Package 'smacof'

April 9, 2010

Abstract

Type Package Title SMACOF for Multidimensional Scaling. Version 1.0-1 Date 2010-04-08 Author Jan de Leeuw, Patrick Mair Maintainer Jan de Leeuw deleeuw@stat.ucla.edu Description This package provides the following approaches of multidimensional scaling (MDS) based on stress minimization by means of majorization (smacof): Simple smacof on symmetric dissimilarity matrices, smacof for rectangular matrices (unfolding models), smacof with constraints on the configuration, three-way smacof for individual differences (including constraints for idioscal, indscal, and identity), and spherical smacof (primal and dual algorithm). Each of these approaches is implemented in a metric and nonmetric manner including primary, secondary, and tertiary approaches for tie handling.

Imports graphics, stats
Depends R (>= 2.8.0), polynom, rgl, scatterplot3d
License GPL
Repository CRAN
Repository/R-Forge/Project psychor
Repository/R-Forge/Revision 112
Date/Publication 2010-04-09 17:30:51

R topics documented:

smacof-package 2
bread 3
breakfast 4
ekman 5
EW_ger 5
kinshipdelta 6
partypref 7
perception 7
plot.smacof 8
plot3d.smacof 9
rectangles 11
residuals.smacof 12
sim2diss 12
smacofConstraint 13
smacofIndDiff 15
smacofRect 17
smacofSphere.dual 18
smacofSym 20
stardist 21
summary.smacofB 22
trading 23
wish_ger 24
Index 25
smacof-package SMACOF for Multidimensional Scaling.

Description

This package provides the following approaches of multidimensional scaling (MDS) based on stress minimization by means of majorization (smacof): Simple smacof on symmetric dissimilarity matrices, smacof for rectangular matrices (unfolding models), smacof with constraints on the configuration, three-way smacof for individual differences (including constraints for idioscal, indscal, and identity), and spherical smacof (primal and dual algorithm). Each of these approaches is implemented in a metric and nonmetric manner including primary, secondary, and tertiary approaches for tie handling.

Details

Package:	smacof
Type:	Package
Version:	$1.0-0$
Date:	$2008-07-31$
License:	GPL

The function for basic SMACOF on symmetric dissimilarity matrices is smacofsym (). For rectangular input matrices (unfolding model) smacofRect () is appropriate and by means of smacofindDiff () individual difference models (three-way MDS) can be computed.

Author(s)

Jan de Leeuw, Patrick Mair
Maintainer: Jan de Leeuw deleeuw@stat.ucla.edu

References

de Leeuw, J.
\& Mair, P. (2009). Multidimensional scaling using majorization: The R package smacof. Journal of Statistical Software, 31(3), 1-30, http://www.jstatsoft.org/v31/ i03/

See Also

smacofsym, smacofRect, smacof, smacofIndDiff,smacofSphere.primal, smacofsphere.dual

Examples

```
data(trading)
res <- smacofSym(trading)
res
```

```
bread Breakfast preferences
```


Description

The data set is described in Bro (1998). The raw data consist of ratings of 10 breads on 11 different attributes carried out by 8 raters. Note that the bread samples are pairwise replications: Each of the 5 different breads, which have a different salt content, was presented twice for rating.

Usage

data(bread)

Format

A list of length 8 with elements of class "dist". The attributes are bread odor, yeast odor, offflavor, color, moisture, dough, salt taste, sweet taste, yeast taste, other taste, and total taste.

References

Bro, R. (1998). Multi-way Analysis in the Food Industry: Models, Algorithms, and Applications. Ph.D. thesis, University of Amsterdam (NL) \backslash Royal Veterinary and Agricultural University (DK).

Examples

data(bread)

```
breakfast Breakfast preferences
```


Description

42 individuals were asked to order 15 breakfast items due to their preference.

