/
page 186

�

�

�

�

�

�

�

�

186 Appendix A. Header Commentsfor the Mentioned M-files

% inequality constraints are considered;
% FIND is the found least-squares matrix (with variance-accounted-
% for of VAF) to PROX satisfying the additive tree constraints.

atreedec.m
function [ulmetric,ctmetric] = atreedec(prox,constant)

% ATREEDEC decomposes a given additive tree matrix into an
% ultrametric and a centroid metric matrix (where the root is
% half-way along the longest path).
%
% syntax: [ulmetric,ctmetric] = atreedec(prox,constant)
%
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation);
% CONSTANT is a non-negative number (less than or equal to the
% maximum proximity value) that controls the
% positivity of the constructed ultrametric values;
% ULMETRIC is the ultrametric component of the decomposition;
% CTMETRIC is the centroid metric component of the decomposition
% (given by values $g_{1},...,g_{n}$ for each of the objects,
% some of which may actually be negative depending on the input
% proximity matrix used).

atreefit.m

function [fit,vaf] = atreefit(prox,targ)

% ATREEFIT fits a given additive tree using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm.
%
% syntax: [fit,vaf] = atreefit(prox,targ)
%
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation);
% TARG is an matrix of the same size as PROX with entries
% satisfying the four-point additive tree constraints;
% FIT is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX satisfying the
% additive tree constraints implicit in TARG.

atreefnd.m
function [find,vaf] = atreefnd(prox,inperm)

srpm_f
2005/10/
page 187

�

�

�

�

�

�

�

�

187

% ATREEFND finds and fits an additive tree using iterative projection
% heuristically on a symmetric proximity matrix in the L_{2}-norm.
%
% syntax: [find,vaf] = atreefnd(prox,inperm)
%
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation);
% INPERM is a permutation that determines the order in which the
% inequality constraints are considered;
% FIND is the found least-squares matrix (with variance-accounted-for
% of VAF) to PROX satisfying the additive tree constraints.

atreefndtm.m

function [find,vaf,ultrafit,lengths] = ...
atreefndtm(proxtm,inpermrow,inpermcol)

% ATREEFNDTM finds and fits a two-mode additive tree;
% iterative projection is used
% heuristically to find a two-mode ultrametric component that
% is added to a two-mode centroid metric to
% produce the two-mode additive tree.
%
% syntax: [find,vaf,ultrafit,lengths] = ...
% atreefndtm(proxtm,inpermrow,inpermcol)
%
% PROXTM is the input proximity matrix
% (with a dissimilarity interpretation);
% INPERMROW and INPERMCOL are permutations for the row and column
% objects that determine the order in which the
% inequality constraints are considered;
% FIND is the found least-squares matrix (with variance-accounted-for
% of VAF) to PROXTM satisfying the additive tree constraints;
% the vector LENGTHS contains the row followed by column values for
% the two-mode centroid metric component;
% ULTRAFIT is the ultrametric component.

biarobfnd.m

function [find,vaf,targone,targtwo,outpermone,outpermtwo] = ...
biarobfnd(prox,inperm,kblock)

% BIAROBFND finds and fits the sum of two
% anti-Robinson matrices using iterative projection to

srpm_f
2005/10/
page 188

�

�

�

�

�

�

�

�

188 Appendix A. Header Commentsfor the Mentioned M-files

% a symmetric proximity matrix in the L_{2}-norm based on
% permutations identified through
% the use of iterative quadratic assignment.
%
% [find,vaf,targone,targtwo,outpermone,outpermtwo] = ...
% biarobfnd(prox,inperm,kblock)
%
% PROX is the input proximity matrix ($n \times n$ with a zero
% main diagonal and a dissimilarity interpretation);
% INPERM is a given starting permutation of the first n integers;
% FIND is the least-squares optimal matrix (with
% variance-accounted-for of VAF)
% to PROX and is the sum of the two anti-Robinson matrices
% TARGONE and TARGTWO based on the two row and column
% object orderings given by the ending permutations OUTPERMONE
% and OUTPERMTWO. KBLOCK defines the block size in the use the
% iterative quadratic assignment routine.

biarobfndtm.m
function [find,vaf,targone,targtwo,outpermone,outpermtwo, ...

rowpermone,colpermone,rowpermtwo,colpermtwo] = ...
biarobfndtm(proxtm,inpermone,inpermtwo,kblock)

% BIAROBFNDTM finds and fits the sum of
% two anti-Robinson matrices using iterative projection to
% a two-mode proximity matrix in the L_{2}-norm based on
% permutations identified through the use of
% iterative quadratic assignment.
%
% syntax: [find,vaf,targone,targtwo,outpermone,outpermtwo, ...
% rowpermone,colpermone,rowpermtwo,colpermtwo] = ...
% biarobfndtm(proxtm,inpermone,inpermtwo,kblock)
%
% PROXTM is the input two-mode proximity matrix ($nrow \times ncol$)
% with a dissimilarity interpretation);
% FIND is the least-squares optimal matrix (with variance-
% accounted-for of VAF) to PROXTM and is the sum of the two matrices
% TARGONE and TARGTWO based on the two row and column
% object orderings given by the ending permutations OUTPERMONE
% and OUTPERMTWO, and in turn ROWPERMONE and ROWPERMTWO and
% COLPERMONE and COLPERMTWO. KBLOCK defines the block size
% in the use the iterative quadratic assignment routine;
% the input permutations are INPERMONE and INPERMTWO.

srpm_f
2005/10/
page 189

�

�

�

�

�

�

�

�

189

biatreefnd.m
function [find,vaf,targone,targtwo] = biatreefnd(prox,inperm)

% BIATREEFND finds and fits the sum
% of two additive trees using iterative projection
% heuristically on a symmetric proximity matrix in the L_{2}-norm.
%
% syntax: [find,vaf,targone,targtwo] = biatreefnd(prox,inperm)
%
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation);
% INPERM is a permutation that determines the order in which the
% inequality constraints are considered;
% FIND is the found least-squares matrix (with variance-accounted-for
% of VAF) to PROX and is the sum of
% the two additive tree matrices TARGONE and TARGTWO.

bicirac.m
function [find,vaf,targone,targtwo,outpermone,outpermtwo, ...

addconone, addcontwo] = bicirac(prox,inperm,kblock)

% BICIRAC finds and fits the sum of two circular
% unidimensional scales using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based on
% permutations identified through the use
% of iterative quadratic assignment.
%
% syntax: [find,vaf,targone,targtwo,outpermone,outpermtwo, ...
% addconone,addcontwo] = bicirac(prox,inperm,kblock)
%
% PROX is the input proximity matrix ($n \times n$ with a zero
% main diagonal and a dissimilarity interpretation);
% INPERM is a given starting permutation of the first n integers;
% FIND is the least-squares optimal matrix (with variance-
% accounted-for of VAF) to PROX and is the sum of the two
% circular anti-Robinson matrices;
% TARGONE and TARGTWO are based on the two row and column
% object orderings given by the ending permutations OUTPERMONE
% and OUTPERMTWO. KBLOCK defines the block size in the use the
% iterative quadratic assignment routine and ADDCONONE and ADDCONTWO
% are the two additive constants for the two model components.

srpm_f
2005/10/
page 190

�

�

�

�

�

�

�

�

190 Appendix A. Header Commentsfor the Mentioned M-files

bicirarobfnd.m
function [find,vaf,targone,targtwo,outpermone,outpermtwo] = ...

bicirarobfnd(prox,inperm,kblock)

% BICIRAROBFND finds and fits the sum of two circular
% anti-Robinson matrices using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based on
% permutations identified through the use of
% iterative quadratic assignment.
%
% syntax: [find,vaf,targone,targtwo,outpermone,outpermtwo] = ...
% bicirarobfnd(prox,inperm,kblock)
%
% PROX is the input proximity matrix ($n \times n$ with a
% zero main diagonal and a dissimilarity interpretation);
% INPERM is a given starting permutation of the first n integers;
% FIND is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX and is the sum of the
% two circular anti-Robinson matrices;
% TARGONE and TARGTWO are based on the two row and column
% object orderings given by the ending permutations OUTPERMONE
% and OUTPERMTWO.

bicirsarobfnd.m

function [find,vaf,targone,targtwo,outpermone,outpermtwo] = ...
bicirsarobfnd(prox,inperm,kblock)

