
10

Multivariate Methods

• “Introduction to Multivariate Methods” on page 10-2

• “Multidimensional Scaling” on page 10-3

• “Procrustes Analysis” on page 10-14

• “Feature Selection” on page 10-23

• “Feature Transformation” on page 10-28

10 Multivariate Methods

Introduction to Multivariate Methods
Large, high-dimensional data sets are common in the modern era
of computer-based instrumentation and electronic data storage.
High-dimensional data present many challenges for statistical visualization,
analysis, and modeling.

Data visualization, of course, is impossible beyond a few dimensions. As a
result, pattern recognition, data preprocessing, and model selection must
rely heavily on numerical methods.

A fundamental challenge in high-dimensional data analysis is the so-called
curse of dimensionality. Observations in a high-dimensional space are
necessarily sparser and less representative than those in a low-dimensional
space. In higher dimensions, data over-represent the edges of a sampling
distribution, because regions of higher-dimensional space contain the majority
of their volume near the surface. (A d-dimensional spherical shell has a
volume, relative to the total volume of the sphere, that approaches 1 as d
approaches infinity.) In high dimensions, typical data points at the interior of
a distribution are sampled less frequently.

Often, many of the dimensions in a data set—the measured features—are
not useful in producing a model. Features may be irrelevant or redundant.
Regression and classification algorithms may require large amounts of
storage and computation time to process raw data, and even if the algorithms
are successful the resulting models may contain an incomprehensible number
of terms.

Because of these challenges, multivariate statistical methods often begin with
some type of dimension reduction, in which data are approximated by points
in a lower-dimensional space. Dimension reduction is the goal of the methods
presented in this chapter. Dimension reduction often leads to simpler models
and fewer measured variables, with consequent benefits when measurements
are expensive and visualization is important.

10-2

Multidimensional Scaling

Multidimensional Scaling

In this section...

“Introduction to Multidimensional Scaling” on page 10-3

“Classical Multidimensional Scaling” on page 10-3

“Nonclassical Multidimensional Scaling” on page 10-8

“Nonmetric Multidimensional Scaling” on page 10-10

Introduction to Multidimensional Scaling
One of the most important goals in visualizing data is to get a sense of how
near or far points are from each other. Often, you can do this with a scatter
plot. However, for some analyses, the data that you have might not be in
the form of points at all, but rather in the form of pairwise similarities or
dissimilarities between cases, observations, or subjects. There are no points
to plot.

Even if your data are in the form of points rather than pairwise distances,
a scatter plot of those data might not be useful. For some kinds of data,
the relevant way to measure how near two points are might not be their
Euclidean distance. While scatter plots of the raw data make it easy to
compare Euclidean distances, they are not always useful when comparing
other kinds of inter-point distances, city block distance for example, or even
more general dissimilarities. Also, with a large number of variables, it is very
difficult to visualize distances unless the data can be represented in a small
number of dimensions. Some sort of dimension reduction is usually necessary.

Multidimensional scaling (MDS) is a set of methods that address all these
problems. MDS allows you to visualize how near points are to each other
for many kinds of distance or dissimilarity metrics and can produce a
representation of your data in a small number of dimensions. MDS does not
require raw data, but only a matrix of pairwise distances or dissimilarities.

Classical Multidimensional Scaling

• “Introduction to Classical Multidimensional Scaling” on page 10-4

10-3

10 Multivariate Methods

• “Example: Multidimensional Scaling” on page 10-6

Introduction to Classical Multidimensional Scaling
The function cmdscale performs classical (metric) multidimensional scaling,
also known as principal coordinates analysis. cmdscale takes as an input a
matrix of inter-point distances and creates a configuration of points. Ideally,
those points are in two or three dimensions, and the Euclidean distances
between them reproduce the original distance matrix. Thus, a scatter plot
of the points created by cmdscale provides a visual representation of the
original distances.

As a very simple example, you can reconstruct a set of points from only their
inter-point distances. First, create some four dimensional points with a small
component in their fourth coordinate, and reduce them to distances.

X = [normrnd(0,1,10,3), normrnd(0,.1,10,1)];
D = pdist(X,'euclidean');

Next, use cmdscale to find a configuration with those inter-point distances.
cmdscale accepts distances as either a square matrix, or, as in this example,
in the vector upper-triangular form produced by pdist.

[Y,eigvals] = cmdscale(D);

cmdscale produces two outputs. The first output, Y, is a matrix containing the
reconstructed points. The second output, eigvals, is a vector containing the
sorted eigenvalues of what is often referred to as the “scalar product matrix,”
which, in the simplest case, is equal to Y*Y'. The relative magnitudes of those
eigenvalues indicate the relative contribution of the corresponding columns of
Y in reproducing the original distance matrix D with the reconstructed points.

format short g
[eigvals eigvals/max(abs(eigvals))]
ans =

12.623 1
4.3699 0.34618
1.9307 0.15295

0.025884 0.0020505
1.7192e-015 1.3619e-016
6.8727e-016 5.4445e-017

10-4

Multidimensional Scaling

4.4367e-017 3.5147e-018
-9.2731e-016 -7.3461e-017
-1.327e-015 -1.0513e-016

-1.9232e-015 -1.5236e-016

If eigvals contains only positive and zero (within round-off error) eigenvalues,
the columns of Y corresponding to the positive eigenvalues provide an exact
reconstruction of D, in the sense that their inter-point Euclidean distances,
computed using pdist, for example, are identical (within round-off) to the
values in D.

maxerr4 = max(abs(D - pdist(Y))) % exact reconstruction
maxerr4 =

2.6645e-015

If two or three of the eigenvalues in eigvals are much larger than the rest,
then the distance matrix based on the corresponding columns of Y nearly
reproduces the original distance matrix D. In this sense, those columns
form a lower-dimensional representation that adequately describes the
data. However it is not always possible to find a good low-dimensional
reconstruction.

% good reconstruction in 3D
maxerr3 = max(abs(D - pdist(Y(:,1:3))))
maxerr3 =

0.029728

% poor reconstruction in 2D
maxerr2 = max(abs(D - pdist(Y(:,1:2))))
maxerr2 =

0.91641

The reconstruction in three dimensions reproduces D very well, but the
reconstruction in two dimensions has errors that are of the same order of
magnitude as the largest values in D.

max(max(D))
ans =

3.4686

10-5

10 Multivariate Methods

Often, eigvals contains some negative eigenvalues, indicating that the
distances in D cannot be reproduced exactly. That is, there might not be any
configuration of points whose inter-point Euclidean distances are given by
D. If the largest negative eigenvalue is small in magnitude relative to the
largest positive eigenvalues, then the configuration returned by cmdscale
might still reproduce D well.

