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Notes on Discrimination and
Classification

The term “discrimination” (in a nonpejorative statistical sense)
refers to the task of discrimination among groups through linear com-
binations of variables that maximize some criterion, usually F'-ratios.
The term “classification” refers to the task of allocating observations
to existing groups, typically to minimize the cost and/or probability
of misclassification. These two topics are intertwined, but it is most
convenient to start with the topic of classification.

In the picture to follow, we have two populations, called 7 and
mo; 1 is characterized by a normal distribution with mean pq, and
variance o3 (the density is denoted by f(x)); my is characterized by
a normal distribution with mean g5, and (common) variance o3 (the
density is denoted by fa(x)). I have an observation, say ¢, and wish
to decide where it should go, either to m or me. Assuming implicitly
that ;1 < pe, we choose a criterion point, ¢, and allocate to my if
xo < ¢, and to my if > ¢. The probabilities of misclassification can
be given in the following chart (and in the figure):
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If I want to choose ¢ so that o + ( is smallest, I would select the
point at which the densities are equal. A more complicated way of
saying this decision rule is to allocate to my if fi(zo)/fa(xo) > 1; if
< 1, then allocate to my. Suppose now that the prior probabilities
of being drawn from m; and w9y are p; and py, where p;1 +py = 1. 1
wish to choose ¢ so the Total Probability of Misclassification (TPM)
is minimized, i.e., pya 4+ poB. The rule would be to allocate to my if
fi(xo)/ folzo) > po/p1; if < po/p1, then allocate to my. Finally, if we
include costs of misclassification, ¢(1]2) (for assigning to m; when ac-
tually coming from ms), and ¢(2]1) (for assigning to o when actually
coming from 7y ), we can choose ¢ to minimize the Expected Cost of
Misclassification (ECM), ¢(2|1)pra + ¢(1]2)p1 5, with the associated
rule of allocating to my if fi(xo)/fo(zo) > (c(1]2)/c(2]1))(p2/p1); if
< (¢(1]2)/¢(2]1))(p2/p1), then allocate to .

Using logs, the last rule can be restated: allocate to my if log( fi(xg)/ f2(x)) >
log((¢(1]2)/e(2|1))(p2/p1)).  The left-hand-side is equal to (u; —

p2)(0%) o — (1/2)(t1 — p2)(0%) ™ (11 + p2), so the rule can be
restated further: allocate to 7y if

2o < {(1/2) (1 — p2)(0%) " (1 + pao)

—log((e(12) /2l H—

or
2

20 < {(1/2)(p+ppo) — 1og<<c<1|2>/c<2|1>><p2/p1>>}{(M"_Xm)} —c.

If the costs of misclassification are equal (i.e., ¢(1]2) = ¢(2|1)),
then the allocation rule is based on classification functions: allocate
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to 7y if

2 2

[(ﬁf{x —(1/2) X+log<p1>1 {ij —(1/2) X+1og< pa)] > 0.

Moving toward the multivariate framework, suppose population
m is characterized by a p X 1 vector of random variables, X ~
MVN(pq,3); population 7o is characterized by a p x 1 vector of
random variables, X ~ MVN(p2, 3). We have a similar allocation
rule as in the univariate case: allocate to my if axg—al[(p1+p2)/2] >

(c(112)/¢(2]1))(p2/p1), where
a=(p—p2)T "

Or, if the misclassification costs are equal, allocate to m if axy —
al(py + p2)/2] > [log(ps) — log(p1)]. In effect, we define regions of
classification, say R; and Ry; if an observation falls into region R;,
it is allocated to group ¢, for ¢+ = 1,2 There are a number of ways
of restating this last rule (assuming equal misclassification costs, this
is choosing to minimize the Total Probability of Misclassification

(TPM)):

A) Evaluate the classification functions for both groups and assign
according to which is higher: allocate to m; if

W E %0 = (1/2)py B ) + log(p1)]—
1537 % — (1/2) o 57 pay) + log(pa)] > 0.
B) Define the posterior probability of being in group ¢, for i = 1, 2,

P(mi|x0) as (fip:)/(fip1 + fop2). We allocate to the group with the
largest posterior probability.



