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Notes on the Multivariate Normal
and Related Topics

Let me refresh your memory about the distinctions between pop-

ulation and sample; parameters and statistics ; population distri-

butions and sampling distributions. One might say that anyone

worth knowing, knows these distinctions. We start with the simple

univariate framework and then move on to the multivariate context.

A) Begin by positing a population of interest that is operational-

ized by some random variable, say X . In this Theory World frame-

work, X is characterized by parameters, such as the expectation of

X , µ = E(X), or its variance, σ2 = V(X). The random variable

X has a (population) distribution, which for us will typically be

assumed normal.

B) A sample is generated by taking observations onX , say,X1, . . . , Xn,

considered independent and identically distributed as X , i.e., they

are exact copies of X . In this Data World context, statistics are func-

tions of the sample, and therefore, characterize the sample: the sam-

ple mean, µ̂ = 1
n

∑n
i=1Xi; the sample variance, σ̂2 = 1

n

∑n
i=1(Xi− µ̂)2,

with some possible variation in dividing by n−1 to generate an unbi-

ased estimator of σ2. The statistics, µ̂ and σ̂2, are point estimators

of µ and σ2. They are random variables by themselves, so they have

distributions that are called sampling distributions.

The general problem of statistical inference is to ask what the sam-

ple statistics, µ̂ and σ̂2, tell us about their population counterparts,
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such as µ and σ2. Can we obtain some notion of accuracy from the

sampling distribution, e.g., confidence intervals?

The multivariate problem is generally the same but with more

notation:

A) The population (Theory World) is characterized by a collec-

tion of p random variables, X′ = [X1, X2, . . . , Xp], with parameters:

µi = E(Xi); σ
2
i = V(Xi); σij = Cov(Xi, Xj) = E[(Xi−E(Xi))(Xj−

E(Xj))]; or the correlation between Xi and Xj, ρij = σij/σiσj.

B) The sample (Data World) is defined by n independent obser-

vations on the random vector X, with the observations placed into

an n× p data matrix (e.g., subject by variable) that we also (with a

slight abuse of notation) denote by a bold-face capital letter, Xn×p:

Xn×p =



x11 x12 · · · x1p

x21 x22 · · · x2p
... ...

xn1 xn2 · · · xnp


=



x′1
x′2
...

x′n


.

The statistics corresponding to the parameters of the population are:

µ̂i = 1
n

∑n
k=1 xki; σ̂i

2 = 1
n

∑n
k=1(xki − µ̂i)2, with again some possible

variation to a division by n − 1 for an unbiased estimate; σ̂ij =
1
n

∑n
k=1(xki − µ̂i)(xkj − µ̂j); and ρ̂ij = σ̂ij/σ̂iσ̂j.

To obtain a good sense of what the estimators tell us about the

population parameters, we will have to make some assumption about

the population, e.g., [X1, . . . , Xp] has a multivariate normal distribu-

tion. As we will see, this assumption leads to some very nice results.
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0.1 Developing the Multivariate Normal Distribution

Suppose X1, . . . , Xp are p continuous random variables with density

functions, f1(x1), . . . , fp(xp), and distribution functions, F1(x1), . . . , Fp(xp),

where

P (Xi ≤ xi) = Fi(xi) =
∫ xi

−∞ fi(xi)dx .

We define a p-dimensional random variable (or random vector) as the

vector, X′ = [X1, . . . , Xp]; X has the joint cumulative distribution

function

F (x1, . . . , xp) =
∫ xp

−∞ · · ·
∫ x1

−∞ f (x1, . . . , xp)dx1 · · · dxp .

If the random variables, X1, . . . , Xp are independent, then the joint

density and cumulative distribution functions factor: f (x1, . . . , xp) =

f1(x1) · · · fp(xp) and F (x1, . . . , xp) = F1(x1) · · ·Fp(xp). The inde-

pendence property will not be assumed in the following; in fact, the

whole idea is to investigate what type of dependency exists in the

random vector X.

When X′ = [X1, X2, . . . , Xp] ∼ MVN(µ,Σ), the joint density

function has the form

φ(x1, . . . , xp) =
1

(2π)p/2|Σ|1/2
exp{−1

2
(x− µ)′Σ−1(x− µ)} .

In the univariate case, the density provides the usual bell-shaped

curve: φ(x) = 1√
2πσ

exp{−1
2[(x− µ)/σ)2]}.

Given the MVN assumption on the generation of the data matrix,
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Xn×p, we know the sampling distribution of the vector of means:

µ̂ =



µ̂1

µ̂2
...

µ̂p


∼ MVN(µ, (1/n)Σ)

In the univariate case, we have that µ̂ ∼ N(µ, (1/n)σ2). As might be

expected, a Central Limit Theorem (CLT) states that these results

also hold asymptotically when the MVN assumption is relaxed. Also,

if we estimate the variance-covariance matrix, Σ, with divisions by

n− 1 rather than n, and denote the result as Σ̂, then E(Σ̂) = Σ.