Example: Multidimensional Scaling
Given only the distances between 10 US cities, cmdscale can construct a map
of those cities. First, create the distance matrix and pass it to cmdscale.
In this example,D is a full distance matrix: it is square and symmetric, has
positive entries off the diagonal, and has zeros on the diagonal.

cities = ...
{'Atl','Chi','Den','Hou','LA','Mia','NYC','SF','Sea','WDC'};
D = [0 587 1212 701 1936 604 748 2139 2182 543;

587 0 920 940 1745 1188 713 1858 1737 597;
1212 920 0 879 831 1726 1631 949 1021 1494;
701 940 879 0 1374 968 1420 1645 1891 1220;

1936 1745 831 1374 0 2339 2451 347 959 2300;
604 1188 1726 968 2339 0 1092 2594 2734 923;
748 713 1631 1420 2451 1092 0 2571 2408 205;

2139 1858 949 1645 347 2594 2571 0 678 2442;
2182 1737 1021 1891 959 2734 2408 678 0 2329;
543 597 1494 1220 2300 923 205 2442 2329 0];

[Y,eigvals] = cmdscale(D);

Next, look at the eigenvalues returned by cmdscale. Some of these are
negative, indicating that the original distances are not Euclidean. This is
because of the curvature of the earth.

format short g
[eigvals eigvals/max(abs(eigvals))]
ans =

9.5821e+006 1
1.6868e+006 0.17604

8157.3 0.0008513
1432.9 0.00014954
508.67 5.3085e-005
25.143 2.624e-006

10-6

Multidimensional Scaling

5.3394e-010 5.5722e-017
-897.7 -9.3685e-005

-5467.6 -0.0005706
-35479 -0.0037026

However, in this case, the two largest positive eigenvalues are much larger
in magnitude than the remaining eigenvalues. So, despite the negative
eigenvalues, the first two coordinates of Y are sufficient for a reasonable
reproduction of D.

Dtriu = D(find(tril(ones(10),-1)))';
maxrelerr = max(abs(Dtriu-pdist(Y(:,1:2))))./max(Dtriu)
maxrelerr =

0.0075371

Here is a plot of the reconstructed city locations as a map. The orientation of
the reconstruction is arbitrary. In this case, it happens to be close to, although
not exactly, the correct orientation.

plot(Y(:,1),Y(:,2),'.')
text(Y(:,1)+25,Y(:,2),cities)
xlabel('Miles')
ylabel('Miles')

10-7

10 Multivariate Methods

Nonclassical Multidimensional Scaling
The function mdscale performs nonclassical multidimensional scaling. As
with cmdcale, you use mdscale either to visualize dissimilarity data for which
no “locations” exist, or to visualize high-dimensional data by reducing its
dimensionality. Both functions take a matrix of dissimilarities as an input
and produce a configuration of points. However, mdscale offers a choice of
different criteria to construct the configuration, and allows missing data and
weights.

For example, the cereal data include measurements on 10 variables describing
breakfast cereals. You can use mdscale to visualize these data in two
dimensions. First, load the data. For clarity, this example code selects a
subset of 22 of the observations.

load cereal.mat
X = [Calories Protein Fat Sodium Fiber ...

Carbo Sugars Shelf Potass Vitamins];

10-8

Multidimensional Scaling

% Take a subset from a single manufacturer
mfg1 = strcmp('G',cellstr(Mfg));
X = X(mfg1,:);
size(X)
ans =

22 10

Then use pdist to transform the 10-dimensional data into dissimilarities.
The output from pdist is a symmetric dissimilarity matrix, stored as a vector
containing only the (23*22/2) elements in its upper triangle.

dissimilarities = pdist(zscore(X),'cityblock');
size(dissimilarities)
ans =

1 231

This example code first standardizes the cereal data, and then uses city block
distance as a dissimilarity. The choice of transformation to dissimilarities is
application-dependent, and the choice here is only for simplicity. In some
applications, the original data are already in the form of dissimilarities.

Next, use mdscale to perform metric MDS. Unlike cmdscale, you must
specify the desired number of dimensions, and the method to use to construct
the output configuration. For this example, use two dimensions. The metric
STRESS criterion is a common method for computing the output; for other
choices, see the mdscale reference page in the online documentation. The
second output from mdscale is the value of that criterion evaluated for the
output configuration. It measures the how well the inter-point distances of
the output configuration approximate the original input dissimilarities:

[Y,stress] =...
mdscale(dissimilarities,2,'criterion','metricstress');
stress
stress =

0.1856

A scatterplot of the output from mdscale represents the original
10-dimensional data in two dimensions, and you can use the gname function to
label selected points:

plot(Y(:,1),Y(:,2),'o','LineWidth',2);

10-9

10 Multivariate Methods

gname(Name(mfg1))

Nonmetric Multidimensional Scaling
Metric multidimensional scaling creates a configuration of points whose
inter-point distances approximate the given dissimilarities. This is sometimes
too strict a requirement, and non-metric scaling is designed to relax it a bit.
Instead of trying to approximate the dissimilarities themselves, non-metric
scaling approximates a nonlinear, but monotonic, transformation of them.
Because of the monotonicity, larger or smaller distances on a plot of the
output will correspond to larger or smaller dissimilarities, respectively.
However, the nonlinearity implies that mdscale only attempts to preserve the

10-10

Multidimensional Scaling

ordering of dissimilarities. Thus, there may be contractions or expansions of
distances at different scales.

You use mdscale to perform nonmetric MDS in much the same way as for
metric scaling. The nonmetric STRESS criterion is a common method for
computing the output; for more choices, see the mdscale reference page in
the online documentation. As with metric scaling, the second output from
mdscale is the value of that criterion evaluated for the output configuration.
For nonmetric scaling, however, it measures the how well the inter-point
distances of the output configuration approximate the disparities. The
disparities are returned in the third output. They are the transformed values
of the original dissimilarities:

[Y,stress,disparities] = ...
mdscale(dissimilarities,2,'criterion','stress');
stress
stress =

0.1562

To check the fit of the output configuration to the dissimilarities, and to
understand the disparities, it helps to make a Shepard plot:

distances = pdist(Y);
[dum,ord] = sortrows([disparities(:) dissimilarities(:)]);
plot(dissimilarities,distances,'bo', ...

dissimilarities(ord),disparities(ord),'r.-', ...
[0 25],[0 25],'k-')

xlabel('Dissimilarities')
ylabel('Distances/Disparities')
legend({'Distances' 'Disparities' '1:1 Line'},...