% BICIRSAROBFND fits the sum of two strongly circular-anti-Robinson
% matrices using iterative projection to a symmetric proximity
% matrix in the L_{2}-norm based on permutations
% identified through the use of iterative quadratic assignment.
%
% syntax: [find,vaf,targone,targtwo,outpermone,outpermtwo] = ...
% bicirsarobfnd(prox,inperm,kblock)
%
% PROX is the input proximity matrix ($n \times n$ with a zero main
% diagonal and a dissimilarity interpretation);
% INPERM is a given starting permutation of the first n integers;
% FIND is the least-squares optimal matrix (with variance-
% accounted-for of VAF) to PROX and is the
% sum of the two strongly circular-anti-Robinson matrices;
% TARGONE and TARGTWO are based on the two row and column
% object orderings given by the ending permutations OUTPERMONE
% and OUTPERMTWO. KBLOCK defines the block size in the use the

srpm_f
2005/10/
page 191

�

�

�

�

�

�

�

�

191

% iterative quadratic assignment routine.

bimonscalqa.m

function [outpermone,outpermtwo,coordone,coordtwo,fitone,fittwo, ...
addconone,addcontwo,vaf,monprox] = ...

bimonscalqa(prox,targone,targtwo,inpermone,inpermtwo,kblock,nopt)

% BIMONCALQA carries out a bidimensional scaling of a symmetric
% proximity matrix using iterative quadratic assignment, plus
% it provides an optimal monotonic transformation (MONPROX) of
% the original input proximity matrix.
%
% syntax: [outpermone,outpermtwo,coordone,coordtwo,fitone,fittwo, ...
% addconone,addcontwo,vaf,monprox] = ...
% bimonscalqa(prox,targone,targtwo,inpermone,inpermtwo,kblock,nopt)
%
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation);
% TARGONE is the input target matrix for the
% first dimension (usually with
% a zero main diagonal and with a
% dissimilarity interpretation representing
% equally-spaced locations along a continuum);
% TARGTWO is the input target
% matrix for the second dimension;
% INPERMONE is the input beginning permutation for the first
% dimension (a permutation of the first n integers);
% INPERMTWO is the input beginning
% permutation for the second dimension;
% the insertion and rotation routines use from 1 to KBLOCK
% (which is less than or equal to $n-1$) consecutive objects in
% the permutation defining the row and column orders of the data
% matrix; NOPT controls the confirmatory or exploratory fitting of
% the unidimensional scales; a value of NOPT = 0 will fit in a
% confirmatory manner the two scales indicated by INPERMONE
% and INPERMTWO; a value of NOPT = 1 uses iterative QA
% to locate the better permutations to fit;
% OUTPERMONE is the final object permutation for the first
% dimension; OUTPERMTWO is the final object
% permutation for the second dimension;
% COORDONE is the set of first dimension coordinates
% in ascending order; COORDTWO is the set of second
% dimension coordinates in ascending order;
% ADDCONONE is the additive constant for the first dimensional

srpm_f
2005/10/
page 192

�

�

�

�

�

�

�

�

192 Appendix A. Header Commentsfor the Mentioned M-files

% model; ADDCONTWO is the additive constant for the second
% dimensional model; VAF is the variance-accounted-for
% in MONPROX by the bidimensional scaling.

bimonscaltmac.m

function [find,vaf,targone,targtwo,outpermone,outpermtwo, ...
rowpermone,colpermone,rowpermtwo,colpermtwo,addconone,...
addcontwo,coordone,coordtwo,axes,monproxtm] = ...

bimonscaltmac(proxtm,inpermone,inpermtwo,kblock,nopt)

% BIMONSCALTMAC finds and fits the sum of two linear unidimensional
% scales using iterative projection to
% a two-mode proximity matrix in the L_{2}-norm based on
% permutations identified through the use of iterative quadratic
% assignment. It also provides an optimal monotonic transformation
% (MONPROX) of the original input proximity matrix.
%
% syntax: [find,vaf,targone,targtwo,outpermone,outpermtwo, ...
% rowpermone,colpermone,rowpermtwo,colpermtwo,addconone,...
% addcontwo,coordone,coordtwo,axes,monproxtm] = ...
% bimonscaltmac(proxtm,inpermone,inpermtwo,kblock,nopt)
%
% PROXTM is the input two-mode proximity matrix ($nrow \times ncol$
% with a dissimilarity interpretation);
% FIND is the least-squares optimal matrix (with variance-
% accounted-for of VAF) to the monotonic transformation MONPROXTM of
% the input proximity matrix and is the sum of the two matrices
% TARGONE and TARGTWO based on the two row and column
% object orderings given by the ending permutations OUTPERMONE
% and OUTPERMTWO, and in turn ROWPERMONE and ROWPERMTWO and
% COLPERMONE and COLPERMTWO. KBLOCK defines the block size in
% the use of the iterative quadratic assignment routine and ADDCONONE
% and ADDCONTWO are the two additive constants for the two model
% components; The n coordinates are in COORDONE and COORDTWO.
% The input permutations are INPERMONE and INPERMTWO. The
% $n \times 2$ matrix AXES gives the plotting coordinates for the
% combined row and column object set.
% NOPT controls the confirmatory or exploratory fitting of
% the unidimensional scales; a value of NOPT = 0 will fit in a
% confirmatory manner the two scales
% indicated by INPERMONE and INPERMTWO;
% a value of NOPT = 1 uses iterative QA
% to locate the better permutations to fit.

srpm_f
2005/10/
page 193

�

�

�

�

�

�

�

�

193

biplottm.m
function [] = biplottm(axes,nrow,ncol)

% BIPLOTTM plots the combined row and column object set using
% coordinates given in the $n \times 2$ matrix AXES; here the
% number of rows is NROW and the number of columns is NCOL,
% and n is the sum of NROW and NCOL.
%
% syntax: [] = biplottm(axes,nrow,ncol)
%
% The first NROW rows of AXES give the row object coordinates;
% the last NCOL rows of AXES give the column object coordinates.
% The plotting symbol for rows is a circle (o);
% for columns it is an asterisk (*).
% The labels for rows are from 1 to NROW;
% those for columns are from 1 to NCOL.

bisarobfnd.m
function [find,vaf,targone,targtwo,outpermone,outpermtwo] = ...

bisarobfnd(prox,inperm,kblock)

% BISAROBFND finds and fits the sum of two
% strongly anti-Robinson matrices using iterative
% projection to a symmetric proximity matrix in
% the L_{2}-norm based on permutations
% identified through the use of iterative quadratic assignment.
%
% syntax: [find,vaf,targone,targtwo,outpermone,outpermtwo] = ...
% bisarobfnd(prox,inperm,kblock)
%
% PROX is the input proximity matrix ($n \times n$ with a zero
% main diagonal and a dissimilarity interpretation);
% INPERM is a given starting permutation of the first n integers;
% FIND is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX and is the sum of the two
% strongly anti-Robinson matrices;
% TARGONE and TARGTWO are based on the two row and column
% object orderings given by the ending permutations OUTPERMONE
% and OUTPERMTWO. KBLOCK defines the block size in the use the
% iterative quadratic assignment routine.

biscalqa.m
function [outpermone,outpermtwo,coordone,coordtwo,...

srpm_f
2005/10/
page 194

�

�

�

�

�

�

�

�

194 Appendix A. Header Commentsfor the Mentioned M-files

fitone,fittwo,addconone,addcontwo,vaf] = ...
biscalqa(prox,targone,targtwo,inpermone,inpermtwo,kblock,nopt)

% BISCALQA carries out a bidimensional scaling of a symmetric
% proximity matrix using iterative quadratic assignment.
%
% syntax: [outpermone,outpermtwo,coordone,coordtwo,fitone,fittwo,...
% addconone,addcontwo,vaf] = ...
% biscalqa(prox,targone,targtwo,inpermone,inpermtwo,kblock,nopt)
%
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation);
% TARGONE is the input target matrix for the first dimension
% (usually with a zero main diagonal and a dissimilarity
% interpretation representing equally-spaced locations along
% a continuum); TARGTWO is the input target
% matrix for the second dimension;
% INPERMONE is the input beginning permutation for the first
% dimension (a permutation of the first n integers);
% INPERMTWO is the input beginning
% permutation for the second dimension;
% the insertion and rotation routines use from 1 to KBLOCK
% (which is less than or equal to $n-1$) consecutive objects in
% the permutation defining the row and column orders of the data
% matrix. NOPT controls the confirmatory or exploratory fitting
% of the unidimensional scales; a value of NOPT = 0 will fit in a
% confirmatory manner the two scales
% indicated by INPERMONE and INPERMTWO;
% a value of NOPT = 1 uses iterative QA
% to locate the better permutations to fit;
% OUTPERMONE is the final object permutation for the
% first dimension; OUTPERMTWO is the final object permutation
% for the second dimension;
% COORDONE is the set of first dimension coordinates
% in ascending order; COORDTWO is the set of second dimension
% coordinates in ascending order;
% ADDCONONE is the additive constant for the first
% dimensional model; ADDCONTWO is the additive constant for
% the second dimensional model;
% VAF is the variance-accounted-for in PROX by
% the bidimensional scaling.

