Notes on Canonical Correlation

Suppose we have a collection of random variables in a $(q+p) \times 1$ vector \mathbf{X} that we partition in the following form (and supposing without loss of generality that $p \leq q$):

$$
\mathbf{X}=\left(\begin{array}{c}
X_{1} \\
\vdots \\
X_{p} \\
--- \\
X_{p+1} \\
\vdots \\
X_{p+q}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{X}_{1} \\
--- \\
\mathbf{X}_{2}
\end{array}\right) \sim \operatorname{MVN}(\boldsymbol{\mu}, \boldsymbol{\Sigma}),
$$

where

$$
\boldsymbol{\mu}=\binom{\boldsymbol{\mu}_{1}}{\boldsymbol{\mu}_{2}} ; \boldsymbol{\Sigma}=\left(\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right),
$$

and remembering that $\boldsymbol{\Sigma}_{21}=\boldsymbol{\Sigma}_{12}^{\prime}$, and

$$
\operatorname{Cor}\left(\mathbf{a}^{\prime} \mathbf{X}_{1}, \mathbf{b}^{\prime} \mathbf{X}_{2}\right)=\mathbf{a}^{\prime} \boldsymbol{\Sigma}_{12} \mathbf{b} / \sqrt{\mathbf{a}^{\prime} \boldsymbol{\Sigma}_{11} \mathbf{a}} \sqrt{\mathbf{b}^{\prime} \boldsymbol{\Sigma}_{22} \mathbf{b}} .
$$

Suppose

$$
\boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{12}^{\prime} \mathbf{a}=\lambda \mathbf{a},
$$

with roots $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p} \geq 0$, and corresponding eigenvectors $\mathbf{a}_{1}, \ldots, \mathbf{a}_{p}$. Also, let

$$
\boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{12}^{\prime} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12} \mathbf{b}=\lambda \mathbf{b},
$$

with roots $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{p} \geq 0$ and $\lambda_{p+1}=\lambda_{q}=0$; the corresponding eigenvectors are $\mathbf{b}_{1}, \ldots, \mathbf{b}_{p}$.

Looking at the two linear combinations, $\mathbf{a}_{i}^{\prime} \mathbf{X}_{1}$ (called the $i^{\text {th }}$ canonical variate in the first set), and $\mathbf{b}_{i}^{\prime} \mathbf{X}_{2}$ (called the $i^{\text {th }}$ canonical variate in the second set), the squared correlation between them is λ_{i}; the $i^{\text {th }}$ canonical correlation is $\sqrt{\lambda}_{i}$. The maximum correlation between any two linear combinations is $\sqrt{\lambda}$, and is obtained for \mathbf{a}_{1} and \mathbf{b}_{1}. For \mathbf{a}_{i} and \mathbf{b}_{i}, these are uncorrelated with every canonical variate up to that point, and maximize the correlation subject to that restriction.

Points to make:
a) The matrices $\boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{12}^{\prime}$ and $\boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{12}^{\prime} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12}$ are not symmetric and so the standard eigenvector/eigenvalue decompositions are not straightforward. However, the two matrices

$$
\Sigma_{11}^{-1 / 2} \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{12}^{\prime} \Sigma_{11}^{-1 / 2}
$$

and

$$
\boldsymbol{\Sigma}_{22}^{-1 / 2} \boldsymbol{\Sigma}_{12}^{\prime} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1 / 2}
$$

are symmetric. Also,

$$
\boldsymbol{\Sigma}_{11}^{-1 / 2} \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{12}^{\prime} \boldsymbol{\Sigma}_{11}^{-1 / 2} \mathbf{e}_{i}=\lambda_{i} \mathbf{e}_{i},
$$

and

$$
\boldsymbol{\Sigma}_{22}^{-1 / 2} \boldsymbol{\Sigma}_{12}^{\prime} \boldsymbol{\Sigma}_{11}^{-1} \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1 / 2} \mathbf{f}_{i}=\lambda_{i} \mathbf{f}_{i}
$$