'Location','NorthWest');

10-11

10 Multivariate Methods

This plot shows that mdscale has found a configuration of points in two
dimensions whose inter-point distances approximates the disparities, which
in turn are a nonlinear transformation of the original dissimilarities. The
concave shape of the disparities as a function of the dissimilarities indicates
that fit tends to contract small distances relative to the corresponding
dissimilarities. This may be perfectly acceptable in practice.

mdscale uses an iterative algorithm to find the output configuration, and
the results can often depend on the starting point. By default, mdscale
uses cmdscale to construct an initial configuration, and this choice often
leads to a globally best solution. However, it is possible for mdscale to
stop at a configuration that is a local minimum of the criterion. Such

10-12

Multidimensional Scaling

cases can be diagnosed and often overcome by running mdscale multiple
times with different starting points. You can do this using the 'start'
and 'replicates' parameters. The following code runs five replicates of
MDS, each starting at a different randomly-chosen initial configuration.
The criterion value is printed out for each replication; mdscale returns the
configuration with the best fit.

opts = statset('Display','final');
[Y,stress] =...
mdscale(dissimilarities,2,'criterion','stress',...
'start','random','replicates',5,'Options',opts);

35 iterations, Final stress criterion = 0.156209
31 iterations, Final stress criterion = 0.156209
48 iterations, Final stress criterion = 0.171209
33 iterations, Final stress criterion = 0.175341
32 iterations, Final stress criterion = 0.185881

Notice that mdscale finds several different local solutions, some of which
do not have as low a stress value as the solution found with the cmdscale
starting point.

10-13

10 Multivariate Methods

Procrustes Analysis

In this section...

“Comparing Landmark Data” on page 10-14

“Data Input” on page 10-14

“Preprocessing Data for Accurate Results” on page 10-15

“Example: Comparing Handwritten Shapes” on page 10-16

Comparing Landmark Data
The procrustes function analyzes the distribution of a set of shapes using
Procrustes analysis. This analysis method matches landmark data (geometric
locations representing significant features in a given shape) to calculate the
best shape-preserving Euclidian transformations. These transformations
minimize the differences in location between compared landmark data.

Procrustes analysis is also useful in conjunction with multidimensional
scaling. In “Example: Multidimensional Scaling” on page 10-6 there is an
observation that the orientation of the reconstructed points is arbitrary. Two
different applications of multidimensional scaling could produce reconstructed
points that are very similar in principle, but that look different because they
have different orientations. The procrustes function transforms one set of
points to make them more comparable to the other.

Data Input
The procrustes function takes two matrices as input:

• The target shape matrix X has dimension n × p, where n is the number
of landmarks in the shape and p is the number of measurements per
landmark.

• The comparison shape matrix Y has dimension n × q with q ≤ p. If there
are fewer measurements per landmark for the comparison shape than
the target shape (q < p), the function adds columns of zeros to Y, yielding
an n × p matrix.

The equation to obtain the transformed shape, Z, is

10-14

Procrustes Analysis

Z bYT c= + (10-1)

where:

• b is a scaling factor that stretches (b > 1) or shrinks (b < 1) the points.

• T is the orthogonal rotation and reflection matrix.

• c is a matrix with constant values in each column, used to shift the points.

The procrustes function chooses b, T, and c to minimize the distance between
the target shape X and the transformed shape Z as measured by the least
squares criterion:

()X Zij ij
j

p

i

n

−
==
∑∑ 2

11

Preprocessing Data for Accurate Results
Procrustes analysis is appropriate when all p measurement dimensions have
similar scales. The analysis would be inaccurate, for example, if the columns
of Z had different scales:

• The first column is measured in milliliters ranging from 2,000 to 6,000.

• The second column is measured in degrees Celsius ranging from 10 to 25.

• The third column is measured in kilograms ranging from 50 to 230.

In such cases, standardize your variables by:

1 Subtracting the sample mean from each variable.

2 Dividing each resultant variable by its sample standard deviation.

Use the zscore function to perform this standardization.

10-15

10 Multivariate Methods

Example: Comparing Handwritten Shapes
In this example, use Procrustes analysis to compare two handwritten number
threes. Visually and analytically explore the effects of forcing size and
reflection changes as follows:

• “Step 1: Load and Display the Original Data” on page 10-16

• “Step 2: Calculate the Best Transformation” on page 10-17

• “Step 3: Examine the Similarity of the Two Shapes” on page 10-18

• “Step 4: Restrict the Form of the Transformations” on page 10-20

Step 1: Load and Display the Original Data
Input landmark data for two handwritten number threes:

A = [11 39;17 42;25 42;25 40;23 36;19 35;30 34;35 29;...
30 20;18 19];
B = [15 31;20 37;30 40;29 35;25 29;29 31;31 31;35 20;...
29 10;25 18];

Create X and Y from A and B, moving B to the side to make each shape more
visible:

X = A;
Y = B + repmat([25 0], 10,1);

Plot the shapes, using letters to designate the landmark points. Lines in the
figure join the points to indicate the drawing path of each shape.

plot(X(:,1), X(:,2),'r-', Y(:,1), Y(:,2),'b-');
text(X(:,1), X(:,2),('abcdefghij')')
text(Y(:,1), Y(:,2),('abcdefghij')')
legend('X = Target','Y = Comparison','location','SE')
set(gca,'YLim',[0 55],'XLim',[0 65]);

10-16

Procrustes Analysis

Step 2: Calculate the Best Transformation
Use Procrustes analysis to find the transformation that minimizes distances
between landmark data points.

Call procrustes as follows:

[d, Z, tr] = procrustes(X,Y);

The outputs of the function are:

• d – A standardized dissimilarity measure.)

• Z – A matrix of the transformed landmarks.

• tr – A structure array of the computed transformation with fields T, b, and
c which correspond to the transformation equation, Equation 10-1.

10-17

10 Multivariate Methods

Visualize the transformed shape, Z, using a dashed blue line:

plot(X(:,1), X(:,2),'r-', Y(:,1), Y(:,2),'b-',...
Z(:,1),Z(:,2),'b:');
text(X(:,1), X(:,2),('abcdefghij')')
text(Y(:,1), Y(:,2),('abcdefghij')')
text(Z(:,1), Z(:,2),('abcdefghij')')
legend('X = Target','Y = Comparison',...
'Z = Transformed','location','SW')
set(gca,'YLim',[0 55],'XLim',[0 65]);

Step 3: Examine the Similarity of the Two Shapes
Use two different numerical values to assess the similarity of the target shape
and the transformed shape.

10-18

Procrustes Analysis

Dissimilarity Measure d. The dissimilarity measure d gives a number
between 0 and 1 describing the difference between the target shape and the
transformed shape. Values near 0 imply more similar shapes, while values
near 1 imply dissimilarity. For this example:

d =
0.1502

The small value of d in this case shows that the two shapes are similar.

procrustes calculates d by comparing the sum of squared deviations between
the set of points with the sum of squared deviations of the original points from
their column means:

numerator = sum(sum((X-Z).^2))
numerator =

166.5321

denominator = sum(sum(bsxfun(@minus,X,mean(X)).^2))
denominator =

1.1085e+003

ratio = numerator/denominator
ratio =

0.1502

Note The resulting measure d is independent of the scale of the size of
the shapes and takes into account only the similarity of landmark data.
“Examining the Scaling Measure b” on page 10-19 shows how to examine the
size similarity of the shapes.

