# 13

## Nonparametric Supervised Learning

- "Supervised Learning (Machine Learning) Workflow and Algorithms" on page 13-2
- "Classification Using Nearest Neighbors" on page 13-9
- "Classification Trees and Regression Trees" on page 13-31
- "Ensemble Methods" on page 13-55
- "Bibliography" on page 13-141

## Supervised Learning (Machine Learning) Workflow and Algorithms

#### In this section...

"Steps in Supervised Learning (Machine Learning)" on page 13-2

"Characteristics of Algorithms" on page 13-7

## **Steps in Supervised Learning (Machine Learning)**

Supervised learning (machine learning) takes a known set of input data and known responses to the data, and seeks to build a predictor model that generates reasonable predictions for the response to new data.



Predicted Responses

Suppose you want to predict if someone will have a heart attack within a year. You have a set of data on previous people, including age, weight, height, blood pressure, etc. You know if the previous people had heart attacks within a year of their data measurements. So the problem is combining all the existing data into a model that can predict whether a new person will have a heart attack within a year.

Supervised learning splits into two broad categories:

• Classification for responses that can have just a few known values, such as 'true' or 'false'. Classification algorithms apply to nominal, not ordinal response values.

• Regression for responses that are a real number, such as miles per gallon for a particular car.

You can have trouble deciding whether you have a classification problem or a regression problem. In that case, create a regression model first, because they are often more computationally efficient.

While there are many Statistics Toolbox algorithms for supervised learning, most use the same basic workflow for obtaining a predictor model. (Detailed instruction on the steps for ensemble learning is in "Framework for Ensemble Learning" on page 13-55.) The steps for supervised learning are:

- 1 "Prepare Data" on page 13-3
- **2** "Choose an Algorithm" on page 13-4
- **3** "Fit a Model" on page 13-4
- **4** "Choose a Validation Method" on page 13-5
- 5 "Examine Fit and Update Until Satisfied" on page 13-6
- 6 "Use Fitted Model for Predictions" on page 13-6

#### **Prepare Data**

All supervised learning methods start with an input data matrix, usually called X here. Each row of X represents one observation. Each column of X represents one variable, or predictor. Represent missing entries with NaN values in X. Statistics Toolbox supervised learning algorithms can handle NaN values, either by ignoring them or by ignoring any row with a NaN value.

You can use various data types for response data Y. Each element in Y represents the response to the corresponding row of X. Observations with missing Y data are ignored.

- For regression, Y must be a numeric vector with the same number of elements as the number of rows of X.
- For classification, Y can be any of these data types. This table also contains the method of including missing entries.

| Data Type             | Missing Entry           |
|-----------------------|-------------------------|
| Numeric vector        | NaN                     |
| Categorical vector    | <undefined></undefined> |
| Character array       | Row of spaces           |
| Cell array of strings | 1.1                     |
| Logical vector        | (Cannot represent)      |

#### **Choose an Algorithm**

There are tradeoffs between several characteristics of algorithms, such as:

- Speed of training
- Memory usage
- Predictive accuracy on new data
- Transparency or interpretability, meaning how easily you can understand the reasons an algorithm makes its predictions

Details of the algorithms appear in "Characteristics of Algorithms" on page 13-7. More detail about ensemble algorithms is in "Choose an Applicable Ensemble Method" on page 13-57.

#### Fit a Model

The fitting function you use depends on the algorithm you choose.

| Algorithm                                 | Fitting Function               |
|-------------------------------------------|--------------------------------|
| Classification Trees                      | ClassificationTree.fit         |
| Regression Trees                          | RegressionTree.fit             |
| Discriminant Analysis<br>(classification) | ClassificationDiscriminant.fit |
| K-Nearest Neighbors (classification)      | ClassificationKNN.fit          |
| Naive Bayes (classification)              | NaiveBayes.fit                 |

| Algorithm                                             | Fitting Function |
|-------------------------------------------------------|------------------|
| Classification or Regression<br>Ensembles             | fitensemble      |
| Classification or Regression<br>Ensembles in Parallel | TreeBagger       |

#### **Choose a Validation Method**

The three main methods to examine the accuracy of the resulting fitted model are:

- Examine the resubstitution error. For examples, see:
  - "Example: Resubstitution Error of a Classification Tree" on page 13-38
  - "Example: Cross Validating a Regression Tree" on page 13-39
  - "Example: Test Ensemble Quality" on page 13-65
  - "Example: Resubstitution Error of a Discriminant Analysis Classifier" on page 12-18
- Examine the cross-validation error. For examples, see:
  - "Example: Cross Validating a Regression Tree" on page 13-39
  - "Example: Test Ensemble Quality" on page 13-65
  - "Example: Classification with Many Categorical Levels" on page 13-76
  - "Example: Cross Validating a Discriminant Analysis Classifier" on page 12-19
- Examine the out-of-bag error for bagged decision trees. For examples, see:
  - "Example: Test Ensemble Quality" on page 13-65
  - "Workflow Example: Regression of Insurance Risk Rating for Car Imports with TreeBagger" on page 13-107
  - "Workflow Example: Classifying Radar Returns for Ionosphere Data with TreeBagger" on page 13-116

#### **Examine Fit and Update Until Satisfied**

After validating the model, you might want to change it for better accuracy, better speed, or to use less memory.

- Change fitting parameters to try to get a more accurate model. For examples, see:
  - "Example: Tuning RobustBoost" on page 13-97
  - "Example: Unequal Classification Costs" on page 13-71
  - "Improving a Discriminant Analysis Classifier" on page 12-15
- Change fitting parameters to try to get a smaller model. This sometimes gives a model with more accuracy. For examples, see:
  - "Example: Selecting Appropriate Tree Depth" on page 13-40
  - "Example: Pruning a Classification Tree" on page 13-43
  - "Example: Surrogate Splits" on page 13-81
  - "Example: Regularizing a Regression Ensemble" on page 13-87
  - "Workflow Example: Regression of Insurance Risk Rating for Car Imports with TreeBagger" on page 13-107
  - "Workflow Example: Classifying Radar Returns for Ionosphere Data with TreeBagger" on page 13-116
- Try a different algorithm. For applicable choices, see:
  - "Characteristics of Algorithms" on page 13-7
  - "Choose an Applicable Ensemble Method" on page 13-57

When satisfied with a model of some types, you can trim it using the appropriate compact method (compact for classification trees, compact for classification ensembles, compact for regression trees, compact for regression ensembles, compact for discriminant analysis). compact removes training data and pruning information, so the model uses less memory.

#### **Use Fitted Model for Predictions**

To predict classification or regression response for most fitted models, use the predict method:

Ypredicted = predict(obj,Xnew)

- obj is the fitted model object.
- Xnew is the new input data.
- Ypredicted is the predicted response, either classification or regression.

For classregtree, use the eval method instead of predict.

## **Characteristics of Algorithms**

This table shows typical characteristics of the various supervised learning algorithms. The characteristics in any particular case can vary from the listed ones. Use the table as a guide for your initial choice of algorithms, but be aware that the table can be inaccurate for some problems.

| Algorithm                            | Predictive<br>Accuracy | Fitting<br>Speed | Prediction<br>Speed | Memory<br>Usage | Easy to<br>Interpret | Handles<br>Categorical<br>Predictors |
|--------------------------------------|------------------------|------------------|---------------------|-----------------|----------------------|--------------------------------------|
| Trees                                | Low                    | Fast             | Fast                | Low             | Yes                  | Yes                                  |
| Boosted Trees                        | High                   | Medium           | Medium              | Medium          | No                   | Yes                                  |
| Bagged Trees                         | High                   | Slow             | Slow                | High            | No                   | Yes                                  |
| SVM in<br>Bioinformatics<br>Toolbox™ | High                   | Medium           | *                   | *               | *                    | No                                   |
| Naive Bayes                          | Low                    | **               | **                  | **              | Yes                  | Yes                                  |
| Nearest<br>Neighbor                  | ***                    | Fast***          | Medium              | High            | No                   | Yes***                               |
| Discriminant<br>Analysis             | ****                   | Fast             | Fast                | Low             | Yes                  | No                                   |

#### **Characteristics of Supervised Learning Algorithms**

\* — SVM prediction speed and memory usage are good if there are few support vectors, but can be poor if there are many support vectors. When you use a kernel function, it can be difficult to interpret how SVM classifies data,

though the default linear scheme is easy to interpret. SVM is available if you have a Bioinformatics Toolbox license.

\*\* — Naive Bayes speed and memory usage are good for simple distributions, but can be poor for kernel distributions and large data sets.

\*\*\* — Nearest Neighbor usually has good predictions in low dimensions, but can have poor predictions in high dimensions. For linear search, Nearest Neighbor does not perform any fitting. For *k*d-trees, Nearest Neighbor does perform fitting. Nearest Neighbor can have either continuous or categorical predictors, but not both.

\*\*\*\* — Discriminant Analysis is accurate when the modeling assumptions are satisfied (multivariate normal by class). Otherwise, the predictive accuracy varies.

## **Classification Using Nearest Neighbors**

#### In this section ...

"Pairwise Distance" on page 13-9

"k-Nearest Neighbor Search and Radius Search" on page 13-12

"K-Nearest Neighbor Classification in Supervised Learning Framework" on page  $13{\text -}26$ 

"Construct a KNN Classifier" on page 13-26

"Examine the Quality of a KNN Classifier" on page 13-27

"Predict Classification Based on a KNN Classifier" on page 13-28

"Modify a KNN Classifier" on page 13-28

## **Pairwise Distance**

Categorizing query points based on their distance to points in a training dataset can be a simple yet effective way of classifying new points. You can use various metrics to determine the distance, described next. Use pdist2 to find the distance between a set of data and query points.

#### **Distance Metrics**

Given an *mx*-by-*n* data matrix X, which is treated as *mx* (1-by-*n*) row vectors  $x_1, x_2, ..., x_{mx}$ , and *my*-by-*n* data matrix Y, which is treated as *my* (1-by-*n*) row vectors  $y_1, y_2, ..., y_{my}$ , the various distances between the vector  $x_s$  and  $y_t$  are defined as follows:

• Euclidean distance

 $d_{st}^2 = (x_s - y_t)(x_s - y_t)'$ 

The Euclidean distance is a special case of the Minkowski metric, where p = 2.

• Standardized Euclidean distance

$$d_{st}^2 = (x_s - y_t)V^{-1}(x_s - y_t)$$

where V is the *n*-by-*n* diagonal matrix whose *j*th diagonal element is  $S(j)^2$ , where S is the vector containing the inverse weights.

• Mahalanobis distance

$$d_{st}^2 = (x_s - y_t)C^{-1}(x_s - y_t)'$$

where  ${\tt C}$  is the covariance matrix.

• City block metric

$$d_{st} = \sum_{j=1}^{n} \left| x_{sj} - y_{tj} \right|$$

The city block distance is a special case of the Minkowski metric, where p = 1.

• Minkowski metric

$$d_{st} = p \sqrt{\sum_{j=1}^{n} \left| x_{sj} - y_{tj} \right|^{p}}$$

For the special case of p = 1, the Minkowski metric gives the city block metric, for the special case of p = 2, the Minkowski metric gives the Euclidean distance, and for the special case of  $p = \infty$ , the Minkowski metric gives the Chebychev distance.

• Chebychev distance

$$d_{st} = \max_{j} \left\{ \left| x_{sj} - y_{tj} \right| \right\}$$

The Chebychev distance is a special case of the Minkowski metric, where  $p = \infty$ .

• Cosine distance

$$d_{st} = \left(1 - \frac{x_s y'_t}{\sqrt{(x_s x'_s)(y_t y'_t)}}\right)$$

• Correlation distance

$$d_{st} = 1 - \frac{(x_s - \overline{x}_s)(y_t - \overline{y}_t)'}{\sqrt{(x_s - \overline{x}_s)(x_s - \overline{x}_s)'}\sqrt{(y_t - \overline{y}_t)(y_t - \overline{y}_t)'}}$$

where

$$\bar{x}_s = \frac{1}{n} \sum_j x_{sj}$$
 and

$$\overline{y}_t = \frac{1}{n} \sum_j y_{tj}$$

• Hamming distance

$$d_{st} = (\#(x_{sj} \neq y_{tj}) / n)$$

• Jaccard distance

$$d_{st} = \frac{\# \left[ \left( x_{sj} \neq y_{tj} \right) \cap \left( \left( x_{sj} \neq 0 \right) \cup \left( y_{tj} \neq 0 \right) \right) \right]}{\# \left[ \left( x_{sj} \neq 0 \right) \cup \left( y_{tj} \neq 0 \right) \right]}$$

• Spearman distance

$$d_{st} = 1 - \frac{(r_s - \overline{r_s})(r_t - \overline{r_t})'}{\sqrt{(r_s - \overline{r_s})(r_s - \overline{r_s})'}\sqrt{(r_t - \overline{r_t})(r_t - \overline{r_t})'}}$$

where

- $r_{sj}$  is the rank of  $x_{sj}$  taken over  $x_{1j}$ ,  $x_{2j}$ , ... $x_{mx,j}$ , as computed by tiedrank.
- $r_{tj}$  is the rank of  $y_{tj}$  taken over  $y_{1j}, y_{2j}, ...y_{my,j}$ , as computed by tiedrank.
- $r_s$  and  $r_t$  are the coordinate-wise rank vectors of  $x_s$  and  $y_t$ , i.e.,  $r_s = (r_{s1}, r_{s2}, \dots, r_{sn})$  and  $r_t = (r_{t1}, r_{t2}, \dots, r_{tn})$ .

$$\overline{r}_s = \frac{1}{n} \sum_j r_{sj} = \frac{(n+1)}{2}.$$

$$\overline{r}_t = \frac{1}{n} \sum_j r_{tj} = \frac{(n+1)}{2}.$$

## k-Nearest Neighbor Search and Radius Search

Given a set X of n points and a distance function, k-nearest neighbor (kNN) search lets you find the k closest points in X to a query point or set of points Y. The kNN search technique and kNN-based algorithms are widely used as benchmark learning rules. The relative simplicity of the kNN search technique makes it easy to compare the results from other classification techniques to kNN results. The technique has been used in various areas such as:

- bioinformatics
- image processing and data compression
- document retrieval
- computer vision
- multimedia database
- marketing data analysis

You can use *k*NN search for other machine learning algorithms, such as:

- *k*NN classification
- local weighted regression
- missing data imputation and interpolation
- density estimation

You can also use kNN search with many distance-based learning functions, such as K-means clustering.

In contrast, for a positive real value r, rangesearch finds all points in X that are within a distance r of each point in Y. This fixed-radius search is closely

related to kNN search, as it supports the same distance metrics and search classes, and uses the same search algorithms.

#### k-Nearest Neighbor Search Using Exhaustive Search

When your input data meets any of the following criteria, knnsearch uses the exhaustive search method by default to find the *k*-nearest neighbors:

- The number of columns of X is more than 10.
- X is sparse.
- The distance measure is either:
  - 'seuclidean'
  - 'mahalanobis'
  - 'cosine'
  - 'correlation'
  - 'spearman'
  - 'hamming'
  - 'jaccard'
  - A custom distance function

knnsearch also uses the exhaustive search method if your search object is an ExhaustiveSearcher object. The exhaustive search method finds the distance from each query point to every point in X, ranks them in ascending order, and returns the k points with the smallest distances. For example, this diagram shows the k = 3 nearest neighbors.



#### k-Nearest Neighbor Search Using a kd-Tree

When your input data meets all of the following criteria, knnsearch creates a kd-tree by default to find the k-nearest neighbors:

- The number of columns of X is less than 10.
- X is not sparse.
- The distance measure is either:
  - 'euclidean' (default)
  - 'cityblock'
  - 'minkowski'
  - 'chebychev'

knnsearch also uses a kd-tree if your search object is a KDTreeSearcher object.

*k*d-trees divide your data into nodes with at most BucketSize (default is 50) points per node, based on coordinates (as opposed to categories). The following diagrams illustrate this concept using patch objects to color code the different "buckets."



When you want to find the k-nearest neighbors to a given query point, knnsearch does the following:

1 Determines the node to which the query point belongs. In the following example, the query point (32,90) belongs to Node 4.

