
11

Cluster Analysis

• “Introduction to Cluster Analysis” on page 11-2

• “Hierarchical Clustering” on page 11-3

• “K-Means Clustering” on page 11-21

• “Gaussian Mixture Models” on page 11-28



11 Cluster Analysis

Introduction to Cluster Analysis
Cluster analysis, also called segmentation analysis or taxonomy analysis,
creates groups, or clusters, of data. Clusters are formed in such a way that
objects in the same cluster are very similar and objects in different clusters
are very distinct. Measures of similarity depend on the application.

“Hierarchical Clustering” on page 11-3 groups data over a variety of scales by
creating a cluster tree or dendrogram. The tree is not a single set of clusters,
but rather a multilevel hierarchy, where clusters at one level are joined
as clusters at the next level. This allows you to decide the level or scale
of clustering that is most appropriate for your application. The Statistics
Toolbox function clusterdata performs all of the necessary steps for you.
It incorporates the pdist, linkage, and cluster functions, which may be
used separately for more detailed analysis. The dendrogram function plots
the cluster tree.

“K-Means Clustering” on page 11-21 is a partitioning method. The function
kmeans partitions data into k mutually exclusive clusters, and returns
the index of the cluster to which it has assigned each observation. Unlike
hierarchical clustering, k-means clustering operates on actual observations
(rather than the larger set of dissimilarity measures), and creates a single
level of clusters. The distinctions mean that k-means clustering is often more
suitable than hierarchical clustering for large amounts of data.

“Gaussian Mixture Models” on page 11-28 form clusters by representing the
probability density function of observed variables as a mixture of multivariate
normal densities. Mixture models of the gmdistribution class use an
expectation maximization (EM) algorithm to fit data, which assigns posterior
probabilities to each component density with respect to each observation.
Clusters are assigned by selecting the component that maximizes the
posterior probability. Clustering using Gaussian mixture models is sometimes
considered a soft clustering method. The posterior probabilities for each
point indicate that each data point has some probability of belonging to
each cluster. Like k-means clustering, Gaussian mixture modeling uses an
iterative algorithm that converges to a local optimum. Gaussian mixture
modeling may be more appropriate than k-means clustering when clusters
have different sizes and correlation within them.

11-2



Hierarchical Clustering

Hierarchical Clustering

In this section...

“Introduction to Hierarchical Clustering” on page 11-3

“Algorithm Description” on page 11-3

“Similarity Measures” on page 11-4

“Linkages” on page 11-6

“Dendrograms” on page 11-8

“Verifying the Cluster Tree” on page 11-10

“Creating Clusters” on page 11-16

Introduction to Hierarchical Clustering
Hierarchical clustering groups data over a variety of scales by creating a
cluster tree or dendrogram. The tree is not a single set of clusters, but rather
a multilevel hierarchy, where clusters at one level are joined as clusters at
the next level. This allows you to decide the level or scale of clustering that
is most appropriate for your application. The Statistics Toolbox function
clusterdata supports agglomerative clustering and performs all of the
necessary steps for you. It incorporates the pdist, linkage, and cluster
functions, which you can use separately for more detailed analysis. The
dendrogram function plots the cluster tree.

Algorithm Description
To perform agglomerative hierarchical cluster analysis on a data set using
Statistics Toolbox functions, follow this procedure:

1 Find the similarity or dissimilarity between every pair of objects
in the data set. In this step, you calculate the distance between objects
using the pdist function. The pdist function supports many different
ways to compute this measurement. See “Similarity Measures” on page
11-4 for more information.

2 Group the objects into a binary, hierarchical cluster tree. In this
step, you link pairs of objects that are in close proximity using the linkage

11-3



11 Cluster Analysis

function. The linkage function uses the distance information generated in
step 1 to determine the proximity of objects to each other. As objects are
paired into binary clusters, the newly formed clusters are grouped into
larger clusters until a hierarchical tree is formed. See “Linkages” on page
11-6 for more information.

3 Determine where to cut the hierarchical tree into clusters. In this
step, you use the cluster function to prune branches off the bottom of
the hierarchical tree, and assign all the objects below each cut to a single
cluster. This creates a partition of the data. The cluster function can
create these clusters by detecting natural groupings in the hierarchical tree
or by cutting off the hierarchical tree at an arbitrary point.

