Psychology 594
 Multivariate Analysis

Solve all the problems first by hand; redo the numerical analyses with MATLAB to check your results. Note: you don't need to do any symbolic work in MATLAB; only reproduce the numerical results.

Homework I

Problem 1:

Let $\mathbf{x}^{\prime}=[6,2,1]$ and $\mathbf{y}^{\prime}=[-1,3,1]$.
(a) Graph the two vectors.
(b) Find (i) the length of \mathbf{x}, (ii) the angle between \mathbf{x} and \mathbf{y}, and (iii) the projection of \mathbf{y} on \mathbf{x}.
(c) Because $\bar{x}=3$ and $\bar{y}=1$, graph the mean centered vectors, $[6-3,2-3,1-3]=[3,-1,-2]$ and $[-1-1,3-$ $1,1-1]=[-2,2,0]$. Calculate the correlation between the three observation pairs. Find the cosine of the angle between the two mean-corrected vectors, and comment on the relation to the correlation.

Problem 2:
Given the matrices

$$
\mathbf{A}=\left[\begin{array}{ll}
1 & 4 \\
2 & 6 \\
3 & 8
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ll}
1 & 3 \\
1 & 4
\end{array}\right], \quad \mathbf{C}=\left[\begin{array}{c}
5 \\
-4 \\
2
\end{array}\right]
$$

perform the indicated multiplications:
(a) $5 \mathbf{A}$
(b) $\mathbf{A B}$
(c) $\mathbf{B}^{\prime} \mathbf{A}^{\prime}$
(d) $\mathbf{C}^{\prime} \mathbf{A}$
(e) Is $\mathbf{B A}$ defined? If so, calculate it.

Problem 3:

Verify the following properties of the transpose and inverse when

$$
\mathbf{A}=\left[\begin{array}{ll}
2 & 4 \\
3 & 1
\end{array}\right], \quad \mathbf{B}=\left[\begin{array}{ll}
5 & 2 \\
2 & 1
\end{array}\right]
$$

(a) $\left(\mathbf{A}^{\prime}\right)^{\prime}=\mathbf{A}$
(b) $\left(\mathbf{B}^{\prime}\right)^{-1}=\left(\mathbf{B}^{-1}\right)^{\prime}$
(c) $(\mathbf{A B})^{\prime}=\mathbf{B}^{\prime} \mathbf{A}^{\prime}$
(d) $(\mathbf{A B})^{-1}=\mathbf{B}^{-1} \mathbf{A}^{-1}$

Problem 4:

Verify that

$$
\mathbf{Q}=\frac{1}{3}\left[\begin{array}{ccc}
2 & -2 & 1 \\
1 & 2 & 2 \\
2 & 1 & -2
\end{array}\right]
$$

is an orthogonal matrix; calculate $\mathbf{Q Q}^{\prime}, \mathbf{Q}^{\prime} \mathbf{Q}$, and \mathbf{Q}^{-1}.

Homework II

Problem 1:
Let

$$
\mathbf{A}=\left[\begin{array}{cc}
9 & -3 \\
-3 & 1
\end{array}\right]
$$

(a) Is \mathbf{A} symmetric?
(b) Is A positive definite?

Problem 2:

Let

$$
\mathbf{A}=\left[\begin{array}{cc}
1 & 2 \\
2 & -2
\end{array}\right]
$$

a) Determine the eigenvalues and associated eigenvectors of \mathbf{A}. Find the spectral decomposition of \mathbf{A}.
b) Find \mathbf{A}^{-1}.
c) Compute the eigenvalues and eigenvectors of \mathbf{A}^{-1}, and write out the spectral decomposition of \mathbf{A}^{-1}. Compare this spectral decomposition with that for \mathbf{A}.

Problem 3:

A quadratic form $\mathbf{x}^{\prime} \mathbf{A x}$ is said to be positive definite if the matrix \mathbf{A} is positive definite. Is the quadratic form, $4 x_{1}^{2}+4 x_{2}^{2}-6 x_{1} x_{2}$, positive definite?

Problem 4:

Determine the square root matrix $\mathbf{A}^{1 / 2}$ using the matrix A from the previous problem 3. Also, determine $\mathbf{A}^{-1 / 2}$, and show that $\mathbf{A}^{1 / 2} \mathbf{A}^{-1 / 2}=\mathbf{A}^{-1 / 2} \mathbf{A}^{1 / 2}=\mathbf{I}$.