srpm_f
2005/10/
page 195

�

�

�

�

�

�

�

�

195

biscaltmac.m
function [find,vaf,targone,targtwo,outpermone,outpermtwo, ...

rowpermone,colpermone,rowpermtwo,colpermtwo,addconone,...
addcontwo,coordone,coordtwo,axes] = ...

biscaltmac(proxtm,inpermone,inpermtwo,kblock,nopt)

% BISCALTMAC finds and fits the sum of two linear
% unidimensional scales using iterative projection to
% a two-mode proximity matrix in the L_{2}-norm based on
% permutations identified through the use of iterative quadratic
% assignment.
%
% syntax: [find,vaf,targone,targtwo,outpermone,outpermtwo, ...
% rowpermone,colpermone,rowpermtwo,colpermtwo,addconone,...
% addcontwo,coordone,coordtwo,axes] = ...
% biscaltmac(proxtm,inpermone,inpermtwo,kblock,nopt)
%
% PROXTM is the input two-mode proximity matrix ($nrow \times ncol$
% with a dissimilarity interpretation);
% FIND is the least-squares optimal matrix (with variance-accounted-
% for of VAF) to PROXTM and is the sum of the two matrices
% TARGONE and TARGTWO based on the two row and column
% object orderings given by the ending permutations OUTPERMONE
% and OUTPERMTWO, and in turn ROWPERMONE and ROWPERMTWO and
% COLPERMONE and COLPERMTWO. KBLOCK defines the block size
% in the use the iterative quadratic assignment routine and
% ADDCONONE and ADDCONTWO are
% the two additive constants for the two model components;
% The n coordinates
% are in COORDONE and COORDTWO. The input permutations are INPERMONE
% and INPERMTWO. The $n \times 2$ matrix AXES gives the
% plotting coordinates for the
% combined row and column object set.
% NOPT controls the confirmatory or
% exploratory fitting of the unidimensional
% scales; a value of NOPT = 0 will
% fit in a confirmatory manner the two scales
% indicated by INPERMONE and INPERMTWO;
% a value of NOPT = 1 uses iterative QA
% to locate the better permutations to fit.

biultrafnd.m
function [find,vaf,targone,targtwo] = biultrafnd(prox,inperm)

srpm_f
2005/10/
page 196

�

�

�

�

�

�

�

�

196 Appendix A. Header Commentsfor the Mentioned M-files

% BIULTRAFND finds and fits the sum
% of two ultrametrics using iterative projection
% heuristically on a symmetric proximity matrix in the L_{2}-norm.
%
% syntax: [find,vaf,targone,targtwo] = biultrafnd(prox,inperm)
%
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation);
% INPERM is a permutation that determines the order in which the
% inequality constraints are considered;
% FIND is the found least-squares matrix (with variance-accounted-for
% of VAF) to PROX and is the sum
% of the two ultrametric matrices TARGONE and TARGTWO.

centfit.m

function [fit,vaf,lengths] = centfit(prox)

% CENTFIT finds the least-squares fitted centroid metric (FIT) to
% PROX, the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation).
%
% syntax: [fit,vaf,lengths] = centfit(prox)
%
% The n values that serve to define the approximating sums,
% $g_{i} + g_{j}$, are given in the vector LENGTHS of size $n \times 1$.

centfittm.m
function [fit,vaf,lengths] = centfittm(proxtm)

% CENTFITTM finds the least-squares fitted two-mode centroid metric
% (FIT) to PROXTM, the two-mode rectangular input proximity matrix
% (with a dissimilarity interpretation).
%
% syntax: [fit,vaf,lengths] = centfittm(proxtm)
%
% The n values (where n = number of rows + number of columns)
% serve to define the approximating sums,
% $u_{i} + v_{j}$, where the u_{i} are for the rows and the v_{j}
% are for the columns; these are given in the vector LENGTHS of size
% $n \times 1$, with row values first followed by the column values.

srpm_f
2005/10/
page 197

�

�

�

�

�

�

�

�

197

cirarobfit.m
function [fit, vaf] = cirarobfit(prox,inperm,targ)

% CIRAROBFIT fits a circular anti-Robinson matrix using iterative
% projection to a symmetric proximity matrix in the L_{2}-norm.
%
% syntax: [fit, vaf] = cirarobfit(prox,inperm,targ)
%
% PROX is the input proximity matrix ($n \times n$ with a zero
% main diagonal and a dissimilarity interpretation);
% INPERM is a given permutation of the first n integers (around
% a circle); TARG is a given $n \times n$ matrix having the
% circular anti-Robinson form that guides the direction in which
% distances are taken around the circle.
% FIT is the least-squares optimal matrix (with variance-
% accounted-for of VAF) to PROX having a circular anti-Robinson
% form for the row and column object ordering given by INPERM.

cirarobfnd.m
function [find, vaf, outperm] = cirarobfnd(prox, inperm, kblock)

% CIRAROBFND finds and fits a circular
% anti-Robinson matrix using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based on a
% permutation identified through the use of iterative
% quadratic assignment.
%
% syntax: [find, vaf, outperm] = cirarobfnd(prox, inperm, kblock)
%
% PROX is the input proximity matrix ($n \times n$ with a zero
% main diagonal and a dissimilarity interpretation);
% INPERM is a given starting permutation (assumed to be around the
% circle) of the first n integers; FIT is the least-squares optimal
% matrix (with variance-accounted-for of VAF) to PROX having a
% circular anti-Robinson form for the row and column
% object ordering given by the ending permutation OUTPERM.
% KBLOCK defines the block size in the use the iterative
% quadratic assignment routine.

cirarobfnd ac.m

function [find, vaf, outperm] = cirarobfnd_ac(prox, inperm, kblock)

% CIRAROBFND fits a circular anti-Robinson matrix using iterative

srpm_f
2005/10/
page 198

�

�

�

�

�

�

�

�

198 Appendix A. Header Commentsfor the Mentioned M-files

% projection to a symmetric proximity matrix in the L_{2}-norm
% based on a permutation identified through the use of
% iterative quadratic assignment.
%
% syntax: [find, vaf, outperm] = cirarobfnd_ac(prox, inperm, kblock)
%
% PROX is the input proximity matrix ($n \times n$ with a zero
% main diagonal and a dissimilarity interpretation);
% INPERM is a given starting permutation (assumed to be around the
% circle) of the first n integers;
% FIND is the least-squares optimal matrix (with variance-
% accounted-for of VAF) to PROX having a circular anti-Robinson
% form for the row and column object ordering given by the ending
% permutation OUTPERM. KBLOCK defines the block size in the use
% the iterative quadratic assignment routine. In contrast to
% cirarobfnd.m, the circular target is constructed using cirfitac.m (as
% opposed to cirfit.m)

circularplot.m

function [circum,radius,coord,degrees,cumdegrees] = ...
circularplot(circ,inperm)

% CIRCULARPLOT plots the object set using the coordinates
% around a circular structure derived from the $n \times n$
% interpoint distance matrix around a circle given by CIRC.
% The positions are labeled by the order of objects
% given in INPERM.
%
% syntax: [circum,radius,coord,degrees,cumdegrees] = ...
% circularplot(circ,inperm)
%
% The output consists of a plot, the circumference of the
% circle (CIRCUM) and radius (RADIUS); the coordinates of
% the plot positions (COORD), and the degrees and cumulative
% degrees induced between the plot positions
% (in DEGREES and CUMDEGREES).
% The positions around the circle are numbered from 1
% (at the "noon" position) to n, moving
% clockwise around the circular structure.

cirfit.m
function [fit, diff] = cirfit(prox,inperm)

srpm_f
2005/10/
page 199

�

�

�

�

�

�

�

�

199

% CIRFIT does a confirmatory fitting of a given order
% (assumed to reflect a circular ordering around a closed
% unidimensional structure) using Dykstra’s
% (Kaczmarz’s) iterative projection least-squares method.
%
% syntax: [fit, diff] = cirfit(prox,inperm)
%
% INPERM is the given order; FIT is an $n \times n$ matrix that
% is fitted to PROX(INPERM,INPERM) with least-squares value DIFF.

cirfitac.m
function [fit, vaf, addcon] = cirfitac(prox,inperm)