The following sections provide more information about each of these steps.

Note The Statistics Toolbox function clusterdata performs all of the
necessary steps for you. You do not need to execute the pdist, linkage, or
cluster functions separately.

Similarity Measures
You use the pdist function to calculate the distance between every pair of
objects in a data set. For a data set made up of m objects, there are m*(m –
1)/2 pairs in the data set. The result of this computation is commonly known
as a distance or dissimilarity matrix.

There are many ways to calculate this distance information. By default, the
pdist function calculates the Euclidean distance between objects; however,
you can specify one of several other options. See pdist for more information.

Note You can optionally normalize the values in the data set before
calculating the distance information. In a real world data set, variables can
be measured against different scales. For example, one variable can measure
Intelligence Quotient (IQ) test scores and another variable can measure head
circumference. These discrepancies can distort the proximity calculations.
Using the zscore function, you can convert all the values in the data set to
use the same proportional scale. See zscore for more information.

11-4



Hierarchical Clustering

For example, consider a data set, X, made up of five objects where each object
is a set of x,y coordinates.

• Object 1: 1, 2

• Object 2: 2.5, 4.5

• Object 3: 2, 2

• Object 4: 4, 1.5

• Object 5: 4, 2.5

You can define this data set as a matrix

X = [1 2;2.5 4.5;2 2;4 1.5;4 2.5]

and pass it to pdist. The pdist function calculates the distance between
object 1 and object 2, object 1 and object 3, and so on until the distances
between all the pairs have been calculated. The following figure plots these
objects in a graph. The Euclidean distance between object 2 and object 3 is
shown to illustrate one interpretation of distance.

Distance Information
The pdist function returns this distance information in a vector, Y, where
each element contains the distance between a pair of objects.

11-5



11 Cluster Analysis

Y = pdist(X)

Y =

Columns 1 through 5

2.9155 1.0000 3.0414 3.0414 2.5495

Columns 6 through 10

3.3541 2.5000 2.0616 2.0616 1.0000

To make it easier to see the relationship between the distance information
generated by pdist and the objects in the original data set, you can reformat
the distance vector into a matrix using the squareform function. In this
matrix, element i,j corresponds to the distance between object i and object j in
the original data set. In the following example, element 1,1 represents the
distance between object 1 and itself (which is zero). Element 1,2 represents
the distance between object 1 and object 2, and so on.

squareform(Y)
ans =

0 2.9155 1.0000 3.0414 3.0414
2.9155 0 2.5495 3.3541 2.5000
1.0000 2.5495 0 2.0616 2.0616
3.0414 3.3541 2.0616 0 1.0000
3.0414 2.5000 2.0616 1.0000 0

Linkages
Once the proximity between objects in the data set has been computed, you
can determine how objects in the data set should be grouped into clusters,
using the linkage function. The linkage function takes the distance
information generated by pdist and links pairs of objects that are close
together into binary clusters (clusters made up of two objects). The linkage
function then links these newly formed clusters to each other and to other
objects to create bigger clusters until all the objects in the original data set
are linked together in a hierarchical tree.

For example, given the distance vector Y generated by pdist from the sample
data set of x- and y-coordinates, the linkage function generates a hierarchical
cluster tree, returning the linkage information in a matrix, Z.

Z = linkage(Y)
Z =

4.0000 5.0000 1.0000

11-6



Hierarchical Clustering

1.0000 3.0000 1.0000
6.0000 7.0000 2.0616
2.0000 8.0000 2.5000

In this output, each row identifies a link between objects or clusters. The first
two columns identify the objects that have been linked. The third column
contains the distance between these objects. For the sample data set of x-
and y-coordinates, the linkage function begins by grouping objects 4 and 5,
which have the closest proximity (distance value = 1.0000). The linkage
function continues by grouping objects 1 and 3, which also have a distance
value of 1.0000.

