
The Briefest of Introductions to
MATLAB

A Computational Environment for the Behavioral
Sciences

Lawrence Hubert

University of Illinois

These slides are available at:

cda.psych.uiuc.edu/multivariate fall 2011

The Briefest of Introductions to MATLAB – p. 1/66

MATLAB (Matrix Laboratory)

This is the computational environment that is becoming
the universal standard for the Behavioral Sciences. It is
already the standard for all the Engineering and
Computer Science disciplines.

Developed and maintained by the MathWorks, physically
located in Natick, Massachusetts (just outside of Boston).

One of the least predatory companies I’ve ever
encountered, with just great pricing for students and
academic settings generally. This is in contrast to SPSS,
SAS, and the like, or for that matter, Adobe.

All the help, manuals, and so on you will ever need (and
for free), are at http://www.mathworks.com

The Briefest of Introductions to MATLAB – p. 2/66

Also, see
www.mathtools.net
This is a site maintained by the MathWorks for
computational things generally.

In comparison to closed software systems like SPSS,
SAS, and SYSTAT (where you don’t get to see or modify
the actual code, or chose different options if they don’t
deem it necessary), the very (old) cliched proverb to
follow is appropriate (edited for the original sexist
language):

“Give a person a fish; you will have fed him/her for
today. Teach a person to fish, and you have fed him/her
for a lifetime.” The Briefest of Introductions to MATLAB – p. 3/66

With some facility with Matlab, you are no longer
dependent on what (obsolete) fish someone else tries to
feed you, e.g., “in K-means clustering, local optima are
not an issue, so we will give you only one solution”
WRONG!

You can “roll your own” analyses —
Extra credit: what generation does this phrase come
from?

More indirectly, the MathWorks gives generously to
public radio in Boston (WBUR) —

They may be the “Ben and Jerry’s” of software
environments —

The Briefest of Introductions to MATLAB – p. 4/66

There is an enormous amount of detail that we could go
over, but I will mention or introduce only what I have
used and found valuable.

The various demos we do now are only intended for the
mechanics; you don’t need to understand all the nuances
of the things introduced.

What might be a good place to start is the free Getting
Started Manual (getstart_matlab.pdf, available
where these notes are placed).

But if you stick with me for the next few hours, you
should have enough to at least begin learning “on the
job”, using all the “help” material that is freely available.

The Briefest of Introductions to MATLAB – p. 5/66

Basic MATLAB

The Mother of all Calculators —

where everything can be done with matrices (in fact,
the basic unit of analysis is a matrix).

This is where we start, using a simple example to
show MATLAB as a powerful computational
scratchpad. For our carry-along illustration, the
same data set from Psychology 406 is used that
introduced multiple regression.

There are many built-in functions, including lots of
matrix functions, to get our work done (MATLAB
started as an interface to LINPACK and EISPACK,
both linear algebra packages, and continues in this
tradition today using LAPACK and BLAS).

The Briefest of Introductions to MATLAB – p. 6/66

Programming language —
it is very straightforward to use, but extremely
powerful and much easier than, for example, C or
Fortran. (There is no explicit array dimensioning
needed, or to indicate and keep track of whether you
are dealing with real or integer numbers.)

There is nothing you can do in Fortran or C that you
can’t do in MATLAB (and in a much easier fashion).

It is an interpretive language (so it translates and
executes the statements “on the fly”); this is in
contrast to compiled C or Fortran (or Basic or
Pascal, among others), which produce stand-alone
executables.

The Briefest of Introductions to MATLAB – p. 7/66

Given recent enhancements, interpreted MATLAB is as
fast as compiled C.

Generally, we can do better speedwise with compiled
Fortran (about a tenfold increase). Also, we can now do
so with automatic conversions from MATLAB code to
Fortran (the old .dll’s). I will mention how in a
moment.

There is one overriding advantage of writing your own
functions in MATLAB — they are easily modifiable
ascii files. So, if someone wishes to run these, I just
send them over email, and he/she can just “fire-up”
MATLAB (a non-hobbled student version with several
toolboxes [e.g., Statistics and Optimization] costs about a
$100) —

The Briefest of Introductions to MATLAB – p. 8/66

or use one of the “free” alternatives that will run M-files
— OCTAVE, for example:

http://www.octave.org

I’ve been a Fortran programmer for over four decades,
and that is long enough to keep track of matrix
dimension sizes or to worry about what is an integer and
what is not. I can’t tell you emphatically enough how
much easier it is now to write my code in MATLAB.