Examining the Scaling Measure b. The target and comparison threes in
the previous figure visually show that the two numbers are of a similar size.
The closeness of calculated value of the scaling factor b to 1 supports this
observation as well:

10-19

10 Multivariate Methods

tr.b
ans =

0.9291

The sizes of the target and comparison shapes appear similar. This visual
impression is reinforced by the value of b = 0.93, which implies that the best
transformation results in shrinking the comparison shape by a factor .93
(only 7%).

Step 4: Restrict the Form of the Transformations
Explore the effects of manually adjusting the scaling and reflection
coefficients.

Fixing the Scaling Factor b = 1. Force b to equal 1 (set 'Scaling' to
false) to examine the amount of dissimilarity in size of the target and
transformed figures:

ds = procrustes(X,Y,'Scaling',false)
ds =

0.1552

In this case, setting 'Scaling' to false increases the calculated value of
d only 0.0049, which further supports the similarity in the size of the two
number threes. A larger increase in d would have indicated a greater size
discrepancy.

Forcing a Reflection in the Transformation. This example requires only a
rotation, not a reflection, to align the shapes. You can show this by observing
that the determinant of the matrix T is 1 in this analysis:

det(tr.T)
ans =

1.0000

If you need a reflection in the transformation, the determinant of T is -1. You
can force a reflection into the transformation as follows:

[dr,Zr,trr] = procrustes(X,Y,'Reflection',true);
dr
dr =

10-20

Procrustes Analysis

0.8130

The d value increases dramatically, indicating that a forced reflection leads
to a poor transformation of the landmark points. A plot of the transformed
shape shows a similar result:

• The landmark data points are now further away from their target
counterparts.

• The transformed three is now an undesirable mirror image of the target
three.

plot(X(:,1), X(:,2),'r-', Y(:,1), Y(:,2),'b-',...
Zr(:,1),Zr(:,2),'b:');
text(X(:,1), X(:,2),('abcdefghij')')
text(Y(:,1), Y(:,2),('abcdefghij')')
text(Zr(:,1), Zr(:,2),('abcdefghij')')
legend('X = Target','Y = Comparison',...
'Z = Transformed','location','SW')
set(gca,'YLim',[0 55],'XLim',[0 65]);

10-21

10 Multivariate Methods

It appears that the shapes might be better matched if you flipped the
transformed shape upside down. Flipping the shapes would make the
transformation even worse, however, because the landmark data points
would be further away from their target counterparts. From this example,
it is clear that manually adjusting the scaling and reflection parameters is
generally not optimal.

10-22

Feature Selection

Feature Selection

In this section...

“Introduction to Feature Selection” on page 10-23

“Sequential Feature Selection” on page 10-23

Introduction to Feature Selection
Feature selection reduces the dimensionality of data by selecting only a subset
of measured features (predictor variables) to create a model. Selection criteria
usually involve the minimization of a specific measure of predictive error for
models fit to different subsets. Algorithms search for a subset of predictors
that optimally model measured responses, subject to constraints such as
required or excluded features and the size of the subset.

Feature selection is preferable to feature transformation when the original
units and meaning of features are important and the modeling goal is to
identify an influential subset. When categorical features are present, and
numerical transformations are inappropriate, feature selection becomes the
primary means of dimension reduction.

Sequential Feature Selection

• “Introduction to Sequential Feature Selection” on page 10-23

• “Example: Sequential Feature Selection” on page 10-24

Introduction to Sequential Feature Selection
A common method of feature selection is sequential feature selection. This
method has two components:

• An objective function, called the criterion, which the method seeks to
minimize over all feasible feature subsets. Common criteria are mean
squared error (for regression models) and misclassification rate (for
classification models).

• A sequential search algorithm, which adds or removes features from a
candidate subset while evaluating the criterion. Since an exhaustive

10-23

10 Multivariate Methods

comparison of the criterion value at all 2n subsets of an n-feature data set
is typically infeasible (depending on the size of n and the cost of objective
calls), sequential searches move in only one direction, always growing or
always shrinking the candidate set.

The method has two variants:

• Sequential forward selection (SFS), in which features are sequentially
added to an empty candidate set until the addition of further features does
not decrease the criterion.

• Sequential backward selection (SBS), in which features are sequentially
removed from a full candidate set until the removal of further features
increase the criterion.

Stepwise regression is a sequential feature selection technique designed
specifically for least-squares fitting. The functions stepwise and stepwisefit
make use of optimizations that are only possible with least-squares criteria.
Unlike generalized sequential feature selection, stepwise regression may
remove features that have been added or add features that have been removed.

The Statistics Toolbox function sequentialfs carries out sequential feature
selection. Input arguments include predictor and response data and a function
handle to a file implementing the criterion function. Optional inputs allow
you to specify SFS or SBS, required or excluded features, and the size of the
feature subset. The function calls cvpartition and crossval to evaluate the
criterion at different candidate sets.

Example: Sequential Feature Selection
For example, consider a data set with 100 observations of 10 predictors.
The following generates random data from a logistic model, with a binomial
distribution of responses at each set of values for the predictors. Some
coefficients are set to zero so that not all of the predictors affect the response:

n = 100;
m = 10;
X = rand(n,m);
b = [1 0 0 2 .5 0 0 0.1 0 1];
Xb = X*b';
p = 1./(1+exp(-Xb));

10-24

Feature Selection

N = 50;
y = binornd(N,p);

The glmfit function fits a logistic model to the data:

Y = [y N*ones(size(y))];
[b0,dev0,stats0] = glmfit(X,Y,'binomial');

% Display coefficient estimates and their standard errors:
model0 = [b0 stats0.se]
model0 =

0.3115 0.2596
0.9614 0.1656

-0.1100 0.1651
-0.2165 0.1683
1.9519 0.1809
0.5683 0.2018

-0.0062 0.1740
0.0651 0.1641

-0.1034 0.1685
0.0017 0.1815
0.7979 0.1806

% Display the deviance of the fit:
dev0
dev0 =

101.2594

This is the full model, using all of the features (and an initial constant term).
Sequential feature selection searches for a subset of the features in the full
model with comparative predictive power.

First, you must specify a criterion for selecting the features. The following
function, which calls glmfit and returns the deviance of the fit (a
generalization of the residual sum of squares) is a useful criterion in this case:

function dev = critfun(X,Y)

[b,dev] = glmfit(X,Y,'binomial');

You should create this function as a file on the MATLAB path.