The third row indicates that the linkage function grouped objects 6 and 7. If
the original sample data set contained only five objects, what are objects 6
and 7? Object 6 is the newly formed binary cluster created by the grouping
of objects 4 and 5. When the linkage function groups two objects into a
new cluster, it must assign the cluster a unique index value, starting with
the value m+1, where m is the number of objects in the original data set.
(Values 1 through m are already used by the original data set.) Similarly,
object 7 is the cluster formed by grouping objects 1 and 3.

linkage uses distances to determine the order in which it clusters objects.
The distance vector Y contains the distances between the original objects 1
through 5. But linkage must also be able to determine distances involving
clusters that it creates, such as objects 6 and 7. By default, linkage uses a
method known as single linkage. However, there are a number of different
methods available. See the linkage reference page for more information.

As the final cluster, the linkage function grouped object 8, the newly formed
cluster made up of objects 6 and 7, with object 2 from the original data set.
The following figure graphically illustrates the way linkage groups the
objects into a hierarchy of clusters.

11-7



11 Cluster Analysis

Dendrograms
The hierarchical, binary cluster tree created by the linkage function is most
easily understood when viewed graphically. The Statistics Toolbox function
dendrogram plots the tree, as follows:

dendrogram(Z)

11-8



Hierarchical Clustering

4 5 1 3 2

1

1.5

2

2.5

In the figure, the numbers along the horizontal axis represent the indices of
the objects in the original data set. The links between objects are represented
as upside-down U-shaped lines. The height of the U indicates the distance
between the objects. For example, the link representing the cluster containing
objects 1 and 3 has a height of 1. The link representing the cluster that groups
object 2 together with objects 1, 3, 4, and 5, (which are already clustered as
object 8) has a height of 2.5. The height represents the distance linkage
computes between objects 2 and 8. For more information about creating a
dendrogram diagram, see the dendrogram reference page.

11-9



11 Cluster Analysis

Verifying the Cluster Tree
After linking the objects in a data set into a hierarchical cluster tree, you
might want to verify that the distances (that is, heights) in the tree reflect
the original distances accurately. In addition, you might want to investigate
natural divisions that exist among links between objects. Statistics Toolbox
functions are available for both of these tasks, as described in the following
sections:

• “Verifying Dissimilarity” on page 11-10

• “Verifying Consistency” on page 11-11

Verifying Dissimilarity
In a hierarchical cluster tree, any two objects in the original data set are
eventually linked together at some level. The height of the link represents
the distance between the two clusters that contain those two objects. This
height is known as the cophenetic distance between the two objects. One
way to measure how well the cluster tree generated by the linkage function
reflects your data is to compare the cophenetic distances with the original
distance data generated by the pdist function. If the clustering is valid, the
linking of objects in the cluster tree should have a strong correlation with
the distances between objects in the distance vector. The cophenet function
compares these two sets of values and computes their correlation, returning a
value called the cophenetic correlation coefficient. The closer the value of the
cophenetic correlation coefficient is to 1, the more accurately the clustering
solution reflects your data.

You can use the cophenetic correlation coefficient to compare the results of
clustering the same data set using different distance calculation methods or
clustering algorithms. For example, you can use the cophenet function to
evaluate the clusters created for the sample data set

c = cophenet(Z,Y)
c =

0.8615

where Z is the matrix output by the linkage function and Y is the distance
vector output by the pdist function.

11-10



Hierarchical Clustering

Execute pdist again on the same data set, this time specifying the city block
metric. After running the linkage function on this new pdist output using
the average linkage method, call cophenet to evaluate the clustering solution.

Y = pdist(X,'cityblock');
Z = linkage(Y,'average');
c = cophenet(Z,Y)
c =

0.9047

The cophenetic correlation coefficient shows that using a different distance
and linkage method creates a tree that represents the original distances
slightly better.

Verifying Consistency
One way to determine the natural cluster divisions in a data set is to compare
the height of each link in a cluster tree with the heights of neighboring links
below it in the tree.

A link that is approximately the same height as the links below it indicates
that there are no distinct divisions between the objects joined at this level of
the hierarchy. These links are said to exhibit a high level of consistency,
because the distance between the objects being joined is approximately the
same as the distances between the objects they contain.

On the other hand, a link whose height differs noticeably from the height of
the links below it indicates that the objects joined at this level in the cluster
tree are much farther apart from each other than their components were when
they were joined. This link is said to be inconsistent with the links below it.

In cluster analysis, inconsistent links can indicate the border of a natural
division in a data set. The cluster function uses a quantitative measure of
inconsistency to determine where to partition your data set into clusters.