If I need the speed, I can translate to callable Fortran
subroutines. But usually, you can just stay with the
MATLAB code (written in the form of what are called
M-files) because that is generally fast enough.

The Briefest of Introductions to MATLAB – p. 9/66

In Fortran, I was a “spaghetti coder”, with lots of “go
to”s (with statement numbers). In fact, I was once known
as the “go to” kind-of guy — (this is a joke)

In MATLAB, there are no “go to”s and no statement
numbers. When you use the (chroma-coded) Editor,
structured programming is done automatically for you,
with nice indentations and things lined up appropriately
for easy reading.

I would gladly be a poster child for the MathWorks; they
could put my picture on a milk carton with the caption:
“Have you seen this Fortran programmer?”

The Briefest of Introductions to MATLAB – p. 10/66

Provides great graphics —

2- and 3-D plotting, visualization, animation, image
processing.
In 2-D plotting of prime importance in presenting
data and statistical results, graphs can be edited
easily with tools directly from the MATLAB figure
window and exported to common file types —
.eps, .jpg, and .pdf, for example.
Files of these types can be embedded into Word
documents (if you must), or better, using LATEX.
The MATLAB figure format file type (called .fig)
can be used so the figure can be reedited in
MATLAB

The Briefest of Introductions to MATLAB – p. 11/66

Graphical User Interface Development Environment
(GUIDE) —

You can develop your own data collection GUIs or
demonstrations. A prime example of this would be
incorporating the (free, and freely available,
open-source) (visual) Psychophysics Toolbox
(primarily developed by David Brainard, now at U.
Penn., Psychology):

http://psychtoolbox.org

For more, take the course in MATLAB
programming from our own Alejandro Lleras.

The Briefest of Introductions to MATLAB – p. 12/66

Application Program Interface (API) —
for calling C, Fortran, Java routines within the
MATLAB environment.

We mentioned this earlier in the context of speeding
up MATLAB code using Fortran produced .dlls
(actually, they now go by the extension .mexw32
on windows machines using the current version of
MATLAB [this is release 2011a]).

The conversion program (in the way of M-files) is
called matlab2fmex.m, and written by Benjamin
Barrowes:
sourceforge.net/projects/matlab2fmex

The Briefest of Introductions to MATLAB – p. 13/66

Toolboxes

A Toolbox is a collection of M-files that do analysis
within some specific area. Typically, the source code for
the M-files is available for modification, even when the
original toolbox may have been purchased (for real
money even, as Yogi Berra says).

The commercial Toolboxes through the MathWorks are
all on our site license. The first five Toolboxes I list
below are probably the most germane for us (for
example, I have paid for a separate license for these for
years so they can easily be put on my laptop without
worry about access to the license server).

Statistics; Optimization; Image Processing; Curve
Fitting; Bioinformatics; Global Optimation

The Briefest of Introductions to MATLAB – p. 14/66

Others of interest —
Neural Networks; Splines; Wavelets, Symbolic Math;
Mapping (Geographical); Parallel Computing;
Econometrics

Also note —
Compiler (this converts M-files directly to C or C++
code, and generates stand-alone applications that can be
distributed)

The Briefest of Introductions to MATLAB – p. 15/66

Free (open source) Toolboxes —

www.mathworks.com/matlabcentral — several
thousand M-files contributed by users.
www.mathtools.net/MATLAB

Auditory Perception; ILAB (eye movement analyses);
Brainstorm (MEG/EEG); Chemometrics; N-way
Toolbox; Smoothing; Econometrics; Spatial Statistics;
NURBS; ICA (EEG/ERP – independent component
analysis); LYNGBY (fMRI analyses); NIH CORTEX;
NMRLAB; Psychophysics; Speech Processing; EMEGS
(for EEG and MEG); SPM8 (Statistical Parametric
Mapping – neuroimaging); fmristat; surfstat

The Briefest of Introductions to MATLAB – p. 16/66

My Toolboxes

I have put a lot of material (we will talk about) at my
web site:
cda.psych.uiuc.edu/multivariate_fall_2011
‘cda’ stands for “combinatorial data analysis”

One published item: Hubert, L., Arabie, P., & Meulman,
J. (2006). The structural representation of proximity
matrices with MATLAB. SIAM: Philadelphia.