% CIRFITAC does a confirmatory fitting (including
% the estimation of an additive constant) for a given order
% (assumed to reflect a circular ordering around a closed
% unidimensional structure) using the Dykstra-
% Kaczmarz iterative projection least-squares method.
%
% syntax: [fit, vaf, addcon] = cirfitac(prox,inperm)
%
% INPERM is the given order; FIT is an $n \times n$ matrix that
% is fitted to PROX(INPERM,INPERM) with variance-accounted-for of
% VAF; ADDCON is the estimated additive constant.

cirfitac ftarg.m

function [fit, vaf, addcon] = cirfitac_ftarg(prox,inperm,targ)

% CIRFITAC_FTARG does a confirmatory fitting (including
% the estimation of an additive constant) for a given order
% (assumed to reflect a circular ordering around a closed
% unidimensional structure) using the Dykstra-
% Kaczmarz iterative projection least-squares method.
%
% syntax: [fit, vaf, addcon] = cirfitac_ftarg(prox,inperm,targ)
%
% The inflection points are implicitly given by TARG which
% is assumed to reflect a circular ordering of the same size as
% PROX. INPERM is the given order; FIT is an $n \times n$ matrix
% that is fitted to PROX(INPERM,INPERM) with variance-
% accounted-for of VAF; ADDCON is the estimated additive constant.

srpm_f
2005/10/
page 200

�

�

�

�

�

�

�

�

200 Appendix A. Header Commentsfor the Mentioned M-files

cirsarobfit.m
function [fit, vaf] = cirsarobfit(prox,inperm,target)

% CIRSAROBFIT fits a strongly circular anti-Robinson matrix
% using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm.
%
% syntax: [fit, vaf] = cirsarobfit(prox,inperm,target)
%
% PROX is the input proximity matrix ($n \times n$ with a zero
% main diagonal and a dissimilarity interpretation);
% INPERM is a given permutation of the first n integers
% (around a circle);
% TARGET is a given $n \times n$ matrix having the circular
% anti-Robinson form that guides the direction in which distances
% are taken around the circle.
% FIT is the least-squares optimal matrix (with variance-
% accounted-for of VAF) to PROX having a strongly circular
% anti-Robinson form for the row and column object ordering
% given by INPERM.

cirsarobfnd.m

function [find, vaf, outperm] = cirsarobfnd(prox, inperm, kblock)

% CIRSAROBFND finds and fits a strongly circular
% anti-Robinson matrix using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based on a
% permutation identified through the use of
% iterative quadratic assignment.
%
% syntax: [find, vaf, outperm] = cirsarobfnd(prox, inperm, kblock)
%
% PROX is the input proximity matrix ($n \times n$ with a zero
% main diagonal and a dissimilarity interpretation);
% INPERM is a given starting permutation (assumed to be around the
% circle) of the first n integers;
% FIT is the least-squares optimal matrix (with variance-
% accounted-for of VAF) to PROX having a strongly
% circular anti-Robinson form for the row and column
% object ordering given by the ending permutation OUTPERM. KBLOCK
% defines the block size in the use of the iterative
% quadratic assignment routine.

srpm_f
2005/10/
page 201

�

�

�

�

�

�

�

�

201

cirsarobfnd ac.m
function [find, vaf, outperm] = cirsarobfnd_ac(prox, inperm, kblock)

% CIRSAROBFND fits a strongly circular
% anti-Robinson matrix using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based on a
% permutation identified through the use of
% iterative quadratic assignment.
%
% syntax: [find, vaf, outperm] = cirsarobfnd_ac(prox, inperm, kblock)
%
% PROX is the input proximity matrix ($n \times n$
% with a zero main diagonal
% and a dissimilarity interpretation);
% INPERM is a given starting permutation (assumed to be around the
% circle) of the first n integers;
% FIND is the least-squares optimal matrix (with variance-
% accounted-for of VAF) to PROX having a strongly
% circular anti-Robinson form for the row and column
% object ordering given by the ending permutation OUTPERM. KBLOCK
% defines the block size in the use of the iterative
% quadratic assignment routine. In comparison to cirsarobfnd.m
% (which uses cirarobfnd.m internally), cirsarobfnd_ac uses
% cirarobfnd_ac to identify a circular target.

insertqa.m
function [outperm, rawindex, allperms, index] = ...

insertqa(prox, targ, inperm, kblock)

% INSERTQA carries out an iterative
% Quadratic Assignment maximization task using the
% insertion of from 1 to KBLOCK
% (which is less than or equal to $n-1$) consecutive objects in
% the permutation defining the row and column order of the data
% matrix.
%
% syntax: [outperm, rawindex, allperms, index] = ...
% insertqa(prox, targ, inperm, kblock)
%
% INPERM is the input beginning permutation
% (a permutation of the first n integers).
% PROX is the $n \times n$ input proximity matrix.
% TARG is the $n \times n$ input target matrix.
% OUTPERM is the final permutation of PROX with the cross-product

srpm_f
2005/10/
page 202

�

�

�

�

�

�

�

�

202 Appendix A. Header Commentsfor the Mentioned M-files

% index RAWINDEX with respect to TARG.
% ALLPERMS is a cell array containing INDEX entries corresponding
% to all the permutations identified in the optimization from
% ALLPERMS{1} = INPERM to ALLPERMS{INDEX} = OUTPERM.

linfit.m

function [fit, diff, coord] = linfit(prox,inperm)

% LINFIT does a confirmatory fitting of a given
% unidimensional order using Dykstra’s
% (Kaczmarz’s) iterative projection least-squares method.
%
% syntax: [fit, diff, coord] = linfit(prox,inperm)
%
% INPERM is the given order;
% FIT is an $n \times n$ matrix that is fitted to
% PROX(INPERM,INPERM) with least-squares value DIFF;
% COORD gives the ordered coordinates whose absolute differences
% could be used to reconstruct FIT.

linfitac.m

function [fit, vaf, coord, addcon] = linfitac(prox,inperm)

% LINFITAC does a confirmatory fitting of a given unidimensional order
% using the Dykstra-Kaczmarz iterative projection
% least-squares method, but differing from linfit.m in
% including the estimation of an additive constant.
%
% syntax: [fit, vaf, coord, addcon] = linfitac(prox,inperm)
%
% INPERM is the given order;
% FIT is an $n \times n$ matrix that is fitted to
% PROX(INPERM,INPERM) with variance-accounted-for VAF;
% COORD gives the ordered coordinates whose absolute differences
% could be used to reconstruct FIT; ADDCON is the estimated
% additive constant that can be interpreted as being added to PROX.

linfittm.m

function [fit,diff,rowperm,colperm,coord] = linfittm(proxtm,inperm)

% LINFITTM does a confirmatory two-mode fitting of a given
% unidimensional ordering of the row and column objects of

srpm_f
2005/10/
page 203

�

�

�

�

�

�

�

�

203

% a two-mode proximity matrix PROXTM using Dykstra’s (Kaczmarz’s)
% iterative projection least-squares method.
%
% syntax: [fit,diff,rowperm,colperm,coord] = linfittm(proxtm,inperm)
%
% INPERM is the given ordering of the row and column objects
% together; FIT is an nrow (number of rows) by ncol (number
% of columns) matrix of absolute coordinate differences that
% is fitted to PROXTM(ROWPERM,COLPERM) with DIFF being the
% (least-squares criterion) sum of squared discrepancies
% between FIT and PROXTM(ROWPERM,COLMEAN);
% ROWPERM and COLPERM are the row and column object orderings
% derived from INPERM. The nrow + ncol coordinates
% (ordered with the smallest
% set at a value of zero) are given in COORD.

linfittmac.m
function [fit,vaf,rowperm,colperm,addcon,coord] = ...

linfittmac(proxtm,inperm)

% LINFITTMAC does a confirmatory two-mode fitting of a given
% unidimensional ordering of the row and column objects of
% a two-mode proximity matrix PROXTM using Dykstra’s (Kaczmarz’s)
% iterative projection least-squares method;
% it differs from linfittm.m by including the estimation of an
% additive constant.
%
% syntax: [fit,vaf,rowperm,colperm,addcon,coord] = ...
% linfittmac(proxtm,inperm)
%
% INPERM is the given ordering of the row and column objects
% together; FIT is an nrow (number of rows) by ncol (number
% of columns) matrix of absolute coordinate differences that
% is fitted to PROXTM(ROWPERM,COLPERM) with VAF being the
% variance-accounted-for. ROWPERM and COLPERM are the row and
% column object orderings derived from INPERM. ADDCON is the
% estimated additive constant that can be interpreted as being
% added to PROXTM (or alternatively subtracted
% from the fitted matrix FIT). The nrow + ncol coordinates
% (ordered with the smallest
% set at a value of zero) are given in COORD.

srpm_f
2005/10/
page 204

�

�

�

�

�

�

�

�

204 Appendix A. Header Commentsfor the Mentioned M-files

order.m
function [outperm,rawindex,allperms,index] = ...
order(prox,targ,inperm,kblock)