The following dendrogram illustrates inconsistent links. Note how the objects
in the dendrogram fall into two groups that are connected by links at a much
higher level in the tree. These links are inconsistent when compared with the
links below them in the hierarchy.

11-11



11 Cluster Analysis

�������� �����"������	���(

�������� �����"�������	����"��������
��
	��	����� ������"�	���(

The relative consistency of each link in a hierarchical cluster tree can be
quantified and expressed as the inconsistency coefficient. This value compares
the height of a link in a cluster hierarchy with the average height of links
below it. Links that join distinct clusters have a high inconsistency coefficient;
links that join indistinct clusters have a low inconsistency coefficient.

To generate a listing of the inconsistency coefficient for each link in the
cluster tree, use the inconsistent function. By default, the inconsistent

11-12



Hierarchical Clustering

function compares each link in the cluster hierarchy with adjacent links that
are less than two levels below it in the cluster hierarchy. This is called the
depth of the comparison. You can also specify other depths. The objects at
the bottom of the cluster tree, called leaf nodes, that have no further objects
below them, have an inconsistency coefficient of zero. Clusters that join two
leaves also have a zero inconsistency coefficient.

For example, you can use the inconsistent function to calculate the
inconsistency values for the links created by the linkage function in
“Linkages” on page 11-6.

I = inconsistent(Z)
I =

1.0000 0 1.0000 0
1.0000 0 1.0000 0
1.3539 0.6129 3.0000 1.1547
2.2808 0.3100 2.0000 0.7071

The inconsistent function returns data about the links in an (m-1)-by-4
matrix, whose columns are described in the following table.

Column Description

1 Mean of the heights of all the links included in the calculation

2 Standard deviation of all the links included in the calculation

3 Number of links included in the calculation

4 Inconsistency coefficient

In the sample output, the first row represents the link between objects 4
and 5. This cluster is assigned the index 6 by the linkage function. Because
both 4 and 5 are leaf nodes, the inconsistency coefficient for the cluster is zero.
The second row represents the link between objects 1 and 3, both of which are
also leaf nodes. This cluster is assigned the index 7 by the linkage function.

The third row evaluates the link that connects these two clusters, objects 6
and 7. (This new cluster is assigned index 8 in the linkage output). Column 3
indicates that three links are considered in the calculation: the link itself and
the two links directly below it in the hierarchy. Column 1 represents the mean
of the heights of these links. The inconsistent function uses the height

11-13



11 Cluster Analysis

information output by the linkage function to calculate the mean. Column 2
represents the standard deviation between the links. The last column contains
the inconsistency value for these links, 1.1547. It is the difference between
the current link height and the mean, normalized by the standard deviation:

(2.0616 - 1.3539) / .6129
ans =

1.1547

The following figure illustrates the links and heights included in this
calculation.

'����	�

)� �

11-14



Hierarchical Clustering

Note In the preceding figure, the lower limit on the y-axis is set to 0 to show
the heights of the links. To set the lower limit to 0, select Axes Properties
from the Editmenu, click the Y Axis tab, and enter 0 in the field immediately
to the right of Y Limits.

Row 4 in the output matrix describes the link between object 8 and object 2.
Column 3 indicates that two links are included in this calculation: the link
itself and the link directly below it in the hierarchy. The inconsistency
coefficient for this link is 0.7071.

The following figure illustrates the links and heights included in this
calculation.

11-15



11 Cluster Analysis

)� �

'����	�

Creating Clusters
After you create the hierarchical tree of binary clusters, you can prune the
tree to partition your data into clusters using the cluster function. The
cluster function lets you create clusters in two ways, as discussed in the
following sections:

• “Finding Natural Divisions in Data” on page 11-17

• “Specifying Arbitrary Clusters” on page 11-18

11-16



Hierarchical Clustering

Finding Natural Divisions in Data
The hierarchical cluster tree may naturally divide the data into distinct,
well-separated clusters. This can be particularly evident in a dendrogram
diagram created from data where groups of objects are densely packed in
certain areas and not in others. The inconsistency coefficient of the links in
the cluster tree can identify these divisions where the similarities between
objects change abruptly. (See “Verifying the Cluster Tree” on page 11-10 for
more information about the inconsistency coefficient.) You can use this value
to determine where the cluster function creates cluster boundaries.