- **2** Finds the closest *k* points within that node and its distance to the query point. In the following example, the points in red circles are equidistant from the query point, and are the closest points to the query point within Node 4.
- **3** Chooses all other nodes having any area that is within the same distance, in any direction, from the query point to the *k*th closest point. In this example, only Node 3 overlaps the solid black circle centered at the query point with radius equal to the distance to the closest points within Node 4.
- **4** Searches nodes within that range for any points closer to the query point. In the following example, the point in a red square is slightly closer to the query point than those within Node 4.



Using a *k*d-tree for large datasets with fewer than 10 dimensions (columns) can be much more efficient than using the exhaustive search method, as knnsearch needs to calculate only a subset of the distances. To maximize the efficiency of *k*d-trees, use a KDTreeSearcher object.

#### What Are Search Objects?

Basically, objects are a convenient way of storing information. Classes of related objects (for example, all search objects) have the same properties with values and types relevant to a specified search method. In addition to storing information within objects, you can perform certain actions (called *methods*) on objects.

All search objects have a knnsearch method specific to that class. This lets you efficiently perform a k-nearest neighbors search on your object for that specific object type. In addition, there is a generic knnsearch function that searches without creating or using an object.

To determine which type of object and search method is best for your data, consider the following:

- Does your data have many columns, say more than 10? The ExhaustiveSearcher object may perform better.
- Is your data sparse? Use the ExhaustiveSearcher object.
- Do you want to use one of these distance measures to find the nearest neighbors? Use the ExhaustiveSearcher object.
  - 'seuclidean'
  - 'mahalanobis'
  - 'cosine'
  - 'correlation'
  - 'spearman'
  - 'hamming'
  - 'jaccard'
  - A custom distance function

- Is your dataset huge (but with fewer than 10 columns)? Use the KDTreeSearcher object.
- Are you searching for the nearest neighbors for a large number of query points? Use the KDTreeSearcher object.

For more detailed information on object-oriented programming in MATLAB, see *Object-Oriented Programming*.

#### Example: Classifying Query Data Using knnsearch

 Classify a new point based on the last two columns of the Fisher iris data. Using only the last two columns makes it easier to plot:

```
load fisheriris
x = meas(:,3:4);
gscatter(x(:,1),x(:,2),species)
set(legend,'location','best')
```



**2** Plot the new point:

```
newpoint = [5 1.45];
line(newpoint(1),newpoint(2),'marker','x','color','k',...
'markersize',10,'linewidth',2)
```



**3** Find the 10 sample points closest to the new point:

```
[n,d] = knnsearch(x,newpoint,'k',10)
line(x(n,1),x(n,2),'color',[.5 .5 .5],'marker','o',...
'linestyle','none','markersize',10)
```



**4** It appears that knnsearch has found only the nearest eight neighbors. In fact, this particular dataset contains duplicate values:

x(n,:)

ans =

| 5.0000 | 1.5000 |
|--------|--------|
| 4.9000 | 1.5000 |
| 4.9000 | 1.5000 |
| 5.1000 | 1.5000 |
| 5.1000 | 1.6000 |
| 4.8000 | 1.4000 |
| 5.0000 | 1.7000 |
| 4.7000 | 1.4000 |
| 4.7000 | 1.4000 |

4.7000 1.5000

**5** To make duplicate values visible on the plot, use the following code:

```
% jitter to make repeated points visible
xj = x + .05*(rand(150,2)-.5);
gscatter(xj(:,1),xj(:,2),species)
```

The jittered points do not affect any analysis of the data, only the visualization. This example does not jitter the points.

**6** Make the axes equal so the calculated distances correspond to the apparent distances on the plot axis equal and zoom in to see the neighbors better:



set(gca,'xlim',[4.5 5.5],'ylim',[1 2]); axis square

**7** Find the species of the 10 neighbors:

```
tabulate(species(n))
```

| Value      | Count | Percent |
|------------|-------|---------|
| virginica  | 2     | 20.00%  |
| versicolor | 8     | 80.00%  |

Using a rule based on the majority vote of the 10 nearest neighbors, you can classify this new point as a versicolor.

**8** Visually identify the neighbors by drawing a circle around the group of them:

```
% Define the center and diameter of a circle, based on the
% location of the new point:
ctr = newpoint - d(end);
diameter = 2*d(end);
% Draw a circle around the 10 nearest neighbors:
h = rectangle('position',[ctr,diameter,diameter],...
'curvature',[1 1]);
set(h,'linestyle',':')
```



**9** Using the same dataset, find the 10 nearest neighbors to three new points:

```
figure
newpoint2 = [5 1.45;6 2;2.75 .75];
gscatter(x(:,1),x(:,2),species)
legend('location','best')
[n2,d2] = knnsearch(x,newpoint2,'k',10);
line(x(n2,1),x(n2,2),'color',[.5 .5 .5],'marker','o',...
    'linestyle','none','markersize',10)
line(newpoint2(:,1),newpoint2(:,2),'marker','x','color','k',...
    'markersize',10,'linewidth',2,'linestyle','none')
```



**10** Find the species of the 10 nearest neighbors for each new point:

| tabulate(speci                        | Les(n2(1, | :)))    |  |  |
|---------------------------------------|-----------|---------|--|--|
| Value                                 | Count     | Percent |  |  |
| virginica                             | 2         | 20.00%  |  |  |
| versicolor                            | 8         | 80.00%  |  |  |
| <pre>tabulate(species(n2(2,:)))</pre> |           |         |  |  |
| Value                                 | Count     | Percent |  |  |
| virginica                             | 10        | 100.00% |  |  |
| <pre>tabulate(species(n2(3,:)))</pre> |           |         |  |  |
| Value                                 | Count     | Percent |  |  |
| versicolor                            | 7         | 70.00%  |  |  |
| setosa                                | 3         | 30.00%  |  |  |

For more examples using  ${\sf knnsearch}$  methods and function, see the individual reference pages.

## K-Nearest Neighbor Classification in Supervised Learning Framework

The ClassificationKNN class lets you:

- "Construct a KNN Classifier" on page 13-26
- "Examine the Quality of a KNN Classifier" on page 13-27
- "Predict Classification Based on a KNN Classifier" on page 13-28
- "Modify a KNN Classifier" on page 13-28

Work with the classifier as you would with ClassificationTree or ClassificationDiscriminant. In particular, prepare your data for classification according to the procedure in "Steps in Supervised Learning (Machine Learning)" on page 13-2. Then construct the classifier using ClassificationKNN.fit.

## **Construct a KNN Classifier**

This example shows how to construct a k-nearest neighbor classifier for the Fisher iris data.

Load the Fisher iris data.

```
load fisheriris
X = meas; % use all data for fitting
Y = species; % response data
```

Construct the classifier using ClassificationKNN.fit.

```
mdl = ClassificationKNN.fit(X,Y)
mdl =
ClassificationKNN:
    PredictorNames: {'x1' 'x2' 'x3' 'x4'}
    ResponseName: 'Y'
```

```
ClassNames: {'setosa' 'versicolor' 'virginica'}
ScoreTransform: 'none'
NObservations: 150
Distance: 'euclidean'
NumNeighbors: 1
```

A default *k*-nearest neighbor classifier uses just the single nearest neighbor. Often, a classifier is more robust with more neighbors than that. Change the neighborhood size of mdl to 4, meaning mdl classifies using the four nearest neighbors:

```
mdl.NumNeighbors = 4;
```

## **Examine the Quality of a KNN Classifier**

This example shows how to examine the quality of a k-nearest neighbor classifier using resubstitution and cross validation.

Construct a KNN classifier for the Fisher iris data as in "Construct a KNN Classifier" on page 13-26.

```
load fisheriris
X = meas; % use all data for fitting
Y = species; % response data
mdl = ClassificationKNN.fit(X,Y,'NumNeighbors',4);
```

Examine the resubstitution loss, which, by default, is the fraction of misclassifications from the predictions of mdl. (For nondefault cost, weights, or priors, see ClassificationKNN.loss.)

```
rloss = resubLoss(mdl)
rloss =
0.0400
```

The classifier predicts incorrectly for 4% of the training data.

Construct a cross-validated classifier from the model.

```
cvmdl = crossval(mdl);
```

Examine the cross-validation loss, which is the average loss of each cross-validation model when predicting on data that is not used for training.

```
kloss = kfoldLoss(cvmdl)
kloss =
0.0600
```

The cross-validated classification accuracy resembles the resubstitution accuracy. Therefore, you can expect mdl to misclassify approximately 5% of new data, assuming that the new data has about the same distribution as the training data.

## Predict Classification Based on a KNN Classifier

This example shows how to predict classification for a k-nearest neighbor classifier.

Construct a default KNN classifier for the Fisher iris data as in "Construct a KNN Classifier" on page 13-26.

```
load fisheriris
X = meas; % use all data for fitting
Y = species; % response data
mdl = ClassificationKNN.fit(X,Y);
```

Predict the classification of an average flower.

```
flwr = mean(X); % an average flower
flwrClass = predict(mdl,flwr)
```

```
flwrClass =
```

'versicolor'

## **Modify a KNN Classifier**

This example shows how to modify a *k*-nearest neighbor classifier.

Construct a default KNN classifier for the Fisher iris data as in "Construct a KNN Classifier" on page 13-26.

```
load fisheriris
X = meas; % use all data for fitting
Y = species; % response data
mdl = ClassificationKNN.fit(X,Y);
```

Modify the model to use the three nearest neighbors, rather than the default one nearest neighbor.

```
mdl.NumNeighbors = 3;
```

Compare the resubstitution predictions and cross-validation loss with the new number of neighbors.

The model with three neighbors has lower cross-validated loss than a model with four neighbors (see "Examine the Quality of a KNN Classifier" on page 13-27).

Modify the model to use cosine distance instead of the default, and examine the loss. To use cosine distance, you must recreate the model using the exhaustive search method.

```
cmdl = ClassificationKNN.fit(X,Y,'NSMethod','exhaustive',...
 'Distance','cosine');
cmdl.NumNeighbors = 3;
closs = resubLoss(cmdl)
closs =
 0.0200
```

The classifier now has lower resubstitution error than before.

Check the quality of a cross-validated version of the new model.

```
cvcmdl = crossval(cmdl);
kcloss = kfoldLoss(cvcmdl)
```

kcloss =

0.0333

The cross-validated loss is the same as before. The lesson is that improving the resubstitution error does not necessarily produce a model with better predictions.

## **Classification Trees and Regression Trees**

#### In this section ...

"What Are Classification Trees and Regression Trees?" on page 13-31

"Example: Creating a Classification Tree" on page 13-32

"Example: Creating a Regression Tree" on page 13-32

"Viewing a Tree" on page 13-33

"How the Fit Methods Create Trees" on page 13-35

"Predicting Responses With Classification Trees and Regression Trees" on page 13-37

"Improving Classification Trees and Regression Trees" on page 13-38

"Alternative: classregtree" on page 13-47

## What Are Classification Trees and Regression Trees?

Classification trees and regression trees predict responses to data. To predict a response, follow the decisions in the tree from the root (beginning) node down to a leaf node. The leaf node contains the response. Classification trees give responses that are nominal, such as 'true' or 'false'. Regression trees give numeric responses.

Statistics Toolbox trees are binary. Each step in a prediction involves checking the value of one predictor (variable). For example, here is a simple classification tree:



This tree predicts classifications based on two predictors, x1 and x2. To predict, start at the top node, represented by a triangle ( $\Delta$ ). The first decision is whether x1 is smaller than 0.5. If so, follow the left branch, and see that the tree classifies the data as type 0.

If, however, x1 exceeds 0.5, then follow the right branch to the lower-right triangle node. Here the tree asks if x2 is smaller than 0.5. If so, then follow the left branch to see that the tree classifies the data as type 0. If not, then follow the right branch to see that the that the tree classifies the data as type 1.

To learn how to prepare your data for classification or regression using decision trees, see "Steps in Supervised Learning (Machine Learning)" on page 13-2.

## **Example: Creating a Classification Tree**

To create a classification tree for the ionosphere data:

```
load ionosphere % contains X and Y variables
ctree = ClassificationTree.fit(X,Y)
ctree =
ClassificationTree:
        PredictorNames: {1x34 cell}
        CategoricalPredictors: []
            ResponseName: 'Y'
             ClassNames: {'b' 'g'}
             ScoreTransform: 'none'
             NObservations: 351
```

## **Example: Creating a Regression Tree**

To create a regression tree for the carsmall data based on the Horsepower and Weight vectors for data, and MPG vector for response:

```
load carsmall % contains Horsepower, Weight, MPG
X = [Horsepower Weight];
rtree = RegressionTree.fit(X,MPG)
```

```
rtree =
RegressionTree:
    PredictorNames: {'x1' 'x2'}
CategoricalPredictors: []
    ResponseName: 'Y'
    ResponseTransform: 'none'
    NObservations: 94
```

#### **Viewing a Tree**

There are two ways to view a tree:

- view(tree) returns a text description of the tree.
- view(tree, 'mode', 'graph') returns a graphic description of the tree.

"Example: Creating a Classification Tree" on page 13-32 has the following two views:

```
load fisheriris
ctree = ClassificationTree.fit(meas,species);
view(ctree)
Decision tree for classification
1 if x3<2.45 then node 2 elseif x3>=2.45 then node 3 else setosa
2 class = setosa
3 if x4<1.75 then node 4 elseif x4>=1.75 then node 5 else versicolor
4 if x3<4.95 then node 6 elseif x3>=4.95 then node 7 else versicolor
5 class = virginica
6 if x4<1.65 then node 8 elseif x4>=1.65 then node 9 else versicolor
7 class = virginica
8 class = versicolor
9 class = virginica
view(ctree,'mode','graph')
```



Similarly, "Example: Creating a Regression Tree" on page 13-32 has the following two views:

```
load carsmall % contains Horsepower, Weight, MPG
X = [Horsepower Weight];
rtree = RegressionTree.fit(X,MPG,'MinParent',30);
view(rtree)
Decision tree for regression
1 if x2<3085.5 then node 2 elseif x2>=3085.5 then node 3 else 23.7181
2 if x1<89 then node 4 elseif x1>=89 then node 5 else 28.7931
3 if x1<115 then node 6 elseif x1>=115 then node 7 else 15.5417
4 if x2<2162 then node 8 elseif x2>=2162 then node 9 else 30.9375
5 fit = 24.0882
6 fit = 19.625
7 fit = 14.375
```

```
8 fit = 33.3056
9 fit = 29
```

```
view(rtree,'mode','graph')
```



#### How the Fit Methods Create Trees

The ClassificationTree.fit and RegressionTree.fit methods perform the following steps to create decision trees:

- **1** Start with all input data, and examine all possible binary splits on every predictor.
- 2 Select a split with best optimization criterion.

- If the split leads to a child node having too few observations (less than the MinLeaf parameter), select a split with the best optimization criterion subject to the MinLeaf constraint.
- **3** Impose the split.
- 4 Repeat recursively for the two child nodes.

The explanation requires two more items: description of the optimization criterion, and stopping rule.

**Stopping rule:** Stop splitting when any of the following hold:

- The node is *pure*.
  - For classification, a node is pure if it contains only observations of one class.
  - For regression, a node is pure if the mean squared error (MSE) for the observed response in this node drops below the MSE for the observed response in the entire data multiplied by the tolerance on quadratic error per node (qetoler parameter).
- There are fewer than MinParent observations in this node.
- Any split imposed on this node would produce children with fewer than MinLeaf observations.

#### **Optimization criterion:**

- Regression: mean-squared error (MSE). Choose a split to minimize the MSE of predictions compared to the training data.
- Classification: One of three measures, depending on the setting of the SplitCriterion name-value pair:
  - 'gdi' (Gini's diversity index, the default)
  - 'twoing'
  - 'deviance'

For details, see ClassificationTree "Definitions" on page 20-234.
For a continuous predictor, a tree can split halfway between any two adjacent unique values found for this predictor. For a categorical predictor with Llevels, a classification tree needs to consider  $2^{L-1}-1$  splits. To obtain this formula, observe that you can assign L distinct values to the left and right nodes in  $2^L$  ways. Two out of these  $2^L$  configurations would leave either left or right node empty, and therefore should be discarded. Now divide by 2 because left and right can be swapped. A classification tree can thus process only categorical predictors with a moderate number of levels. A regression tree employs a computational shortcut: it sorts the levels by the observed mean response, and considers only the L-1 splits between the sorted levels.