10-25

10 Multivariate Methods

The function sequentialfs performs feature selection, calling the criterion
function via a function handle:

maxdev = chi2inv(.95,1);
opt = statset('display','iter',...

'TolFun',maxdev,...
'TolTypeFun','abs');

inmodel = sequentialfs(@critfun,X,Y,...
'cv','none',...
'nullmodel',true,...
'options',opt,...
'direction','forward');

Start forward sequential feature selection:
Initial columns included: none
Columns that can not be included: none
Step 1, used initial columns, criterion value 309.118
Step 2, added column 4, criterion value 180.732
Step 3, added column 1, criterion value 138.862
Step 4, added column 10, criterion value 114.238
Step 5, added column 5, criterion value 103.503
Final columns included: 1 4 5 10

The iterative display shows a decrease in the criterion value as each new
feature is added to the model. The final result is a reduced model with only
four of the original ten features: columns 1, 4, 5, and 10 of X. These features
are indicated in the logical vector inmodel returned by sequentialfs.

The deviance of the reduced model is higher than for the full model, but
the addition of any other single feature would not decrease the criterion
by more than the absolute tolerance, maxdev, set in the options structure.
Adding a feature with no effect reduces the deviance by an amount that has
a chi-square distribution with one degree of freedom. Adding a significant
feature results in a larger change. By setting maxdev to chi2inv(.95,1), you
instruct sequentialfs to continue adding features so long as the change in
deviance is more than would be expected by random chance.

The reduced model (also with an initial constant term) is:

[b,dev,stats] = glmfit(X(:,inmodel),Y,'binomial');

10-26

Feature Selection

% Display coefficient estimates and their standard errors:
model = [b stats.se]
model =

0.0784 0.1642
1.0040 0.1592
1.9459 0.1789
0.6134 0.1872
0.8245 0.1730

10-27

10 Multivariate Methods

Feature Transformation

In this section...

“Introduction to Feature Transformation” on page 10-28

“Nonnegative Matrix Factorization” on page 10-28

“Principal Component Analysis (PCA)” on page 10-31

“Factor Analysis” on page 10-45

Introduction to Feature Transformation
Feature transformation is a group of methods that create new features
(predictor variables). The methods are useful for dimension reduction when
the transformed features have a descriptive power that is more easily ordered
than the original features. In this case, less descriptive features can be
dropped from consideration when building models.

Feature transformation methods are contrasted with the methods presented
in “Feature Selection” on page 10-23, where dimension reduction is achieved
by computing an optimal subset of predictive features measured in the
original data.

The methods presented in this section share some common methodology.
Their goals, however, are essentially different:

• Nonnegative matrix factorization is used when model terms must represent
nonnegative quantities, such as physical quantities.

• Principal component analysis is used to summarize data in fewer
dimensions, for example, to visualize it.

• Factor analysis is used to build explanatory models of data correlations.

Nonnegative Matrix Factorization

• “Introduction to Nonnegative Matrix Factorization” on page 10-29

• “Example: Nonnegative Matrix Factorization” on page 10-29

10-28

Feature Transformation

Introduction to Nonnegative Matrix Factorization
Nonnegative matrix factorization (NMF) is a dimension-reduction technique
based on a low-rank approximation of the feature space. Besides providing
a reduction in the number of features, NMF guarantees that the features
are nonnegative, producing additive models that respect, for example, the
nonnegativity of physical quantities.

Given a nonnegative m-by-n matrix X and a positive integer k < min(m,n),
NMF finds nonnegative m-by-k and k-by-n matrices W and H, respectively,
that minimize the norm of the difference X – WH. W and H are thus
approximate nonnegative factors of X.

The k columns of W represent transformations of the variables in X; the k
rows of H represent the coefficients of the linear combinations of the original
n variables in X that produce the transformed variables in W. Since k is
generally smaller than the rank of X, the product WH provides a compressed
approximation of the data in X. A range of possible values for k is often
suggested by the modeling context.

The Statistics Toolbox function nnmf carries out nonnegative matrix
factorization. nnmf uses one of two iterative algorithms that begin with
random initial values for W and H. Because the norm of the residual X
– WH may have local minima, repeated calls to nnmf may yield different
factorizations. Sometimes the algorithm converges to a solution of lower rank
than k, which may indicate that the result is not optimal.

Example: Nonnegative Matrix Factorization
For example, consider the five predictors of biochemical oxygen demand in the
data set moore.mat:

load moore
X = moore(:,1:5);

The following uses nnmf to compute a rank-two approximation of X with a
multiplicative update algorithm that begins from five random initial values
for W and H:

opt = statset('MaxIter',10,'Display','final');
[W0,H0] = nnmf(X,2,'replicates',5,...

'options',opt,...

10-29

10 Multivariate Methods

'algorithm','mult');
rep iteration rms resid |delta x|

1 10 358.296 0.00190554
2 10 78.3556 0.000351747
3 10 230.962 0.0172839
4 10 326.347 0.00739552
5 10 361.547 0.00705539

Final root mean square residual = 78.3556

The 'mult' algorithm is sensitive to initial values, which makes it a good
choice when using 'replicates' to find W and H from multiple random
starting values.

Now perform the factorization using an alternating least-squares algorithm,
which converges faster and more consistently. Run 100 times more iterations,
beginning from the initial W0 and H0 identified above:

opt = statset('Maxiter',1000,'Display','final');
[W,H] = nnmf(X,2,'w0',W0,'h0',H0,...

'options',opt,...
'algorithm','als');

rep iteration rms resid |delta x|
1 3 77.5315 3.52673e-005

Final root mean square residual = 77.5315

The two columns of W are the transformed predictors. The two rows of H give
the relative contributions of each of the five predictors in X to the predictors
in W:

H
H =

0.0835 0.0190 0.1782 0.0072 0.9802
0.0558 0.0250 0.9969 0.0085 0.0497

The fifth predictor in X (weight 0.9802) strongly influences the first predictor
in W. The third predictor in X (weight 0.9969) strongly influences the second
predictor in W.

Visualize the relative contributions of the predictors in X with a biplot,
showing the data and original variables in the column space of W:

10-30

Feature Transformation

biplot(H','scores',W,'varlabels',{'','','v3','','v5'});
axis([0 1.1 0 1.1])
xlabel('Column 1')
ylabel('Column 2')

Principal Component Analysis (PCA)

• “Introduction to Principal Component Analysis (PCA)” on page 10-31

• “Example: Principal Component Analysis” on page 10-33

Introduction to Principal Component Analysis (PCA)
One of the difficulties inherent in multivariate statistics is the problem of
visualizing data that has many variables. The MATLAB function plot
displays a graph of the relationship between two variables. The plot3
and surf commands display different three-dimensional views. But when

10-31

10 Multivariate Methods

there are more than three variables, it is more difficult to visualize their
relationships.