For example, if you use the cluster function to group the sample data set
into clusters, specifying an inconsistency coefficient threshold of 1.2 as the
value of the cutoff argument, the cluster function groups all the objects
in the sample data set into one cluster. In this case, none of the links in the
cluster hierarchy had an inconsistency coefficient greater than 1.2.

T = cluster(Z,'cutoff',1.2)
T =

1
1
1
1
1

The cluster function outputs a vector, T, that is the same size as the original
data set. Each element in this vector contains the number of the cluster into
which the corresponding object from the original data set was placed.

If you lower the inconsistency coefficient threshold to 0.8, the cluster
function divides the sample data set into three separate clusters.

T = cluster(Z,'cutoff',0.8)
T =

3
2
3
1
1

11-17



11 Cluster Analysis

This output indicates that objects 1 and 3 were placed in cluster 1, objects 4
and 5 were placed in cluster 2, and object 2 was placed in cluster 3.

When clusters are formed in this way, the cutoff value is applied to the
inconsistency coefficient. These clusters may, but do not necessarily,
correspond to a horizontal slice across the dendrogram at a certain height.
If you want clusters corresponding to a horizontal slice of the dendrogram,
you can either use the criterion option to specify that the cutoff should be
based on distance rather than inconsistency, or you can specify the number of
clusters directly as described in the following section.

Specifying Arbitrary Clusters
Instead of letting the cluster function create clusters determined by the
natural divisions in the data set, you can specify the number of clusters you
want created.

For example, you can specify that you want the cluster function to partition
the sample data set into two clusters. In this case, the cluster function
creates one cluster containing objects 1, 3, 4, and 5 and another cluster
containing object 2.

T = cluster(Z,'maxclust',2)
T =

2
1
2
2
2

To help you visualize how the cluster function determines these clusters, the
following figure shows the dendrogram of the hierarchical cluster tree. The
horizontal dashed line intersects two lines of the dendrogram, corresponding
to setting 'maxclust' to 2. These two lines partition the objects into two
clusters: the objects below the left-hand line, namely 1, 3, 4, and 5, belong to
one cluster, while the object below the right-hand line, namely 2, belongs to
the other cluster.

11-18



Hierarchical Clustering

�������	
�

On the other hand, if you set 'maxclust' to 3, the cluster function groups
objects 4 and 5 in one cluster, objects 1 and 3 in a second cluster, and object 2
in a third cluster. The following command illustrates this.

T = cluster(Z,'maxclust',3)
T =

1
3
1
2
2

11-19



11 Cluster Analysis

This time, the cluster function cuts off the hierarchy at a lower point,
corresponding to the horizontal line that intersects three lines of the
dendrogram in the following figure.

�������	
�

11-20



K-Means Clustering

K-Means Clustering

In this section...

“Introduction to K-Means Clustering” on page 11-21

“Creating Clusters and Determining Separation” on page 11-22

“Determining the Correct Number of Clusters” on page 11-23

“Avoiding Local Minima” on page 11-26

Introduction to K-Means Clustering
K-means clustering is a partitioning method. The function kmeans partitions
data into k mutually exclusive clusters, and returns the index of the cluster
to which it has assigned each observation. Unlike hierarchical clustering,
k-means clustering operates on actual observations (rather than the larger
set of dissimilarity measures), and creates a single level of clusters. The
distinctions mean that k-means clustering is often more suitable than
hierarchical clustering for large amounts of data.

kmeans treats each observation in your data as an object having a location in
space. It finds a partition in which objects within each cluster are as close to
each other as possible, and as far from objects in other clusters as possible.
You can choose from five different distance measures, depending on the kind
of data you are clustering.

Each cluster in the partition is defined by its member objects and by its
centroid, or center. The centroid for each cluster is the point to which the sum
of distances from all objects in that cluster is minimized. kmeans computes
cluster centroids differently for each distance measure, to minimize the sum
with respect to the measure that you specify.

kmeans uses an iterative algorithm that minimizes the sum of distances from
each object to its cluster centroid, over all clusters. This algorithm moves
objects between clusters until the sum cannot be decreased further. The
result is a set of clusters that are as compact and well-separated as possible.
You can control the details of the minimization using several optional input
parameters to kmeans, including ones for the initial values of the cluster
centroids, and for the maximum number of iterations.

