
12

Parametric Classification

• “Introduction to Parametric Classification” on page 12-2

• “Discriminant Analysis” on page 12-3

• “Naive Bayes Classification” on page 12-37

• “Performance Curves” on page 12-40



12 Parametric Classification

Introduction to Parametric Classification
Models of data with a categorical response are called classifiers. A classifier is
built from training data, for which classifications are known. The classifier
assigns new test data to one of the categorical levels of the response.

Parametric methods, like “Discriminant Analysis” on page 12-3, fit a
parametric model to the training data and interpolate to classify test data.

Nonparametric methods, like “Classification Trees and Regression Trees”
on page 13-31, use other means to determine classifications. In this sense,
classification methods are analogous to the methods discussed in “Nonlinear
Regression” on page 9-130.

12-2



Discriminant Analysis

Discriminant Analysis

In this section...

“What Is Discriminant Analysis?” on page 12-3

“Example: Create Discriminant Analysis Classifiers” on page 12-4

“How the ClassificationDiscriminant.fit Method Creates a Classifier” on
page 12-5

“How the predict Method Classifies” on page 12-6

“Example: Creating and Visualizing a Discriminant Analysis Classifier”
on page 12-9

“Improving a Discriminant Analysis Classifier” on page 12-15

“Regularize a Discriminant Analysis Classifier” on page 12-23

“Examining the Gaussian Mixture Assumption” on page 12-30

“Bibliography” on page 12-36

What Is Discriminant Analysis?
Discriminant analysis is a classification method. It assumes that different
classes generate data based on different Gaussian distributions.

• To train (create) a classifier, the fitting function estimates the
parameters of a Gaussian distribution for each class (see “How the
ClassificationDiscriminant.fit Method Creates a Classifier” on page 12-5).

• To predict the classes of new data, the trained classifier finds the class with
the smallest misclassification cost (see “How the predict Method Classifies”
on page 12-6).

To learn how to prepare your data for discriminant analysis and create a
classifier, see “Steps in Supervised Learning (Machine Learning)” on page
13-2.

Linear discriminant analysis is also known as the Fisher discriminant, named
for its inventor, Sir R. A. Fisher [2].

12-3



12 Parametric Classification

Example: Create Discriminant Analysis Classifiers
To create the basic types of discriminant analysis classifiers for the Fisher
iris data:

1 Load the data:

load fisheriris;

2 Create a default (linear) discriminant analysis classifier:

linclass = ClassificationDiscriminant.fit(meas,species);

To visualize the classification boundaries of a 2-D linear classification of
the data, see Linear Discriminant Classification — Fisher Training Data
on page 12-13.

3 Classify an iris with average measurements:

meanmeas = mean(meas);
meanclass = predict(linclass,meanmeas)

meanclass =
'versicolor'

4 Create a quadratic classifier:

quadclass = ClassificationDiscriminant.fit(meas,species,...
'discrimType','quadratic');

To visualize the classification boundaries of a 2-D quadratic classification
of the data, see Quadratic Discriminant Classification — Fisher Training
Data on page 12-15.

5 Classify an iris with average measurements using the quadratic classifier:

meanclass2 = predict(quadclass,meanmeas)

meanclass2 =
'versicolor'

12-4



Discriminant Analysis

How the ClassificationDiscriminant.fit Method
Creates a Classifier
The model for discriminant analysis is:

• Each class (Y) generates data (X) using a multivariate normal distribution.
In other words, the model assumes X has a Gaussian mixture distribution
(gmdistribution).

- For linear discriminant analysis, the model has the same covariance
matrix for each class; only the means vary.

- For quadratic discriminant analysis, both means and covariances of
each class vary.

Under this modeling assumption, ClassificationDiscriminant.fit infers
the mean and covariance parameters of each class.

• For linear discriminant analysis, it computes the sample mean of each
class. Then it computes the sample covariance by first subtracting the
sample mean of each class from the observations of that class, and taking
the empirical covariance matrix of the result.

• For quadratic discriminant analysis, it computes the sample mean of each
class. Then it computes the sample covariances by first subtracting the
sample mean of each class from the observations of that class, and taking
the empirical covariance matrix of each class.

The fit method does not use prior probabilities or costs for fitting.

Weighted Observations
The fit method constructs weighted classifiers using the following scheme.
Suppose M is an N-by-K class membership matrix:

Mnk = 1 if observation n is from class k
Mnk = 0 otherwise.

The estimate of the class mean for unweighted data is

12-5



12 Parametric Classification

ˆ .k
n
N

nk n

n
N

nk

M x

M
 






1

1

For weighted data with positive weights wn, the natural generalization is

ˆ .k
n
N

nk n n

n
N

nk n

M w x

M w
 






1

1

The unbiased estimate of the pooled-in covariance matrix for unweighted
data is

ˆ
ˆ ˆ

. 
   


  n

N
k
K

nk n k n k
TM x x

N K
1 1

 

For quadratic discriminant analysis, the fit method uses K = 1.

For weighted data, assuming the weights sum to 1, the unbiased estimate
of the pooled-in covariance matrix is

ˆ
ˆ ˆ

, 
   



 



 
 



n
N

k
K

nk n n k n k
T

k
K k

k

M w x x

W

W

1 1

1

2

1

 

where

• W M wk nk nn
N
 1

is the sum of the weights for class k.

• W M wk nk nn
N2 2

1
 


  is the sum of squared weights per class.

How the predict Method Classifies
There are three elements in the predict classification algorithm:

12-6



Discriminant Analysis

• “Posterior Probability” on page 12-7

• “Prior Probability” on page 12-8

• “Cost” on page 12-8

predict classifies so as to minimize the expected classification cost:

ˆ arg min ˆ | | ,
,...,

y P k x C y k
y K k

K
    

 


1 1

where

• ŷ is the predicted classification.

• K is the number of classes.

• ˆ |P k x  is the posterior probability of class k for observation x.

• C y k|  is the cost of classifying an observation as y when its true class is k.

The space of X values divides into regions where a classification Y is a
particular value. The regions are separated by straight lines for linear
discriminant analysis, and by conic sections (ellipses, hyperbolas, or
parabolas) for quadratic discriminant analysis. For a visualization of these
regions, see “Example: Creating and Visualizing a Discriminant Analysis
Classifier” on page 12-9.