An earlier draft: (directory: mono_stuff_11_1_05)
siam_final_submission_r1.pdf
The M-files directory: srpm_mfiles

The Briefest of Introductions to MATLAB – p. 17/66

Two other Toolboxes —

Cluster Analysis:
handbook_clustering_chapter.pdf
clusteranalysis_mfiles

Unidimensional Scaling:
new_unidimensionalscaling_chapter.pdf
new_unidimensionscaling_mfiles

These will be handed out later in the semester.

The Briefest of Introductions to MATLAB – p. 18/66

There are three books that are relevant to statistical
issues and MATLAB; all three have downloadable
M-files to go along with these sources.

Computational Statistics Handbook with MATLAB
(Second Edition)
Wendy L. Martinez/Angel R. Martinez
Chapman & Hall/CRC, 2008

Exploratory Data Analysis with MATLAB (Second
Edition)
Wendy L. Martinez/Angel R. Martinez
Chapman & Hall/CRC, 2010

Multi-way Analysis: Applications in the Chemical
Sciences
Age Smilde/Rasmus Bro/Paul Geladi
Wiley, 2004

The Briefest of Introductions to MATLAB – p. 19/66

There are several other very good sources for learning
about things MATLAB, for free –

The large collections of demos that come with MATLAB
and the Toolboxes

The great number of Webinars that you can see for free,
covering all aspects of MATLAB and the various
toolboxes. We list below a few of the possibilities:
Introduction to MATLAB
Data Analysis with Curve Fitting and Statistics
Toolboxes
Applied Optimization Using MATLAB

The Briefest of Introductions to MATLAB – p. 20/66

The easiest way to get help “on the fly” is to issue the
command help in the command window; a collection of
help directories come up.

The ones I use most often are:
help matfun — all the basic matrix functions
help datafun — all the basic data analysis functions
help graph2d — all the basic 2-dimensional plotting
functions
help stats — all the functions in the MATLAB
Statistics Toolbox
help optim — all the functions in the MATLAB
Optimization Toolbox

The Briefest of Introductions to MATLAB – p. 21/66

MATLAB as a Calculator

Some of the capability of MATLAB as a calculator will
be illustrated with the same data I use in Psychology 406
to introduce simple correlation and regression,
least-squares, the general linear model, and all of the
related concepts.

I have put these data into a file (ascii) with Notepad,
with the name: community_data.dat

Note: all the personal files that you use or create in
MATLAB should be on, say, your own flash drive; you
can then make this your current directory (for the
calculator use of MATLAB; creating your own M-files to
use, and so on).

The Briefest of Introductions to MATLAB – p. 22/66

community accidents(100s) vehicles(1000s) police
1 1 4 20
2 4 10 6
3 5 15 2
4 4 12 8
5 3 8 9
6 4 16 8
7 2 5 12
8 1 7 15
9 4 9 10

10 2 10 10

The Briefest of Introductions to MATLAB – p. 23/66

The .dat extension is important (so turn on “show
known file types” in Windows — tools/Folder
Options/view — and uncheck the box next to “Hide
extensions for known file types”). The extension tells
MATLAB it is an ascii file and can be loaded with the
command: load community_data.dat

Once done, a 10× 3 matrix called community_data
is then available in your workspace to operate on and use.

The verbatim contents of community_data.dat are:

The Briefest of Introductions to MATLAB – p. 24/66

1 4 20
4 10 6
5 15 2
4 12 8
3 8 9
4 16 8
2 5 12
1 7 15
4 9 10
2 10 10

The Briefest of Introductions to MATLAB – p. 25/66

The Desktop

When the default Desktop is called up, we have the:
command window: this is where everything happens and
all commands are entered

command history: if you would care to, you could reuse
previous commands completed earlier that are saved here

workspace: this is where all the variables (matrices) exist
that you can work on

current directory: set this to your current work area. I
would suggest that this be a flash drive for all your
ongoing stuff (with, obviously, continual backups to
other places, right!)

The Briefest of Introductions to MATLAB – p. 26/66

You can access all the help possibilities you will ever
need from the Desktop.

We will now load up MATLAB and show you the
desktop. We will continue to flip back and forth between
MATLAB and these slides, so have the hard copies in
front of you.