% ORDER carries out an iterative Quadratic Assignment maximization
% task using a given square ($n x n$) proximity matrix PROX (with
% a zero main diagonal and a dissimilarity interpretation).
%
% syntax: [outperm,rawindex,allperms,index] = ...
% order(prox,targ,inperm,kblock)
%
% Three separate local operations are used to permute
% the rows and columns of the proximity matrix to maximize the
% cross-product index with respect to a given square target matrix
% TARG: pairwise interchanges of objects in the permutation defining
% the row and column order of the square proximity matrix;
% the insertion of from 1 to KBLOCK
% (which is less than or equal to $n-1$) consecutive objects in
% the permutation defining the row and column order of the data
% matrix; the rotation of from 2 to KBLOCK
% (which is less than or equal to $n-1$) consecutive objects in
% the permutation defining the row and column order of the data
% matrix. INPERM is the input beginning permutation (a permutation
% of the first n integers).
% OUTPERM is the final permutation of PROX with the
% cross-product index RAWINDEX
% with respect to TARG. ALLPERMS is a cell array containing INDEX
% entries corresponding to all the
% permutations identified in the optimization from ALLPERMS{1} =
% INPERM to ALLPERMS{INDEX} = OUTPERM.

ordertm.m
function [outperm, rawindex, allperms, index, squareprox] = ...

ordertm(proxtm, targ, inperm, kblock)

% ORDERTM carries out an iterative
% Quadratic Assignment maximization task using the
% two-mode proximity matrix PROXTM
% (with entries deviated from the mean proximity)
% in the upper-right- and lower-left-hand portions of
% a defined square ($n x n$) proximity matrix
% (called SQUAREPROX with a dissimilarity interpretation)
% with zeros placed elsewhere (n = number of rows +
% number of columns of PROXTM = nrow + ncol).

srpm_f
2005/10/
page 205

�

�

�

�

�

�

�

�

205

%
% syntax: [outperm, rawindex, allperms, index, squareprox] = ...
% ordertm(proxtm, targ, inperm, kblock)
%
% Three separate local operations are used to permute
% the rows and columns of the square
% proximity matrix to maximize the cross-product
% index with respect to a square target matrix TARG:
% pairwise interchanges of objects in the
% permutation defining the row and column
% order of the square proximity matrix; the insertion of from 1 to
% KBLOCK (which is less than or equal to $n-1$) consecutive objects
% in the permutation defining the row and column order of the
% data matrix; the rotation of from 2 to KBLOCK (which is less than
% or equal to $n-1$) consecutive objects in
% the permutation defining the row and column order of the data
% matrix. INPERM is the input beginning permutation (a permutation
% of the first n integers).
% PROXTM is the two-mode $nrow x ncol$ input proximity matrix.
% TARG is the $n x n$ input target matrix.
% OUTPERM is the final permutation of SQUAREPROX with the
% cross-product index RAWINDEX
% with respect to TARG. ALLPERMS is a cell array containing INDEX
% entries corresponding to all the
% permutations identified in the optimization from ALLPERMS{1}
% = INPERM to ALLPERMS{INDEX} = OUTPERM.

pairwiseqa.m

function [outperm, rawindex, allperms, index] = ...
pairwiseqa(prox, targ, inperm)

% PAIRWISEQA carries out an iterative
% Quadratic Assignment maximization task using the
% pairwise interchanges of objects in the
% permutation defining the row and column
% order of the data matrix.
%
% syntax: [outperm, rawindex, allperms, index] = ...
% pairwiseqa(prox, targ, inperm)
%
% INPERM is the input beginning permutation
% (a permutation of the first n integers).
% PROX is the $n \times n$ input proximity matrix.
% TARG is the $n \times n$ input target matrix.

srpm_f
2005/10/
page 206

�

�

�

�

�

�

�

�

206 Appendix A. Header Commentsfor the Mentioned M-files

% OUTPERM is the final permutation of
% PROX with the cross-product index RAWINDEX
% with respect to TARG.
% ALLPERMS is a cell array containing INDEX entries corresponding
% to all the permutations identified in the optimization from
% ALLPERMS{1} = INPERM to ALLPERMS{INDEX} = OUTPERM.

proxmon.m
function [monproxpermut, vaf, diff] = proxmon(proxpermut, fitted)

% PROXMON produces a monotonically transformed proximity matrix
% (MONPROXPERMUT) from the order constraints obtained from each
% pair of entries in the input proximity matrix PROXPERMUT
% (symmetric with a zero main diagonal and a dissimilarity
% interpretation).
%
% syntax: [monproxpermut, vaf, diff] = proxmon(proxpermut, fitted)
%
% MONPROXPERMUT is close to the
% $n \times n$ matrix FITTED in the least-squares sense;
% the variance accounted for (VAF) is how
% much variance in MONPROXPERMUT can be accounted for by
% FITTED; DIFF is the value of the least-squares criterion.

proxmontm.m
function [monproxpermuttm, vaf, diff] = ...

proxmontm(proxpermuttm, fittedtm)

% PROXMONTM produces a monotonically transformed
% two-mode proximity matrix (MONPROXPERMUTTM)
% from the order constraints obtained
% from each pair of entries in the input two-mode
% proximity matrix PROXPERMUTTM (with a dissimilarity
% interpretation).
%
% syntax: [monproxpermuttm, vaf, diff] = ...
% proxmontm(proxpermuttm, fittedtm)
%
% MONPROXPERMUTTM is close to the $nrow \times ncol$
% matrix FITTEDTM in the least-squares sense;
% The variance accounted for (VAF) is how much variance
% in MONPROXPERMUTTM can be accounted for by FITTEDTM;
% DIFF is the value of the least-squares criterion.

srpm_f
2005/10/
page 207

�

�

�

�

�

�

�

�

207

proxrand.m
function [randprox] = proxrand(prox)

% PROXRAND produces a symmetric proximity matrix RANDPROX
% with a zero main diagonal having
% entries that are a random permutation of those in the
% symmetric input proximity
% matrix PROX.
%
% syntax: [randprox] = proxrand(prox)

proxrandtm.m

function [randproxtm] = proxrandtm(proxtm)

% PROXRANDTM produces a two-mode proximity matrix (RANDPROXTM) having
% entries that are a random permutation of
% those in the two-mode input proximity matrix PROXTM.
%
% syntax: [randproxtm] = proxrandtm(proxtm)

proxstd.m
function [stanprox, stanproxmult] = proxstd(prox,mean)

% PROXSTD produces a standardized proximity matrix (STANPROX)
% from the input $n \times n$ proximity matrix
% (PROX) with zero main diagonal and a dissimilarity
% interpretation.
%
% syntax: [stanprox, stanproxmult] = proxstd(prox,mean)
%
% STANPROX entries have unit variance (standard deviation of one)
% with a mean of MEAN given as an input number;
% STANPROXMULT (upper-triangular) entries have a sum of
% squares equal to $n(n-1)/2$.

proxstdtm.m

function [stanproxtm, stanproxmulttm] = proxstdtm(proxtm,mean)

% PROXSTDTM produces a standardized two-mode
% proximity matrix (STANPROXTM) from the input
% $nrow \times ncol$ two-mode proximity matrix (PROXTM) with a

srpm_f
2005/10/
page 208

�

�

�

�

�

�

�

�

208 Appendix A. Header Commentsfor the Mentioned M-files

% dissimilarity interpretation.
%
% syntax: [stanproxtm, stanproxmulttm] = proxstdtm(proxtm,mean)
%
% STANPROXTM entries have unit variance (standard deviation
% of one) with a mean of MEAN given as an input number;
% STANPROXMULTTM entries have a sum of squares equal to
% $nrow*rcol$.

randprox.m

function [prox] = randprox(n)

% RANDPROX produces a random symmetric proximity matrix (PROX) of size
% $n \times n$, with a zero main diagonal and entries uniform
% between 0 and 1.
%
% syntax: [prox] = randprox(n)

rotateqa.m

function [outperm, rawindex, allperms, index] = ...
rotateqa (prox, targ, inperm, kblock)

% ROTATEQA carries out an iterative
% Quadratic Assignment maximization task using the
% rotation of from 2 to KBLOCK (which is less than or
% equal to $n-1$) consecutive objects in
% the permutation defining the row and column order of the data
% matrix.
%
% syntax: [outperm, rawindex, allperms, index] = ...
% rotateqa (prox, targ, inperm, kblock)
%
% INPERM is the input beginning permutation
% (a permutation of the first n integers).
% PROX is the $n \times n$ input proximity matrix.
% TARG is the $n \times n$ input target matrix.
% OUTPERM is the final permutation of PROX with the cross-product
% index RAWINDEX with respect to TARG.
% ALLPERMS is a cell array containing INDEX entries corresponding
% to all the permutations identified in the optimization from
% ALLPERMS{1} = INPERM to ALLPERMS{INDEX} = OUTPERM.