Posterior Probability
The posterior probability that a point x belongs to class k is the product of the
prior probability and the multivariate normal density. The density function of
the multivariate normal with mean μk and covariance Σk at a point x is

P x k x x
k

kk
T

k| exp ,
/       








 
1

2

1
21 2

1


 




where k is the determinant of Σk, and k
1 is the inverse matrix.

12-7



12 Parametric Classification

Let P(k) represent the prior probability of class k. Then the posterior
probability that an observation x is of class k is

ˆ |
|

,P k x
P x k P k

P x
      

 

where P(x) is a normalization constant, namely, the sum over k of P(x|k)P(k).

Prior Probability
The prior probability is one of three choices:

• 'uniform'— The prior probability of class k is 1 over the total number of
classes.

• 'empirical'— The prior probability of class k is the number of training
samples of class k divided by the total number of training samples.

• A numeric vector — The prior probability of class k is the jth element of
the prior vector. See ClassificationDiscriminant.fit.

After creating a classifier obj, you can set the prior using dot addressing:

obj.Prior = v;

where v is a vector of positive elements representing the frequency with
which each element occurs. You do not need to retrain the classifier when
you set a new prior.

Cost
There are two costs associated with discriminant analysis classification: the
true misclassification cost per class, and the expected misclassification cost
per observation.

True Misclassification Cost per Class. Cost(i,j) is the cost of classifying
an observation into class j if its true class is i. By default, Cost(i,j)=1
if i~=j, and Cost(i,j)=0 if i=j. In other words, the cost is 0 for correct
classification, and 1 for incorrect classification.

12-8



Discriminant Analysis

You can set any cost matrix you like when creating a classifier. Pass the cost
matrix in the Cost name-value pair in ClassificationDiscriminant.fit.

After you create a classifier obj, you can set a custom cost using dot
addressing:

obj.Cost = B;

B is a square matrix of size K-by-K when there are K classes. You do not need
to retrain the classifier when you set a new cost.

Expected Misclassification Cost per Observation. Suppose you have
Nobs observations that you want to classify with a trained discriminant
analysis classifier obj. Suppose you have K classes. You place the observations
into a matrix Xnew with one observation per row. The command

[label,score,cost] = predict(obj,Xnew)

returns, among other outputs, a cost matrix of size Nobs-by-K. Each row of the
cost matrix contains the expected (average) cost of classifying the observation
into each of the K classes. cost(n,k) is

ˆ | ( ) | ,P i Xnew n C k i
i

K
   




1

where

• K is the number of classes.

• ˆ | ( )P i Xnew n  is the posterior probability of class i for observation Xnew(n).

• C k i|  is the cost of classifying an observation as k when its true class is i.

Example: Creating and Visualizing a Discriminant
Analysis Classifier
This example shows both linear and quadratic classification of the Fisher
iris data. The example uses only two of the four predictors to enable simple
plotting.

12-9



12 Parametric Classification

1 Load the data:

load fisheriris

2 Use the petal length (PL) and petal width (PW) measurements:

PL = meas(:,3);
PW = meas(:,4);

3 Plot the data, showing the classification:

h1 = gscatter(PL,PW,species,'krb','ov^',[],'off');
set(h1,'LineWidth',2)
legend('Setosa','Versicolor','Virginica',...

'Location','best')

12-10



Discriminant Analysis

4 Create a linear classifier:

X = [PL,PW];
cls = ClassificationDiscriminant.fit(X,species);

5 Plot the classification boundaries:

hold on
K = cls.Coeffs(2,3).Const;
L = cls.Coeffs(2,3).Linear;
% Plot the curve K + [x,y]*L = 0:
f = @(x1,x2) K + L(1)*x1 + L(2)*x2;
h2 = ezplot(f,[.9 7.1 0 2.5]);

12-11



12 Parametric Classification

set(h2,'Color','r','LineWidth',2)

K = cls.Coeffs(1,2).Const;
L = cls.Coeffs(1,2).Linear;
% Plot the curve K + [x1,x2]*L = 0:
f = @(x1,x2) K + L(1)*x1 + L(2)*x2;
h3 = ezplot(f,[.9 7.1 0 2.5]);
set(h3,'Color','k','LineWidth',2)
axis([.9 7.1 0 2.5])
xlabel('Petal Length')
ylabel('Petal Width')
title('{\bf Linear Classification with Fisher Training Data}')

12-12



Discriminant Analysis

Linear Discriminant Classification — Fisher Training Data

6 Create a quadratic discriminant classifier:

cqs = ClassificationDiscriminant.fit(X,species,...
'DiscrimType','quadratic');

7 Plot the classification boundaries:

delete(h2); delete(h3) % remove the linear plots
K = cqs.Coeffs(2,3).Const;
L = cqs.Coeffs(2,3).Linear;
Q = cqs.Coeffs(2,3).Quadratic;
% Plot the curve K + [x1,x2]*L + [x1,x2]*Q*[x1,x2]'=0:

12-13



12 Parametric Classification

f = @(x1,x2) K + L(1)*x1 + L(2)*x2 + Q(1,1)*x1.^2 + ...
(Q(1,2)+Q(2,1))*x1.*x2 + Q(2,2)*x2.^2;

h2 = ezplot(f,[.9 7.1 0 2.5]);
set(h2,'Color','r','LineWidth',2)

K = cqs.Coeffs(1,2).Const;
L = cqs.Coeffs(1,2).Linear;
Q = cqs.Coeffs(1,2).Quadratic;
% Plot the curve K + [x1,x2]*L + [x1,x2]*Q*[x1,x2]'=0:
f = @(x1,x2) K + L(1)*x1 + L(2)*x2 + Q(1,1)*x1.^2 + ...