# Predicting Responses With Classification Trees and Regression Trees

After creating a tree, you can easily predict responses for new data. Suppose Xnew is new data that has the same number of columns as the original data X. To predict the classification or regression based on the tree and the new data, enter

Ynew = predict(tree,Xnew);

For each row of data in Xnew, predict runs through the decisions in tree and gives the resulting prediction in the corresponding element of Ynew. For more information for classification, see the classification predict reference page; for regression, see the regression predict reference page.

For example, to find the predicted classification of a point at the mean of the ionosphere data:

To find the predicted MPG of a point at the mean of the carsmall data:

```
load carsmall % contains Horsepower, Weight, MPG
X = [Horsepower Weight];
rtree = RegressionTree.fit(X,MPG);
```

```
Ynew = predict(rtree,mean(X))
Ynew =
    28.7931
```

## **Improving Classification Trees and Regression Trees**

You can tune trees by setting name-value pairs in ClassificationTree.fit and RegressionTree.fit. The remainder of this section describes how to determine the quality of a tree, how to decide which name-value pairs to set, and how to control the size of a tree:

- "Examining Resubstitution Error" on page 13-38
- "Cross Validation" on page 13-39
- "Control Depth or "Leafiness"" on page 13-39
- "Pruning" on page 13-43

#### **Examining Resubstitution Error**

*Resubstitution error* is the difference between the response training data and the predictions the tree makes of the response based on the input training data. If the resubstitution error is high, you cannot expect the predictions of the tree to be good. However, having low resubstitution error does not guarantee good predictions for new data. Resubstitution error is often an overly optimistic estimate of the predictive error on new data.

**Example: Resubstitution Error of a Classification Tree.** Examine the resubstitution error of a default classification tree for the Fisher iris data:

```
load fisheriris
ctree = ClassificationTree.fit(meas,species);
resuberror = resubLoss(ctree)
resuberror =
    0.0200
```

The tree classifies nearly all the Fisher iris data correctly.

#### **Cross Validation**

To get a better sense of the predictive accuracy of your tree for new data, cross validate the tree. By default, cross validation splits the training data into 10 parts at random. It trains 10 new trees, each one on nine parts of the data. It then examines the predictive accuracy of each new tree on the data not included in training that tree. This method gives a good estimate of the predictive accuracy of the resulting tree, since it tests the new trees on new data.

**Example: Cross Validating a Regression Tree.** Examine the resubstitution and cross-validation accuracy of a regression tree for predicting mileage based on the carsmall data:

```
load carsmall
X = [Acceleration Displacement Horsepower Weight];
rtree = RegressionTree.fit(X,MPG);
resuberror = resubLoss(rtree)
resuberror =
    4.7188
```

The resubstitution loss for a regression tree is the mean-squared error. The resulting value indicates that a typical predictive error for the tree is about the square root of 4.7, or a bit over 2.

Now calculate the error by cross validating the tree:

```
cvrtree = crossval(rtree);
cvloss = kfoldLoss(cvrtree)
cvloss =
23.4808
```

The cross-validated loss is almost 25, meaning a typical predictive error for the tree on new data is about 5. This demonstrates that cross-validated loss is usually higher than simple resubstitution loss.

## **Control Depth or "Leafiness"**

When you grow a decision tree, consider its simplicity and predictive power. A deep tree with many leaves is usually highly accurate on the training data.

However, the tree is not guaranteed to show a comparable accuracy on an independent test set. A leafy tree tends to overtrain, and its test accuracy is often far less than its training (resubstitution) accuracy. In contrast, a shallow tree does not attain high training accuracy. But a shallow tree can be more robust — its training accuracy could be close to that of a representative test set. Also, a shallow tree is easy to interpret.

If you do not have enough data for training and test, estimate tree accuracy by cross validation.

For an alternative method of controlling the tree depth, see "Pruning" on page 13-43.

**Example: Selecting Appropriate Tree Depth.** This example shows how to control the depth of a decision tree, and how to choose an appropriate depth.

1 Load the ionosphere data:

load ionosphere

**2** Generate minimum leaf occupancies for classification trees from 10 to 100, spaced exponentially apart:

leafs = logspace(1,2,10);

**3** Create cross validated classification trees for the ionosphere data with minimum leaf occupancies from leafs:

```
N = numel(leafs);
err = zeros(N,1);
for n=1:N
    t = ClassificationTree.fit(X,Y,'crossval','on',...
        'minleaf',leafs(n));
    err(n) = kfoldLoss(t);
end
plot(leafs,err);
xlabel('Min Leaf Size');
ylabel('cross-validated error');
```



The best leaf size is between about 20 and 50 observations per leaf.

**4** Compare the near-optimal tree with at least 40 observations per leaf with the default tree, which uses 10 observations per parent node and 1 observation per leaf.

```
DefaultTree = ClassificationTree.fit(X,Y);
view(DefaultTree,'mode','graph')
```



OptimalTree = ClassificationTree.fit(X,Y,'minleaf',40); view(OptimalTree,'mode','graph')



```
resubOpt = resubLoss(OptimalTree);
lossOpt = kfoldLoss(crossval(OptimalTree));
resubDefault = resubLoss(DefaultTree);
lossDefault = kfoldLoss(crossval(DefaultTree));
resubOpt,resubDefault,lossOpt,lossDefault
```

resubOpt = 0.0883

```
resubDefault =
    0.0114
lossOpt =
    0.1054
lossDefault =
    0.1026
```

The near-optimal tree is much smaller and gives a much higher resubstitution error. Yet it gives similar accuracy for cross-validated data.

## Pruning

Pruning optimizes tree depth (leafiness) is by merging leaves on the same tree branch. "Control Depth or "Leafiness"" on page 13-39 describes one method for selecting the optimal depth for a tree. Unlike in that section, you do not need to grow a new tree for every node size. Instead, grow a deep tree, and prune it to the level you choose.

Prune a tree at the command line using the prune method (classification) or prune method (regression). Alternatively, prune a tree interactively with the tree viewer:

```
view(tree,'mode','graph')
```

To prune a tree, the tree must contain a pruning sequence. By default, both ClassificationTree.fit and RegressionTree.fit calculate a pruning sequence for a tree during construction. If you construct a tree with the 'Prune' name-value pair set to 'off', or if you prune a tree to a smaller level, the tree does not contain the full pruning sequence. Generate the full pruning sequence with the prune method (classification) or prune method (regression).

**Example: Pruning a Classification Tree.** This example creates a classification tree for the ionosphere data, and prunes it to a good level.

1 Load the ionosphere data:

load ionosphere

**2** Construct a default classification tree for the data:

```
tree = ClassificationTree.fit(X,Y);
```

**3** View the tree in the interactive viewer:

view(tree,'mode','graph')



**4** Find the optimal pruning level by minimizing cross-validated loss:

```
[~,~,~,bestlevel] = cvLoss(tree,...
'subtrees','all','treesize','min')
bestlevel =
    6
```

**5** Prune the tree to level **6** in the interactive viewer:



The pruned tree is the same as the near-optimal tree in "Example: Selecting Appropriate Tree Depth" on page 13-40.

6 Set 'treesize' to 'se' (default) to find the maximal pruning level for which the tree error does not exceed the error from the best level plus one standard deviation:

```
[~,~,~,bestlevel] = cvLoss(tree,'subtrees','all')
bestlevel =
          6
```

In this case the level is the same for either setting of 'treesize'.

**7** Prune the tree to use it for other purposes:

```
tree = prune(tree, 'Level',6);
view(tree, 'mode', 'graph')
```



## Alternative: classregtree

The ClassificationTree and RegressionTree classes are new in MATLAB R2011a. Previously, you represented both classification trees and regression trees with a classregtree object. The new classes provide all the functionality of the classregtree class, and are more convenient when used in conjunction with "Ensemble Methods" on page 13-55.

Before the classregtree class, there were treefit, treedisp, treeval, treeprune, and treetest functions. Statistics Toolbox software maintains these only for backward compatibility.

#### **Example: Creating Classification Trees Using classregtree**

This example uses Fisher's iris data in fisheriris.mat to create a classification tree for predicting species using measurements of sepal length, sepal width, petal length, and petal width as predictors. Here, the predictors are continuous and the response is categorical.

1 Load the data and use the classregtree constructor of the classregtree class to create the classification tree:

t is a classregtree object and can be operated on with any class method.

2 Use the type method of the classregtree class to show the type of the tree:

```
treetype = type(t)
treetype =
classification
```

classregtree creates a classification tree because species is a cell array of strings, and the response is assumed to be categorical.

**3** To view the tree, use the view method of the classregtree class:

view(t)



The tree predicts the response values at the circular leaf nodes based on a series of questions about the iris at the triangular branching nodes. A true answer to any question follows the branch to the left. A false follows the branch to the right.

**4** The tree does not use sepal measurements for predicting species. These can go unmeasured in new data, and you can enter them as NaN values for predictions. For example, to use the tree to predict the species of an iris with petal length **4.8** and petal width **1.6**, type:

```
predicted = t([NaN NaN 4.8 1.6])
predicted =
    'versicolor'
```

The object allows for functional evaluation, of the form t(X). This is a shorthand way of calling the eval method of the classregtree class. The predicted species is the left leaf node at the bottom of the tree in the previous view.

**5** You can use a variety of methods of the classregtree class, such as cutvar and cuttype to get more information about the split at node 6 that makes the final distinction between versicolor and virginica:

```
var6 = cutvar(t,6) % What variable determines the split?
var6 =
    'PW'
type6 = cuttype(t,6) % What type of split is it?
type6 =
    'continuous'
```

6 Classification trees fit the original (training) data well, but can do a poor job of classifying new values. Lower branches, especially, can be strongly affected by outliers. A simpler tree often avoids overfitting. You can use the prune method of the classregtree class to find the next largest tree from an optimal pruning sequence:

```
pruned = prune(t,'level',1)
pruned =
Decision tree for classification
1 if PL<2.45 then node 2 elseif PL>=2.45 then node 3 else setosa
2 class = setosa
3 if PW<1.75 then node 4 elseif PW>=1.75 then node 5 else versicolor
4 if PL<4.95 then node 6 elseif PL>=4.95 then node 7 else versicolor
5 class = virginica
6 class = versicolor
7 class = virginica
```

view(pruned)



To find the best classification tree, employing the techniques of resubstitution and cross validation, use the test method of the classregtree class.

## **Example: Creating Regression Trees Using classregtree**

This example uses the data on cars in carsmall.mat to create a regression tree for predicting mileage using measurements of weight and the number of cylinders as predictors. Here, one predictor (weight) is continuous and the other (cylinders) is categorical. The response (mileage) is continuous.

1 Load the data and use the classregtree constructor of the classregtree class to create the regression tree:

```
t = classregtree([Weight, Cylinders],MPG,...
                 'cat',2,'splitmin',20,...
                 'names',{'W','C'})
t =
Decision tree for regression
1 if W<3085.5 then node 2 elseif W>=3085.5 then node 3 else 23.7181
2 if W<2371 then node 4 elseif W>=2371 then node 5 else 28.7931
3 if C=8 then node 6 elseif C in {4 6} then node 7 else 15.5417
4 if W<2162 then node 8 elseif W>=2162 then node 9 else 32.0741
5 if C=6 then node 10 elseif C=4 then node 11 else 25.9355
6 if W<4381 then node 12 elseif W>=4381 then node 13 else 14.2963
7 fit = 19.2778
8 fit = 33.3056
9 fit = 29.6111
10 fit = 23.25
11 if W<2827.5 then node 14 elseif W>=2827.5 then node 15 else 27.2143
12 if W<3533.5 then node 16 elseif W>=3533.5 then node 17 else 14.8696
13 fit = 11
14 fit = 27.6389
15 fit = 24.6667
16 fit = 16.6
```

17 fit = 14.3889

load carsmall

t is a classregtree object and can be operated on with any of the methods of the class.

**2** Use the type method of the classregtree class to show the type of the tree:

```
treetype = type(t)
treetype =
regression
```

classregtree creates a regression tree because MPG is a numerical vector, and the response is assumed to be continuous.

**3** To view the tree, use the view method of the classregtree class:

view(t)



The tree predicts the response values at the circular leaf nodes based on a series of questions about the car at the triangular branching nodes. A true answer to any question follows the branch to the left; a false follows the branch to the right.

**4** Use the tree to predict the mileage for a 2000-pound car with either 4, 6, or 8 cylinders:

```
mileage2K = t([2000 4; 2000 6; 2000 8])
mileage2K =
    33.3056
    33.3056
    33.3056
```

The object allows for functional evaluation, of the form t(X). This is a shorthand way of calling the eval method of the classregtree class.

**5** The predicted responses computed above are all the same. This is because they follow a series of splits in the tree that depend only on weight, terminating at the leftmost leaf node in the view above. A 4000-pound car, following the right branch from the top of the tree, leads to different predicted responses:

mileage4K = t([4000 4; 4000 6; 4000 8])

mileage4K = 19.2778 19.2778 14.3889

6 You can use a variety of other methods of the classregtree class, such as cutvar, cuttype, and cutcategories, to get more information about the split at node 3 that distinguishes the 8-cylinder car:

```
var3 = cutvar(t,3) % What variable determines the split?
var3 =
    'C'
type3 = cuttype(t,3) % What type of split is it?
type3 =
    'categorical'
c = cutcategories(t,3) % Which classes are sent to the left
                        % child node, and which to the right?
с =
    [8]
           [1x2 double]
c{1}
ans =
     8
c{2}
ans =
     4
           6
```

Regression trees fit the original (training) data well, but may do a poor job of predicting new values. Lower branches, especially, may be strongly affected by outliers. A simpler tree often avoids overfitting. To find the best regression tree, employing the techniques of resubstitution and cross validation, use the test method of the classregtree class.

# **Ensemble Methods**

#### In this section...

"Framework for Ensemble Learning" on page 13-55
"Basic Ensemble Examples" on page 13-62
"Test Ensemble Quality" on page 13-65
"Classification: Imbalanced Data or Unequal Misclassification Costs" on page 13-70
"Example: Classification with Many Categorical Levels" on page 13-76
"Example: Surrogate Splits" on page 13-81
"Ensemble Regularization" on page 13-86
"Example: Tuning RobustBoost" on page 13-97
"Random Subspace Classification" on page 13-101
"TreeBagger Examples" on page 13-107
"Ensemble Algorithms" on page 13-128

# Framework for Ensemble Learning

You have several methods for melding results from many weak learners into one high-quality ensemble predictor. These methods closely follow the same syntax, so you can try different methods with minor changes in your commands.

Create an ensemble with the fitensemble function. Its syntax is

```
ens = fitensemble(X,Y,model,numberens,learners)
```

- X is the matrix of data. Each row contains one observation, and each column contains one predictor variable.
- $\boldsymbol{Y}$  is the vector of responses, with the same number of observations as the rows in  $\boldsymbol{X}.$
- model is a string naming the type of ensemble.

- numberens is the number of weak learners in ens from each element of learners. So the number of elements in ens is numberens times the number of elements in learners.
- learners is either a string naming a weak learner, a weak learner template, or a cell array of such templates.

Pictorially, here is the information you need to create an ensemble:



For all classification or nonlinear regression problems, follow these steps to create an ensemble:

- 1 "Put Predictor Data in a Matrix" on page 13-56
- 2 "Prepare the Response Data" on page 13-57
- **3** "Choose an Applicable Ensemble Method" on page 13-57
- 4 "Set the Number of Ensemble Members" on page 13-59
- 5 "Prepare the Weak Learners" on page 13-59
- 6 "Call fitensemble" on page 13-61

#### **Put Predictor Data in a Matrix**

All supervised learning methods start with a data matrix, usually called X in this documentation. Each row of X represents one observation. Each column of X represents one variable, or predictor.

#### Prepare the Response Data

You can use a wide variety of data types for response data.