srpm_f
2005/10/
page 209

�

�

�

�

�

�

�

�

209

sarobfit.m
function [fit, vaf] = sarobfit(prox, inperm)

% SAROBFIT fits a strongly anti-Robinson matrix using iterative
% projection to a symmetric proximity matrix in the L_{2}-norm.
% PROX is the input proximity matrix ($n \times n$ with a zero
% main diagonal and a dissimilarity interpretation).
%
% syntax: [fit, vaf] = sarobfit(prox, inperm)
%
% INPERM is a given permutation of the first n integers;
% FIT is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX having a strongly
% anti-Robinson form for the row and column
% object ordering given by INPERM.

sarobfnd.m

function [find, vaf, outperm] = sarobfnd(prox, inperm, kblock)

% SAROBFND finds and fits a strongly
% anti-Robinson matrix using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based on a
% permutation identified through the use of iterative
% quadratic assignment.
%
% syntax: [find, vaf, outperm] = sarobfnd(prox, inperm, kblock)
%
% PROX is the input proximity matrix ($n \times n$ with a zero
% main diagonal and a dissimilarity interpretation);
% INPERM is a given starting permutation of the first n integers;
% FIND is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX having a strongly
% anti-Robinson form for the row and column
% object ordering given by the ending permutation OUTPERM. KBLOCK
% defines the block size in the use the iterative
% quadratic assignment routine.

targcir.m

function [targcircular] = targcir(n)

% TARGCIR produces a symmetric proximity matrix of size
% $n \times n$, containing distances
% between equally and unit-spaced positions

srpm_f
2005/10/
page 210

�

�

�

�

�

�

�

�

210 Appendix A. Header Commentsfor the Mentioned M-files

% around a circle: targcircular(i,j) = min(abs(i-j),n-abs(i-j)).
%
% syntax: [targcircular] = targcir(n)

targfit.m
function [fit, vaf] = targfit(prox,targ)

% TARGFIT fits through iterative projection a given set of equality
% and inequality constraints (as represented by the equalities and
% inequalities present among the entries in a target matrix
% TARG) to a symmetric proximity matrix in the L_{2}-norm.
%
% syntax: [fit, vaf] = targfit(prox,targ)
%
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation);
% TARG is a matrix of the same size as PROX;
% FIT is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX satisfying the equality and
% inequality constraints implicit in TARG.

targlin.m
function [targlinear] = targlin(n)

% TARGLIN produces a symmetric proximity matrix of size
% $n \times n$, containing distances
% between equally and unit-spaced positions
% along a line: targlinear(i,j) = abs(i-j).
%
% syntax: [targlinear] = targlin(n)

trimonscalqa.m

function [outpermone,outpermtwo,outpermthree,coordone, ...
coordtwo,coordthree,fitone,fittwo,fitthree,addconone, ...
addcontwo,addconthree,vaf,monprox] = ...

trimonscalqa(prox,targone,targtwo,targthree,inpermone,inpermtwo, ...
inpermthree,kblock,nopt)

% TRIMONSCALQA carries out a tridimensional scaling of a symmetric
% proximity matrix using iterative quadratic assignment,
% plus it provides an optimal monotonic transformation
% (MONPROX) of the original input proximity matrix.

srpm_f
2005/10/
page 211

�

�

�

�

�

�

�

�

211

%
% syntax: [outpermone,outpermtwo,outpermthree,coordone, ...
% coordtwo,coordthree,fitone,fittwo,fitthree,addconone, ...
% addcontwo,addconthree,vaf,monprox] = ...
% trimonscalqa(prox,targone,targtwo,targthree,inpermone,inpermtwo, ...
% inpermthree,kblock,nopt)
%
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation);
% TARGONE is the input target matrix for the first dimension
% (usually with a zero main diagonal and with a dissimilarity
% interpretation representing equally-spaced locations
% along a continuum); TARGTWO is the input target
% matrix for the second dimension; TARGTHREE is the input target
% matrix for the third dimension;
% INPERMONE is the input beginning permutation for the
% first dimension (a permutation of the first n integers);
% INPERMTWO is the input beginning
% permutation for the second dimension; INPERMTHREE is the input
% beginning permutation for the third dimension;
% the insertion and rotation routines use from 1 to KBLOCK
% (which is less than or equal to $n-1$) consecutive objects in
% the permutation defining the row and column orders of the data
% matrix; NOPT controls the confirmatory or exploratory fitting
% of the unidimensional scales; a value of NOPT = 0 will fit in
% a confirmatory manner the two scales
% indicated by INPERMONE and INPERMTWO; a value of NOPT = 1
% uses iterative QA to locate the better permutations to fit;
% OUTPERMONE is the final object permutation for the first
% dimension; OUTPERMTWO is the final object permutation
% for the second dimension; OUTPERMTHREE is the final object
% permutation for the third dimension;
% COORDONE is the set of first dimension coordinates
% in ascending order; COORDTWO is the set of second dimension
% coordinates in ascending order; COORDTHREE is the set of
% second dimension coordinates in ascending order;
% ADDCONONE is the additive constant for the first
% dimensional model; ADDCONTWO is the additive constant
% for the second dimensional model; ADDCONTHREE is the additive
% constant for the third dimensional model;
% VAF is the variance-accounted-for in MONPROX by
% the tridimensional scaling.

srpm_f
2005/10/
page 212

�

�

�

�

�

�

�

�

212 Appendix A. Header Commentsfor the Mentioned M-files

triscalqa.m
function [outpermone,outpermtwo,outpermthree,coordone, ...

coordtwo,coordthree,fitone,fittwo,fitthree,addconone, ...
addcontwo,addconthree,vaf] = ...
triscalqa(prox,targone,targtwo,targthree,inpermone, ...
inpermtwo,inpermthree,kblock,nopt)

% TRISCALQA carries out a tridimensional scaling of a symmetric
% proximity matrix using iterative quadratic assignment.
%
% syntax: [outpermone,outpermtwo,outpermthree,coordone, ...
% coordtwo,coordthree,fitone,fittwo,fitthree,addconone, ...
% addcontwo,addconthree,vaf] = ...
% triscalqa(prox,targone,targtwo,targthree,inpermone, ...
% inpermtwo,inpermthree,kblock,nopt)
%
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation);
% TARGONE is the input target matrix for the first dimension
% (usually with a zero main diagonal and with a dissimilarity
% interpretation representing equally-spaced locations along
% a continuum); TARGTWO is the input target
% matrix for the second dimension; TARGTHREE is the input
% target matrix for the third dimension;
% INPERMONE is the input beginning permutation for the first
% dimension (a permutation of the first n integers);
% INPERMTWO is the input beginning permutation for the
% second dimension; INPERMTHREE is the input beginning
% permutation for the third dimension;
% the insertion and rotation routines use from 1 to KBLOCK
% (which is less than or equal to $n-1$) consecutive objects in
% the permutation defining the row and column orders of the data
% matrix; NOPT controls the confirmatory or exploratory fitting
% of the unidimensional scales; a value of NOPT = 0 will fit in
% a confirmatory manner the three scales
% indicated by INPERMONE and INPERMTWO;
% a value of NOPT = 1 uses iterative QA
% to locate the better permutations to fit.
% OUTPERMONE is the final object permutation for
% the first dimension; OUTPERMTWO is the final object permutation
% for the second dimension; OUTPERMTHREE is the final object
% permutation for the third dimension; COORDONE is the set of
% first dimension coordinates in ascending order;
% COORDTWO is the set of second dimension coordinates in ascending
% order; COORDTHREE is the set of third dimension coordinates

srpm_f
2005/10/
page 213

�

�

�

�

�

�

�

�

213

% in ascending order; ADDCONONE is the additive constant for the
% first dimensional model; ADDCONTWO is the additive constant
% for the second dimensional model; ADDCONTHREE is the additive
% constant for the third dimensional model;
% VAF is the variance-accounted-for in PROX by the
% bidimensional scaling.

ultracomptm.m

function [ultracomp] = ultracomptm(ultraproxtm)

% ULTRACOMPTM provides a completion of a given two-mode ultrametric
% matrix to a symmetric proximity matrix satisfying the
% usual ultrametric constraints.
%
% syntax: [ultracomp] = ultracomptm(ultraproxtm)
%
% ULTRAPROXTM is the $nrow \times ncol$ two-mode ultrametric matrix;
% ULTRACOMP is the completed symmetric
% $n \times n$ proximity matrix having the usual
% ultrametric pattern, for $n = nrow + ncol$.