11-21



11 Cluster Analysis

Creating Clusters and Determining Separation
The following example explores possible clustering in four-dimensional data
by analyzing the results of partitioning the points into three, four, and five
clusters.

Note Because each part of this example generates random numbers
sequentially, i.e., without setting a new state, you must perform all steps
in sequence to duplicate the results shown. If you perform the steps out of
sequence, the answers will be essentially the same, but the intermediate
results, number of iterations, or ordering of the silhouette plots may differ.

First, load some data:

load kmeansdata;
size(X)
ans =

560 4

Even though these data are four-dimensional, and cannot be easily visualized,
kmeans enables you to investigate whether a group structure exists in them.
Call kmeans with k, the desired number of clusters, equal to 3. For this
example, specify the city block distance measure, and use the default starting
method of initializing centroids from randomly selected data points:

idx3 = kmeans(X,3,'distance','city');

To get an idea of how well-separated the resulting clusters are, you can make
a silhouette plot using the cluster indices output from kmeans. The silhouette
plot displays a measure of how close each point in one cluster is to points in
the neighboring clusters. This measure ranges from +1, indicating points that
are very distant from neighboring clusters, through 0, indicating points that
are not distinctly in one cluster or another, to -1, indicating points that are
probably assigned to the wrong cluster. silhouette returns these values in
its first output:

[silh3,h] = silhouette(X,idx3,'city');
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
xlabel('Silhouette Value')
ylabel('Cluster')

11-22



K-Means Clustering

From the silhouette plot, you can see that most points in the third cluster
have a large silhouette value, greater than 0.6, indicating that the cluster is
somewhat separated from neighboring clusters. However, the first cluster
contains many points with low silhouette values, and the second contains a
few points with negative values, indicating that those two clusters are not
well separated.

Determining the Correct Number of Clusters
Increase the number of clusters to see if kmeans can find a better grouping
of the data. This time, use the optional 'display' parameter to print
information about each iteration:

idx4 = kmeans(X,4, 'dist','city', 'display','iter');
iter phase num sum

1 1 560 2897.56

11-23



11 Cluster Analysis

2 1 53 2736.67
3 1 50 2476.78
4 1 102 1779.68
5 1 5 1771.1
6 2 0 1771.1

6 iterations, total sum of distances = 1771.1

Notice that the total sum of distances decreases at each iteration as kmeans
reassigns points between clusters and recomputes cluster centroids. In this
case, the second phase of the algorithm did not make any reassignments,
indicating that the first phase reached a minimum after five iterations. In
some problems, the first phase might not reach a minimum, but the second
phase always will.

A silhouette plot for this solution indicates that these four clusters are better
separated than the three in the previous solution:

[silh4,h] = silhouette(X,idx4,'city');
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
xlabel('Silhouette Value')
ylabel('Cluster')

11-24



K-Means Clustering

A more quantitative way to compare the two solutions is to look at the average
silhouette values for the two cases:

mean(silh3)
ans =

0.52594
mean(silh4)
ans =

0.63997

Finally, try clustering the data using five clusters:

idx5 = kmeans(X,5,'dist','city','replicates',5);
[silh5,h] = silhouette(X,idx5,'city');
set(get(gca,'Children'),'FaceColor',[.8 .8 1])
xlabel('Silhouette Value')

11-25



11 Cluster Analysis

ylabel('Cluster')
mean(silh5)
ans =

0.52657

This silhouette plot indicates that this is probably not the right number of
clusters, since two of the clusters contain points with mostly low silhouette
values. Without some knowledge of how many clusters are really in the data,
it is a good idea to experiment with a range of values for k.

Avoiding Local Minima
Like many other types of numerical minimizations, the solution that kmeans
reaches often depends on the starting points. It is possible for kmeans to
reach a local minimum, where reassigning any one point to a new cluster
would increase the total sum of point-to-centroid distances, but where a

11-26



K-Means Clustering

better solution does exist. However, you can use the optional 'replicates'
parameter to overcome that problem.

For four clusters, specify five replicates, and use the 'display' parameter to
print out the final sum of distances for each of the solutions.