Fortunately, in data sets with many variables, groups of variables often
move together. One reason for this is that more than one variable might be
measuring the same driving principle governing the behavior of the system.
In many systems there are only a few such driving forces. But an abundance
of instrumentation enables you to measure dozens of system variables. When
this happens, you can take advantage of this redundancy of information.
You can simplify the problem by replacing a group of variables with a single
new variable.

Principal component analysis is a quantitatively rigorous method for achieving
this simplification. The method generates a new set of variables, called
principal components. Each principal component is a linear combination of
the original variables. All the principal components are orthogonal to each
other, so there is no redundant information. The principal components as a
whole form an orthogonal basis for the space of the data.

There are an infinite number of ways to construct an orthogonal basis for
several columns of data. What is so special about the principal component
basis?

The first principal component is a single axis in space. When you project
each observation on that axis, the resulting values form a new variable. And
the variance of this variable is the maximum among all possible choices of
the first axis.

The second principal component is another axis in space, perpendicular to
the first. Projecting the observations on this axis generates another new
variable. The variance of this variable is the maximum among all possible
choices of this second axis.

The full set of principal components is as large as the original set of variables.
But it is commonplace for the sum of the variances of the first few principal
components to exceed 80% of the total variance of the original data. By
examining plots of these few new variables, researchers often develop a
deeper understanding of the driving forces that generated the original data.

10-32

Feature Transformation

You can use the function princomp to find the principal components. To use
princomp, you need to have the actual measured data you want to analyze.
However, if you lack the actual data, but have the sample covariance or
correlation matrix for the data, you can still use the function pcacov to
perform a principal components analysis. See the reference page for pcacov
for a description of its inputs and outputs.

Example: Principal Component Analysis

• “Computing Components” on page 10-33

• “Component Coefficients” on page 10-36

• “Component Scores” on page 10-36

• “Component Variances” on page 10-40

• “Hotelling’s T2” on page 10-42

• “Visualizing the Results” on page 10-42

Computing Components. Consider a sample application that uses nine
different indices of the quality of life in 329 U.S. cities. These are climate,
housing, health, crime, transportation, education, arts, recreation, and
economics. For each index, higher is better. For example, a higher index
for crime means a lower crime rate.

Start by loading the data in cities.mat.

load cities
whos

Name Size Bytes Class
categories 9x14 252 char array
names 329x43 28294 char array
ratings 329x9 23688 double array

The whos command generates a table of information about all the variables
in the workspace.

The cities data set contains three variables:

• categories, a string matrix containing the names of the indices

10-33

10 Multivariate Methods

• names, a string matrix containing the 329 city names

• ratings, the data matrix with 329 rows and 9columns

The categories variable has the following values:

categories
categories =

climate
housing
health
crime
transportation
education
arts
recreation
economics

The first five rows of names are

first5 = names(1:5,:)
first5 =

Abilene, TX
Akron, OH
Albany, GA
Albany-Troy, NY
Albuquerque, NM

To get a quick impression of the ratings data, make a box plot.

boxplot(ratings,'orientation','horizontal','labels',categories)

This command generates the plot below. Note that there is substantially
more variability in the ratings of the arts and housing than in the ratings
of crime and climate.

10-34

Feature Transformation

Ordinarily you might also graph pairs of the original variables, but there are
36two-variable plots. Perhaps principal components analysis can reduce the
number of variables you need to consider.

Sometimes it makes sense to compute principal components for raw data. This
is appropriate when all the variables are in the same units. Standardizing the
data is often preferable when the variables are in different units or when the
variance of the different columns is substantial (as in this case).

You can standardize the data by dividing each column by its standard
deviation.

stdr = std(ratings);
sr = ratings./repmat(stdr,329,1);

Now you are ready to find the principal components.

10-35

10 Multivariate Methods

[coefs,scores,variances,t2] = princomp(sr);

The following sections explain the four outputs from princomp.

Component Coefficients. The first output of the princomp function, coefs,
contains the coefficients of the linear combinations of the original variables
that generate the principal components. The coefficients are also known as
loadings.

The first three principal component coefficient vectors are:

c3 = coefs(:,1:3)
c3 =

0.2064 0.2178 -0.6900
0.3565 0.2506 -0.2082
0.4602 -0.2995 -0.0073
0.2813 0.3553 0.1851
0.3512 -0.1796 0.1464
0.2753 -0.4834 0.2297
0.4631 -0.1948 -0.0265
0.3279 0.3845 -0.0509
0.1354 0.4713 0.6073

The largest coefficients in the first column (first principal component) are
the third and seventh elements, corresponding to the variables health and
arts. All the coefficients of the first principal component have the same sign,
making it a weighted average of all the original variables.

The principal components are unit length and orthogonal:

I = c3'*c3
I =

1.0000 -0.0000 -0.0000
-0.0000 1.0000 -0.0000
-0.0000 -0.0000 1.0000

Component Scores. The second output, scores, contains the coordinates
of the original data in the new coordinate system defined by the principal
components. This output is the same size as the input data matrix.

10-36

Feature Transformation

A plot of the first two columns of scores shows the ratings data projected
onto the first two principal components. princomp computes the scores to
have mean zero.

plot(scores(:,1),scores(:,2),'+')
xlabel('1st Principal Component')
ylabel('2nd Principal Component')

Note the outlying points in the right half of the plot.

While it is possible to create a three-dimensional plot using three columns
of scores, the examples in this section create two-dimensional plots, which
are easier to describe.

The function gname is useful for graphically identifying a few points in a plot
like this. You can call gname with a string matrix containing as many case

10-37

10 Multivariate Methods

labels as points in the plot. The string matrix names works for labeling points
with the city names.

gname(names)

Move your cursor over the plot and click once near each point in the right
half. As you click each point, it is labeled with the proper row from the names
string matrix. Here is the plot after a few clicks:

When you are finished labeling points, press the Return key.

The labeled cities are some of the biggest population centers in the United
States. They are definitely different from the remainder of the data, so
perhaps they should be considered separately. To remove the labeled cities
from the data, first identify their corresponding row numbers as follows:

10-38

Feature Transformation

1 Close the plot window.

2 Redraw the plot by entering

plot(scores(:,1),scores(:,2),'+')
xlabel('1st Principal Component');
ylabel('2nd Principal Component');

3 Enter gname without any arguments.

4 Click near the points you labeled in the preceding figure. This labels the
points by their row numbers, as shown in the following figure.

Then you can create an index variable containing the row numbers of all
the metropolitan areas you choose.