(Q(1,2)+Q(2,1))*x1.*x2 + Q(2,2)*x2.^2;
h3 = ezplot(f,[.9 7.1 0 1.02]); % plot the relevant

% portion of the curve
set(h3,'Color','k','LineWidth',2)
axis([.9 7.1 0 2.5])
xlabel('Petal Length')
ylabel('Petal Width')
title('{\bf Quadratic Classification with Fisher Training Data}')
hold off

12-14



Discriminant Analysis

Quadratic Discriminant Classification — Fisher Training Data

Improving a Discriminant Analysis Classifier

• “Deal with Singular Data” on page 12-16

• “Choose a Discriminant Type” on page 12-17

• “Examine the Resubstitution Error and Confusion Matrix” on page 12-18

• “Cross Validation” on page 12-19

• “Change Costs and Priors” on page 12-20

12-15



12 Parametric Classification

Deal with Singular Data
Discriminant analysis needs data sufficient to fit Gaussian models with
invertible covariance matrices. If your data is not sufficient to fit such a
model uniquely, ClassificationDiscriminant.fit fails. This section shows
methods for handling failures.

Tip To obtain a discriminant analysis classifier without failure, set the
DiscrimType name-value pair to 'pseudoLinear' or 'pseudoQuadratic' in
ClassificationDiscriminant.fit.

“Pseudo” discriminants never fail, because they use the pseudoinverse of
the covariance matrix Σk (see pinv).

Example: Singular Covariance Matrix. When the covariance matrix of
the fitted classifier is singular, ClassificationDiscriminant.fit can fail:

load popcorn

X = popcorn(:,[1 2]);

X(:,3) = 0; % a zero-variance column

Y = popcorn(:,3);

ppcrn = ClassificationDiscriminant.fit(X,Y);

Error using ClassificationDiscriminant (line 635)

Predictor x3 has zero variance. Either exclude this predictor or set 'discrimType' to

'pseudoLinear' or 'diagLinear'.

Error in classreg.learning.FitTemplate/fit (line 243)

obj = this.MakeFitObject(X,Y,W,this.ModelParams,fitArgs{:});

Error in ClassificationDiscriminant.fit (line 296)

this = fit(temp,X,Y);

To proceed with linear discriminant analysis, use a pseudoLinear or
diagLinear discriminant type:

ppcrn = ClassificationDiscriminant.fit(X,Y,...
'discrimType','pseudoLinear');

meanpredict = predict(ppcrn,mean(X))

12-16



Discriminant Analysis

meanpredict =
3.5000

Choose a Discriminant Type
There are six types of discriminant analysis classifiers: linear and quadratic,
with diagonal and pseudo variants of each type.

Tip To see if your covariance matrix is singular, set discrimType
to 'linear' or 'quadratic'. If the matrix is singular, the
ClassificationDiscriminant.fit method fails for 'quadratic', and the
Gamma property is nonzero for 'linear'.

To obtain a quadratic classifier even when your covariance matrix is singular,
set discrimType to 'pseudoQuadratic' or 'diagQuadratic'.

obj = ClassificationDiscriminant.fit(X,Y,...
'discrimType','pseudoQuadratic') % or 'diagQuadratic'

Choose a classifier type by setting the discrimType name-value pair to one of:

• 'linear' (default) — Estimate one covariance matrix for all classes.

• 'quadratic'— Estimate one covariance matrix for each class.

• 'diagLinear'— Use the diagonal of the 'linear' covariance matrix, and
use its pseudoinverse if necessary.

• 'diagQuadratic' — Use the diagonals of the 'quadratic' covariance
matrices, and use their pseudoinverses if necessary.

• 'pseudoLinear' — Use the pseudoinverse of the 'linear' covariance
matrix if necessary.

• 'pseudoQuadratic' — Use the pseudoinverses of the 'quadratic'
covariance matrices if necessary.

12-17



12 Parametric Classification

ClassificationDiscriminant.fit can fail for the 'linear' and
'quadratic' classifiers. When it fails, it returns an explanation, as shown in
“Deal with Singular Data” on page 12-16.

ClassificationDiscriminant.fit always succeeds with the diagonal and
pseudo variants. For information about pseudoinverses, see pinv.

You can set the discriminant type using dot addressing after constructing
a classifier:

obj.DiscrimType = 'discrimType'

You can change between linear types or between quadratic types, but cannot
change between a linear and a quadratic type.

Examine the Resubstitution Error and Confusion Matrix
The resubstitution error is the difference between the response training data
and the predictions the classifier makes of the response based on the input
training data. If the resubstitution error is high, you cannot expect the
predictions of the classifier to be good. However, having low resubstitution
error does not guarantee good predictions for new data. Resubstitution error
is often an overly optimistic estimate of the predictive error on new data.

The confusion matrix shows how many errors, and which types, arise in
resubstitution. When there are K classes, the confusion matrix R is a K-by-K
matrix with

R(i,j) = the number of observations of class i that the classifier predicts
to be of class j.

Example: Resubstitution Error of a Discriminant Analysis Classifier.
Examine the resubstitution error of the default discriminant analysis
classifier for the Fisher iris data:

load fisheriris
obj = ClassificationDiscriminant.fit(meas,species);
resuberror = resubLoss(obj)

resuberror =
0.0200

12-18



Discriminant Analysis

The resubstitution error is very low, meaning obj classifies nearly all the
Fisher iris data correctly. The total number of misclassifications is:

resuberror * obj.NObservations

ans =
3.0000

To see the details of the three misclassifications, examine the confusion
matrix:

R = confusionmat(obj.Y,resubPredict(obj))

R =
50 0 0
0 48 2
0 1 49

obj.ClassNames

ans =
'setosa'
'versicolor'
'virginica'

• R(1,:) = [50 0 0] means obj classifies all 50 setosa irises correctly.

• R(2,:) = [0 48 2] means obj classifies 48 versicolor irises correctly,
and misclassifies two versicolor irises as virginica.

• R(3,:) = [0 1 49] means obj classifies 49 virginica irises correctly, and
misclassifies one virginica iris as versicolor.

Cross Validation
Typically, discriminant analysis classifiers are robust and do not exhibit
overtraining when the number of predictors is much less than the number of
observations. Nevertheless, it is good practice to cross validate your classifier
to ensure its stability.