ultrafit.m
function [fit,vaf] = ultrafit(prox,targ)

% ULTRAFIT fits a given ultrametric using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm.
%
% syntax: [fit,vaf] = ultrafit(prox,targ)
%
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation);
% TARG is an ultrametric matrix of the same size as PROX;
% FIT is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX satisfying the ultrametric
% constraints implicit in TARG.

ultrafittm.m

function [fit,vaf] = ultrafittm(proxtm,targ)

% ULTRAFITTM fits a given (two-mode) ultrametric using iterative
% projection to a two-mode (rectangular) proximity matrix in the
% L_{2}-norm.

srpm_f
2005/10/
page 214

�

�

�

�

�

�

�

�

214 Appendix A. Header Commentsfor the Mentioned M-files

%
% syntax: [fit,vaf] = ultrafittm(proxtm,targ)
%
% PROXTM is the input proximity matrix (with a dissimilarity
% interpretation); TARG is an ultrametric matrix of the same size
% as PROXTM; FIT is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROXTM satisfying the
% ultrametric constraints implicit in TARG.

ultrafnd.m

function [find,vaf] = ultrafnd(prox,inperm)

% ULTRAFND finds and fits an ultrametric using iterative projection
% heuristically on a symmetric proximity matrix in the L_{2}-norm.
%
% syntax: [find,vaf] = ultrafnd(prox,inperm)
%
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation);
% INPERM is a permutation that determines the order in which the
% inequality constraints are considered;
% FIND is the found least-squares matrix (with variance-accounted-for
% of VAF) to PROX satisfying the ultrametric constraints.

ultrafndtm.m

function [find,vaf] = ultrafndtm(proxtm,inpermrow,inpermcol)

% ULTRAFNDTM finds and fits a two-mode ultrametric using
% iterative projection heuristically on a rectangular proximity
% matrix in the L_{2}-norm.
%
% syntax: [find,vaf] = ultrafndtm(proxtm,inpermrow,inpermcol)
%
% PROXTM is the input proximity matrix (with a
% dissimilarity interpretation);
% INPERMROW and INPERMCOL are permutations for the row and column
% objects that determine the order in which the
% inequality constraints are considered;
% FIND is the found least-squares matrix (with variance-accounted-for
% of VAF) to PROXTM satisfying the ultrametric constraints.

srpm_f
2005/10/
page 215

�

�

�

�

�

�

�

�

215

ultraorder.m
function [orderprox,orderperm] = ultraorder(prox)

% ULTRAORDER finds for the input proximity matrix PROX
% (assumed to be ultrametric with a zero main diagonal),
% a permutation ORDERPERM that displays the anti-
% Robinson form in the reordered proximity matrix
% ORDERPROX; thus, prox(orderperm,orderperm) = orderprox.
%
% syntax: [orderprox,orderperm] = ultraorder(prox)

ultraplot.m

function [] = ultraplot(ultra)

% ULTRAPLOT gives a dendrogram plot for the input ultrametric
% dissimilarity matrix ULTRA.
%
% syntax: [] = ultraplot(ultra)

unicirac.m
function [find, vaf, outperm, addcon] = unicirac(prox, inperm, kblock)

% UNICIRAC finds and fits a circular
% unidimensional scale using iterative projection to
% a symmetric proximity matrix in the L_{2}-norm based on a
% permutation identified through the use of iterative
% quadratic assignment.
%
% syntax: [find, vaf, outperm, addcon] = unicirac(prox, inperm, kblock)
%
% PROX is the input proximity matrix ($n \times n$ with a
% zero main diagonal and a dissimilarity interpretation);
% INPERM is a given starting permutation (assumed to be around the
% circle) of the first n integers;
% FIND is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROX having a circular
% anti-Robinson form for the row and column
% object ordering given by the ending permutation OUTPERM.
% The spacings among the objects are given by the diagonal entries
% in FIND (and the extreme (1,n) entry in FIND). KBLOCK
% defines the block size in the use of the iterative quadratic
% assignment routine. The additive constant for the model is
% given by ADDCON.

srpm_f
2005/10/
page 216

�

�

�

�

�

�

�

�

216 Appendix A. Header Commentsfor the Mentioned M-files

uniscalqa.m
function [outperm, rawindex, allperms, index, coord, diff] = ...

uniscalqa(prox, targ, inperm, kblock)

% UNISCALQA carries out a unidimensional scaling of a symmetric
% proximity matrix using iterative quadratic assignment.
%
% syntax: [outperm, rawindex, allperms, index, coord, diff] = ...
% uniscalqa(prox, targ, inperm, kblock)
%
% PROX is the input proximity matrix (with a zero main diagonal
% and a dissimilarity interpretation);
% TARG is the input target matrix (usually with a zero main
% diagonal and a dissimilarity interpretation representing
% equally-spaced locations along a continuum);
% INPERM is the input beginning permutation (a permutation of the
% first n integers). OUTPERM is the final permutation of PROX
% with the cross-product index RAWINDEX
% with respect to TARG redefined as
% $ = \{abs(coord(i) - coord(j))\}$;
% ALLPERMS is a cell array containing INDEX entries corresponding
% to all the permutations identified in the optimization from
% ALLPERMS{1} = INPERM to ALLPERMS{INDEX} = OUTPERM.
% The insertion and rotation routines use from 1 to KBLOCK
% (which is less than or equal to $n-1$) consecutive objects in
% the permutation defining the row and column order of the data
% matrix. COORD is the set of coordinates of the unidimensional
% scaling in ascending order;
% DIFF is the value of the least-squares loss function for the
% coordinates and object permutation.

uniscaltmac.m
function [find, vaf, outperm, rowperm, colperm, addcon, coord] = ...

uniscaltmac(proxtm, inperm, kblock)

% UNISCALTMAC finds and fits a linear
% unidimensional scale using iterative projection to
% a two-mode proximity matrix in the L_{2}-norm based on a
% permutation identified through the use of iterative
% quadratic assignment.
%
% syntax: [find, vaf, outperm, rowperm, colperm, addcon, coord] = ...
% uniscaltmac(proxtm, inperm, kblock)
%

srpm fina
2005/10/6
page 217

�

�

�

�

�

�

�

�

217

% PROXTM is the input two-mode proximity matrix
% ($n_{a} \times n_{b}$ with a zero main diagonal
% and a dissimilarity interpretation);
% INPERM is a given starting permutation of the
% first $n = n_{a} + n_{b}$ integers;
% FIND is the least-squares optimal matrix (with
% variance-accounted-for of VAF) to PROXTM having a linear
% unidimensional form for the row and column
% object ordering given by the ending permutation OUTPERM.
% The spacings among the objects are given by the entries in FIND.
% KBLOCK defines the block size in the use of the iterative
% quadratic assignment routine.
% The additive constant for the model is given by ADDCON.
% ROWPERM and COLPERM are the resulting row and column
% permutations for the objects. The nrow + ncol coordinates
% (ordered with the smallest set at a value of zero)
% are given in COORD.

srpm fina
2005/10/6
page 218

�

�

�

�

�

�

�

�

218 Appendix A. Header Commentsfor the Mentioned M-files

Author Index

Arabie, P., 3, 5, 6, 12, 19, 30, 34,
35, 69, 79, 89, 120, 122, 124,
138, 150, 151, 158, 168, 177–
180

Bandilla, W., 177
Barthélemy, J.-P., 87, 177
Bibby, J. M., 32, 181
Birnbaum, M. H., 178
Bock, H. H., 179
Bodewig, E., 12, 177
Borg, I., 178
Brossier, G., 105, 177
Brusco, M. J., 19, 177
Busing, F. M. T. A., 30, 177

Carroll, J. D., 30, 44, 69, 87, 94, 109,
120, 123, 177–181

Chang, J. J., 30, 178
Cheney, W., 21, 32, 178
Clark, L. A., 69, 87, 178
Commandeur, J. J. F., 30, 177
Conte, H. R., 150, 181
Coombs, C. H., 169, 178
Critchley, F., 138, 178, 179
Cunningham, J. P., 5, 138, 182

Day, W. H. E., 70, 178
de Leeuw, J., 3, 178, 179
De Soete, G., 69, 94, 109, 178, 179
Defays, D., 3, 5, 178
DeSarbo, W. S., 30, 69, 87, 94, 109,

177–179
Diday, E., 180
Durand, C., 138, 179
Dykstra, R. L., 4, 12, 18, 179

Escoufier, Y., 180

Falkenberg, P., 49, 181
Faulbaum, F., 177
Feger, H., 178
Fichet, B., 138, 178, 179
Francis, R. L., 6, 179