The Briefest of Introductions to MATLAB – p. 27/66

Basic Data Analysis

The elementary (built-in) data analysis functions
generally operate in a column-wise orientation on a
matrix:
load community_data.dat

community_data

mean(community_data)

The functions median, mode, max, min, std, and
var, work the same way.

To do it row-wise, use the transpose operation “ ′ ”; for
example, var(community_data’)

The Briefest of Introductions to MATLAB – p. 28/66

The following four executed statements illustrate a few
ways matrices operate with MATLAB that are relevant to
us.

the first shows how matrices may be entered directly by
hand;

the second is the construction of a matrix by
concatenation;

the third illustrates that scalar multiplication of a matrix
is extended by MATLAB to scalar addition;

the fourth illustrates that matrices are indexed in a
row-column order.

The Briefest of Introductions to MATLAB – p. 29/66

>> A = [1 2 3;2 1 3;3 1 2]

A =

1 2 3

2 1 3

3 1 2

>> B = [A 3*A;A-(2*A) A+A]

B =

1 2 3 3 6 9

2 1 3 6 3 9

3 1 2 9 3 6

-1 -2 -3 2 4 6

-2 -1 -3 4 2 6

-3 -1 -2 6 2 4

The Briefest of Introductions to MATLAB – p. 30/66

>> C = A + 10

C =

11 12 13

12 11 13

13 11 12

>> A(2,3)

ans =

3

The Briefest of Introductions to MATLAB – p. 31/66

The two functions cov and corrcoef give the (3× 3)
covariance and correlation matrices.

corr_community_data = ...
corrcoef(community_data)

cov_community_data = ...
cov(community_data)

correlation_accident_vs_vehicle = ...
corr_community_data(1,2)

cov_accident_vs_police = ...
cov_community_data(1,3)

The Briefest of Introductions to MATLAB – p. 32/66

Let’s see if we can get to the solution of the normal
equations:

b = (X′X)−1XY

We wish to predict the dependent variable, number of
accidents (placed in Y, 10× 1), from the number of
vehicles and the number of police (second and third
columns of the 10× 3 design matrix X, with the first
column containing all ones for the additive constant).
The 3× 1 regression vector b contains, in order, the
additive constant and the regression coefficients on the
number of vehicles and number of police.

The Briefest of Introductions to MATLAB – p. 33/66

Y = community_data(:,1)

X = [ones(10,1),community_data(:,2),...
community_data(:,3)]

b = (inv(X’*X))*(X’*Y)

pred_values = X*b

correlations = ...
corrcoef([Y,pred_values])

R_squared = (correlations(1,2))ˆ2

The Briefest of Introductions to MATLAB – p. 34/66

Other Matrix Operations

det(X’*X)

rank(community_data)

trace(X’*X)

inv(X’*X)

Some special matrices:
zeros(10,10) [ones(10,10)]

rand(10,10) [randn(10,10)]

eye(10)
The Briefest of Introductions to MATLAB – p. 35/66

For Multivariate Analysis

[V,D] = eig(A), where A = VDV′, for A square; V is
orthogonal and contains eigenvectors (as columns); D is
diagonal and contains the eigenvalues.

[U,S,V] = svd(B), where B = USV′; the columns of
U and the rows of V′ are orthonormal; S is diagonal and
contains the non-negative singular values (ordered from
largest to smallest).

The Briefest of Introductions to MATLAB – p. 36/66

Some Details

The semicolon (;) at the end of a statement, suppresses
output.

MATLAB is case-sensitive.

The up-arrow key (↑) retrieves the previous command
(for editing purposes, possibly).

clc clears the screen.

An ellipsis (. . .) allows a long command to continue on
the next line.

The Briefest of Introductions to MATLAB – p. 37/66

The colon operator (:) does a lot of things:
[1:10] produces 1 2 3 4 5 6 7 8 9 10 —
A(:,1) selects all rows and just the first column of A.
gives index ranges in “for” loops: for i = 1:n

NaN stands for “not a number”, and you get it, for
example, from 0/0 —

There are many ways of getting a matrix into the
workspace. We have mentioned two: the ascii format
in a .dat file and using the load command; or enter
directly as a matrix, e.g.,: [2 2 2;3 4 2;1 6 7]
with semicolons separating rows, and blanks or commas
separating row entries.