Example: Cross Validating a Discriminant Analysis Classifier. Try
five-fold cross validation of a quadratic discriminant analysis classifier:

12-19



12 Parametric Classification

1 Load the Fisher iris data:

load fisheriris

2 Create a quadratic discriminant analysis classifier for the data:

quadisc = ClassificationDiscriminant.fit(meas,species,...
'DiscrimType','quadratic');

3 Find the resubstitution error of the classifier:

qerror = resubLoss(quadisc)

qerror =
0.0200

The classifier does an excellent job. Nevertheless, resubstitution error can be
an optimistic estimate of the error when classifying new data. So proceed to
cross validation.

4 Create a cross-validation model:

cvmodel = crossval(quadisc,'kfold',5);

5 Find the cross-validation loss for the model, meaning the error of the
out-of-fold observations:

cverror = kfoldLoss(cvmodel)

cverror =
0.0333

The cross-validated loss is nearly as low as the original resubstitution loss.
Therefore, you can have confidence that the classifier is reasonably accurate.

Change Costs and Priors
Sometimes you want to avoid certain misclassification errors more than
others. For example, it might be better to have oversensitive cancer detection
instead of undersensitive cancer detection. Oversensitive detection gives
more false positives (unnecessary testing or treatment). Undersensitive
detection gives more false negatives (preventable illnesses or deaths). The

12-20



Discriminant Analysis

consequences of underdetection can be high. Therefore, you might want to
set costs to reflect the consequences.

Similarly, the training data Y can have a distribution of classes that does
not represent their true frequency. If you have a better estimate of the true
frequency, you can include this knowledge in the classification prior property.

Example: Setting Custom Misclassification Costs. Consider the Fisher
iris data. Suppose that the cost of classifying a versicolor iris as virginica is
10 times as large as making any other classification error. Create a classifier
from the data, then incorporate this cost and then view the resulting classifier.

1 Load the Fisher iris data and create a default (linear) classifier as in
“Example: Resubstitution Error of a Discriminant Analysis Classifier” on
page 12-18:

load fisheriris
obj = ClassificationDiscriminant.fit(meas,species);
resuberror = resubLoss(obj)

resuberror =
0.0200

R = confusionmat(obj.Y,resubPredict(obj))

R =
50 0 0
0 48 2
0 1 49

obj.ClassNames

ans =
'setosa'
'versicolor'
'virginica'

R(2,:) = [0 48 2] means obj classifies 48 versicolor irises correctly, and
misclassifies two versicolor irises as virginica.

12-21



12 Parametric Classification

2 Change the cost matrix to make fewer mistakes in classifying versicolor irises
as virginica:

obj.Cost(2,3) = 10;
R2 = confusionmat(obj.Y,resubPredict(obj))

R2 =
50 0 0
0 50 0
0 7 43

obj now classifies all versicolor irises correctly, at the expense of increasing
the number of misclassifications of virginica irises from 1 to 7.

Example: Setting Alternative Priors. Consider the Fisher iris data. There
are 50 irises of each kind in the data. Suppose that, in a particular region,
you have historical data that shows virginica are five times as prevalent as
the other kinds. Create a classifier that incorporates this information.

1 Load the Fisher iris data and make a default (linear) classifier as in “Example:
Resubstitution Error of a Discriminant Analysis Classifier” on page 12-18:

load fisheriris
obj = ClassificationDiscriminant.fit(meas,species);
resuberror = resubLoss(obj)

resuberror =
0.0200

R = confusionmat(obj.Y,resubPredict(obj))

R =
50 0 0
0 48 2
0 1 49

obj.ClassNames

ans =
'setosa'
'versicolor'

12-22



Discriminant Analysis

'virginica'

R(3,:) = [0 1 49] means obj classifies 49 virginica irises correctly, and
misclassifies one virginica iris as versicolor.

2 Change the prior to match your historical data, and examine the confusion
matrix of the new classifier:

obj.Prior = [1 1 5];
R2 = confusionmat(obj.Y,resubPredict(obj))

R2 =
50 0 0
0 46 4
0 0 50

The new classifier classifies all virginica irises correctly, at the expense of
increasing the number of misclassifications of versicolor irises from 2 to 4.

Regularize a Discriminant Analysis Classifier
To make a more robust and simpler model, try to remove predictors from your
model without hurting its predictive power. This is especially important when
you have many predictors in your data. Linear discriminant analysis uses
the two regularization parameters, Gamma and Delta, to identify and remove
redundant predictors. The cvshrink method helps you identify appropriate
settings for these parameters.

1. Load data and create a classifier.

Create a linear discriminant analysis classifier for the ovariancancer data.
Set the SaveMemory and FillCoeffs options to keep the resulting model
reasonably small.

load ovariancancer
obj = ClassificationDiscriminant.fit(obs,grp,...

'SaveMemory','on','FillCoeffs','off');

2. Cross validate the classifier.

12-23



12 Parametric Classification

Use 30 levels of Gamma and 30 levels of Delta to search for good parameters.
This search is time consuming. Set Verbose to 1 to view the progress.

rng(8000,'twister') % for reproducibility
[err,gamma,delta,numpred] = cvshrink(obj,...

'NumGamma',29,'NumDelta',29,'Verbose',1);

Done building cross-validated model.
Processing Gamma step 1 out of 30.
Processing Gamma step 2 out of 30.
Processing Gamma step 3 out of 30.
%%% (many lines removed) %%%
Processing Gamma step 28 out of 30.
Processing Gamma step 29 out of 30.
Processing Gamma step 30 out of 30.

3. Examine the quality of the regularized classifiers.

Plot the number of predictors against the error.

figure;
plot(err,numpred,'k.')
xlabel('Error rate');
ylabel('Number of predictors');

12-24



Discriminant Analysis

Examine the lower-left part of the plot more closely.

axis([0 .1 0 1000])

12-25



12 Parametric Classification

There is a clear tradeoff between lower number of predictors and lower error.