Usage

data(breakfast)

Format

Data frame with students in the rows and breakfast items in the columns.
toast: toast pop-up
butoast: buttered toast
engmuff: English muffin and margarine
jdonut: jelly donut
cintoast: cinnamon toast
bluemuff: blueberry muffin and margarine
hrolls: hard rolls and butter
toastmarm: toast and marmalade
butoastj: buttered toast and jelly
toastmarg: toast and margarine
cinbun: cinnamon bun
danpastry: Danish pastry
gdonut: glazed donut
cofcake: coffee cake
cornmuff: corn muffin and butter

References

Green, P. E.
\& Rao, V. (1972). Applied multidimensional scaling. Hinsdale, IL: Dryden.

Examples

```
data(breakfast)
```

```
    ekman Ekman data set
```


Description

Ekman dissimilarities

Usage

data(ekman)

Format

Object of class dist

Details

Ekman presents similarities for 14 colors which are based on a rating by 31 subjects where each pair of colors was rated on a 5 -point scale $(0=$ no similarity up to $4=$ identical). After averaging, the similarities were divided by 4 such that they are within the unit interval. Similarities of colors with wavelengths from 434 to 674 nm .

References

Ekman, G. (1954). Dimensions of color vision. Journal of Psychology, 38, 467-474.

Examples

```
data(ekman)
## maybe str(ekman) ; plot(ekman) ...
```

EW_ger Work values

Description

Intercorrelations of 13 working values for former West (first list element) and East Germany.

Usage

data(EW_ger)

Format

Object of class dist

Details

Note that the labels are given in German. For smacof, the data must be converted into a dissimilarity matrix by applying the sim2diss () function to each list element.

References

ALLBUS 1991, German General Social Survey.
Borg, I., Groenen, P. J. F., \& Mair, P. (2010). Multidimensionale Skalierung. Muenchen: Hampp Verlag.

Examples

```
data(EW_ger)
```

```
kinshipdelta Kinship Terms
```


Description

Percentages of how often 15 kinship terms were not grouped together by college students including three external scales.

Usage

data(kinshipdelta)
data(kinshipscales)

Format

Dissimilarity matrix of 15 kinship terms and data frame with the following external scales:
Gender ($1=$ male, $2=$ female, $9=$ missing $)$
Generation ($-2=$ two back, $-1=$ one back, $0=$ same generation, $1=$ one ahead, $2=$ two ahead $)$
Degree $(1=$ first, $2=$ second, $3=$ third, $4=$ fourth $)$

References

Rosenberg, S. \& Kim, M. P. (1975). The method of sorting as a data gathering procedure in multivariate research. Multivariate Behavioral Research, 10, 489-502.

Examples

```
data(kinshipdelta)
data(kinshipscales)
```

```
    partypref Partypreferences
```


Description

Artificial dataset containing the judges in the rows and the parties in the columns.

Usage

data(partypref)

Format

Matrix of party preferences.

References

Borg, I., Groenen, P. J. F., \& Mair, P. (2010). Multidimensionale Skalierung. Muenchen: Hampp Verlag.

Examples

data(partypref)

```
perception Rectangle Perception Data
```


Description

42 subjects are assigned to two groups of 21 persons. 120 stimulus pairs of rectangles are presented. One group judges on a scale from 0 to 9 the perception in terms of width-height (WH), the other group in terms of size-shape (SS).

Usage

```
data(perception)
```


Format

List of subject dissimilarities for WH and SS group.

References

Borg, I. \& Leutner, D. (1983). Dimensional models for the perception of rectangles. Perception and Psychophysics, 34, 257-269.

Examples

```
data(perception)
```

```
plot.smacof 2D SMACOF plots
```


Description

These methods provide various 2D plots for SMACOF models.