Problem 5:

(a) Consider an arbitrary $n \times p$ matrix \mathbf{A}. Then $\mathbf{A}^{\prime} \mathbf{A}$ is a symmetric $p \times p$ matrix. Show that $\mathbf{A}^{\prime} \mathbf{A}$ is necessarily positive semi-definite. (Hint: set $\mathbf{y}=\mathbf{A x}$ so that $\mathbf{y}^{\prime} \mathbf{y}=$ $\mathbf{x}^{\prime} \mathbf{A}^{\prime} \mathbf{A x}$)
(b) Using the matrix

$$
\mathbf{A}=\left[\begin{array}{ccc}
4 & 8 & 8 \\
3 & 6 & -9
\end{array}\right]
$$

(1) Calculate $\mathbf{A A}^{\prime}$ and obtain its eigenvalues and eigenvectors.
(2) Calculate $\mathbf{A}^{\prime} \mathbf{A}$ and obtain its eigenvalues and eigenvectors. Check that the nonzero eigenvalues are the same as those in (1).
(3) Obtain the singular-value decomposition of \mathbf{A}.

Homework III

Problem 1:
Let \mathbf{X} have covariance matrix

$$
\boldsymbol{\Sigma}=\left[\begin{array}{ccc}
25 & 0 & 2 \\
0 & 1 & 1 \\
2 & 1 & 9
\end{array}\right]
$$

(a) Determine $\boldsymbol{\rho}$ (the correlation matrix) and $\mathbf{V}^{1 / 2}$ (a diagonal matrix containing the standard deviations along the main diagonal).
(b) Multiply your matrices to check the relation $\mathbf{V}^{1 / 2} \rho \mathbf{V}^{1 / 2}=$ Σ.
(c) Find ρ_{13}.
(d) Find the correlation between X_{1} and $\frac{1}{4} X_{2}+\frac{1}{2} X_{3}$.

Problem 2:

(a) Derive expressions for the mean and variances of the following linear combinations in terms of the means and covariances of the random variable X_{1}, X_{2}, and X_{3}.

1) $X_{1}-2 X_{2}$
2) $-X_{1}+3 X_{2}$
3) $X_{1}+X_{2}+X_{3}$
4) $X_{1}+2 X_{2}-X_{3}$
5) $3 X_{1}-4 X_{2}$, when X_{1} and X_{2} are independent random variables.
(b) The random vector $\mathbf{X}^{\prime}=\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$ has mean vector $[4,3,2,1]$ and variance-covariance matrix

$$
\left[\begin{array}{cccc}
3 & 0 & 2 & 2 \\
0 & 1 & 1 & 0 \\
2 & 1 & 9 & -2 \\
2 & 0 & -2 & 4
\end{array}\right]
$$

Let $\mathbf{X}^{(1)}=\left[X_{1}, X_{2}\right]^{\prime}$ and $\mathbf{X}^{(2)}=\left[X_{3}, X_{4}\right]^{\prime}$, and let $\mathbf{A}=$ $\left[\begin{array}{ll}1 & 2\end{array}\right]$ and

$$
\mathbf{B}=\left[\begin{array}{cc}
1 & -2 \\
2 & 1
\end{array}\right]
$$

Find: $E\left(\mathbf{X}^{(1)}\right) ; E\left(\mathbf{A X}^{(1)}\right) ; E\left(\mathbf{X}^{(2)}\right) ; E\left(\mathbf{B X}^{(2)}\right) ; \operatorname{Cov}\left(\mathbf{X}^{(1)}\right) ;$ $\operatorname{Cov}\left(\mathbf{A X} \mathbf{X}^{(1)}\right) ; \operatorname{Cov}\left(\mathbf{X}^{(2)}\right) ; \operatorname{Cov}\left(\mathbf{B X}{ }^{(2)}\right) ; \operatorname{Cov}\left(\mathbf{X}^{(1)}, \mathbf{X}^{(2)}\right) ;$ $\operatorname{Cov}\left(\mathbf{A X}^{(1)}, \mathbf{B X}^{(2)}\right)$.

For

$$
\mathbf{A}=\left[\begin{array}{cc}
9 & -2 \\
-2 & 6
\end{array}\right]
$$

find the maximum value of $\mathbf{x}^{\prime} \mathbf{A} \mathbf{x}$ for $\mathbf{x}^{\prime} \mathbf{x}=1$.

Problem 3:
Give your own numerically specified 4×3 matrix, say, A, and do the MATLAB operations of rank, corrcoef, cov, mean, median, std, and sum on A, and inv, trace, det, eig, svd, poly, and sqrtm on $\mathbf{A}^{\prime} \mathbf{A}$.