where the roots, i.e., the λ_{i} s, are the same as before. We can then obtain $\mathbf{a}_{i}=\boldsymbol{\Sigma}_{11}^{-1 / 2} \mathbf{e}_{i}$, and $\mathbf{b}_{i}=\boldsymbol{\Sigma}_{22}^{-1 / 2} \mathbf{f}_{i}$. Both $\boldsymbol{\Sigma}_{11}^{-1 / 2}$ and $\boldsymbol{\Sigma}_{22}^{-1 / 2}$ are constructed from the spectral decompositions of $\boldsymbol{\Sigma}_{11}=\mathbf{P D P}^{\prime}$ and $\boldsymbol{\Sigma}_{22}=\mathbf{Q F Q}^{\prime}$ as $\boldsymbol{\Sigma}_{11}^{-1 / 2}=\mathbf{P D}^{-1 / 2} \mathbf{P}^{\prime}$ and $\boldsymbol{\Sigma}_{22}^{-1 / 2}=\mathbf{Q F}^{-1 / 2} \mathbf{Q}^{\prime}$. Note
the normalizations of $\operatorname{Var}\left(\mathbf{a}_{i}^{\prime} \mathbf{X}_{1}\right)=\mathbf{a}_{i}^{\prime} \boldsymbol{\Sigma}_{11} \mathbf{a}_{i}^{\prime}=\mathbf{e}_{i}^{\prime} \boldsymbol{\Sigma}_{11}^{-1 / 2} \boldsymbol{\Sigma}_{11} \boldsymbol{\Sigma}_{11}^{-1 / 2} \mathbf{e}_{i}=$ 1 and $\operatorname{Var}\left(\mathbf{b}_{i}^{\prime} \mathbf{X}_{2}\right)=1$.
b) There are three different normalizations that are commonly used for \mathbf{a}_{i} and \mathbf{b}_{i} :
(i) leave as unit length so $\mathbf{a}_{i}^{\prime} \mathbf{a}_{i}=\mathbf{b}_{i}^{\prime} \mathbf{b}_{i}=1$;
(ii) make the largest value 1.0 in both \mathbf{a}_{i} and \mathbf{b}_{i};
(iii) do as we did above and make $\mathbf{a}_{i}^{\prime} \boldsymbol{\Sigma}_{11} \mathbf{a}_{i}^{\prime}=1=\mathbf{b}_{i}^{\prime} \boldsymbol{\Sigma}_{22} \mathbf{b}_{i}^{\prime}$.
(c) Special cases: When $p=1$ and $q=1, \lambda_{1}$ is the (simple) squared correlation between two variables; when $p=1$ and $q>1$, λ_{1} is a squared multiple correlation. In considering $\mathbf{a}_{i}^{\prime} \mathbf{X}_{1}$ versus \mathbf{X}_{2}, λ_{i} is the squared multiple correlation of $\mathbf{a}_{i}^{\prime} \mathbf{X}_{1}$ with $\mathbf{X}_{2} ; \mathbf{b}_{i}$ gives the regression weights.
(d) When moving to the sample, all items have direct analogues. The one restriction on sample size is $n \geq p+q+1$.
(e) Suppose the variables \mathbf{X}_{1} and \mathbf{X}_{2} are transformed by nonsingular matrices, $\mathbf{A}_{p \times p}$ and $\mathbf{B}_{q \times q}$, as follows:

$$
\begin{aligned}
\mathbf{Y}_{1} & =\mathbf{A}_{p \times p} \mathbf{X}_{1}+\mathbf{c}_{p \times 1} \\
\mathbf{Y}_{2} & =\mathbf{B}_{q \times q} \mathbf{X}_{2}+\mathbf{d}_{q \times 1}
\end{aligned}
$$

The same canonical variates and correlations using \mathbf{Y}_{1} and \mathbf{Y}_{2} would be generated as from \mathbf{X}_{1} and \mathbf{X}_{2}; the weights in \mathbf{a}_{i} and \mathbf{b}_{i} would be on the transformed variables, obviously. In particular, we could work with standardized variables without loss of any generality, and just use the correlation matrix.
(f) To evaluate $H_{0}: \boldsymbol{\Sigma}_{12}=\mathbf{0}$, a likelihood ratio test is available:

$$
-(n-1-(1 / 2)(p+q+1)) \ln \prod_{i=1}^{p}\left(1-\lambda_{i}\right) \sim \chi_{p q}^{2} .
$$

Also, sometimes a sequential process is used to test the remaining roots until nonsignificance is reached:

$$
-(n-1-(1 / 2)(p+q+1)) \ln \prod_{i=k+1}^{p}\left(1-\lambda_{i}\right) \sim \chi_{(p-k)(q-k)}^{2} .
$$

This latter sequential procedure is a little problematic because there is no real control over the overall significance level with this strategy.

Generally, there is some tortuous difficulty in interpreting the canonical weights substantively. I might suggest using a constrained least-squares approach (iteratively moving from one set to a second), where the weights are forced to be nonnegative.