The Briefest of Introductions to MATLAB – p. 38/66

There is also an import wizard for .xls files (among
others).

Generally, we will construct matrices through various
operations or concatenations:
for rows: [--- ; --- ; ---]
for columns: [--- , --- , ---]

You can save the workspace, or part of it, as a .mat file,
and reload it later. Or you can send it to someone else,
and they could reload into their MATLAB environment.

The Briefest of Introductions to MATLAB – p. 39/66

.mat files are binary so they are not easily readable.

There is also a diary function that can save your output
to a file (when diary is on). When diary is off, the
output is not saved to a file. Use diary filename; if
no file is specified, the file is just called diary; use
diary off to stop saving the output.

Don’t be afraid to use (a lot of redundant) parentheses to
clarify the order of operations; it will never hurt.

Never, never, ever, rely on the order of operation
precedence to clarify an ambiguous statement — make it
explicit with parentheses. Trust me on this one; you will
mess up big-time, many time(s), if you don’t.

The Briefest of Introductions to MATLAB – p. 40/66

MATLAB for Plots

One very powerful feature of MATLAB is its (2 – and 3
– dimensional) plotting capabilities, along with the very
nice environment to edit and label these plots
extensively, and eventually, to save plots in a variety of
file formats: .eps. .pdf, .jpg, among others.

I would suggest using .eps always — it is the (or at
least, my) preferred way to put graphics into TEX and
LATEX documents; it is also editable and savable in all the
usual drawing programs (e.g., Illustrator).

The Briefest of Introductions to MATLAB – p. 41/66

plot(community_data(:,2), ...
community_data(:,1),’ko’)

for i = 1:10

objectlabels{i,1} = int2str(i);

end

text(community_data(:,2), ...
community_data(:,1), ...
objectlabels,’fontsize’,10, ...
’verticalalignment’,’bottom’)

The Briefest of Introductions to MATLAB – p. 42/66

ylabel(’number of accidents’)

xlabel(’number of vehicles’)

title(’Scatterplot of Accidents ...
versus Vehicles’)

axis([0,20,0,6])

text(14,1,’{\it Note the italics}’)

gtext(’{\bf Note the boldface}’)

The Briefest of Introductions to MATLAB – p. 43/66

Some Plotting Points

There are many tools and ways for editing your plots,
both from the command line and by using the simple
Adobe Illustrator-like interface in the Figure window.
Also, on exporting the file, you can specify the size.
If you stay in one of the formats Illustrator can edit (e.g.,
.eps), you can use Illustrator to edit your graphics at
will.
Once you have a plot the way you like it, you could even
generate the M-file that produced it — which would then
be ready to accept another set of data.
TEX and LATEX notation can be used in the plots (for
symbols, italics, formulas, and so on). Text can be placed
at certain coordinates with text(x,y,’string’), or
with cross-hairs with gtext(’string’).

The Briefest of Introductions to MATLAB – p. 44/66

Script M-files

A script M-file is a collection of statements and
commands placed in an file that can be executed when
the file name is typed in the command window.

Scripts are easily reusable (and changeable). They
operate on and produce variables in the workspace.

As an example, we use ganmaa_script.m, which
produces boxplots for some two-independent sample
data I was helping someone with.

Make sure you name your scripts meaningfully, so you
will know what they are the next time you look into your
current directory (not, e.g., script_one.m).

The Briefest of Introductions to MATLAB – p. 45/66

load pre_vitd_level.dat
load post_vitd_level.dat
pre_vitd_level(:,1)
post_vitd_level(:,1)

boxplot([pre_vitd_level(:,1), ...
post_vitd_level(:,1)],’notch’, ...
’on’,’labels’,{’Before’,’After’})

title(’Vitamin D Levels in Children ...
Before and After Drinking Vitamin D ...
Fortified Whole Milk’)

ylabel(’25(OH)D, ng/ml’)
The Briefest of Introductions to MATLAB – p. 46/66

Function M-files

A function M-file takes input argument(s) and produces
output arguments. The form of two functions,
targlin.m and proxrand.m, shows the general
pattern.

targlin.m produces a symmetric proximity matrix of
size n× n containing distances between equally and
unit-spaced positions along a line;

proxrand.m produces a symmetric proximity matrix
with entries that are a random permutation of those in a
symmetric input matrix.