10-39

10 Multivariate Methods

metro = [43 65 179 213 234 270 314];
names(metro,:)
ans =

Boston, MA
Chicago, IL
Los Angeles, Long Beach, CA
New York, NY
Philadelphia, PA-NJ
San Francisco, CA
Washington, DC-MD-VA

To remove these rows from the ratings matrix, enter the following.

rsubset = ratings;
nsubset = names;
nsubset(metro,:) = [];
rsubset(metro,:) = [];
size(rsubset)
ans =

322 9

Component Variances. The third output, variances, is a vector containing
the variance explained by the corresponding principal component. Each
column of scores has a sample variance equal to the corresponding element
of variances.

variances
variances =

3.4083
1.2140
1.1415
0.9209
0.7533
0.6306
0.4930
0.3180
0.1204

You can easily calculate the percent of the total variability explained by each
principal component.

10-40

Feature Transformation

percent_explained = 100*variances/sum(variances)
percent_explained =

37.8699
13.4886
12.6831
10.2324
8.3698
7.0062
5.4783
3.5338
1.3378

Use the pareto function to make a scree plot of the percent variability
explained by each principal component.

pareto(percent_explained)
xlabel('Principal Component')
ylabel('Variance Explained (%)')

10-41

10 Multivariate Methods

The preceding figure shows that the only clear break in the amount of
variance accounted for by each component is between the first and second
components. However, that component by itself explains less than 40% of the
variance, so more components are probably needed. You can see that the first
three principal components explain roughly two-thirds of the total variability
in the standardized ratings, so that might be a reasonable way to reduce the
dimensions in order to visualize the data.

Hotelling’s T2. The last output of the princomp function,t2, is Hotelling’sT2,
a statistical measure of the multivariate distance of each observation from
the center of the data set. This is an analytical way to find the most extreme
points in the data.

[st2, index] = sort(t2,'descend'); % Sort in descending order.
extreme = index(1)
extreme =

213
names(extreme,:)
ans =

New York, NY

It is not surprising that the ratings for New York are the furthest from the
average U.S. town.

Visualizing the Results. Use the biplot function to help visualize both
the principal component coefficients for each variable and the principal
component scores for each observation in a single plot. For example, the
following command plots the results from the principal components analysis
on the cities and labels each of the variables.

biplot(coefs(:,1:2), 'scores',scores(:,1:2),...
'varlabels',categories);
axis([-.26 1 -.51 .51]);

10-42

Feature Transformation

Each of the nine variables is represented in this plot by a vector, and the
direction and length of the vector indicates how each variable contributes to
the two principal components in the plot. For example, you have seen that the
first principal component, represented in this biplot by the horizontal axis,
has positive coefficients for all nine variables. That corresponds to the nine
vectors directed into the right half of the plot. You have also seen that the
second principal component, represented by the vertical axis, has positive
coefficients for the variables education, health, arts, and transportation, and
negative coefficients for the remaining five variables. That corresponds to
vectors directed into the top and bottom halves of the plot, respectively. This
indicates that this component distinguishes between cities that have high
values for the first set of variables and low for the second, and cities that
have the opposite.

10-43

10 Multivariate Methods

The variable labels in this figure are somewhat crowded. You could either
leave out the VarLabels parameter when making the plot, or simply select
and drag some of the labels to better positions using the Edit Plot tool from
the figure window toolbar.

Each of the 329 observations is represented in this plot by a point, and
their locations indicate the score of each observation for the two principal
components in the plot. For example, points near the left edge of this plot
have the lowest scores for the first principal component. The points are
scaled to fit within the unit square, so only their relative locations may be
determined from the plot.

You can use the Data Cursor, in the Tools menu in the figure window, to
identify the items in this plot. By clicking on a variable (vector), you can read
off that variable’s coefficients for each principal component. By clicking on
an observation (point), you can read off that observation’s scores for each
principal component.

You can also make a biplot in three dimensions. This can be useful if the first
two principal coordinates do not explain enough of the variance in your data.
Selecting Rotate 3D in the Tools menu enables you to rotate the figure to
see it from different angles.

biplot(coefs(:,1:3), 'scores',scores(:,1:3),...
'obslabels',names);
axis([-.26 1 -.51 .51 -.61 .81]);
view([30 40]);

10-44

Feature Transformation

Factor Analysis

• “Introduction to Factor Analysis” on page 10-45

• “Example: Factor Analysis” on page 10-46

Introduction to Factor Analysis
Multivariate data often includes a large number of measured variables, and
sometimes those variables overlap, in the sense that groups of them might be
dependent. For example, in a decathlon, each athlete competes in 10 events,
but several of them can be thought of as speed events, while others can be
thought of as strength events, etc. Thus, you can think of a competitor’s 10
event scores as largely dependent on a smaller set of three or four types of
athletic ability.

10-45

10 Multivariate Methods

Factor analysis is a way to fit a model to multivariate data to estimate just this
sort of interdependence. In a factor analysis model, the measured variables
depend on a smaller number of unobserved (latent) factors. Because each
factor might affect several variables in common, they are known as common
factors. Each variable is assumed to be dependent on a linear combination
of the common factors, and the coefficients are known as loadings. Each
measured variable also includes a component due to independent random
variability, known as specific variance because it is specific to one variable.

Specifically, factor analysis assumes that the covariance matrix of your data
is of the form

= +∑ ΛΛ ΨΤ
x

where Λ is the matrix of loadings, and the elements of the diagonal matrix
Ψ are the specific variances. The function factoran fits the Factor Analysis
model using maximum likelihood.

Example: Factor Analysis

• “Factor Loadings” on page 10-46

• “Factor Rotation” on page 10-48

• “Factor Scores” on page 10-50

• “Visualizing the Results” on page 10-52

Factor Loadings. Over the course of 100 weeks, the percent change in stock
prices for ten companies has been recorded. Of the ten companies, the first
four can be classified as primarily technology, the next three as financial, and
the last three as retail. It seems reasonable that the stock prices for companies
that are in the same sector might vary together as economic conditions
change. Factor Analysis can provide quantitative evidence that companies
within each sector do experience similar week-to-week changes in stock price.

In this example, you first load the data, and then call factoran, specifying a
model fit with three common factors. By default, factoran computes rotated
estimates of the loadings to try and make their interpretation simpler. But in
this example, you specify an unrotated solution.

10-46

Feature Transformation

load stockreturns

[Loadings,specificVar,T,stats] = ...
factoran(stocks,3,'rotate','none');

The first two factoran return arguments are the estimated loadings and the
estimated specific variances. Each row of the loadings matrix represents one
of the ten stocks, and each column corresponds to a common factor. With
unrotated estimates, interpretation of the factors in this fit is difficult because
most of the stocks contain fairly large coefficients for two or more factors.