- For regression ensembles, Y must be a numeric vector with the same number of elements as the number of rows of X.
- For classification ensembles, Y can be any of the following data types. This table also contains the method of including missing entries.

| Data Type             | Missing Entry               |
|-----------------------|-----------------------------|
| Numeric vector        | NaN                         |
| Categorical vector    | <undefined></undefined>     |
| Character array       | Row of spaces               |
| Cell array of strings | 1.1                         |
| Logical vector        | (not possible to represent) |

fitensemble ignores missing values in Y when creating an ensemble.

For example, suppose your response data consists of three observations in the following order: true, false, true. You could express Y as:

- [1;0;1] (numeric vector)
- nominal({'true', 'false', 'true'}) (categorical vector)
- [true;false;true] (logical vector)
- ['true ';'false';'true '] (character array, padded with spaces so each row has the same length)
- { 'true', 'false', 'true' } (cell array of strings)

Use whichever data type is most convenient. Because you cannot represent missing values with logical entries, do not use logical entries when you have missing values in Y.

#### **Choose an Applicable Ensemble Method**

fitensemble uses one of these algorithms to create an ensemble.

- For classification with two classes:
  - 'AdaBoostM1'
  - 'LogitBoost'
  - 'GentleBoost'
  - 'RobustBoost' (requires an Optimization Toolbox license)
  - 'Bag'
  - 'Subspace'
- For classification with three or more classes:
  - 'AdaBoostM2'
  - 'Bag'
  - 'Subspace'
- For regression:
  - 'LSBoost'
  - Bag'

'Bag' applies to all learners, both classification and regression. Tree learners can classify and regress. So when you choose to use decision trees, indicate whether you want a classifier or regressor with the type name-value pair set to 'classification' or 'regression'.

For descriptions of the various algorithms, and aid in choosing which applies to your data, see "Ensemble Algorithms" on page 13-128. The following table gives characteristics of the various algorithms. In the table titles:

- Regress. Regression
- Classif. Classification
- Preds. Predictors
- Estim. Estimate
- Gen. Generalization
- Pred. Prediction

| Algorithm   | Regress. | Binary<br>Classif. | Binary<br>Classif.<br>Multi-<br>Level<br>Preds. | Classif.<br>3+<br>Classes | Auto<br>Estim.<br>Gen.<br>Error | Fast<br>Train | Fast<br>Pred. | Low<br>Mem. |
|-------------|----------|--------------------|-------------------------------------------------|---------------------------|---------------------------------|---------------|---------------|-------------|
| Bag         | ×        | ×                  |                                                 | ×                         | ×                               |               |               |             |
| AdaBoostM1  |          | ×                  |                                                 |                           |                                 | ×             | ×             | ×           |
| AdaBoostM2  |          |                    |                                                 | ×                         |                                 | ×             | ×             | ×           |
| LogitBoost  |          | ×                  | ×                                               |                           |                                 | ×             | ×             | ×           |
| GentleBoost |          | ×                  | ×                                               |                           |                                 | ×             | ×             | ×           |
| RobustBoost |          | ×                  |                                                 |                           |                                 |               | ×             | ×           |
| LSBoost     | ×        |                    |                                                 |                           |                                 | ×             | ×             | ×           |
| Subspace    |          | ×                  | ×                                               | ×                         |                                 | ×             | ×             | ×           |

• Mem. — Memory usage

RobustBoost requires an Optimization Toolbox license.

## Set the Number of Ensemble Members

Choosing the size of an ensemble involves balancing speed and accuracy.

- Larger ensembles take longer to train and to generate predictions.
- Some ensemble algorithms can become overtrained (inaccurate) when too large.

To set an appropriate size, consider starting with several dozen to several hundred members in an ensemble, training the ensemble, and then checking the ensemble quality, as in "Example: Test Ensemble Quality" on page 13-65. If it appears that you need more members, add them using the resume method (classification) or the resume method (regression). Repeat until adding more members does not improve ensemble quality.

## **Prepare the Weak Learners**

Currently the weak learner types are:

- 'Discriminant' (for Subspace ensemble)
- 'KNN' (for Subspace ensemble)
- 'Tree' (for any ensemble except Subspace)

There are two ways to set the weak learner type in the ensemble:

• To create an ensemble with default weak learner options, pass in the string as the weak learner. For example,

```
ens = fitensemble(X,Y,'AdaBoostM2',50,'Tree');
% or
ens = fitensemble(X,Y,'Subspace',50,'KNN');
```

• To create an ensemble with nondefault weak learner options, create a nondefault weak learner using the appropriate template method. For example, if you have missing data, and want to use trees with surrogate splits for better accuracy:

```
templ = ClassificationTree.template('Surrogate','on');
ens = fitensemble(X,Y,'AdaBoostM2',50,templ);
```

To grow trees with roughly 10 leaf nodes per tree:

```
templ = ClassificationTree.template('MinLeaf',size(X,1)/10);
ens = fitensemble(X,Y,'AdaBoostM2',50,templ);
```

While you can give fitensemble a cell array of learner templates, the most common usage is to give just one weak learner template.

For examples using a template, see "Example: Unequal Classification Costs" on page 13-71 and "Example: Surrogate Splits" on page 13-81.

Decision trees can handle NaN values in X. Such values are called "missing." If you have some missing values in a row of X, a decision tree finds optimal splits using nonmissing values only. If an entire row consists of NaN, fitensemble ignores that row. If you have data with a large fraction of missing values in X, use surrogate decision splits. For examples of surrogate splits, see "Example: Unequal Classification Costs" on page 13-71 and "Example: Surrogate Splits" on page 13-81.

#### **Common Settings for Tree Weak Learners.**

- The depth of a weak learner tree makes a difference for training time, memory usage, and predictive accuracy. You control the depth with two parameters:
  - MinLeaf Each leaf has at least MinLeaf observations. Set small values of MinLeaf to get a deep tree.
  - MinParent Each branch node in the tree has at least MinParent observations. Set small values of MinParent to get a deep tree.

If you supply both  $\tt MinParent$  and  $\tt MinLeaf,$  the learner uses the setting that gives larger leaves:

MinParent = max(MinParent,2\*MinLeaf)

• Surrogate — Grow decision trees with surrogate splits when Surrogate is 'on'. Use surrogate splits when your data has missing values.

**Note** Surrogate splits cause training to be slower and use more memory.

#### **Call fitensemble**

The syntax of fitensemble is

ens = fitensemble(X,Y,model,numberens,learners)

- X is the matrix of data. Each row contains one observation, and each column contains one predictor variable.
- Y is the responses, with the same number of observations as rows in X.
- model is a string naming the type of ensemble.
- numberens is the number of weak learners in ens from each element of learners. So the number of elements in ens is numberens times the number of elements in learners.
- learners is a string naming a weak learner, a weak learner template, or a cell array of such strings and templates.

The result of fitensemble is an ensemble object, suitable for making predictions on new data. For a basic example of creating a classification ensemble, see "Create a Classification Ensemble" on page 13-62. For a basic example of creating a regression ensemble, see "Creating a Regression Ensemble" on page 13-63.

Where to Set Name-Value Pairs. There are several name-value pairs you can pass to fitensemble, and several that apply to the weak learners (ClassificationDiscriminant.template, ClassificationKNN.template, ClassificationTree.template and RegressionTree.template). To determine which option (name-value pair) is appropriate, the ensemble or the weak learner:

- Use template name-value pairs to control the characteristics of the weak learners.
- Use fitensemble name-value pairs to control the ensemble as a whole, either for algorithms or for structure.

For example, to have an ensemble of boosted classification trees with each tree deeper than the default, set the ClassificationTree.template name-value pairs (MinLeaf and MinParent) to smaller values than the defaults. This causes the trees to be leafier (deeper).

To name the predictors in the ensemble (part of the structure of the ensemble), use the PredictorNames name-value pair in fitensemble.

## **Basic Ensemble Examples**

## **Create a Classification Ensemble**

Create a classification tree ensemble for the Fisher iris data, and use it to predict the classification of a flower with average measurements.

1 Load the data:

load fisheriris

- 2 The predictor data X is the meas matrix.
- **3** The response data Y is the species cell array.

- **4** For trees, the only boosted classification ensemble for three or more classes is 'AdaBoostM2'.
- **5** For this example, arbitrarily take an ensemble of 100 trees.
- **6** Use a default tree template.
- **7** Create the ensemble:

```
ens = fitensemble(meas, species, 'AdaBoostM2', 100, 'Tree')
ens =
classreg.learning.classif.ClassificationEnsemble:
           PredictorNames: { 'x1' 'x2' 'x3' 'x4' }
    CategoricalPredictors: []
             ResponseName: 'Y'
               ClassNames: {'setosa'
                                       'versicolor'
                                                     'virginica'}
           ScoreTransform: 'none'
            NObservations: 150
                 NTrained: 100
                   Method: 'AdaBoostM2'
             LearnerNames: {'Tree'}
     ReasonForTermination: [1x77 char]
                  FitInfo: [100x1 double]
       FitInfoDescription: [2x83 char]
```

**8** Predict the classification of a flower with average measurements:

```
flower = predict(ens,mean(meas))
flower =
    'versicolor'
```

## **Creating a Regression Ensemble**

Create a regression ensemble to predict mileage of cars based on their horsepower and weight, trained on the carsmall data. Use the resulting ensemble to predict the mileage of a car with 150 horsepower weighing 2750 lbs.

1 Load the data:

load carsmall

**2** Prepare the input data.

X = [Horsepower Weight];

- **3** The response data Y is MPG.
- 4 The only boosted regression ensemble type is 'LSBoost'.
- 5 For this example, arbitrarily take an ensemble of 100 trees.
- **6** Use a default tree template.
- **7** Create the ensemble:

```
ens = fitensemble(X,MPG,'LSBoost',100,'Tree')
```

8 Predict the mileage of a car with 150 horsepower weighing 2750 lbs:

```
mileage = ens.predict([150 2750])
mileage =
    22.6735
```

# **Test Ensemble Quality**

Usually you cannot evaluate the predictive quality of an ensemble based on its performance on training data. Ensembles tend to "overtrain," meaning they produce overly optimistic estimates of their predictive power. This means the result of resubLoss for classification (resubLoss for regression) usually indicates lower error than you get on new data.

To obtain a better idea of the quality of an ensemble, use one of these methods:

- Evaluate the ensemble on an independent test set (useful when you have a lot of training data).
- Evaluate the ensemble by cross validation (useful when you don't have a lot of training data).
- Evaluate the ensemble on out-of-bag data (useful when you create a bagged ensemble with fitensemble).

## **Example: Test Ensemble Quality**

This example uses a bagged ensemble so it can use all three methods of evaluating ensemble quality.

**1** Generate an artificial dataset with 20 predictors. Each entry is a random number from 0 to 1. The initial classification:

Y = 1 when X(1) + X(2) + X(3) + X(4) + X(5) > 2.5Y = 0 otherwise.

rng(1,'twister') % for reproducibility X = rand(2000,20); Y = sum(X(:,1:5),2) > 2.5;

In addition, to add noise to the results, randomly switch 10% of the classifications:

```
idx = randsample(2000,200);
Y(idx) = ~Y(idx);
```

#### 2 Independent Test Set

Create independent training and test sets of data. Use 70% of the data for a training set by calling cvpartition using the holdout option:

```
cvpart = cvpartition(Y, 'holdout',0.3);
Xtrain = X(training(cvpart),:);
Ytrain = Y(training(cvpart),:);
Xtest = X(test(cvpart),:);
Ytest = Y(test(cvpart),:);
```

**3** Create a bagged classification ensemble of 200 trees from the training data:

```
bag = fitensemble(Xtrain,Ytrain,'Bag',200,'Tree',...
    'type','classification')
bag =
classreg.learning.classif.ClassificationBaggedEnsemble:
           PredictorNames: {1x20 cell}
    CategoricalPredictors: []
             ResponseName: 'Y'
               ClassNames: [0 1]
           ScoreTransform: 'none'
            NObservations: 1400
                 NTrained: 200
                   Method: 'Bag'
             LearnerNames: {'Tree'}
     ReasonForTermination: [1x77 char]
                  FitInfo: []
       FitInfoDescription: 'None'
                FResample: 1
                  Replace: 1
         UseObsForLearner: [1400x200 logical]
```

**4** Plot the loss (misclassification) of the test data as a function of the number of trained trees in the ensemble:

```
figure;
plot(loss(bag,Xtest,Ytest,'mode','cumulative'));
xlabel('Number of trees');
ylabel('Test classification error');
```



#### **5** Cross Validation

Generate a five-fold cross-validated bagged ensemble:

```
ScoreTransform: 'none'
```

**6** Examine the cross-validation loss as a function of the number of trees in the ensemble:

```
figure;
plot(loss(bag,Xtest,Ytest,'mode','cumulative'));
hold
plot(kfoldLoss(cv,'mode','cumulative'),'r.');
hold off;
xlabel('Number of trees');
ylabel('Classification error');
legend('Test','Cross-validation','Location','NE');
```



Cross validating gives comparable estimates to those of the independent set.

#### 7 Out-of-Bag Estimates

Generate the loss curve for out-of-bag estimates, and plot it along with the other curves:

```
figure;
plot(loss(bag,Xtest,Ytest,'mode','cumulative'));
hold
plot(kfoldLoss(cv,'mode','cumulative'),'r.');
plot(oobLoss(bag,'mode','cumulative'),'k--');
hold off;
xlabel('Number of trees');
ylabel('Classification error');
legend('Test','Cross-validation','Out of bag','Location','NE');
```



The out-of-bag estimates are again comparable to those of the other methods.

# Classification: Imbalanced Data or Unequal Misclassification Costs

In many real-world applications, you might prefer to treat classes in your data asymmetrically. For example, you might have data with many more observations of one class than of any other. Or you might work on a problem in which misclassifying observations of one class has more severe consequences than misclassifying observations of another class. In such situations, you can use two optional parameters for fitensemble: prior and cost.

By using prior, you set prior class probabilities (that is, class probabilities used for training). Use this option if some classes are under- or overrepresented in your training set. For example, you might obtain your training data by simulation. Because simulating class A is more expensive than class B, you opt to generate fewer observations of class A and more observations of class B. You expect, however, that class A and class B are mixed in a different proportion in the real world. In this case, set prior probabilities for class A and B approximately to the values you expect to observe in the real world. fitensemble normalizes prior probabilities to make them add up to 1; multiplying all prior probabilities by the same positive factor does not affect the result of classification.

If classes are adequately represented in the training data but you want to treat them asymmetrically, use the cost parameter. Suppose you want to classify benign and malignant tumors in cancer patients. Failure to identify a malignant tumor (false negative) has far more severe consequences than misidentifying benign as malignant (false positive). You should assign high cost to misidentifying malignant as benign and low cost to misidentifying benign as malignant.

You must pass misclassification costs as a square matrix with nonnegative elements. Element C(i,j) of this matrix is the cost of classifying an observation into class j if the true class is i. The diagonal elements C(i,i) of the cost matrix must be 0. For the previous example, you can choose malignant tumor to be class 1 and benign tumor to be class 2. Then you can set the cost matrix to

```
\begin{bmatrix} 0 & c \\ 1 & 0 \end{bmatrix}
```

where c > 1 is the cost of misidentifying a malignant tumor as benign. Costs are relative—multiplying all costs by the same positive factor does not affect the result of classification.

If you have only two classes, fitensemble adjusts their prior probabilities

using  $\tilde{P}_i = C_{ij}P_i$  for class i = 1,2 and  $j \neq i$ .  $P_i$  are prior probabilities either passed into fitensemble or computed from class frequencies in the training

data, and  $\tilde{P}_i$  are adjusted prior probabilities. Then <code>fitensemble</code> uses the default cost matrix

 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ 

and these adjusted probabilities for training its weak learners. Manipulating the cost matrix is thus equivalent to manipulating the prior probabilities.

If you have three or more classes, fitensemble also converts input costs into adjusted prior probabilities. This conversion is more complex. First, fitensemble attempts to solve a matrix equation described in Zhou and Liu [13]. If it fails to find a solution, fitensemble applies the "average cost" adjustment described in Breiman et al. [4]. For more information, see Zadrozny, Langford, and Abe [12].

## **Example: Unequal Classification Costs**

This example uses data on patients with hepatitis to see if they live or die as a result of the disease. The data is described at http://archive.ics.uci.edu/ml/datasets/Hepatitis.