4. Choose an optimal tradeoff between model size and accuracy.

Find the values of Gamma and Delta that give minimal error.

minerr = min(min(err));
[p,q] = find(err == minerr)

p =
24
25

q =
8
8

12-26



Discriminant Analysis

Two points have the same minimal error: [24,8] and [25,8], which
correspond to

[gamma(p(1)),delta(p(1),q(1))]

ans =
0.8436 0.1463

[gamma(p(2)),delta(p(2),q(2))]

ans =
0.8697 0.1425

These points correspond to about a quarter of the total predictors having
nonzero coefficients in the model.

numpred(p(1),q(1))

ans =
957

numpred(p(2),q(2))

ans =
960

To further lower the number of predictors, you must accept larger error rates.
For example, to choose the Gamma and Delta that give the lowest error rate
with 250 or fewer predictors:

low250 = min(min(err(numpred <= 250)))

low250 =

0.0278

lownum = min(min(numpred(err == low250)))

lownum =

243

12-27



12 Parametric Classification

You need 243 predictors to achieve an error rate of 0.0278, and this is the
lowest error rate among those that have 250 predictors or fewer. The Gamma
and Delta that achieve this error/number of predictors:

[r,s] = find((err == low250) & (numpred == lownum));
gamma(r)

ans =

0.7133

delta(r,s)

ans =

0.2960

5. Set the regularization parameters.

To set the classifier with these values of Gamma and Delta, use dot addressing.

obj.Gamma = gamma(r);
obj.Delta = delta(r,s);

6. Heat map plot.

To compare the cvshrink calculation to that in Guo, Hastie, and Tibshirani
[3], plot heat maps of error and number of predictors against Gamma and the
index of the Delta parameter. (The Delta parameter range depends on the
value of the Gamma parameter. So to get a rectangular plot, use the Delta
index, not the parameter itself.)

% First create the Delta index matrix
indx = repmat(1:size(delta,2),size(delta,1),1);
figure
subplot(1,2,1)
imagesc(err);
colorbar;
title('Classification error');
xlabel('Delta index');
ylabel('Gamma index');

12-28



Discriminant Analysis

subplot(1,2,2)
imagesc(numpred);
colorbar;
title('Number of predictors in the model');
xlabel('Delta index');
ylabel('Gamma index');

You see the best classification error when Delta is small, but fewest predictors
when Delta is large.

12-29



12 Parametric Classification

Examining the Gaussian Mixture Assumption
Discriminant analysis assumes that the data comes from a Gaussian
mixture model (see “How the ClassificationDiscriminant.fit Method Creates
a Classifier” on page 12-5). If the data appears to come from a Gaussian
mixture model, you can expect discriminant analysis to be a good classifier.
Furthermore, the default linear discriminant analysis assumes that all class
covariance matrices are equal. This section shows methods to check these
assumptions:

• “Bartlett Test of Equal Covariance Matrices for Linear Discriminant
Analysis” on page 12-30

• “Q-Q Plot” on page 12-32

• “Mardia Kurtosis Test of Multivariate Normality” on page 12-35

Bartlett Test of Equal Covariance Matrices for Linear
Discriminant Analysis
The Bartlett test (see Box [1]) checks equality of the covariance matrices of
the various classes. If the covariance matrices are equal, the test indicates
that linear discriminant analysis is appropriate. If not, consider using
quadratic discriminant analysis, setting the DiscrimType name-value pair to
'quadratic' in ClassificationDiscriminant.fit.

The Bartlett test assumes normal (Gaussian) samples, where neither the
means nor covariance matrices are known. To determine whether the
covariances are equal, compute the following quantities:

• Sample covariance matrices per class σi, 1 ≤ i ≤ k, where k is the number of
classes.

• Pooled-in covariance matrix σ.

• Test statistic V:

V n k ni i
i

k
         


log log 1

1

where n is the total number of observations, and ni is the number of
observations in class i, and |Σ| means the determinant of the matrix Σ.

12-30



Discriminant Analysis

• Asymptotically, as the number of observations in each class ni become
large, V is distributed approximately χ2 with kd(d + 1)/2 degrees of freedom,
where d is the number of predictors (number of dimensions in the data).

The Bartlett test is to check whether V exceeds a given percentile of the χ2

distribution with kd(d + 1)/2 degrees of freedom. If it does, then reject the
hypothesis that the covariances are equal.

Example: Bartlett Test for Equal Covariance Matrices. Check whether
the Fisher iris data is well modeled by a single Gaussian covariance, or
whether it would be better to model it as a Gaussian mixture.

load fisheriris;
prednames = {'SepalLength','SepalWidth',...

'PetalLength','PetalWidth'};
L = ClassificationDiscriminant.fit(meas,species,...

'PredictorNames',prednames);
Q = ClassificationDiscriminant.fit(meas,species,...

'PredictorNames',prednames,'DiscrimType','quadratic');
D = 4; % Number of dimensions of X
Nclass = [50 50 50];
N = L.NObservations;
K = numel(L.ClassNames);
SigmaQ = Q.Sigma;
SigmaL = L.Sigma;
logV = (N-K)*log(det(SigmaL));
for k=1:K

logV = logV - (Nclass(k)-1)*log(det(SigmaQ(:,:,k)));
end
nu = (K-1)*D*(D+1)/2;
pval = 1-chi2cdf(logV,nu)

pval =
0

The Bartlett test emphatically rejects the hypothesis of equal covariance
matrices. If pval had been greater than 0.05, the test would not have rejected
the hypothesis. The result indicates to use quadratic discriminant analysis,
as opposed to linear discriminant analysis.

12-31



12 Parametric Classification

Q-Q Plot
A Q-Q plot graphically shows whether an empirical distribution is close to a
theoretical distribution. If the two are equal, the Q-Q plot lies on a 45° line. If
not, the Q-Q plot strays from the 45° line.

Check Q-Q Plots for Linear and Quadratic Discriminants. For linear
discriminant analysis, use a single covariance matrix for all classes.

load fisheriris;
prednames = {'SepalLength','SepalWidth',...

'PetalLength','PetalWidth'};
L = ClassificationDiscriminant.fit(meas,species,...

'PredictorNames',prednames);
N = L.NObservations;
K = numel(L.ClassNames);
mahL = mahal(L,L.X,'ClassLabels',L.Y);
D = 4;
expQ = chi2inv(((1:N)-0.5)/N,D); % expected quantiles
[mahL,sorted] = sort(mahL); % sorted obbserved quantiles
figure;
gscatter(expQ,mahL,L.Y(sorted),'bgr',[],[],'off');
legend('virginica','versicolor','setosa','Location','NW');
xlabel('Expected quantile');
ylabel('Observed quantile');
line([0 20],[0 20],'color','k');

12-32



Discriminant Analysis

Overall, the agreement between the expected and observed quantiles is good.
Look at the right half of the plot. The deviation of the plot from the 45° line
upward indicates that the data has tails heavier than a normal distribution.
There are three possible outliers on the right: two observations from class
'setosa' and one observation from class 'virginica'.