If you type, for example, help targlin, you will get
the help header comments echoed. These are the lines
“commented out” with “%”.

The Briefest of Introductions to MATLAB – p. 47/66

targlin.m

function [targlinear] = targlin(n)

% TARGLIN produces a symmetric proximity matrix of size

% $n \times n$, containing distances

% between equally and unit-spaced positions

% along a line: targlinear(i,j) = abs(i-j).

%

% syntax: [targlinear] = targlin(n)

targlinear = zeros(n,n);

for i = 1:n-1

for j = (i+1):n

targlinear(i,j) = abs(i-j);

targlinear(j,i) = targlinear(i,j);

end

end

The Briefest of Introductions to MATLAB – p. 48/66

proxrand.m

function [randprox] = proxrand(prox)

% PROXRAND produces a symmetric proximity matrix RANDPROX

% with a zero main diagonal having

% entries that are a random permutation of those in the

% symmetric input proximity

% matrix PROX.

%

% syntax: [randprox] = proxrand(prox)

n = size(prox,1);

change = randperm((n*(n-1))/2);

randprox = prox;

for i = 1:(n-2)

for j = (i+1):n

k = i + j;

The Briefest of Introductions to MATLAB – p. 49/66

for ione = 1:(n-2)

for jone = (ione+1):n

kk = ione + jone;

if(change(k) == kk)

temp = randprox(i,j);

randprox(i,j) = randprox(ione,jone);

randprox(j,i) = randprox(i,j);

randprox(ione,jone) = temp;

randprox(jone,ione) = randprox(ione,jone);

end

end

end

end

end

The Briefest of Introductions to MATLAB – p. 50/66

To show how these two M-functions work, enter the
following:

prox = targlin(10)

[randprox] = proxrand(prox)

The Briefest of Introductions to MATLAB – p. 51/66

Points About M-files

Functions work in their own workspace — the Las Vegas
property of what goes on in the function space, stays in
the function’s own workspace. This is different from the
use of scripts.

The names of the M-files and the functions should be
exactly the same (and meaningful).

Notice the use of the editor, chroma-coding, structured
programming, and so on. This makes writing these
M-files much easier.

The Briefest of Introductions to MATLAB – p. 52/66

The Editor

The MATLAB Editor is a very nice device for writing
your functions and scripts, i.e., your M-files.
It is chroma-coded so you can see the special words and
commands highlighted in different colors.
There is automatic nested indentation of the statements
as you go along to make the programs readable and its
structure obvious — the ends line up correctly with the
ifs, fors, whiles, and so on.
There are cute little sounds and colors (or annoying,
demanding on your mood) that occur when you begin to
commit certain errors.
A debugger operates with the editor, but you don’t really
need it given the transparency of the written code — not
so in Fortran where you can spend days debugging code.

The Briefest of Introductions to MATLAB – p. 53/66

Graphical User Interfaces (GUIs)

GUIDE (Graphical User Interface Development
Environment) is a layout tool that produces two files: a
figure file to hold the actual GUI produced, and a
(template) code M-file in which you can program what
are called the callbacks, i.e., what happens when a button
is pressed or a slider is dragged.

It is generally easiest to modify an existing GUI to do
what you want (assuming you can find one).

When you program experiments (and use, perhaps, the
Psychophysics Toolbox), you may need to have a
standalone MATLAB for accurate timings that doesn’t
need to go back to any server for license information.

The Briefest of Introductions to MATLAB – p. 54/66

We will demonstrate two GUIs — one demo from the
MathWorks is on the traveling salesman problem:
travel.m;

the second is part of the Statistics Toolbox:
randtool.m.

We give the “help” files; look at the M-files; and run the
GUIs.

The Briefest of Introductions to MATLAB – p. 55/66

Programming

Operational symbols to use (the colons here are not part
of the symbol):

== : “is equal to”
˜= : “is not equal to”
& : “and”
| : “or”
˜ : “not”
>= : “greater than or equal”
<= : “less than or equal”
> : “greater than”
< : “less than”

The Briefest of Introductions to MATLAB – p. 56/66

Flow control:

if (statement)
statements

elseif (statement)
statements

else
statements

end

if (statement)
(statements)

end

The Briefest of Introductions to MATLAB – p. 57/66

for (statement)
statements

end

while (statement)
statements

end

The Briefest of Introductions to MATLAB – p. 58/66

Data Structures

Besides a (two-way) row × column matrix, we have
multidimensional arrays (e.g., row × column × layer)
that can be of arbitrary dimensionality.