1 Load the data into a file named hepatitis.txt:

```
s = urlread(['http://archive.ics.uci.edu/ml/' ...
    'machine-learning-databases/hepatitis/hepatitis.data']);
fid = fopen('hepatitis.txt','w');
fwrite(fid,s);
fclose(fid);
```

**2** Load the data hepatitis.txt into a dataset, with variable names describing the fields in the data:

ds is a dataset with 155 observations and 20 variables:

size(ds) ans = 155 20

3 Convert the data in the dataset to the format for ensembles: a numeric matrix of predictors, and a cell array with outcome names: 'Die' or 'Live'. The first field in the dataset has the outcomes.

X = double(ds(:,2:end)); ClassNames = {'Die' 'Live'}; Y = ClassNames(ds.die\_or\_live);

**4** Inspect the data for missing values:

```
figure;
bar(sum(isnan(X),1)/size(X,1));
xlabel('Predictor');
ylabel('Fraction of missing values');
```


Most predictors have missing values, and one has nearly 45% of missing values. Therefore, use decision trees with surrogate splits for better accuracy. Because the dataset is small, training time with surrogate splits should be tolerable.

**5** Create a classification tree template that uses surrogate splits:

```
rng(0,'twister') % for reproducibility
t = ClassificationTree.template('surrogate','on');
```

**6** Examine the data or the description of the data to see which predictors are categorical:

X(1:5,:) ans =

Columns 1 through 6

| 30.0000<br>50.0000<br>78.0000<br>31.0000<br>34.0000<br>Columns 7 | 2.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000 | 1.0000<br>1.0000<br>2.0000<br>NaN<br>2.0000      | 2.0000<br>2.0000<br>2.0000<br>1.0000<br>2.0000       | 2.0000<br>1.0000<br>2.0000<br>2.0000<br>2.0000 | 2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000 |
|------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------|------------------------------------------------------|------------------------------------------------|------------------------------------------------|
|                                                                  | ciii oagii i                                   | -                                                |                                                      |                                                |                                                |
| 2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000                   | 1.0000<br>1.0000<br>2.0000<br>2.0000<br>2.0000 | 2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000   | 2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000       | 2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000 | 2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000 |
| Columns 13 through 18                                            |                                                |                                                  |                                                      |                                                |                                                |
| 2.0000<br>2.0000<br>2.0000<br>2.0000<br>2.0000                   | 1.0000<br>0.9000<br>0.7000<br>0.7000<br>1.0000 | 85.0000<br>135.0000<br>96.0000<br>46.0000<br>NaN | 18.0000<br>42.0000<br>32.0000<br>52.0000<br>200.0000 | 4.0000<br>3.5000<br>4.0000<br>4.0000<br>4.0000 | NaN<br>NaN<br>NaN<br>80.0000<br>NaN            |
| Column 19                                                        |                                                |                                                  |                                                      |                                                |                                                |
| 1.0000<br>1.0000<br>1.0000<br>1.0000<br>1.0000                   |                                                |                                                  |                                                      |                                                |                                                |

It appears that predictors 2 through 13 are categorical, as well as predictor 19. You can confirm this inference with the dataset description at http://archive.ics.uci.edu/ml/datasets/Hepatitis.

**7** List the categorical variables:

ncat = [2:13,19];

8 Create a cross-validated ensemble using 200 learners and the GentleBoost algorithm:

```
a = fitensemble(X,Y,'GentleBoost',200,t,...
    'PredictorNames',VarNames(2:end),'LearnRate',0.1,...
    'CategoricalPredictors',ncat,'kfold',5);
figure;
plot(kfoldLoss(a,'mode','cumulative','lossfun','exponential'));
xlabel('Number of trees');
ylabel('Cross-validated exponential loss');
```



**9** Inspect the confusion matrix to see which people the ensemble predicts correctly:

```
[Yfit,Sfit] = kfoldPredict(a); %
confusionmat(Y,Yfit,'order',ClassNames)
ans =
    16    16
    10    113
```

Of the 123 people who live, the ensemble predicts correctly that 113 will live. But for the 32 people who die of hepatitis, the ensemble only predicts correctly that half will die of hepatitis.

- **10** There are two types of error in the predictions of the ensemble:
  - Predicting that the patient lives, but the patient dies
  - Predicting that the patient dies, but the patient lives

Suppose you believe that the first error is five times worse than the second. Make a new classification cost matrix that reflects this belief:

```
cost.ClassNames = ClassNames;
cost.ClassificationCosts = [0 5; 1 0];
```

**11** Create a new cross-validated ensemble using **cost** as misclassification cost, and inspect the resulting confusion matrix:

```
aC = fitensemble(X,Y,'GentleBoost',200,t,...
 'PredictorNames',VarNames(2:end),'LearnRate',0.1,...
 'CategoricalPredictors',ncat,'kfold',5,...
 'cost',cost);
[YfitC,SfitC] = kfoldPredict(aC);
confusionmat(Y,YfitC,'order',ClassNames)
ans =
    19    13
    9    114
```

As expected, the new ensemble does a better job classifying the people who die. Somewhat surprisingly, the new ensemble also does a better job classifying the people who live, though the result is not statistically significantly better. The results of the cross validation are random, so this result is simply a statistical fluctuation. The result seems to indicate that the classification of people who live is not very sensitive to the cost.

## **Example: Classification with Many Categorical Levels**

Generally, you cannot use classification with more than 31 levels in any categorical predictor. However, two boosting algorithms can classify data

with many categorical levels: LogitBoost and GentleBoost. For details, see "LogitBoost" on page 13-135 and "GentleBoost" on page 13-136.

This example uses demographic data from the U.S. Census, available at http://archive.ics.uci.edu/ml/machine-learning-databases/adult/. The objective of the researchers who posted the data is predicting whether an individual makes more than \$50,000/year, based on a set of characteristics. You can see details of the data, including predictor names, in the adult.names file at the site.

1 Load the 'adult.data' file from the UCI Machine Learning Repository:

```
s = urlread(['http://archive.ics.uci.edu/ml/' ...
'machine-learning-databases/adult/adult.data']);
```

2 'adult.data' represents missing data as '?'. Replace instances of missing data with the blank string '':

```
s = strrep(s,'?','');
```

**3** Put the data into a MATLAB dataset array:

**4** Many predictors in the data are categorical. Convert those fields in the dataset array to nominal:

```
ds.workclass = nominal(ds.workclass);
ds.education = nominal(ds.education);
ds.marital_status = nominal(ds.marital_status);
ds.occupation = nominal(ds.occupation);
ds.relationship = nominal(ds.relationship);
ds.race = nominal(ds.race);
ds.sex = nominal(ds.sex);
ds.native_country = nominal(ds.native_country);
ds.income = nominal(ds.income);
```

**5** Convert the dataset array into numerical variables for fitensemble:

```
X = double(ds(:,1:end-1));
Y = ds.income;
```

6 Some variables have many levels. Plot the number of levels of each predictor:

```
ncat = zeros(1,numel(catcol));
for c=1:numel(catcol)
    [~,gn] = grp2idx(X(:,catcol(c)));
    ncat(c) = numel(gn);
end
figure;
bar(catcol,ncat);
xlabel('Predictor');
ylabel('Number of categories');
```



Predictor 14 ('native\_country') has more than 40 categorical levels. This is too many levels for any method except LogitBoost and GentleBoost.

7 Create classification ensembles using both LogitBoost and GentleBoost:

```
lb = fitensemble(X,Y,'LogitBoost',300,'Tree','CategoricalPredictors',cat,...
'PredictorNames',VarNames(1:end-1),'ResponseName','income');
gb = fitensemble(X,Y,'GentleBoost',300,'Tree','CategoricalPredictors',cat,...
'PredictorNames',VarNames(1:end-1),'ResponseName','income');
```

8 Examine the resubstitution error for the two ensembles:

```
figure;
plot(resubLoss(lb,'mode','cumulative'));
hold on
plot(resubLoss(gb,'mode','cumulative'),'r--');
hold off
xlabel('Number of trees');
ylabel('Resubstitution error');
legend('LogitBoost','GentleBoost','Location','NE');
```



The algorithms have similar resubstitution error.

**9** Estimate the generalization error for the two algorithms by cross validation.

```
lbcv = crossval(lb,'kfold',5);
gbcv = crossval(gb,'kfold',5);
figure;
plot(kfoldLoss(lbcv,'mode','cumulative'));
hold on
plot(kfoldLoss(gbcv,'mode','cumulative'),'r--');
hold off
xlabel('Number of trees');
ylabel('Cross-validated error');
legend('LogitBoost','GentleBoost','Location','NE');
```



The cross-validated loss is nearly the same as the resubstitution error.

## **Example: Surrogate Splits**

When you have missing data, trees and ensembles of trees give better predictions when they include surrogate splits. Furthermore, estimates of predictor importance are often different with surrogate splits. Eliminating unimportant predictors can save time and memory for predictions, and can make predictions easier to understand.

This example shows the effects of surrogate splits for predictions for data containing missing entries in both training and test sets. There is a redundant predictor in the data, which the surrogate split uses to infer missing values. While the example is artificial, it shows the value of surrogate splits with missing data.

1 Generate and plot two different normally distributed populations, one with 5000 members, one with 10,000 members:

```
rng(1, 'twister') % for reproducibility
N = 5000;
N1 = 2*N; % number in population 1
N2 = N; % number in population 2
mu1 = [-1 -1]/2; % mean of population 1
mu2 = [1 \ 1]/2; \% mean of population 2
S1 = [3
         -2.5;...
   -2.5
          3]; % variance of population 1
S2 = [3]
          2.5;...
          3]; % variance of population 2
   2.5
X1 = mvnrnd(mu1,S1,N1); % population 1
X2 = mvnrnd(mu2,S2,N2); % population 2
X = [X1; X2]; \% total population
Y = ones(N1+N2,1); % label population 1
Y(N1+1:end) = 2; \% label population 2
figure
plot(X1(:,1),X1(:,2),'k.','MarkerSize',2)
hold on
plot(X2(:,1),X2(:,2),'rx','MarkerSize',3);
hold off
axis square
```



There is a good deal of overlap between the data points. You cannot expect perfect classification of this data.

2 Make a third predictor that is the same as the first component of X:

X = [X X(:,1)];

**3** Remove half the values of predictor 1 at random:

X(rand(size(X(:,1))) < 0.5,1) = NaN;

4 Partition the data into a training set and a test set:

cv = cvpartition(Y, 'holdout',0.3); % 30% test data

```
Xtrain = X(training(cv),:);
Ytrain = Y(training(cv));
Xtest = X(test(cv),:);
Ytest = Y(test(cv));
```

**5** Create two Bag ensembles: one with surrogate splits, one without. First create the template for surrogate splits, then train both ensembles:

```
templS = ClassificationTree.template('surrogate', 'on');
bag = fitensemble(Xtrain,Ytrain,'Bag',50,'Tree',...
    'type', 'class', 'nprint',10);
Training Bag...
Grown weak learners: 10
Grown weak learners: 20
Grown weak learners: 30
Grown weak learners: 40
Grown weak learners: 50
bagS = fitensemble(Xtrain,Ytrain,'Bag',50,templS,...
    'type', 'class', 'nprint',10);
Training Bag...
Grown weak learners: 10
Grown weak learners: 20
Grown weak learners: 30
Grown weak learners: 40
Grown weak learners: 50
```

**6** Examine the accuracy of the two ensembles for predicting the test data:

```
figure
plot(loss(bag,Xtest,Ytest,'mode','cumulative'));
hold on
plot(loss(bagS,Xtest,Ytest,'mode','cumulative'),'r--');
hold off;
legend('Without surrogate splits','With surrogate splits');
xlabel('Number of trees');
ylabel('Test classification error');
```



The ensemble with surrogate splits is obviously more accurate than the ensemble without surrogate splits.

7 Check the statistical significance of the difference in results with the McNemar test:

```
Yfit = predict(bag,Xtest);
YfitS = predict(bagS,Xtest);
N10 = sum(Yfit==Ytest & YfitS~=Ytest);
N01 = sum(Yfit~=Ytest & YfitS==Ytest);
mcnemar = (abs(N10-N01) - 1)^2/(N10+N01);
pval = 1 - chi2cdf(mcnemar,1)
pval =
0
```

The extremely low p-value indicates that the ensemble with surrogate splits is better in a statistically significant manner.

## **Ensemble Regularization**

Regularization is a process of choosing fewer weak learners for an ensemble in a way that does not diminish predictive performance. Currently you can regularize regression ensembles. (You can also regularize a discriminant analysis classifier in a non-ensemble context; see "Regularize a Discriminant Analysis Classifier" on page 12-23.)

The regularize method finds an optimal set of learner weights  $\boldsymbol{a}_t$  that minimize

$$\sum_{n=1}^{N} w_n g\left(\left(\sum_{t=1}^{T} \alpha_t h_t\left(x_n\right)\right), y_n\right) + \lambda \sum_{t=1}^{T} |\alpha_t|.$$

Here

- $\lambda \ge 0$  is a parameter you provide, called the lasso parameter.
- $h_t$  is a weak learner in the ensemble trained on N observations with predictors  $x_n$ , responses  $y_n$ , and weights  $w_n$ .
- $g(f,y) = (f y)^2$  is the squared error.

The ensemble is regularized on the same  $(x_n, y_n, w_n)$  data used for training, so

$$\sum_{n=1}^{N} w_{n}g\!\left(\!\left(\sum_{t=1}^{T} \! \alpha_{t} h_{t}\left(x_{n}\right)\right)\!, y_{n}\right)\!$$

is the ensemble resubstitution error. The error is measured by mean squared error (MSE).

If you use  $\lambda = 0$ , regularize finds the weak learner weights by minimizing the resubstitution MSE. Ensembles tend to overtrain. In other words, the resubstitution error is typically smaller than the true generalization error. By making the resubstitution error even smaller, you are likely to make the ensemble accuracy worse instead of improving it. On the other hand, positive values of  $\lambda$  push the magnitude of the  $a_t$  coefficients to 0. This often improves the generalization error. Of course, if you choose  $\lambda$  too large, all the optimal coefficients are 0, and the ensemble does not have any accuracy. Usually you can find an optimal range for  $\lambda$  in which the accuracy of the regularized ensemble is better or comparable to that of the full ensemble without regularization.

A nice feature of lasso regularization is its ability to drive the optimized coefficients precisely to 0. If a learner's weight  $a_t$  is 0, this learner can be excluded from the regularized ensemble. In the end, you get an ensemble with improved accuracy and fewer learners.

### **Example: Regularizing a Regression Ensemble**

This example uses data for predicting the insurance risk of a car based on its many attributes.

1 Load the imports-85 data into the MATLAB workspace:

load imports-85;

**2** Look at a description of the data to find the categorical variables and predictor names:

Description

#### Description =

```
1985 Auto Imports Database from the UCI repository
http://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.names
Variables have been reordered to place variables with numeric values (referred
to as "continuous" on the UCI site) to the left and categorical values to the
right. Specifically, variables 1:16 are: symboling, normalized-losses,
wheel-base, length, width, height, curb-weight, engine-size, bore, stroke,
compression-ratio, horsepower, peak-rpm, city-mpg, highway-mpg, and price.
Variables 17:26 are: make, fuel-type, aspiration, num-of-doors, body-style,
drive-wheels, engine-location, engine-type, num-of-cylinders, and fuel-system.
```

The objective of this process is to predict the "symboling," the first variable in the data, from the other predictors. "symboling" is an integer from -3 (good insurance risk) to 3 (poor insurance risk). You could use a classification ensemble to predict this risk instead of a regression ensemble. As stated in "Steps in Supervised Learning (Machine Learning)" on page 13-2, when you have a choice between regression and classification, you should try regression

first. Furthermore, this example is to show regularization, which currently works only for regression.