As shown in “Bartlett Test of Equal Covariance Matrices for Linear
Discriminant Analysis” on page 12-30, the data does not match a single
covariance matrix. Redo the calculations for a quadratic discriminant.

load fisheriris;
prednames = {'SepalLength','SepalWidth',...

'PetalLength','PetalWidth'};
Q = ClassificationDiscriminant.fit(meas,species,...

'PredictorNames',prednames,'DiscrimType','quadratic');
Nclass = [50 50 50];

12-33



12 Parametric Classification

N = L.NObservations;
K = numel(L.ClassNames);
mahQ = mahal(Q,Q.X,'ClassLabels',Q.Y);
expQ = chi2inv(((1:N)-0.5)/N,D);
[mahQ,sorted] = sort(mahQ);
figure;
gscatter(expQ,mahQ,Q.Y(sorted),'bgr',[],[],'off');
legend('virginica','versicolor','setosa','Location','NW');
xlabel('Expected quantile');
ylabel('Observed quantile for QDA');
line([0 20],[0 20],'color','k');

The Q-Q plot shows a better agreement between the observed and expected
quantiles. There is only one outlier candidate, from class 'setosa'.

12-34



Discriminant Analysis

Mardia Kurtosis Test of Multivariate Normality
The Mardia kurtosis test (see Mardia [4]) is an alternative to examining a
Q-Q plot. It gives a numeric approach to deciding if data matches a Gaussian
mixture model.

In the Mardia kurtosis test you compute M, the mean of the fourth power of
the Mahalanobis distance of the data from the class means. If the data is
normally distributed with constant covariance matrix (and is thus suitable
for linear discriminant analysis), M is asymptotically distributed as normal
with mean d(d + 2) and variance 8d(d + 2)/n, where

• d is the number of predictors (number of dimensions in the data).

• n is the total number of observations.

The Mardia test is two sided: check whether M is close enough to d(d + 2)
with respect to a normal distribution of variance 8d(d + 2)/n.

Example: Mardia Kurtosis Test for Linear and Quadratic
Discriminants. Check whether the Fisher iris data is approximately
normally distributed for both linear and quadratic discriminant analysis.
According to “Bartlett Test of Equal Covariance Matrices for Linear
Discriminant Analysis” on page 12-30, the data is not normal for linear
discriminant analysis (the covariance matrices are different). “Check Q-Q
Plots for Linear and Quadratic Discriminants” on page 12-32 indicates
that the data is well modeled by a Gaussian mixture model with different
covariances per class. Check these conclusions with the Mardia kurtosis test:

load fisheriris;
prednames = {'SepalLength','SepalWidth',...

'PetalLength','PetalWidth'};
L = ClassificationDiscriminant.fit(meas,species,...

'PredictorNames',prednames);
mahL = mahal(L,L.X,'ClassLabels',L.Y);
D = 4;
N = L.NObservations;
obsKurt = mean(mahL.^2);
expKurt = D*(D+2);
varKurt = 8*D*(D+2)/N;
[~,pval] = ztest(obsKurt,expKurt,sqrt(varKurt))

12-35



12 Parametric Classification

pval =
0.0208

The Mardia test indicates to reject the hypothesis that the data is normally
distributed.

Continuing the example with quadratic discriminant analysis:

Q = ClassificationDiscriminant.fit(meas,species,...
'PredictorNames',prednames,'DiscrimType','quadratic');

mahQ = mahal(Q,Q.X,'ClassLabels',Q.Y);
obsKurt = mean(mahQ.^2);
[~,pval] = ztest(obsKurt,expKurt,sqrt(varKurt))

pval =
0.7230

Because pval is high, you conclude the data are consistent with the
multivariate normal distribution.

Bibliography

[1] Box, G. E. P. A General Distribution Theory for a Class of Likelihood
Criteria. Biometrika 36(3), pp. 317–346, 1949.

[2] Fisher, R. A. The Use of Multiple Measurements in Taxonomic
Problems. Annals of Eugenics, Vol. 7, pp. 179–188, 1936. Available at
http://digital.library.adelaide.edu.au/dspace/handle/2440/15227.

[3] Guo, Y., T. Hastie, and R. Tibshirani. Regularized Discriminant Analysis
and Its Application in Microarray. Biostatistics, Vol. 8, No. 1, pp. 86–100,
2007.

[4] Mardia, K. V. Measures of multivariate skewness and kurtosis with
applications. Biometrika 57 (3), pp. 519–530, 1970.

12-36

http://digital.library.adelaide.edu.au/dspace/handle/2440/15227


Naive Bayes Classification

Naive Bayes Classification
The Naive Bayes classifier is designed for use when features are independent
of one another within each class, but it appears to work well in practice
even when that independence assumption is not valid. It classifies data in
two steps:

1 Training step: Using the training samples, the method estimates the
parameters of a probability distribution, assuming features are conditionally
independent given the class.

2 Prediction step: For any unseen test sample, the method computes the
posterior probability of that sample belonging to each class. The method then
classifies the test sample according the largest posterior probability.

The class-conditional independence assumption greatly simplifies the training
step since you can estimate the one-dimensional class-conditional density
for each feature individually. While the class-conditional independence
between features is not true in general, research shows that this optimistic
assumption works well in practice. This assumption of class independence
allows the Naive Bayes classifier to better estimate the parameters required
for accurate classification while using less training data than many other
classifiers. This makes it particularly effective for datasets containing many
predictors or features.

To learn how to prepare your data for Naive Bayes classification and create
a classifier, see “Steps in Supervised Learning (Machine Learning)” on page
13-2.

Supported Distributions
Naive Bayes classification is based on estimating P(X|Y), the probability or
probability density of features X given class Y. The Naive Bayes classification
object NaiveBayes provides support for normal (Gaussian), kernel,
multinomial, and multivariate multinomial distributions. It is possible to use
different distributions for different features.