Linear combinations of random variables form the backbone of all

of multivariate statistics. For example, suppose X′ = [X1, X2, . . . , Xp] ∼
MVN(µ,Σ), and consider the following q linear combinations:

Z1 = c11X1 + · · · + c1pXp
...

Zq = cq1X1 + · · · + cqpXp

Then the vector Z′ = [Z1, Z2, . . . , Zq] ∼ MVN(Cµ,CΣC′), where

Cq×p =


c11 · · · c1p
... ...

cq1 · · · cqp

 .

These same results hold in the sample if we observe the q linear

combinations, [Z1, Z2, . . . , Zq]: i.e., the sample mean vector is Cµ̂

and the sample variance-covariance matrix is CΣ̂C′.
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0.2 Multiple Regression and Partial Correlation (in

the Population)

Suppose we partition our vector of p random variables as follows:

X′ = [X1, X2, . . . , Xp] =

[[X1, X2, . . . , Xk], [Xk+1, Xk+2 . . . , Xp]] ≡ [X′1,X
′
2]

Partitioning the mean vector and variance-covariance matrix in the

same way,

µ =

 µ1

µ2

 ; Σ =

 Σ11 Σ12

Σ′12 Σ22

 ,
we have

X′1 ∼ MVN(µ1,Σ11) ; X′2 ∼ MVN(µ2,Σ22) .

X′1 and X′2 are statistically independent vectors if and only if Σ12 =

0k×p, the k × p zero matrix.

What I call the Master Theorem refers to the conditional density

of X1 given X2 = x2; it is multivariate normal with mean vector of

order k × 1:

µ1 + Σ12Σ
−1
22 (x2 − µ2) ,

and variance-covariance matrix of order k × k:

Σ11 −Σ12Σ
−1
22 Σ′12 .

If we denote the (i, j)th partial covariance element in this latter ma-

trix (‘holding’ all variables in the second set ‘constant’) as σij·(k+1)···p,

then the partial correlation of variables i and j, ‘holding’ all variables

in the second set ‘constant’, is

ρij·(k+1)···p = σij·(k+1)···p/
√
σii·(k+1)···pσjj·(k+1)···p .
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Notice that in the formulas just given, the inverse of Σ22 must exist;

otherwise, we have what is called “multicollinearity,” and solutions

don’t exist (or are very unstable numerically if the inverse ‘almost’

doesn’t exist). So, as one moral: don’t use both total and subtest

scores in the same set of “independent” variables.

If the set X1 contains just one random variable, X1, then the mean

vector of the conditional distribution can be given as

E(X1) + σ′12Σ
−1
22 (x2 − µ2) ,

whereσ′12 is 1×(p−1) and of the form [Cov(X1, X2), . . . ,Cov(X1, Xp)].

This is nothing but our old regression equation written out in matrix

notation. If we let β′ = σ′12Σ
−1
22 , then the conditional mean vector

(predicted X1) is equal to E(X1) +β′(x2−µ2) = E(X1) + β1(x2−
µ2)+· · ·+βp−1(xp−µp). The covariance matrix, Σ11−Σ12Σ

−1
22 Σ′12,

takes on the form Var(X1) − σ12Σ
−1
22 σ

′
12, i.e., the variation in X1

that is not explained. If we take explained variation, σ12Σ
−1
22 σ

′
12,

and consider the proportion to the total variance, Var(X1), we define

the squared multiple correlation coefficient:

ρ2
1·2···p =

σ12Σ
−1
22 σ

′
12

Var(X1)
.

In fact, the linear combination, β′X2, has the highest correlation of

any linear combination with X1; and this correlation is the positive

square root of the squared multiple correlation coefficient.

0.3 Moving to the Sample

Up to this point, the concepts of regression and kindred ideas, have

been discussed only in terms of population parameters. We now have
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the task of obtaining estimates of these various quantities based on a

sample; also, associated inference procedures need to be developed.

Generally, we will rely on maximum-likelihood estimation and the

related likelihood-ratio tests.

To define how maximum-likelihood estimation proceeds, we will

first give a series of general steps, and then operationalize for a uni-

variate normal distribution example.

A) Let X1, . . . , Xn be univariate observations on X (independent

and continuous, and depending on some parameters, θ1, . . . , θk. The

density function of Xi is denoted as f (xi; θ1, . . . , θk).

B) The likelihood of observing x1, . . . , xn for values of X1, . . . , Xn

is the joint density of the n observations, and because the observa-

tions are independent,

L(θ1, . . . , θk) ≡
n∏
i=1
f (xi; θ1, . . . , θk) ,

i.e., we assume x1, . . . , xn are already observed, and that L is a

function of the parameters only.

Now, choose parameter values such that L(θ1, . . . , θk) is at a max-

imum — i.e., the probability of observing that particular sample

is maximized by the choice of θ1, . . . , θk. Generally, it is easier

and equivalent to maximize the log-likelihood using `(θ1, . . . , θk) ≡
log(L(θ1, . . . , θk)).