**3** Prepare the data for ensemble fitting:

```
Y = X(:,1);
X(:,1) = [];
VarNames = {'normalized-losses' 'wheel-base' 'length' 'width' 'height' ...
    'curb-weight' 'engine-size' 'bore' 'stroke' 'compression-ratio' ...
    'horsepower' 'peak-rpm' 'city-mpg' 'highway-mpg' 'price' 'make' ...
    'fuel-type' 'aspiration' 'num-of-doors' 'body-style' 'drive-wheels' ...
    'engine-location' 'engine-type' 'num-of-cylinders' 'fuel-system'};
catidx = 16:25; % indices of categorical predictors
```

```
4 Create a regression ensemble from the data using 300 default trees:
```

```
ls = fitensemble(X,Y,'LSBoost',300,'Tree','LearnRate',0.1,...
'PredictorNames',VarNames,'ResponseName','symboling',...
'CategoricalPredictors',catidx)
```

```
ls =
```

```
classreg.learning.regr.RegressionEnsemble:

PredictorNames: {1x25 cell}

CategoricalPredictors: [16 17 18 19 20 21 22 23 24 25]

ResponseName: 'symboling'

ResponseTransform: 'none'

NObservations: 205

NTrained: 300

Method: 'LSBoost'

LearnerNames: {'Tree'}

ReasonForTermination: [1x77 char]

FitInfo: [300x1 double]

FitInfoDescription: [2x83 char]

Regularization: []
```

The final line, Regularization, is empty ([]). To regularize the ensemble, you have to use the regularize method.

**5** Cross validate the ensemble, and inspect its loss curve.

```
cv = crossval(ls,'kfold',5);
figure;
plot(kfoldLoss(cv,'mode','cumulative'));
xlabel('Number of trees');
ylabel('Cross-validated MSE');
```



It appears you might obtain satisfactory performance from a smaller ensemble, perhaps one containing from 50 to 100 trees.

6 Call the regularize method to try to find trees that you can remove from the ensemble. By default, regularize examines 10 values of the lasso (Lambda) parameter spaced exponentially.

```
ls = regularize(ls)
```

ls =

```
classreg.learning.regr.RegressionEnsemble:

PredictorNames: {1x25 cell}

CategoricalPredictors: [16 17 18 19 20 21 22 23 24 25]

ResponseName: 'symboling'

ResponseTransform: 'none'

NObservations: 205

NTrained: 300

Method: 'LSBoost'

LearnerNames: {'Tree'}

ReasonForTermination: [1x77 char]

FitInfo: [300x1 double]

FitInfoDescription: [2x83 char]

Regularization: [1x1 struct]
```

The Regularization property is no longer empty.

7 Plot the resubstitution mean-squared error (MSE) and number of learners with nonzero weights against the lasso parameter. Separately plot the value at Lambda=0. Use a logarithmic scale because the values of Lambda are exponentially spaced.

```
figure;
semilogx(ls.Regularization.Lambda,ls.Regularization.ResubstitutionMSE);
line([1e-3 1e-3],[1s.Regularization.ResubstitutionMSE(1) ...
     ls.Regularization.ResubstitutionMSE(1)],...
    'marker','x','markersize',12,'color','b');
r0 = resubLoss(ls);
line([ls.Regularization.Lambda(2) ls.Regularization.Lambda(end)],...
     [r0 r0], 'color', 'r', 'LineStyle', '--');
xlabel('Lambda');
ylabel('Resubstitution MSE');
annotation('textbox',[0.5 0.22 0.5 0.05],'String','unregularized ensemble',...
    'color', 'r', 'FontSize', 14, 'LineStyle', 'none');
figure;
loglog(ls.Regularization.Lambda,sum(ls.Regularization.TrainedWeights>0,1));
line([1e-3 1e-3],...
    [sum(ls.Regularization.TrainedWeights(:,1)>0) ...
    sum(ls.Regularization.TrainedWeights(:,1)>0)],...
```

```
'marker','x','markersize',12,'color','b');
line([ls.Regularization.Lambda(2) ls.Regularization.Lambda(end)],...
[ls.NTrained ls.NTrained],...
'color','r','LineStyle','--');
xlabel('Lambda');
ylabel('Number of learners');
annotation('textbox',[0.3 0.8 0.5 0.05],'String','unregularized ensemble',...
'color','r','FontSize',14,'LineStyle','none');
```





8 The resubstitution MSE values are likely to be overly optimistic. To obtain more reliable estimates of the error associated with various values of Lambda, cross validate the ensemble using cvshrink. Plot the resulting cross-validation loss (MSE) and number of learners against Lambda.

```
rng(0,'Twister') % for reproducibility
[mse,nlearn] = cvshrink(ls,'lambda',ls.Regularization.Lambda,'kfold',5);
figure;
semilogx(ls.Regularization.Lambda,ls.Regularization.ResubstitutionMSE);
hold;
semilogx(ls.Regularization.Lambda,mse,'r--');
hold off;
xlabel('Lambda');
ylabel('Mean squared error');
legend('resubstitution','cross-validation','Location','NW');
```

```
line([1e-3 1e-3],[ls.Regularization.ResubstitutionMSE(1) ...
     ls.Regularization.ResubstitutionMSE(1)],...
    'marker','x','markersize',12,'color','b');
line([1e-3 1e-3],[mse(1) mse(1)],'marker','o',...
    'markersize',12,'color','r','LineStyle','--');
figure;
loglog(ls.Regularization.Lambda,sum(ls.Regularization.TrainedWeights>0,1));
hold;
loglog(ls.Regularization.Lambda,nlearn,'r--');
hold off;
xlabel('Lambda');
ylabel('Number of learners');
legend('resubstitution','cross-validation','Location','NE');
line([1e-3 1e-3],...
    [sum(ls.Regularization.TrainedWeights(:,1)>0) ...
    sum(ls.Regularization.TrainedWeights(:,1)>0)],...
    'marker','x','markersize',12,'color','b');
line([1e-3 1e-3],[nlearn(1) nlearn(1)],'marker','o',...
```







Examining the cross-validated error shows that the cross-validation MSE is almost flat for Lambda up to a bit over 1e-2.

**9** Examine ls.Regularization.Lambda to find the highest value that gives MSE in the flat region (up to a bit over 1e-2):

```
jj = 1:length(ls.Regularization.Lambda);
[jj;ls.Regularization.Lambda]
ans =
  Columns 1 through 6
    1.0000
              2.0000
                         3.0000
                                   4.0000
                                              5.0000
                                                        6.0000
         0
              0.0014
                         0.0033
                                   0.0077
                                              0.0183
                                                        0.0435
  Columns 7 through 10
```

| 7.0000 | 8.0000 | 9.0000 | 10.0000 |
|--------|--------|--------|---------|
| 0.1031 | 0.2446 | 0.5800 | 1.3754  |

Element 5 of ls.Regularization.Lambda has value 0.0183, the largest in the flat range.

10 Reduce the ensemble size using the shrink method. shrink returns a compact ensemble with no training data. The generalization error for the new compact ensemble was already estimated by cross validation in mse(5).

```
cmp = shrink(ls,'weightcolumn',5)
cmp =
classreg.learning.regr.CompactRegressionEnsemble:
        PredictorNames: {1x25 cell}
        CategoricalPredictors: [16 17 18 19 20 21 22 23 24 25]
            ResponseName: 'symboling'
            ResponseTransform: 'none'
            NTrained: 18
```

There are only 18 trees in the new ensemble, notably reduced from the 300 in 1s.

**11** Compare the sizes of the ensembles:

The reduced ensemble is about 6% the size of the original.

12 Compare the MSE of the reduced ensemble to that of the original ensemble:

```
figure;
plot(kfoldLoss(cv,'mode','cumulative'));
hold on
plot(cmp.NTrained,mse(5),'ro','MarkerSize',12);
xlabel('Number of trees');
```

```
ylabel('Cross-validated MSE');
legend('unregularized ensemble','regularized ensemble',...
    'Location','NE');
hold off
```



The reduced ensemble gives low loss while using many fewer trees.

## **Example: Tuning RobustBoost**

The RobustBoost algorithm can make good classification predictions even when the training data has noise. However, the default RobustBoost parameters can produce an ensemble that does not predict well. This example shows one way of tuning the parameters for better predictive accuracy.

**Note** RobustBoost requires an Optimization Toolbox license.

1 Generate data with label noise. This example has twenty uniform random numbers per observation, and classifies the observation as 1 if the sum of the first five numbers exceeds 2.5 (so is larger than average), and 0 otherwise:

```
rng(0,'twister') % for reproducibility
Xtrain = rand(2000,20);
Ytrain = sum(Xtrain(:,1:5),2) > 2.5;
```

2 To add noise, randomly switch 10% of the classifications:

idx = randsample(2000,200); Ytrain(idx) = ~Ytrain(idx);

3 Create an ensemble with AdaBoostM1 for comparison purposes:

```
ada = fitensemble(Xtrain,Ytrain,'AdaBoostM1',...
300,'Tree','LearnRate',0.1);
```

**4** Create an ensemble with RobustBoost. Because the data has 10% incorrect classification, perhaps an error goal of 15% is reasonable.

```
rb1 = fitensemble(Xtrain,Ytrain,'RobustBoost',300,...
'Tree','RobustErrorGoal',0.15,'RobustMaxMargin',1);
```

5 Try setting a high value of the error goal, 0.6. You get an error:

rb2 = fitensemble(Xtrain,Ytrain,'RobustBoost',300,'Tree','RobustErrorGoal',0.6)

```
Error using RobustBoost>RobustBoost.RobustBoost
For the chosen values of 'RobustMaxMargin' and 'RobustMarginSigma', you must set
'RobustErrorGoal' to a value between 0 and 0.5.
```

6 Create an ensemble with an error goal in the allowed range, 0.4:

```
rb2 = fitensemble(Xtrain,Ytrain,'RobustBoost',300,...
'Tree','RobustErrorGoal',0.4);
```

7 Create an ensemble with very optimistic error goal, 0.01:

```
rb3 = fitensemble(Xtrain,Ytrain,'RobustBoost',300,...
'Tree','RobustErrorGoal',0.01);
```

8 Compare the resubstitution error of the four ensembles:

```
figure
plot(resubLoss(rb1, 'mode', 'cumulative'));
hold on
plot(resubLoss(rb2, 'mode', 'cumulative'), 'r--');
plot(resubLoss(rb3, 'mode', 'cumulative'), 'k-.');
plot(resubLoss(ada, 'mode', 'cumulative'), 'g.');
hold off;
xlabel('Number of trees');
ylabel('Resubstitution error');
legend('ErrorGoal=0.15', 'ErrorGoal=0.4', 'ErrorGoal=0.01',...
'AdaBoostM1', 'Location', 'NE');
```



All the RobustBoost curves show lower resubstitution error than the AdaBoostM1 curve. The error goal of 0.15 curve shows the lowest resubstitution error over most of the range. However, its error is rising in the latter half of the plot, while the other curves are still descending.

**9** Generate test data to see the predictive power of the ensembles. Test the four ensembles:

```
Xtest = rand(2000,20);
Ytest = sum(Xtest(:,1:5),2) > 2.5;
idx = randsample(2000,200);
Ytest(idx) = ~Ytest(idx);
figure;
plot(loss(rb1,Xtest,Ytest,'mode','cumulative'));
hold on
plot(loss(rb2,Xtest,Ytest,'mode','cumulative'),'r--');
plot(loss(rb3,Xtest,Ytest,'mode','cumulative'),'k-.');
plot(loss(ada,Xtest,Ytest,'mode','cumulative'),'g.');
hold off;
xlabel('Number of trees');
ylabel('Test error');
legend('ErrorGoal=0.15','ErrorGoal=0.4','ErrorGoal=0.01',...
'AdaBoostM1','Location','NE');
```



The error curve for error goal 0.15 is lowest (best) in the plotted range. The curve for error goal 0.4 seems to be converging to a similar value for a large number of trees, but more slowly. AdaBoostM1 has higher error than the curve for error goal 0.15. The curve for the too-optimistic error goal 0.01 remains substantially higher (worse) than the other algorithms for most of the plotted range.

## **Random Subspace Classification**

This example shows how to use a random subspace ensemble to increase the accuracy of classification. It also shows how to use cross validation to determine good parameters for both the weak learner template and the ensemble.

#### 1. Load the data.

Load the ionosphere data. This data has 351 binary responses to 34 predictors.

```
load ionosphere;
[N,D] = size(X)
N =
    351
D =
    34
resp = unique(Y)
resp =
    'b'
    'g'
```

#### 2. Choose the number of nearest neighbors.

Find a good choice for k, the number of nearest neighbors in the classifier, by cross validation. Choose the number of neighbors approximately evenly spaced on a logarithmic scale.

```
rng(8000,'twister') % for reproducibility
K = round(logspace(0,log10(N),10)); % number of neighbors
cvloss = zeros(numel(K),1);
for k=1:numel(K)
    knn = ClassificationKNN.fit(X,Y,...
        'NumNeighbors',K(k),'crossval','on');
    cvloss(k) = kfoldLoss(knn);
end
figure; % plot the accuracy versus k
semilogx(K,cvloss);
xlabel('Number of nearest neighbors');
ylabel('10 fold classification error');
```

#### title('k-NN classification');



The lowest cross-validation error occurs for k = 2.

#### 3. Create the ensembles.

Create ensembles for 2-nearest neighbor classification with various numbers of dimensions, and examine the cross-validated loss of the resulting ensembles.

This step takes a long time. To keep track of the progress, print a message as each dimension finishes.

NPredToSample = round(linspace(1,D,10)); % linear spacing of dimensions

```
cvloss = zeros(numel(NPredToSample),1);
learner = ClassificationKNN.template('NumNeighbors',2);
for npred=1:numel(NPredToSample)
   subspace = fitensemble(X,Y,'subspace',200,learner,...
       'npredtosample',NPredToSample(npred),'crossval','on');
   cvloss(npred) = kfoldLoss(subspace);
   fprintf('Random Subspace %i done.\n',npred);
end
figure; % plot the accuracy versus dimension
plot(NPredToSample,cvloss);
xlabel('Number of predictors selected at random');
ylabel('10 fold classification error');
title('k-NN classification with Random Subspace');
Random Subspace 1 done.
Random Subspace 2 done.
Random Subspace 3 done.
Random Subspace 4 done.
Random Subspace 5 done.
Random Subspace 6 done.
Random Subspace 7 done.
Random Subspace 8 done.
Random Subspace 9 done.
Random Subspace 10 done.
```



The ensemble with five predictors per learner has the lowest cross-validated error. The error rate, about 0.06, is about half the amount for the individual learners, which was over 0.10.

#### 4. Find a good ensemble size.

Find the smallest number of learners in the ensemble that still give good classification.





There seems to be no advantage in an ensemble with more than 150 or so learners. It is not clear whether there is any advantage with more than 50 learners. It is possible that 25 learners gives good predictions.

#### 5. Create a final ensemble.

Construct a final ensemble with 50 learners. Compact the ensemble and see if the compacted version saves an appreciable amount of memory.

The compact ensemble is about 10% smaller than the full ensemble. Both give the same predictions.

## **TreeBagger Examples**

TreeBagger ensembles have more functionality than those constructed with fitensemble; see TreeBagger Features Not in fitensemble on page 13-130. Also, some property and method names differ from their fitensemble counterparts. This section contains examples of workflow for regression and classification that use this extra TreeBagger functionality.

# Workflow Example: Regression of Insurance Risk Rating for Car Imports with TreeBagger

In this example, use a database of 1985 car imports with 205 observations, 25 input variables, and one response variable, insurance risk rating, or "symboling." The first 15 variables are numeric and the last 10 are categorical. The symboling index takes integer values from -3 to 3.