12-37



12 Parametric Classification

Normal (Gaussian) Distribution
The 'normal' distribution is appropriate for features that have normal
distributions in each class. For each feature you model with a normal
distribution, the Naive Bayes classifier estimates a separate normal
distribution for each class by computing the mean and standard deviation of
the training data in that class. For more information on normal distributions,
see “Normal Distribution” on page B-83.

Kernel Distribution
The 'kernel' distribution is appropriate for features that have a continuous
distribution. It does not require a strong assumption such as a normal
distribution and you can use it in cases where the distribution of a feature may
be skewed or have multiple peaks or modes. It requires more computing time
and more memory than the normal distribution. For each feature you model
with a kernel distribution, the Naive Bayes classifier computes a separate
kernel density estimate for each class based on the training data for that class.
By default the kernel is the normal kernel, and the classifier selects a width
automatically for each class and feature. It is possible to specify different
kernels for each feature, and different widths for each feature or class.

Multinomial Distribution
The multinomial distribution (specify with the 'mn' keyword) is appropriate
when all features represent counts of a set of words or tokens. This is
sometimes called the "bag of words" model. For example, an email spam
classifier might be based on features that count the number of occurrences
of various tokens in an email. One feature might count the number of
exclamation points, another might count the number of times the word
"money" appears, and another might count the number of times the recipient’s
name appears. This is a Naive Bayes model under the further assumption
that the total number of tokens (or the total document length) is independent
of response class.

For the multinomial option, each feature represents the count of one token.
The classifier counts the set of relative token probabilities separately for
each class. The classifier defines the multinomial distribution for each row
by the vector of probabilities for the corresponding class, and by N, the total
token count for that row.

12-38



Naive Bayes Classification

Classification is based on the relative frequencies of the tokens. For a row in
which no token appears, N is 0 and no classification is possible. This classifier
is not appropriate when the total number of tokens provides information
about the response class.

Multivariate Multinomial Distribution
The multivariate multinomial distribution (specify with the 'mvmn' keyword)
is appropriate for categorical features. For example, you could fit a feature
describing the weather in categories such as rain/sun/snow/clouds using the
multivariate multinomial model. The feature categories are sometimes called
the feature levels, and differ from the class levels for the response variable.

For each feature you model with a multivariate multinomial distribution, the
Naive Bayes classifier computes a separate set of probabilities for the set of
feature levels for each class.

12-39



12 Parametric Classification

Performance Curves

In this section...

“Introduction to Performance Curves” on page 12-40

“What are ROC Curves?” on page 12-40

“Evaluating Classifier Performance Using perfcurve” on page 12-40

Introduction to Performance Curves
After a classification algorithm such as NaiveBayes or TreeBagger has
trained on data, you may want to examine the performance of the algorithm
on a specific test dataset. One common way of doing this would be to compute
a gross measure of performance such as quadratic loss or accuracy, averaged
over the entire test dataset.

What are ROC Curves?
You may want to inspect the classifier performance more closely, for
example, by plotting a Receiver Operating Characteristic (ROC) curve. By
definition, a ROC curve [1,2] shows true positive rate versus false positive
rate (equivalently, sensitivity versus 1–specificity) for different thresholds of
the classifier output. You can use it, for example, to find the threshold that
maximizes the classification accuracy or to assess, in more broad terms, how
the classifier performs in the regions of high sensitivity and high specificity.

Evaluating Classifier Performance Using perfcurve
perfcurve computes measures for a plot of classifier performance. You can
use this utility to evaluate classifier performance on test data after you train
the classifier. Various measures such as mean squared error, classification
error, or exponential loss can summarize the predictive power of a classifier
in a single number. However, a performance curve offers more information
as it lets you explore the classifier performance across a range of thresholds
on its output.

You can use perfcurve with any classifier or, more broadly, with any method
that returns a numeric score for an instance of input data. By convention
adopted here,

12-40



Performance Curves

• A high score returned by a classifier for any given instance signifies that
the instance is likely from the positive class.

• A low score signifies that the instance is likely from the negative classes.

For some classifiers, you can interpret the score as the posterior probability
of observing an instance of the positive class at point X. An example of such
a score is the fraction of positive observations in a leaf of a decision tree. In
this case, scores fall into the range from 0 to 1 and scores from positive and
negative classes add up to unity. Other methods can return scores ranging
between minus and plus infinity, without any obvious mapping from the
score to the posterior class probability.

perfcurve does not impose any requirements on the input score range.
Because of this lack of normalization, you can use perfcurve to process scores
returned by any classification, regression, or fit method. perfcurve does
not make any assumptions about the nature of input scores or relationships
between the scores for different classes. As an example, consider a problem
with three classes, A, B, and C, and assume that the scores returned by some
classifier for two instances are as follows:

A B C

instance 1 0.4 0.5 0.1

instance 2 0.4 0.1 0.5

If you want to compute a performance curve for separation of classes A and B,
with C ignored, you need to address the ambiguity in selecting A over B. You
could opt to use the score ratio, s(A)/s(B), or score difference, s(A)-s(B);
this choice could depend on the nature of these scores and their normalization.
perfcurve always takes one score per instance. If you only supply scores for
class A, perfcurve does not distinguish between observations 1 and 2. The
performance curve in this case may not be optimal.

perfcurve is intended for use with classifiers that return scores, not those
that return only predicted classes. As a counter-example, consider a decision
tree that returns only hard classification labels, 0 or 1, for data with two
classes. In this case, the performance curve reduces to a single point because
classified instances can be split into positive and negative categories in one
way only.

12-41



12 Parametric Classification

For input, perfcurve takes true class labels for some data and scores assigned
by a classifier to these data. By default, this utility computes a Receiver
Operating Characteristic (ROC) curve and returns values of 1–specificity,
or false positive rate, for X and sensitivity, or true positive rate, for Y. You
can choose other criteria for X and Y by selecting one out of several provided
criteria or specifying an arbitrary criterion through an anonymous function.
You can display the computed performance curve using plot(X,Y).

perfcurve can compute values for various criteria to plot either on the x- or
the y-axis. All such criteria are described by a 2-by-2 confusion matrix, a
2-by-2 cost matrix, and a 2-by-1 vector of scales applied to class counts.