C) We can restate our allocation rule according to Mahalanobis
distances: define the squared Mahalanobis distance of x¢ to u;,7 =
1,2, as

(x0 — Hi)lz_l(xo — H) -
Allocate to m; for the largest quantity of the form:

—(1/2)[(%0 — ;)57 (%0 — ;)] + log(pi) -

When the covariance matrices are not equal in the two populations
(i.e., 31 # 39), the allocation rules get a little more complicated.
The classification rules are now called “quadratic”, and may produce
regions of allocation that may not be contiguous. This is a little
strange, but it can be done, and we can still split the allocation rule
into two classification functions (assuming, as usual, equal costs of
misclassification):

Assign to my if
—(1/2)x(37" = 25 )% + (' S7 = 2B %0 — k>
log((c(1]2)/¢(21))(p2/p1)) -

where

b= (1/2)og( 2 1 (1/2) ('S o — 'S5 )

Moving to the sample, we could just use estimated quantities and
hope our rule does well — we use Sypo1eq, assuming equal covariance
matrices in the two populations, and sample means, g7 and po. In
fact, we can come up with the misclassification table based on the
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given sample and how they allocate the given n observations to the
two groups:

Group
1 79
1 a b
Decision
9 C d
nq no

The apparent error rate (APR) is (b + ¢)/n, which is overly op-
timistic because it is optimized with respect to this sample. To
cross-validate, we could use a “hold out one-at-a-time” strategy (i.e.,
a sample reuse procedure commonly referred to as the “jackknife”):

Group
T T2
1 a* b*
Decision
Ty | CF d*

nq no
To estimate the actual error rate (AER), we would use (b* 4 ¢*)/n.

Suppose we have g groups; p; is the a priori probability of group 4,
1 <i < g; c(kli) is the cost of classifying an ¢ as a k. The decision
rule that minimizes the expected cost of misclassification (ECM) is:
allocate x( to population 7, 1 < k < g, if

S pifilxo)e(kl)

1=11#k



1s smallest.

There are, again, alternative ways of stating this allocation rule;
we will assume for convenience that the costs of misclassification are
equal:

Allocate to group k if the posterior probability,

P fi(%0)

Plmbo) = o7 pifi(xo)

is largest.

If in population k, X ~ MVN(u,., X), we allocate to group k if
log(pr fr(%0)) =

—(1/2) log(|Zk]) = (1/2)(x0 — gy, By (%0 — ) +1og (pi) + constant ,
is largest.
If all the X5, = 32 for all £, then we allocate to 7. if
25 %0 — (1/2) .25 g, + log(pi) |
is largest.

It is interesting that we can do this in a pairwise way as well:
allocate to my, if

(b — 1) S5 %0 — (1/2) (g, — 1) S5 (g + ;) > log(pi/ 1)

foralls=1,...,q.



0.0.1 Discriminant Analysis

Suppose we have a one-way analysis-of-variance (ANOVA) layout
with J groups (n; subjects in group j, 1 < j < J), and p measure-
ments on each subject. If z;; denotes person ¢, in group j, and the
observation of variable k (1 <7 <mn;; 1 <j < J;1<k <p), then
define the Between-Sum-of-Squares matrix

pxp {Z nj( f--k)(j-jk’ - a_j--k’)}po

and the Wlthm—Sum—of—Squares matrix

p><p {Z Z (xzﬂ{; -jk)(xijk’ - j'jk’)}pxp

]— 1=

For the matrix product W=1B, let Aj,..., A\ > 0 be the eigen-
vectors (1" = min(p, J — 1), and py, ..., pr the corresponding nor-
malized eigenvectors. Then, the linear combination
X1
Pp|
Xy
is called the k" discriminant function. It has the valuable property

of maximizing the univariate F-ratio subject to being uncorrelated
with the earlier linear combinations.

There are a number of points to make about (Fisher’s) Linear
Discriminant Functions:

A) Typically, we define a sample pooled variance-covariance ma-

trix, Speoied, as ( W. And generally, the eigenvalues are scaled

n— J)
so that p;fspooledpk = 1.



B) When J = 2, the eigenvector, p, is equal to (ft1 — t2)'Spooicd-
This set of weights maximized the square of the ¢ ratio in a two-group
separation problem (i.e., discriminating between the two groups). We
also maximize the square of the effect size for this linear combination;
the maximum for such an effect size is

(X1 — X2)'S uiea(X1 — X2)'
where X7 and X9 are the sample centroids in groups 1 and 2 for the
p variables. Finally, if we define Y = 1 if an observation falls into
group 1, and = 0 if in group 2, the set of weights in p] is proportional
to the regression coefficient in predicting ¥ from X, ..., X,,.

C) The classification rule based on Mahalanobis distance (and as-
suming equal prior probabilities and equal misclassification values),
could be restated equivalently using plain Euclidean distances in dis-
criminate function space.