1 Load the dataset and split it into predictor and response arrays:

```
load imports-85;
Y = X(:,1);
X = X(:,2:end);
```

**2** Because bagging uses randomized data drawings, its exact outcome depends on the initial random seed. To reproduce the exact results in this example, use the random stream settings:

```
rng(1945,'twister')
```

**Finding the Optimal Leaf Size.** For regression, the general rule is to set leaf size to 5 and select one third of input features for decision splits at random. In the following step, verify the optimal leaf size by comparing mean-squared errors obtained by regression for various leaf sizes. oobError computes MSE versus the number of grown trees. You must set oobpred to 'on' to obtain out-of-bag predictions later.

```
leaf = [1 5 10 20 50 100];
col = 'rgbcmy';
figure(1);
for i=1:length(leaf)
    b = TreeBagger(50,X,Y,'method','r','oobpred','on',...
    'cat',16:25,'minleaf',leaf(i));
    plot(oobError(b),col(i));
    hold on;
end
xlabel('Number of Grown Trees');
ylabel('Mean Squared Error');
legend({'1' '5' '10' '20' '50' '100'},'Location','NorthEast');
hold off;
```



The red (leaf size 1) curve gives the lowest MSE values.
#### **Estimating Feature Importance.**

1 In practical applications, you typically grow ensembles with hundreds of trees. Only 50 trees were used in "Finding the Optimal Leaf Size" on page 13-108 for faster processing. Now that you have estimated the optimal leaf size, grow a larger ensemble with 100 trees and use it for estimation of feature importance:

```
b = TreeBagger(100,X,Y,'method','r','oobvarimp','on',...
'cat',16:25,'minleaf',1);
```

**2** Inspect the error curve again to make sure nothing went wrong during training:

```
figure(2);
plot(oobError(b));
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Mean Squared Error');
```



Prediction ability should depend more on important features and less on unimportant features. You can use this idea to measure feature importance.

For each feature, you can permute the values of this feature across all of the observations in the data set and measure how much worse the mean-squared

error (MSE) becomes after the permutation. You can repeat this for each feature.

1 Using the following code, plot the increase in MSE due to permuting out-of-bag observations across each input variable. The OOBPermutedVarDeltaError array stores the increase in MSE averaged over all trees in the ensemble and divided by the standard deviation taken over the trees, for each variable. The larger this value, the more important the variable. Imposing an arbitrary cutoff at 0.65, you can select the five most important features.

```
figure(3);
bar(b.00BPermutedVarDeltaError);
xlabel('Feature Number');
ylabel('Out-Of-Bag Feature Importance');
idxvar = find(b.00BPermutedVarDeltaError>0.65)
```

idxvar =

1 2 4 16 19



**2** The OOBIndices property of TreeBagger tracks which observations are out of bag for what trees. Using this property, you can monitor the fraction of observations in the training data that are in bag for all trees. The curve starts at approximately 2/3, the fraction of unique observations selected by one bootstrap replica, and goes down to 0 at approximately 10 trees.

```
finbag = zeros(1,b.NTrees);
for t=1:b.NTrees
    finbag(t) = sum(all(~b.00BIndices(:,1:t),2));
end
finbag = finbag / size(X,1);
figure(4);
plot(finbag);
```



xlabel('Number of Grown Trees');
ylabel('Fraction of in-Bag Observations');

**Growing Trees on a Reduced Set of Features.** Using just the five most powerful features selected in "Estimating Feature Importance" on page 13-109, determine if it is possible to obtain a similar predictive power. To begin, grow 100 trees on these features only. The first three of the five selected features are numeric and the last two are categorical.

```
b5v = TreeBagger(100,X(:,idxvar),Y,'method','r',...
'oobvarimp','on','cat',4:5,'minleaf',1);
figure(5);
plot(oobError(b5v));
```

```
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Mean Squared Error');
figure(6);
bar(b5v.00BPermutedVarDeltaError);
xlabel('Feature Index');
ylabel('Out-of-Bag Feature Importance');
```



These five most powerful features give the same MSE as the full set, and the ensemble trained on the reduced set ranks these features similarly to each other. Features 1 and 2 from the reduced set perhaps could be removed without a significant loss in the predictive power.

**Finding Outliers.** To find outliers in the training data, compute the proximity matrix using fillProximities:

```
b5v = fillProximities(b5v);
```

The method normalizes this measure by subtracting the mean outlier measure for the entire sample, taking the magnitude of this difference and dividing the result by the median absolute deviation for the entire sample:

```
figure(7);
hist(b5v.OutlierMeasure);
xlabel('Outlier Measure');
ylabel('Number of Observations');
```



**Discovering Clusters in the Data.** By applying multidimensional scaling to the computed matrix of proximities, you can inspect the structure of the input data and look for possible clusters of observations. The mdsProx method returns scaled coordinates and eigenvalues for the computed proximity matrix. If run with the colors option, this method makes a scatter plot of two scaled coordinates, first and second by default.

```
figure(8);
[~,e] = mdsProx(b5v,'colors','k');
xlabel('1st Scaled Coordinate');
ylabel('2nd Scaled Coordinate');
```



Assess the relative importance of the scaled axes by plotting the first 20 eigenvalues:

```
figure(9);
bar(e(1:20));
xlabel('Scaled Coordinate Index');
ylabel('Eigenvalue');
```



**Saving the Ensemble Configuration for Future Use.** To use the trained ensemble for predicting the response on unseen data, store the ensemble to disk and retrieve it later. If you do not want to compute predictions for out-of-bag data or reuse training data in any other way, there is no need to store the ensemble object itself. Saving the compact version of the ensemble would be enough in this case. Extract the compact object from the ensemble:

```
c = compact(b5v)
c =
Ensemble with 100 decision trees:
Method: regression
Nvars: 5
```

This object can be now saved in a \*.mat file as usual.

# Workflow Example: Classifying Radar Returns for Ionosphere Data with TreeBagger

You can also use ensembles of decision trees for classification. For this example, use ionosphere data with 351 observations and 34 real-valued predictors. The response variable is categorical with two levels:

- 'g' for good radar returns
- 'b' for bad radar returns

The goal is to predict good or bad returns using a set of 34 measurements. The workflow resembles that for "Workflow Example: Regression of Insurance Risk Rating for Car Imports with TreeBagger" on page 13-107.

1 Fix the initial random seed, grow 50 trees, inspect how the ensemble error changes with accumulation of trees, and estimate feature importance. For classification, it is best to set the minimal leaf size to 1 and select the square root of the total number of features for each decision split at random. These are the default settings for a TreeBagger used for classification.

```
load ionosphere;
rng(1945,'twister')
b = TreeBagger(50,X,Y,'oobvarimp','on');
figure(10);
plot(oobError(b));
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Classification Error');
```



**2** The method trains ensembles with few trees on observations that are in bag for all trees. For such observations, it is impossible to compute the true

out-of-bag prediction, and TreeBagger returns the most probable class for classification and the sample mean for regression. You can change the default value returned for in-bag observations using the DefaultYfit property. If you set the default value to an empty string for classification, the method excludes in-bag observations from computation of the out-of-bag error. In this case, the curve is more variable when the number of trees is small, either because some observations are never out of bag (and are therefore excluded) or because their predictions are based on few trees.

```
b.DefaultYfit = '';
figure(11);
plot(oobError(b));
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Error Excluding in-Bag Observations');
```



**3** The OOBIndices property of TreeBagger tracks which observations are out of bag for what trees. Using this property, you can monitor the fraction of observations in the training data that are in bag for all trees. The curve starts at approximately 2/3, the fraction of unique observations selected by one bootstrap replica, and goes down to 0 at approximately 10 trees.

```
finbag = zeros(1,b.NTrees);
for t=1:b.NTrees
    finbag(t) = sum(all(~b.00BIndices(:,1:t),2));
```

```
end
finbag = finbag / size(X,1);
figure(12);
plot(finbag);
xlabel('Number of Grown Trees');
ylabel('Fraction of in-Bag Observations');
```



**4** Estimate feature importance:

```
figure(13);
bar(b.OOBPermutedVarDeltaError);
xlabel('Feature Index');
ylabel('Out-of-Bag Feature Importance');
idxvar = find(b.OOBPermutedVarDeltaError>0.8)
```

idxvar =

3 4 5 7 8



**5** Having selected the five most important features, grow a larger ensemble on the reduced feature set. Save time by not permuting out-of-bag observations to obtain new estimates of feature importance for the reduced feature set (set oobvarimp to 'off'). You would still be interested in obtaining out-of-bag estimates of classification error (set oobpred to 'on').

```
b5v = TreeBagger(100,X(:,idxvar),Y,'oobpred','on');
figure(14);
plot(oobError(b5v));
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Classification Error');
```



6 For classification ensembles, in addition to classification error (fraction of misclassified observations), you can also monitor the average classification margin. For each observation, the *margin* is defined as the difference between the score for the true class and the maximal score for other classes predicted by this tree. The cumulative classification margin uses the scores averaged over all trees and the mean cumulative classification margin is the cumulative margin averaged over all observations. The oobMeanMargin method with the 'mode' argument set to 'cumulative' (default) shows how the mean cumulative margin changes as the ensemble grows: every new element in the returned array represents the cumulative margin obtained by including a new tree in the ensemble. If training is successful, you would expect to see a gradual increase in the mean classification margin.

For decision trees, a classification score is the probability of observing an instance of this class in this tree leaf. For example, if the leaf of a grown decision tree has five 'good' and three 'bad' training observations in it, the scores returned by this decision tree for any observation fallen on this leaf are 5/8 for the 'good' class and 3/8 for the 'bad' class. These probabilities are called 'scores' for consistency with other classifiers that might not have an obvious interpretation for numeric values of returned predictions.

```
figure(15);
plot(oobMeanMargin(b5v));
```

```
xlabel('Number of Grown Trees');
ylabel('Out-of-Bag Mean Classification Margin');
```



7 Compute the matrix of proximities and look at the distribution of outlier measures. Unlike regression, outlier measures for classification ensembles are computed within each class separately.

```
b5v = fillProximities(b5v);
figure(16);
hist(b5v.OutlierMeasure);
xlabel('Outlier Measure');
ylabel('Number of Observations');
```



 ${\bf 8}\,$  All extreme outliers for this dataset come from the 'good' class:

```
b5v.Y(b5v.OutlierMeasure>40)
```

```
ans =
'g'
'g'
'g'
'g'
```

**9** As for regression, you can plot scaled coordinates, displaying the two classes in different colors using the colors argument of mdsProx. This argument takes a string in which every character represents a color. To find the order of classes used by the ensemble, look at the ClassNames property:

b5v.ClassNames ans = 'g' 'b' The 'good' class is first and the 'bad' class is second. Display scaled coordinates using red for 'good' and blue for 'bad' observations:

```
figure(17);
[s,e] = mdsProx(b5v,'colors','rb');
xlabel('1st Scaled Coordinate');
ylabel('2nd Scaled Coordinate');
```



**10** Plot the first 20 eigenvalues obtained by scaling. The first eigenvalue in this case clearly dominates and the first scaled coordinate is most important.

```
figure(18);
bar(e(1:20));
xlabel('Scaled Coordinate Index');
ylabel('Eigenvalue');
```



**Plotting a Classification Performance Curve.** Another way of exploring the performance of a classification ensemble is to plot its Receiver Operating Characteristic (ROC) curve or another performance curve suitable for the current problem. First, obtain predictions for out-of-bag observations. For a classification ensemble, the oobPredict method returns a cell array of classification labels ('g' or 'b' for ionosphere data) as the first output argument and a numeric array of scores as the second output argument. The returned array of scores has two columns, one for each class. In this case, the first column is for the 'good' class and the second column is for the 'bad' class. One column in the score matrix is redundant because the scores represent class probabilities in tree leaves and by definition add up to 1.

```
[Yfit,Sfit] = oobPredict(b5v);
```

Use the perfcurve utility (see "Performance Curves" on page 12-40) to compute a performance curve. By default, perfcurve returns the standard ROC curve, which is the true positive rate versus the false positive rate. perfcurve requires true class labels, scores, and the positive class label for input. In this case, choose the 'good' class as positive. The scores for this class are in the first column of Sfit.

```
[fpr,tpr] = perfcurve(b5v.Y,Sfit(:,1),'g');
figure(19);
plot(fpr,tpr);
```

```
xlabel('False Positive Rate');
ylabel('True Positive Rate');
```



Instead of the standard ROC curve, you might want to plot, for example, ensemble accuracy versus threshold on the score for the 'good' class. The ycrit input argument of perfcurve lets you specify the criterion for the y-axis, and the third output argument of perfcurve returns an array of thresholds for the positive class score. Accuracy is the fraction of correctly classified observations, or equivalently, 1 minus the classification error.

```
[fpr,accu,thre] = perfcurve(b5v.Y,Sfit(:,1),'g','ycrit','accu');
figure(20);
plot(thre,accu);
xlabel('Threshold for ''good'' Returns');
ylabel('Classification Accuracy');
```



The curve shows a flat region indicating that any threshold from 0.2 to 0.6 is a reasonable choice. By default, the function assigns classification labels using 0.5 as the boundary between the two classes. You can find exactly what accuracy this corresponds to:

```
i50 = find(accu>=0.50,1,'first')
accu(abs(thre-0.5)<eps)</pre>
```

returns

i50 = 2 ans = 0.9430

The maximal accuracy is a little higher than the default one:

```
[maxaccu,iaccu] = max(accu)
returns
maxaccu =
    0.9459
```

iaccu = 91

The optimal threshold is therefore:

```
thre(iaccu)
ans =
0.5056
```

## **Ensemble Algorithms**

- "Bagging" on page 13-128
- "AdaBoostM1" on page 13-132
- "AdaBoostM2" on page 13-134
- "LogitBoost" on page 13-135
- "GentleBoost" on page 13-136
- "RobustBoost" on page 13-137
- "LSBoost" on page 13-138
- "Subspace" on page 13-139

#### Bagging

*Bagging*, which stands for "bootstrap aggregation", is a type of ensemble learning. To bag a weak learner such as a decision tree on a dataset, generate many bootstrap replicas of this dataset and grow decision trees on these replicas. Obtain each bootstrap replica by randomly selecting N observations out of N with replacement, where N is the dataset size. To find the predicted response of a trained ensemble, take an average over predictions from individual trees.

Bagged decision trees were introduced in MATLAB R2009a as TreeBagger. The fitensemble function lets you bag in a manner consistent with boosting. An ensemble of bagged trees, either ClassificationBaggedEnsemble or RegressionBaggedEnsemble, returned by fitensemble offers almost the same functionally as TreeBagger. Discrepancies between TreeBagger and the new framework are described in detail in TreeBagger Features Not in fitensemble on page 13-130.

Bagging works by training learners on resampled versions of the data. This resampling is usually done by bootstrapping observations, that is, selecting N out of N observations with replacement for every new learner. In addition, every tree in the ensemble can randomly select predictors for decision splits—a technique known to improve the accuracy of bagged trees.

By default, the minimal leaf sizes for bagged trees are set to 1 for classification and 5 for regression. Trees grown with the default leaf size are usually very deep. These settings are close to optimal for the predictive power of an ensemble. Often you can grow trees with larger leaves without losing predictive power. Doing so reduces training and prediction time, as well as memory usage for the trained ensemble.

Another important parameter is the number of predictors selected at random for every decision split. This random selection is made for every split, and every deep tree involves many splits. By default, this parameter is set to a square root of the number of predictors for classification, and one third of predictors for regression.

Several features of bagged decision trees make them a unique algorithm. Drawing N out of N observations with replacement omits on average 37% of observations for each decision tree. These are "out-of-bag" observations. You can use them to estimate the predictive power and feature importance. For each observation, you can estimate the out-of-bag prediction by averaging over predictions from all trees in the ensemble for which this observation is out of bag. You can then compare the computed prediction against the observed response for this observation. By comparing the out-of-bag predicted responses against the observed responses for all observations used for training, you can estimate the average out-of-bag error. This out-of-bag average is an unbiased estimator of the true ensemble error. You can also obtain out-of-bag estimates of feature importance by randomly permuting out-of-bag data across one variable or column at a time and estimating the increase in the out-of-bag error due to this permutation. The larger the increase, the more important the feature. Thus, you need not supply test data for bagged ensembles because you obtain reliable estimates of the predictive power and feature importance in the process of training, which is an attractive feature of bagging.

Another attractive feature of bagged decision trees is the proximity matrix. Every time two observations land on the same leaf of a tree, their proximity increases by 1. For normalization, sum these proximities over all trees in the ensemble and divide by the number of trees. The resulting matrix is symmetric with diagonal elements equal to 1 and off-diagonal elements ranging from 0 to 1. You can use this matrix for finding outlier observations and discovering clusters in the data through multidimensional scaling.