C) Generally, the maximum values are found through differentia-

tion, and by setting the partial derivatives equal to zero. Explicitly,
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we find θ1, . . . , θk such that

∂

∂θj
`(θ1, . . . , θk) = 0 ,

for j = 1, . . . , k. (We should probably check second derivatives to

see if we have a maximum, but this is almost always true, anyways.)

Example:

Suppose Xi ∼ N(µ, σ2), with density

f (xi;µ, σ
2) =

1

σ
√

2π
exp{−(xi − µ)2/2σ2} .

The likelihood has the form

L(µ, σ2) =
n∏
i=1

1

σ
√

2π
exp{−(xi − µ)2/2σ2} =

(1/
√

2π)n(1/σ2)n/2 exp{−(1/2σ2)
n∑
i=1

(xi − µ)2} .

The log-likelihood reduces:

`(µ, σ2) = log L(µ, σ2) =

log(1/
√

2π)n + log(1/σ2)n/2 + (−(1/2σ2)
n∑
i=1

(xi − µ)2) =

constant− (n/2) log σ2 − (1/2σ2)
n∑
i=1

(xi − µ)2 .

The partial derivatives have the form:

∂`(µ, σ2)

∂µ
= −(1/2σ2)

n∑
i=1

2(xi − µ)(−1) ,
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and

∂`(µ, σ2)

∂σ2
= −(n/2)(1/σ2)− (1/2(σ2)2)(−1)

n∑
i=1

(xi − µ)2 .

Setting these two expressions to zero, gives

µ̂ =
n∑
i=1
xi/n ; σ̂2 = (1/n)

n∑
i=1

(xi − µ̂)2 .

Maximum likelihood (ML) estimates are generally consistent, asymp-

totically normal (for large n), and efficient; a function of the sufficient

statistics; and have an invariance to operations performed on them

– e.g., the ML estimate for σ is just
√
σ̂2. As the ML estimator for

σ̂2 shows, ML estimators are not necessarily unbiased.

Another Example:

Suppose X1, . . . , Xn are observations on the Poisson discrete ran-

dom variable X (having outcomes 0, 1, . . .):

P (Xi = xi) =
exp(−λ)λxi

xi!
.

The likelihood is

L(λ) =
n∏
i=1
P (Xi = xi) =

exp(−nλ)λ
∑

i xi∏
i xi!

,

and the log-likelihood

`(λ) = log L(λ) = −nλ + log(λ
∑

i xi)− log
∏
i
xi! .

The partial derivative

∂`(λ)

∂λ
= −n + (1/λ)

n∑
i=1
xi ,
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and when set to zero, gives

λ̂ =
n∑
i=1
xi/n .

0.3.1 Likelihood Ratio Tests

Besides using the likelihood concept to find good point estimates,

the likelihood can also be used to find good tests of hypotheses.

We will develop this idea in terms of a simple example: Suppose

X1 = x1, . . . , Xn = xn denote values obtained on n independent

observations on a N(µ, σ2) random variable, and where σ2 is assumed

known. The standard test of H0 : µ = µ0 versus H1 : µ 6= µ0, would

compare (x̄·−µ0)2/(σ2/n) to a χ2 random variable with one-degree

of freedom. Or, if we chose the significance level to be .05, we could

reject H0 if |x̄· − µ0|/(σ/
√
n) ≥ 1.96. We now develop this same

test using likelihood ideas:

The likelihood of observing x1, . . . , xn, L(µ), is only a function of

µ (because σ2 is assumed to be known):

L(µ) = (1/σ
√

2π)n exp{−(1/2σ2)
n∑
i=1

(xi − µ)2} .

Under H0, L(µ) is at a maximum for µ = µ0; under H1, L(µ) is

at a maximum for µ = µ̂, the maximum likelihood estimator. If

H0 is true, L(µ̂) and L(µ0) should be close to each other; If H0 is

false, L(µ̂) should be much larger than L(µ0). Thus, the decision

rule would be to reject H0 if L(µ0)/L(µ̂) ≤ λ, where λ is some

number less than 1.00 and chosen to obtain a particular α level.

The ratio, (L(µ0)/L(µ̂)) = exp{−(1/2)(µ̂−µ0)2}/(σ2/n). Thus, we

could rephrase the decision rule: reject H0 if (µ̂ − µ0)2}/(σ2/n) ≥
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−2 log(λ), or if |x̄· − µ0|/(σ/
√
n) ≥

√
−2 log λ. Thus, for an .05

level of significance, choose λ so 1.96 =
√
−2 log λ. Generally, we

can phrase likelihood ratio tests as:

−2 log(likelihood ratio) ∼ χ2
ν−ν0 ,

where ν is the dimension of the parameter space generally, and ν0 is

the dimension under H0.

0.3.2 Estimation

To obtain estimates of the various quantities we need, merely re-

place the variances and covariances by their maximum likelihood

estimates. This process generates sample partial correlations or co-

variances; sample multiple squared correlations; sample regression

parameters; and so on.

11