Cell arrays contain as elements other arrays; these must
be accessed with curly braces, “{ }”.

Structures have entries accessed by textual field
designators (with a “.”) — much like a data-base entity.

Remember that, generally, text used in any context has
single quotes: e.g., S = ’Larry Hubert’

The Briefest of Introductions to MATLAB – p. 59/66

>> roster(1).name = ’Larry Hubert’;

>> roster(1).score = 95;

>> roster(1).grade = ’A’;

>> roster(2).name = ’Sungjin Hong’;

>> roster(2).score = 100;

>> roster(2).grade = ’A+’;

>> roster(3) = struct(’name’,’Michael Regenwetter’,’score’, ...

89,’grade’,’A-’);

>> roster

roster =

1x3 struct array with fields:

name

score

grade

>> roster(3).name

ans =

Michael Regenwetter
The Briefest of Introductions to MATLAB – p. 60/66

MATLAB Speed Tricks

Vectorization: make sure you use the matrix operations
instead of, say, many nested “for” loops.

Preallocation: allocate your matrices with, say, zeros,
of the appropriate size. It is very slow to add to (and
expand) the matrices entry by entry.

M-Lint code checker gives a report on your M-files and
suggests obsolete code and speed-ups.

The Briefest of Introductions to MATLAB – p. 61/66

The Profiler (not the TV show) tells where in a specific
M-file the process is spending the most time; if
identified, maybe you can reprogram in some way (e.g.,
vectorize) to increase speed.

There is the program, matlab2fmex.m, that produces
Fortran code and an interface gateway from a MATLAB
M-file and compiles it. When the function is called in
MATLAB, the .dll (really, now called .mexw32) is
used first.

If speed is really important to you, a ten-fold increase is
obtained using compiled and callable Fortran routines.

The Briefest of Introductions to MATLAB – p. 62/66

Images

A two-dimensional array can be displayed as an image
where the array elements determine brightness or color
of the image (in pixels).

If there are t distinct integers in the array, a colormap
is a t× 3 matrix, where the t integers are indexed into the
colors.

imread and imwrite can read and write images in the
standard formats (.tiff, .jpg, .bmp, and so on).

The Briefest of Introductions to MATLAB – p. 63/66

Try this:
>> load durer.mat

>> whos

Name Size Bytes Class Attributes

X 648x509 2638656 double

caption 2x28 112 char

map 128x3 3072 double

>> colormap(map)

>> image(X)

>> axis image

The Briefest of Introductions to MATLAB – p. 64/66

Animation

We will illustrate one animation of coloring a proximity
matrix and seeing how it changes going through row
(and column) permutation.

The script is called: matrixcolor_script.m, and
is given verbatim below. The function matcolor.m is
given on the next slide.

[outperm,rawindex,allperms,index] = ...

order(targlin(15),targlin(15),randperm(15),3);

matcolor(targlin(15),allperms,index)

The Briefest of Introductions to MATLAB – p. 65/66

function matcolor(datamat,perms,numperms)

%MATCOLOR constructs a color movie of the effects of a series of

% permutations on a proxmity matrix.

% DATAMAT is an $n \times n$ symmetric proximity matrix;

% PERMS is a cell array containing NUMPERMS permutations.

m=moviein(numperms);

for i=1:numperms

pcolor(datamat(perms{i},perms{i}));

axis ij off;

colormap(bone(256));

colorbar;

m(:,i) = getframe;

end

movie(m);

The Briefest of Introductions to MATLAB – p. 66/66

	MATLAB (Matrix Laboratory)
	Basic MATLAB
	Toolboxes
	My Toolboxes
	MATLAB as a Calculator
	The Desktop
	Basic Data Analysis
	Other Matrix Operations
	For Multivariate Analysis
	Some Details
	MATLAB for Plots
	Some Plotting Points
	Script M-files
	Function M-files
	targlin.m
	proxrand.m
	Points About M-files
	The Editor
	Graphical User Interfaces (GUIs)
	Programming
	Data Structures
	MATLAB Speed Tricks
	Images
	Animation