For examples using bagging, see:

- "Example: Test Ensemble Quality" on page 13-65
- "Example: Surrogate Splits" on page 13-81
- "Workflow Example: Regression of Insurance Risk Rating for Car Imports with TreeBagger" on page 13-107
- "Workflow Example: Classifying Radar Returns for Ionosphere Data with TreeBagger" on page 13-116

For references related to bagging, see Breiman [1], [2], and [3].

**Comparison of TreeBagger and Bagged Ensembles.** fitensemble produces bagged ensembles that have most, but not all, of the functionality of TreeBagger objects. Additionally, some functionality has different names in the new bagged ensembles.

| Feature                                      | TreeBagger Property                                                                           | TreeBagger Method        |
|----------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------|
| Computation of proximity matrix              | Proximity                                                                                     | fillProximities, mdsProx |
| Computation of outliers                      | OutlierMeasure                                                                                | N/A                      |
| Out-of-bag estimates of predictor importance | OOBPermutedVarDeltaError,<br>OOBPermutedVarDeltaMeanMargin,<br>OOBPermutedVarCountRaiseMargin | N/A                      |

#### **TreeBagger Features Not in fitensemble**

### TreeBagger Features Not in fitensemble (Continued)

| Feature                                    | TreeBagger Property                                                                          | TreeBagger Method |
|--------------------------------------------|----------------------------------------------------------------------------------------------|-------------------|
| Merging two ensembles trained separately   | N/A                                                                                          | append            |
| Parallel computation for creating ensemble | Set the UseParallel name-value<br>pair to 'always'; see Chapter 17,<br>"Parallel Statistics" | N/A               |

#### Differing Names Between TreeBagger and Bagged Ensembles

| Feature                                                           | TreeBagger                              | Bagged Ensembles                                                                                      |
|-------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------|
| Split criterion contributions<br>for each predictor               | DeltaCritDecisionSplit<br>property      | First output of<br>predictorImportance<br>(classification) or<br>predictorImportance<br>(regression)  |
| Predictor associations                                            | VarAssoc property                       | Second output of<br>predictorImportance<br>(classification) or<br>predictorImportance<br>(regression) |
| Error (misclassification<br>probability or mean-squared<br>error) | error and oobError methods              | loss and oobLoss methods<br>(classification); loss and<br>oobLoss methods (regression)                |
| Train additional trees and add to ensemble                        | growTrees method                        | resume method (classification);<br>resume method (regression)                                         |
| Mean classification margin per tree                               | meanMargin and<br>oobMeanMargin methods | edge and oobEdge methods<br>(classification)                                                          |

In addition, two important changes were made to training and prediction for bagged classification ensembles:

• If you pass a misclassification cost matrix to TreeBagger, it passes this matrix along to the trees. If you pass a misclassification cost matrix to fitensemble, it uses this matrix to adjust the class prior probabilities.

fitensemble then passes the adjusted prior probabilities and the default cost matrix to the trees. The default cost matrix is ones(K) - eye(K) for K classes.

• Unlike the loss and edge methods in the new framework, the TreeBagger error and meanMargin methods do not normalize input observation weights of the prior probabilities in the respective class.

## AdaBoostM1

AdaBoostM1 is a very popular boosting algorithm for binary classification. The algorithm trains learners sequentially. For every learner with index t, AdaBoostM1 computes the weighted classification error

$$\varepsilon_t = \sum_{n=1}^{N} d_n^{(t)} \mathbb{I}(y_n = h_t(x_n)),$$

where

- $x_n$  is a vector of predictor values for observation n.
- $y_n$  is the true class label.
- $h_t$  is the prediction of learner (hypothesis) with index t.
- I is the indicator function.
- $d_n^{(t)}$  is the weight of observation n at step t.

AdaBoostM1 then increases weights for observations misclassified by learner t and reduces weights for observations correctly classified by learner t. The

next learner t + 1 is then trained on the data with updated weights  $d_n^{(t+1)}$ .

After training finishes, AdaBoostM1 computes prediction for new data using

$$f(x) = \sum_{t=1}^{T} \alpha_t h_t(x),$$

where

$$\alpha_t = \frac{1}{2}\log\frac{1 - \varepsilon_t}{\varepsilon_t}$$

are weights of the weak hypotheses in the ensemble.

Training by  ${\tt AdaBoostM1}$  can be viewed as stagewise minimization of the exponential loss

$$\sum_{n=1}^{N} w_n \exp\left(-y_n f\left(x_n\right)\right),$$

where

- $y_n \in \{-1,+1\}$  is the true class label.
- $w_n$  are observation weights normalized to add up to 1.
- $f(x_n) \in (-\infty, +\infty)$  is the predicted classification score.

The observation weights  $\boldsymbol{w}_{\boldsymbol{n}}$  are the original observation weights you passed to fitensemble.

The second output from the predict method of an AdaBoostM1 classification ensemble is an N-by-2 matrix of classification scores for the two classes and N observations. The second column in this matrix is always equal to minus the first column. predict returns two scores to be consistent with multiclass models, though this is redundant because the second column is always the negative of the first.

Most often AdaBoostM1 is used with decision stumps (default) or shallow trees. If boosted stumps give poor performance, try setting the minimal parent node size to one quarter of the training data.

By default, the learning rate for boosting algorithms is 1. If you set the learning rate to a lower number, the ensemble learns at a slower rate, but can converge to a better solution. 0.1 is a popular choice for the learning rate. Learning at a rate less than 1 is often called "shrinkage".

For examples using AdaBoostM1, see "Example: Tuning RobustBoost" on page 13-97.

For references related to AdaBoostM1, see Freund and Schapire [6], Schapire et al. [11], Friedman, Hastie, and Tibshirani [8], and Friedman [7].

## AdaBoostM2

AdaBoostM2 is an extension of AdaBoostM1 for multiple classes. Instead of weighted classification error, AdaBoostM2 uses weighted pseudo-loss for N observations and K classes

$$\varepsilon_{t} = \frac{1}{2} \sum_{n=1}^{N} \sum_{k \neq y_{n}} d_{n,k}^{\left(t\right)} \left(1 - h_{t}\left(x_{n}, y_{n}\right) + h_{t}\left(x_{n}, k\right)\right),$$

where

- $h_t(x_n,k)$  is the confidence of prediction by learner at step *t* into class *k* ranging from 0 (not at all confident) to 1 (highly confident).
- $d_{n,k}^{(t)}$  are observation weights at step t for class k.
- $y_n$  is the true class label taking one of the *K* values.
- The second sum is over all classes other than the true class  $y_n$ .

Interpreting the pseudo-loss is harder than classification error, but the idea is the same. Pseudo-loss can be used as a measure of the classification accuracy from any learner in an ensemble. Pseudo-loss typically exhibits the same behavior as a weighted classification error for AdaBoostM1: the first few learners in a boosted ensemble give low pseudo-loss values. After the first few training steps, the ensemble begins to learn at a slower pace, and the pseudo-loss value approaches 0.5 from below.

For examples using AdaBoostM2, see "Create a Classification Ensemble" on page 13-62.

For references related to AdaBoostM2, see Freund and Schapire [6].

## LogitBoost

LogitBoost is another popular algorithm for binary classification. LogitBoost works similarly to AdaBoostM1, except it minimizes binomial deviance

$$\sum_{n=1}^{N} w_n \log \left(1 + \exp\left(-2y_n f(x_n)\right)\right),$$

where

- $y_n \in \{-1,+1\}$  is the true class label.
- $w_n$  are observation weights normalized to add up to 1.
- $f(x_n) \in (-\infty, +\infty)$  is the predicted classification score.

Binomial deviance assigns less weight to badly misclassified observations (observations with large negative values of  $y_n f(x_n)$ ). LogitBoost can give better average accuracy than AdaBoostM1 for data with poorly separable classes.

Learner *t* in a LogitBoost ensemble fits a regression model to response values

$$\tilde{y}_n = \frac{y_n^* - p_t(x_n)}{p_t(x_n)(1 - p_t(x_n))},$$

where

- $y_n^* \in \{0,+1\}$  are relabeled classes (0 instead of -1).
- $p_t(x_n)$  is the current ensemble estimate of the probability for observation  $x_n$  to be of class 1.

Fitting a regression model at each boosting step turns into a great computational advantage for data with multilevel categorical predictors. Take a categorical predictor with L levels. To find the optimal decision split on such a predictor, classification tree needs to consider  $2^{L-1} - 1$  splits. A regression tree needs to consider only L - 1 splits, so the processing time

can be much shorter. LogitBoost is recommended for categorical predictors with many levels.

fitensemble computes and stores the mean-squared error in the FitInfo property of the ensemble object. The mean-squared error is

$$\sum_{n=1}^{N} d_n^{(t)} \left( \tilde{y}_n - h_t \left( x_n \right) \right)^2,$$

where

- $d_n^{(t)}$  are observation weights at step t (the weights add up to 1).
- $h_t(x_n)$  are predictions of the regression model  $h_t$  fitted to response values  $\tilde{y}_n$ .

Values  $y_n$  can range from  $-\infty$  to  $+\infty$ , so the mean-squared error does not have well-defined bounds.

For examples using LogitBoost, see "Example: Classification with Many Categorical Levels" on page 13-76.

For references related to LogitBoost, see Friedman, Hastie, and Tibshirani [8].

## GentleBoost

GentleBoost (also known as Gentle AdaBoost) combines features of AdaBoostM1 and LogitBoost. Like AdaBoostM1, GentleBoost minimizes the exponential loss. But its numeric optimization is set up differently. Like LogitBoost, every weak learner fits a regression model to response values  $y_n \in \{-1,+1\}$ . This makes GentleBoost another good candidate for binary classification of data with multilevel categorical predictors.

fitensemble computes and stores the mean-squared error in the FitInfo property of the ensemble object. The mean-squared error is

$$\sum_{n=1}^{N} d_n^{(t)} \left( \tilde{y}_n - h_t \left( x_n \right) \right)^2,$$

where

- $d_n^{(t)}$  are observation weights at step t (the weights add up to 1).
- $h_t(x_n)$  are predictions of the regression model  $h_t$  fitted to response values  $y_n$ .

As the strength of individual learners weakens, the weighted mean-squared error approaches 1.

For examples using GentleBoost, see "Example: Unequal Classification Costs" on page 13-71 and "Example: Classification with Many Categorical Levels" on page 13-76.

For references related to GentleBoost, see Friedman, Hastie, and Tibshirani [8].

## RobustBoost

Boosting algorithms such as AdaBoostM1 and LogitBoost increase weights for misclassified observations at every boosting step. These weights can become very large. If this happens, the boosting algorithm sometimes concentrates on a few misclassified observations and neglects the majority of training data. Consequently the average classification accuracy suffers.

In this situation, you can try using RobustBoost. This algorithm does not assign almost the entire data weight to badly misclassified observations. It can produce better average classification accuracy.

Unlike AdaBoostM1 and LogitBoost, RobustBoost does not minimize a specific loss function. Instead, it maximizes the number of observations with the classification margin above a certain threshold.

RobustBoost trains based on time evolution. The algorithm starts at t = 0. At every step, RobustBoost solves an optimization problem to find a positive step in time  $\Delta t$  and a corresponding positive change in the average margin for training data  $\Delta m$ . RobustBoost stops training and exits if at least one of these three conditions is true:

- Time t reaches 1.
- RobustBoost cannot find a solution to the optimization problem with positive updates  $\Delta t$  and  $\Delta m$ .
- RobustBoost grows as many learners as you requested.

Results from RobustBoost can be usable for any termination condition. Estimate the classification accuracy by cross validation or by using an independent test set.

To get better classification accuracy from RobustBoost, you can adjust three parameters in fitensemble: RobustErrorGoal, RobustMargin, and RobustMarginSigma. Start by varying values for RobustErrorGoal from 0 to 1. The maximal allowed value for RobustErrorGoal depends on the two other parameters. If you pass a value that is too high, fitensemble produces an error message showing the allowed range for RobustErrorGoal.

For examples using RobustBoost, see "Example: Tuning RobustBoost" on page 13-97.

For references related to RobustBoost, see Freund [5].

#### LSBoost

You can use least squares boosting (LSBoost) to fit regression ensembles. At every step, the ensemble fits a new learner to the difference between the observed response and the aggregated prediction of all learners grown previously. The ensemble fits to minimize mean-squared error.

You can use LSBoost with shrinkage by passing in LearnRate parameter. By default this parameter is set to 1, and the ensemble learns at the maximal speed. If you set LearnRate to a value from 0 to 1, the ensemble fits every new learner to  $y_n - \eta f(x_n)$ , where

- $y_n$  is the observed response.
- *f*(*x<sub>n</sub>*) is the aggregated prediction from all weak learners grown so far for observation *x<sub>n</sub>*.

•  $\eta$  is the learning rate.

For examples using LSBoost, see "Creating a Regression Ensemble" on page 13-63 and "Example: Regularizing a Regression Ensemble" on page 13-87.

For references related to LSBoost, see Hastie, Tibshirani, and Friedman [9], Chapters 7 (Model Assessment and Selection) and 15 (Random Forests).

## Subspace

Use random subspace ensembles (Subspace) to improve the accuracy of discriminant analysis (ClassificationDiscriminant) or k-nearest neighbor (ClassificationKNN) classifiers. Subspace ensembles also have the advantage of using less memory than ensembles with all predictors, and can handle missing values (NaN).

The basic random subspace algorithm uses the following parameters.

- m is the number of dimensions (variables) to sample in each learner. Set m with the NPredToSample name-value pair.
- *d* is the number of dimensions in the data, which is the number of columns (predictors) in the data matrix X.
- *n* is the number of learners in the ensemble. Set *n* with the NLearn input.

The basic random subspace algorithm performs the following steps:

- **1** Choose without replacement a random set of m predictors from the d possible values.
- 2 Train a weak learner using just the *m* chosen predictors.
- **3** Repeat steps 1 and 2 until there are n weak learners.
- **4** Predict by taking an average of the **score** prediction of the weak learners, and classify the category with the highest average **score**.

You can choose to create a weak learner for every possible set of m predictors from the d dimensions. To do so, set n, the number of learners, to 'AllPredictorCombinations'. In this case, there are nchoosek(size(X,2),NPredToSample) weak learners in the ensemble.

fitensemble downweights predictors after choosing them for a learner, so subsequent learners have a lower chance of using a predictor that was previously used. This weighting tends to make predictors more evenly distributed among learners than in uniform weighting.

For examples using Subspace, see "Random Subspace Classification" on page 13-101.

For references related to random subspace ensembles, see Ho [10].

# Bibliography

[1] Breiman, L. Bagging Predictors. Machine Learning 26, pp. 123-140, 1996.

[2] Breiman, L. Random Forests. Machine Learning 45, pp. 5-32, 2001.

[3] Breiman, L. http://www.stat.berkeley.edu/~breiman/RandomForests/

[4] Breiman, L., et al. *Classification and Regression Trees*. Chapman & Hall, Boca Raton, 1993.

[5] Freund, Y. A more robust boosting algorithm. arXiv:0905.2138v1, 2009.

[6] Freund, Y. and R. E. Schapire. A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting. J. of Computer and System Sciences, Vol. 55, pp. 119–139, 1997.

[7] Friedman, J. *Greedy function approximation: A gradient boosting machine*. Annals of Statistics, Vol. 29, No. 5, pp. 1189–1232, 2001.

[8] Friedman, J., T. Hastie, and R. Tibshirani. *Additive logistic regression: A statistical view of boosting*. Annals of Statistics, Vol. 28, No. 2, pp. 337–407, 2000.

[9] Hastie, T., R. Tibshirani, and J. Friedman. *The Elements of Statistical Learning*, second edition. Springer, New York, 2008.

[10] Ho, T. K. *The random subspace method for constructing decision forests*.
IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 20, No. 8, pp. 832–844, 1998.

[11] Schapire, R. E. et al. *Boosting the margin: A new explanation for the effectiveness of voting methods.* Annals of Statistics, Vol. 26, No. 5, pp. 1651–1686, 1998.

[12] Zadrozny, B., J. Langford, and N. Abe. *Cost-Sensitive Learning* by *Cost-Proportionate Example Weighting*. CiteSeerX. [Online] 2003. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.5.9780 [13] Zhou, Z.-H. and X.-Y. Liu. On Multi-Class Cost-Sensitive Learning. CiteSeerX. [Online] 2006. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.92.9999