[idx4,cent4,sumdist] = kmeans(X,4,'dist','city',...
'display','final','replicates',5);

17 iterations, total sum of distances = 2303.36
5 iterations, total sum of distances = 1771.1
6 iterations, total sum of distances = 1771.1
5 iterations, total sum of distances = 1771.1
8 iterations, total sum of distances = 2303.36

The output shows that, even for this relatively simple problem, non-global
minima do exist. Each of these five replicates began from a different randomly
selected set of initial centroids, and kmeans found two different local minima.
However, the final solution that kmeans returns is the one with the lowest
total sum of distances, over all replicates.

sum(sumdist)
ans =

1771.1

11-27



11 Cluster Analysis

Gaussian Mixture Models

In this section...

“Introduction to Gaussian Mixture Models” on page 11-28

“Clustering with Gaussian Mixtures” on page 11-28

Introduction to Gaussian Mixture Models
Gaussian mixture models are formed by combining multivariate normal
density components. For information on individual multivariate normal
densities, see “Multivariate Normal Distribution” on page B-58 and related
distribution functions listed under “Multivariate Distributions” on page 5-8.

In Statistics Toolbox software, use the gmdistribution class to fit data
using an expectation maximization (EM) algorithm, which assigns posterior
probabilities to each component density with respect to each observation.

Gaussian mixture models are often used for data clustering. Clusters are
assigned by selecting the component that maximizes the posterior probability.
Like k-means clustering, Gaussian mixture modeling uses an iterative
algorithm that converges to a local optimum. Gaussian mixture modeling may
be more appropriate than k-means clustering when clusters have different
sizes and correlation within them. Clustering using Gaussian mixture models
is sometimes considered a soft clustering method. The posterior probabilities
for each point indicate that each data point has some probability of belonging
to each cluster.

Creation of Gaussian mixture models is described in the “Gaussian Mixture
Models” on page 5-99 section of Chapter 5, “Probability Distributions”. This
section describes their application in cluster analysis.

Clustering with Gaussian Mixtures
Gaussian mixture distributions can be used for clustering data, by realizing
that the multivariate normal components of the fitted model can represent
clusters.

11-28



Gaussian Mixture Models

1 To demonstrate the process, first generate some simulated data from a
mixture of two bivariate Gaussian distributions using the mvnrnd function:

mu1 = [1 2];
sigma1 = [3 .2; .2 2];
mu2 = [-1 -2];
sigma2 = [2 0; 0 1];
X = [mvnrnd(mu1,sigma1,200);mvnrnd(mu2,sigma2,100)];

scatter(X(:,1),X(:,2),10,'ko')

2 Fit a two-component Gaussian mixture distribution. Here, you know
the correct number of components to use. In practice, with real data,
this decision would require comparing models with different numbers of
components.

11-29



11 Cluster Analysis

options = statset('Display','final');
gm = gmdistribution.fit(X,2,'Options',options);

This displays

49 iterations, log-likelihood = -1207.91

3 Plot the estimated probability density contours for the two-component
mixture distribution. The two bivariate normal components overlap, but
their peaks are distinct. This suggests that the data could reasonably be
divided into two clusters:

hold on
ezcontour(@(x,y)pdf(gm,[x y]),[-8 6],[-8 6]);
hold off

11-30



Gaussian Mixture Models

4 Partition the data into clusters using the cluster method for the fitted
mixture distribution. The cluster method assigns each point to one of the
two components in the mixture distribution.

idx = cluster(gm,X);
cluster1 = (idx == 1);
cluster2 = (idx == 2);

scatter(X(cluster1,1),X(cluster1,2),10,'r+');
hold on
scatter(X(cluster2,1),X(cluster2,2),10,'bo');
hold off
legend('Cluster 1','Cluster 2','Location','NW')

11-31



11 Cluster Analysis

Each cluster corresponds to one of the bivariate normal components in
the mixture distribution. cluster assigns points to clusters based on the
estimated posterior probability that a point came from a component; each
point is assigned to the cluster corresponding to the highest posterior
probability. The posterior method returns those posterior probabilities.