Loadings
Loadings =

0.8885 0.2367 -0.2354
0.7126 0.3862 0.0034
0.3351 0.2784 -0.0211
0.3088 0.1113 -0.1905
0.6277 -0.6643 0.1478
0.4726 -0.6383 0.0133
0.1133 -0.5416 0.0322
0.6403 0.1669 0.4960
0.2363 0.5293 0.5770
0.1105 0.1680 0.5524

Note “Factor Rotation” on page 10-48 helps to simplify the structure in the
Loadings matrix, to make it easier to assign meaningful interpretations to
the factors.

From the estimated specific variances, you can see that the model indicates
that a particular stock price varies quite a lot beyond the variation due to
the common factors.

specificVar
specificVar =

0.0991
0.3431
0.8097
0.8559
0.1429

10-47

10 Multivariate Methods

0.3691
0.6928
0.3162
0.3311
0.6544

A specific variance of 1 would indicate that there is no common factor
component in that variable, while a specific variance of 0 would indicate that
the variable is entirely determined by common factors. These data seem to
fall somewhere in between.

The p value returned in the stats structure fails to reject the null hypothesis
of three common factors, suggesting that this model provides a satisfactory
explanation of the covariation in these data.

stats.p
ans =

0.8144

To determine whether fewer than three factors can provide an acceptable fit,
you can try a model with two common factors. The p value for this second fit
is highly significant, and rejects the hypothesis of two factors, indicating that
the simpler model is not sufficient to explain the pattern in these data.

[Loadings2,specificVar2,T2,stats2] = ...
factoran(stocks, 2,'rotate','none');

stats2.p
ans =

3.5610e-006

Factor Rotation. As the results illustrate, the estimated loadings from an
unrotated factor analysis fit can have a complicated structure. The goal of
factor rotation is to find a parameterization in which each variable has only a
small number of large loadings. That is, each variable is affected by a small
number of factors, preferably only one. This can often make it easier to
interpret what the factors represent.

If you think of each row of the loadings matrix as coordinates of a point
in M-dimensional space, then each factor corresponds to a coordinate axis.
Factor rotation is equivalent to rotating those axes and computing new

10-48

Feature Transformation

loadings in the rotated coordinate system. There are various ways to do this.
Some methods leave the axes orthogonal, while others are oblique methods
that change the angles between them. For this example, you can rotate the
estimated loadings by using the promax criterion, a common oblique method.

[LoadingsPM,specVarPM] = factoran(stocks,3,'rotate','promax');
LoadingsPM
LoadingsPM =

0.9452 0.1214 -0.0617
0.7064 -0.0178 0.2058
0.3885 -0.0994 0.0975
0.4162 -0.0148 -0.1298
0.1021 0.9019 0.0768
0.0873 0.7709 -0.0821

-0.1616 0.5320 -0.0888
0.2169 0.2844 0.6635
0.0016 -0.1881 0.7849

-0.2289 0.0636 0.6475

Promax rotation creates a simpler structure in the loadings, one in which
most of the stocks have a large loading on only one factor. To see this
structure more clearly, you can use the biplot function to plot each stock
using its factor loadings as coordinates.

biplot(LoadingsPM,'varlabels',num2str((1:10)'));
axis square
view(155,27);

10-49

10 Multivariate Methods

This plot shows that promax has rotated the factor loadings to a simpler
structure. Each stock depends primarily on only one factor, and it is possible
to describe each factor in terms of the stocks that it affects. Based on which
companies are near which axes, you could reasonably conclude that the first
factor axis represents the financial sector, the second retail, and the third
technology. The original conjecture, that stocks vary primarily within sector,
is apparently supported by the data.

Factor Scores. Sometimes, it is useful to be able to classify an observation
based on its factor scores. For example, if you accepted the three-factor model
and the interpretation of the rotated factors, you might want to categorize
each week in terms of how favorable it was for each of the three stock sectors,
based on the data from the 10 observed stocks.

Because the data in this example are the raw stock price changes, and not
just their correlation matrix, you can have factoran return estimates of the

10-50

Feature Transformation

value of each of the three rotated common factors for each week. You can
then plot the estimated scores to see how the different stock sectors were
affected during each week.

[LoadingsPM,specVarPM,TPM,stats,F] = ...
factoran(stocks, 3,'rotate','promax');

plot3(F(:,1),F(:,2),F(:,3),'b.')
line([-4 4 NaN 0 0 NaN 0 0], [0 0 NaN -4 4 NaN 0 0],...

[0 0 NaN 0 0 NaN -4 4], 'Color','black')
xlabel('Financial Sector')
ylabel('Retail Sector')
zlabel('Technology Sector')
grid on
axis square
view(-22.5, 8)

10-51

10 Multivariate Methods

Oblique rotation often creates factors that are correlated. This plot shows
some evidence of correlation between the first and third factors, and you can
investigate further by computing the estimated factor correlation matrix.

inv(TPM'*TPM)
ans =

1.0000 0.1559 0.4082
0.1559 1.0000 -0.0559
0.4082 -0.0559 1.0000

Visualizing the Results. You can use the biplot function to help visualize
both the factor loadings for each variable and the factor scores for each
observation in a single plot. For example, the following command plots the
results from the factor analysis on the stock data and labels each of the 10
stocks.

biplot(LoadingsPM,'scores',F,'varlabels',num2str((1:10)'))
xlabel('Financial Sector')
ylabel('Retail Sector')
zlabel('Technology Sector')
axis square
view(155,27)

10-52

Feature Transformation

In this case, the factor analysis includes three factors, and so the biplot is
three-dimensional. Each of the 10 stocks is represented in this plot by a vector,
and the direction and length of the vector indicates how each stock depends
on the underlying factors. For example, you have seen that after promax
rotation, the first four stocks have positive loadings on the first factor, and
unimportant loadings on the other two factors. That first factor, interpreted
as a financial sector effect, is represented in this biplot as one of the horizontal
axes. The dependence of those four stocks on that factor corresponds to the
four vectors directed approximately along that axis. Similarly, the dependence
of stocks 5, 6, and 7 primarily on the second factor, interpreted as a retail
sector effect, is represented by vectors directed approximately along that axis.

Each of the 100 observations is represented in this plot by a point, and their
locations indicate the score of each observation for the three factors. For
example, points near the top of this plot have the highest scores for the

10-53

10 Multivariate Methods

technology sector factor. The points are scaled to fit within the unit square, so
only their relative locations can be determined from the plot.

You can use the Data Cursor tool from the Tools menu in the figure window
to identify the items in this plot. By clicking a stock (vector), you can read off
that stock’s loadings for each factor. By clicking an observation (point), you
can read off that observation’s scores for each factor.

10-54