The confusion matrix, C, is defined as

TP FN
FP TN

⎛

⎝
⎜

⎞

⎠
⎟

where

• P stands for "positive".

• N stands for "negative".

• T stands for "true".

• F stands for "false".

For example, the first row of the confusion matrix defines how the classifier
identifies instances of the positive class: C(1,1) is the count of correctly
identified positive instances and C(1,2) is the count of positive instances
misidentified as negative.

The cost matrix defines the cost of misclassification for each category:

Cost P P Cost N P
Cost P N Cost N N

( | ) ( | )
( | ) ( | )

⎛

⎝
⎜

⎞

⎠
⎟

where Cost(I|J) is the cost of assigning an instance of class J to class I.
Usually Cost(I|J)=0 for I=J. For flexibility, perfcurve allows you to specify
nonzero costs for correct classification as well.

12-42



Performance Curves

The two scales include prior information about class probabilities.
perfcurve computes these scales by taking scale(P)=prior(P)*N and
scale(N)=prior(N)*P and normalizing the sum scale(P)+scale(N)
to 1. P=TP+FN and N=TN+FP are the total instance counts in the positive
and negative class, respectively. The function then applies the scales as
multiplicative factors to the counts from the corresponding class: perfcurve
multiplies counts from the positive class by scale(P) and counts from the
negative class by scale(N). Consider, for example, computation of positive
predictive value, PPV = TP/(TP+FP). TP counts come from the positive class
and FP counts come from the negative class. Therefore, you need to scale TP
by scale(P) and FP by scale(N), and the modified formula for PPV with prior
probabilities taken into account is now:

PPV
scale P TP

scale P TP scale N FP
=

+
( ) *

( ) * ( ) *
If all scores in the data are above a certain threshold, perfcurve classifies all
instances as 'positive'. This means that TP is the total number of instances
in the positive class and FP is the total number of instances in the negative
class. In this case, PPV is simply given by the prior:

PPV
prior P

prior P prior N
=

+
( )

( ) ( )

The perfcurve function returns two vectors, X and Y, of performance
measures. Each measure is some function of confusion, cost, and scale
values. You can request specific measures by name or provide a function
handle to compute a custom measure. The function you provide should take
confusion, cost, and scale as its three inputs and return a vector of output
values.

The criterion for X must be a monotone function of the positive classification
count, or equivalently, threshold for the supplied scores. If perfcurve cannot
perform a one-to-one mapping between values of the X criterion and score
thresholds, it exits with an error message.

By default, perfcurve computes values of the X and Y criteria for all possible
score thresholds. Alternatively, it can compute a reduced number of specific X
values supplied as an input argument. In either case, for M requested values,
perfcurve computes M+1 values for X and Y. The first value out of these M+1
values is special. perfcurve computes it by setting the TP instance count

12-43



12 Parametric Classification

to zero and setting TN to the total count in the negative class. This value
corresponds to the 'reject all' threshold. On a standard ROC curve, this
translates into an extra point placed at (0,0).

If there are NaN values among input scores, perfcurve can process them
in either of two ways:

• It can discard rows with NaN scores.

• It can add them to false classification counts in the respective class.

That is, for any threshold, instances with NaN scores from the positive class
are counted as false negative (FN), and instances with NaN scores from the
negative class are counted as false positive (FP). In this case, the first value
of X or Y is computed by setting TP to zero and setting TN to the total count
minus the NaN count in the negative class. For illustration, consider an
example with two rows in the positive and two rows in the negative class,
each pair having a NaN score:

Class Score

Negative 0.2

Negative NaN

Positive 0.7

Positive NaN

If you discard rows with NaN scores, then as the score cutoff varies, perfcurve
computes performance measures as in the following table. For example, a
cutoff of 0.5 corresponds to the middle row where rows 1 and 3 are classified
correctly, and rows 2 and 4 are omitted.

TP FN FP TN

0 1 0 1

1 0 0 1

1 0 1 0

If you add rows with NaN scores to the false category in their respective
classes, perfcurve computes performance measures as in the following table.
For example, a cutoff of 0.5 corresponds to the middle row where now rows

12-44



Performance Curves

2 and 4 are counted as incorrectly classified. Notice that only the FN and FP
columns differ between these two tables.

TP FN FP TN

0 2 1 1

1 1 1 1

1 1 2 0

For data with three or more classes, perfcurve takes one positive class and a
list of negative classes for input. The function computes the X and Y values
using counts in the positive class to estimate TP and FN, and using counts in
all negative classes to estimate TN and FP. perfcurve can optionally compute
Y values for each negative class separately and, in addition to Y, return a
matrix of size M-by-C, where M is the number of elements in X or Y and C is
the number of negative classes. You can use this functionality to monitor
components of the negative class contribution. For example, you can plot TP
counts on the X-axis and FP counts on the Y-axis. In this case, the returned
matrix shows how the FP component is split across negative classes.

You can also use perfcurve to estimate confidence intervals. perfcurve
computes confidence bounds using either cross-validation or bootstrap. If you
supply cell arrays for labels and scores, perfcurve uses cross-validation
and treats elements in the cell arrays as cross-validation folds. If you set
input parameter NBoot to a positive integer, perfcurve generates nboot
bootstrap replicas to compute pointwise confidence bounds.

perfcurve estimates the confidence bounds using one of two methods:

• Vertical averaging (VA) — estimate confidence bounds on Y and T at
fixed values of X. Use the XVals input parameter to use this method for
computing confidence bounds.

• Threshold averaging (TA) — estimate confidence bounds for X and Y at
fixed thresholds for the positive class score. Use the TVals input parameter
to use this method for computing confidence bounds.

To use observation weights instead of observation counts, you can use
the 'Weights' parameter in your call to perfcurve. When you use this
parameter, to compute X, Y and T or to compute confidence bounds by
cross-validation, perfcurve uses your supplied observation weights instead of

12-45



12 Parametric Classification

observation counts. To compute confidence bounds by bootstrap, perfcurve
samples N out of N with replacement using your weights as multinomial
sampling probabilities.

12-46