For example, plot the posterior probability of the first component for each
point:

P = posterior(gm,X);

scatter(X(cluster1,1),X(cluster1,2),10,P(cluster1,1),'+')
hold on
scatter(X(cluster2,1),X(cluster2,2),10,P(cluster2,1),'o')
hold off
legend('Cluster 1','Cluster 2','Location','NW')
clrmap = jet(80); colormap(clrmap(9:72,:))

11-32



Gaussian Mixture Models

ylabel(colorbar,'Component 1 Posterior Probability')

Soft Clustering Using Gaussian Mixture Distributions
An alternative to the previous example is to use the posterior probabilities for
"soft clustering". Each point is assigned a membership score to each cluster.
Membership scores are simply the posterior probabilities, and describe
how similar each point is to each cluster’s archetype, i.e., the mean of the
corresponding component. The points can be ranked by their membership
score in a given cluster:

[~,order] = sort(P(:,1));
plot(1:size(X,1),P(order,1),'r-',1:size(X,1),P(order,2),'b-');
legend({'Cluster 1 Score' 'Cluster 2 Score'},'location','NW');
ylabel('Cluster Membership Score');
xlabel('Point Ranking');

11-33



11 Cluster Analysis

Although a clear separation of the data is hard to see in a scatter plot of the
data, plotting the membership scores indicates that the fitted distribution
does a good job of separating the data into groups. Very few points have
scores close to 0.5.

Soft clustering using a Gaussian mixture distribution is similar to fuzzy
K-means clustering, which also assigns each point to each cluster with a
membership score. The fuzzy K-means algorithm assumes that clusters are
roughly spherical in shape, and all of roughly equal size. This is comparable
to a Gaussian mixture distribution with a single covariance matrix that is
shared across all components, and is a multiple of the identity matrix. In
contrast, gmdistribution allows you to specify different covariance options.
The default is to estimate a separate, unconstrained covariance matrix for

11-34



Gaussian Mixture Models

each component. A more restricted option, closer to K-means, would be to
estimate a shared, diagonal covariance matrix:

gm2 = gmdistribution.fit(X,2,'CovType','Diagonal',...
'SharedCov',true);

This covariance option is similar to fuzzy K-means clustering, but provides
more flexibility by allowing unequal variances for different variables.

You can compute the soft cluster membership scores without computing hard
cluster assignments, using posterior, or as part of hard clustering, as the
second output from cluster:

P2 = posterior(gm2,X); % equivalently [idx,P2] = cluster(gm2,X)
[~,order] = sort(P2(:,1));
plot(1:size(X,1),P2(order,1),'r-',1:size(X,1),P2(order,2),'b-');
legend({'Cluster 1 Score' 'Cluster 2 Score'},'location','NW');
ylabel('Cluster Membership Score');
xlabel('Point Ranking');

11-35



11 Cluster Analysis

Assigning New Data to Clusters
In the previous example, fitting the mixture distribution to data using fit,
and clustering those data using cluster, are separate steps. However, the
same data are used in both steps. You can also use the cluster method to
assign new data points to the clusters (mixture components) found in the
original data.

1 Given a data set X, first fit a Gaussian mixture distribution. The previous
code has already done that.

gm

gm =
Gaussian mixture distribution with 2 components in 2 dimensions

11-36



Gaussian Mixture Models

Component 1:
Mixing proportion: 0.312592
Mean: -0.9082 -2.1109

Component 2:
Mixing proportion: 0.687408
Mean: 0.9532 1.8940

2 You can then use cluster to assign each point in a new data set, Y, to one
of the clusters defined for the original data:

Y = [mvnrnd(mu1,sigma1,50);mvnrnd(mu2,sigma2,25)];

idx = cluster(gm,Y);
cluster1 = (idx == 1);
cluster2 = (idx == 2);

scatter(Y(cluster1,1),Y(cluster1,2),10,'r+');
hold on
scatter(Y(cluster2,1),Y(cluster2,2),10,'bo');
hold off
legend('Class 1','Class 2','Location','NW')

11-37



11 Cluster Analysis

As with the previous example, the posterior probabilities for each point can
be treated as membership scores rather than determining "hard" cluster
assignments.

For cluster to provide meaningful results with new data, Y should come
from the same population as X, the original data used to create the mixture
distribution. In particular, the estimated mixing probabilities for the
Gaussian mixture distribution fitted to X are used when computing the
posterior probabilities for Y.

11-38