Furnas, G. W., 69, 94, 105, 109, 179

Goldstein, A., 21, 32, 178
Groenen, P. J. F., 19, 179
Guénoche, A., 87, 177
Guttman, L., 3, 179

Heiser, W. J., 3, 19, 30, 177–179
Hesson-McInnis, M., 19, 180
Hubert, L. J., 3, 5–7, 12, 19, 32, 34,

35, 69, 79, 89, 120, 122, 124,
138, 150, 151, 158, 168, 169,
178–180

Hutchinson, J. W., 69, 180

Imaizumi, T., 177

Johnson, R. A., xii, 181

Kr̆ivánek, M., 70, 180
Kaczmarz, S., 4, 12, 180
Kent, J. T., 32, 181
Kilpatric, D. W., 5, 138, 182
Klauer, K. C., 69, 180
Kruskal, J. B., 32, 119, 122, 181

Lantermann, E. D., 178
Lawler, E. L., 7, 181
Lebart, L., 180
Lingoes, J. C., 178

Mardia, K. V., 32, 181
Marks, W. B., 49, 181
Meulman, J. J., 3, 5, 12, 19, 120, 124,

138, 150, 151, 158, 179, 180
Mirkin, B., 87, 138, 181
Morávek, J., 70, 180

Okada, A., 177

Pagès, J. P., 180
Pardalos, P. M., 7, 181
Plutchik, R., 150, 181
Pruzansky, S., 44, 69, 94, 109, 120,

178, 181

srpm fina
2005/10/6
page 219

�

�

�

�

�

�

�

�

AUTHOR INDEX 219

Reynolds, M. L., 49, 181
Roskam, E. E., 178
Rothkopf, E. Z., 32, 181

Schektman, Y., 180
Schiffman, H., 49, 181
Schiffman, S. S., 49, 181
Schultz, J. W., 7, 32, 180
Seery, J. B., 122, 181
Shepard, R. N., 5, 32, 119, 120, 138,

181, 182
Späth, H., 75, 182
Stahl, S., 19, 177

Tomassone, R., 180
Tversky, A., 120, 181

van Cutsem, B., 178

White, J. A., 6, 179
Wichern, D. W., xii, 181
Wilkinson, L., 122, 182
Wish, M., 32, 181
Wolkowicz, H., 7, 181

Young, F. W., 49, 122, 181

srpm fina
2005/10/6
page 220

�

�

�

�

�

�

�

�

220 Appendix A. Header Commentsfor the Mentioned M-files

Subject Index

additive constant
multidimensional scaling, 20
ultrametric plotting, 85
unidimensional scaling, 19, 33

additive tree, xi, 30, 69, 87
centroid metric, 88
decomposition, 91, 98
atreedec.m, 91

finding, 89
atreefnd.m, 89

fitting, 88
atreectul.m, 98
atreefit.m, 88

four-point condition, 87
graphical representation, 93
multiple, 101
biatreefnd.m, 101

path length, 81
root, 81, 87
two-mode, 108

two-set conditions, 105
two-mode finding, 110
atreefndtm.m, 110

alternating projection methods, 21, 32,
34

anti-Robinson forms, xi, 120, 121, 124
finding, 130
arobfnd.m, 130

fitting, 125
arobfit.m, 125

multiple, 142
biarobfnd.m, 142
bisarobfnd.m, 142

strongly, xi
finding with sarobfnd.m, 131
fitting with sarobfit.m, 130
graphical representation, 138

two-mode
finding with arobfndtm.m, 168
fitting with arobfittm.m, 168

two-mode multiple
biarobfndtm.m, 171

ultrametric, 79

bidimensional scaling
bicirac.m, 44
biscalqa.m, 24
two-mode
biscaltmac.m, 56

biplot, 61
biplot.m, 61
biplottm.m, 61

centroid metric, 88, 91, 98
fitting, 94
centfit.m, 94

two-mode, 106
two-mode fitting, 108
centfittm.m, 108

circular anti-Robinson forms
finding with cirarobfnd_ac.m, 153

circular anti-Robinson forms, 149
finding with cirarobfnd.m, 153
fitting with cirarobfit.m, 151
multiple
bicirarobfnd.m, 159
bicirsarobfnd.m, 162

strongly, 150
finding with cirsarobfnd.m, 156
finding with cirsarobfnd_ac.m,

156
fitting with cirsarobfit.m, 154
graphical representation, 158

city-block metric, xi
combinatorial optimization, 3
common space, 30
conjugate gradient, 69
convex sets, 18, 21, 32, 70, 106

dendrogram
plotting
ultraplot.m, 84

root, 81
Dykstra-Kaczmarz method, xii, 4, 12,

14, 18, 22, 35

srpm fina
2005/10/6
page 221

�

�

�

�

�

�

�

�

SUBJECT INDEX 221

dynamic programming, 12

equality constrained least-squares, 18

gradient optimization, 70
graph theory

tree structures, xi, 69
group space, 30

individual differences scaling
city-block metric, 29

INDSCAL model, 30
inequality constrained least-squares, xii,

4, 12, 18, 52, 70, 75, 88, 106
fitting
targfit.m, 127

iterative projection methods, 18, 22,
34, 35, 52, 70, 75, 88, 106,
125

heuristic optimization, 70, 110

least-squares criterion, xii, 3, 69
iterative projection, 18

MATLAB , xi
cell array, 8
Statistics Toolbox, 84

MATLABR©

M-file, xi
monotonic matrix form, 6
monotonic transformation, 12, 27, 120,

122, 133
proxmon.m, 13, 133
single iteration, 122
two-mode
proxmontm.m, 60

multidimensional scaling, 24
circular, xi, 44
city-block metric, 19
confirmatory fitting, 25, 29

two-mode, 57
least-squares criterion, 19
linear, xi
nonmetric, 119
nonmetric bidimensional
bimonscalqa.m, 27

nonmetric tridimensional

trimonscalqa.m, 29
nonmetric two-mode bidimensional,

62
bimonscaltmac.m, 62

two-mode
biscaltmac.m, 56
bidimensional, 56

multiple unidimensional scaling, 24

NP-hard, 70
Numerical Algorithms Group (NAG),

xii

one-mode proximity data, xi
one-mode utility M-files

circularplot.m, 41
proxstd.m, 22

parallelogram, 169
partition hierarchy, 73, 74
penalty function, 69
private space, 30
projection methods, 18
PROXSCAL, 30

Q-form, 169
anti-Q-form, 169

quadratic assignment, xii, 3, 6, 25, 40,
50, 128

heuristic optimization, 7
insertqa.m, 7
order.m, 128
pairwiseqa.m, 7
rotateqa.m, 7

iterative, 6, 40
two-mode proximity data
ordertm.m, 50

regression-Lp, 75

SPSS CATEGORIES, 30
steepest descent, 69
SYSTAT, 73

target matrix
targcir.m, 38
targlin.m, 9

srpm fina
2005/10/6
page 222

�

�

�

�

�

�

�

�

222 Appendix A. Header Commentsfor the Mentioned M-files

equally spaced, 9
tree structures, 69
tridimensional scaling

triscalqa.m, 27
two-mode proximity data, xi, 49

additive tree, 105
anti-Robinson forms, 167
biplot, 61
ultrametric, 105

two-mode utility M-files
biplottm.m, 60
proxmontm.m, 60
proxrandtm.m, 60
proxstdtm.m, 60

ultrametric, xi, 30, 69, 73, 74, 91, 98,
122

basic, 74
dendrogram, 79
finding, 76
ultrafnd.m, 76

fitting, 75
ultrafit.m, 75

inequality, 74
multiple, 99
biultrafnd.m, 99

reordering, 79
ultraorder.m, 79

three-point condition, 74
two-mode

two-set conditions, 105
two-mode completion, 112
ultracomptm.m, 112

two-mode finding, 108
ultrafndtm.m, 108

two-mode fitting, 107
ultrafittm.m, 107

unidimensional scaling, 122
uniscalqa.m, 8
additive constant included, 21
linfitac.m, 22
two-mode, 54

circular, xi, 31
cirfit.m, 35
cirfitac.m, 35
cirfitac_ftarg, 38

unicirac.m, 40
inflection patterns, 31, 33

confirmatory fitting, 3, 12
linfit.m, 12
additive constant included, 21
two-mode, 54

linear, xi, 3, 4
nonmetric, 3, 12
proxmon.m, 12, 13

two-mode, 51
linfittm.m, 52
linfittmac.m, 54
uniscaltmac.m, 56

two-mode proximity data, 49

weighted Euclidean model, 30