Usage

```
## S3 method for class 'smacof':
plot(x, plot.type = "confplot", plot.dim = c(1,2), sphere = TRUE,
main, xlab, ylab, xlim, ylim, ...)
## S3 method for class 'smacofR':
plot(x, plot.type = "confplot", joint = FALSE, plot.dim = c(1,2),
main, xlab, ylab, xlim, ylim, ...)
## S3 method for class 'smacofid':
plot(x, plot.type = "confplot", plot.dim = c(1,2), main, xlab, ylab, xlim, ylim,
```


Arguments

$x \quad$ Object of class "smacof", "smacofR", and "smacofid" (see details)
plot.type String indicating which type of plot to be produced: "confplot", "resplot" "Shepard", "stressplot" (see details)
plot.dim Vector with dimensions to be plotted.
main Plot title.
xlab Label of x-axis.
ylab Label of y-axis.
$x \lim \quad$ Scale x-axis.
ylim Scale y-axis.
sphere In case of spherical smacof, whether sphere should be plotted or not.
joint If TRUE, the configurations are plotted jointly in rectangular smacof.
... Further plot arguments passed: see plotin package scatterplot 3 d for detailed information.

Details

```
    smacofSym() creates object of class "smacof", whereas smacofRect() produces "smacofR"
    and smacofIndDiff() generates "smacofID".
```

Plot description:

- Configuration plot (plot.type = "confplot"): Plots the MDS configurations.
- Residual plot (plot.type = "resplot"): Plots the configuration distances against the corresponding residuals.
- Shepard diagram (plot.type = "Shepard"): Diagram with the observed against the fitted distances including isotonic regression line.
- Stress decomposition plot (plot.type = "stressplot"): Plots the stress contribution in of each observation.

For smacofIndDiff() the residual plot, Shepard diagram, and stress plot are based on the sum of the residuals across individuals/ways. The configuration plot represents the group stimulus space (i.e., joint configurations).

See Also

```
plot3d.smacof
```


Examples

```
## 2D plots for spherical SMACOF
data(trading)
res <- smacofSym(trading)
plot(res, plot.type = "confplot")
plot(res, plot.type = "Shepard")
plot(res, plot.type = "stressplot")
## Joint configuration plot and row/column stressplots for rectangular SMACOF
data(breakfast)
res <- smacofRect(breakfast)
plot(res, plot.type = "confplot", joint = TRUE)
plot(res, plot.type = "stressplot")
```

```
plot3d.smacof 3D SMACOF plots
```


Description

These methods produce static and dynamic 3D configuration plots for SMACOF models.

Usage

```
## S3 method for class 'smacof':
plot3d(x, plot.dim = c(1,2,3), sphere = FALSE, xlab, ylab, zlab,
col, main, bgpng = NULL, ax.grid = TRUE, sphere.rgl = FALSE,...)
## S3 method for class 'smacofR':
plot3d(x, plot.dim = c(1,2,3), joint = FALSE, xlab, ylab, zlab,
col, main, bgpng = NULL, ax.grid = TRUE, sphere.rgl = FALSE,...)
## S3 method for class 'smacofID':
plot3d(x, plot.dim = c(1,2,3), xlab, ylab, zlab,
col, main, bgpng = NULL, ax.grid = TRUE, sphere.rgl = FALSE,...)
## S3 method for class 'smacof':
plot3dstatic(x, plot.dim = c(1,2,3), main, xlab, ylab, zlab, col, ...)
## S3 method for class 'smacofR':
plot3dstatic(x, plot.dim = c(1,2,3), main, xlab, ylab, zlab, col, joint = FALSE,
## S3 method for class 'smacofID':
plot3dstatic(x, plot.dim = c(1,2,3), main, xlab, ylab, zlab, col, ...)
```


Arguments

x	Object of class "smacof", "smacofR", and "smacofID" (see details)
plot. dim	Vector of length 3 with dimensions to be plotted.
sphere	Spherical SMACOF: Whether sphere should be plotted or not.
joint	Rectangular SMACOF: If TRUE, the configurations are plotted jointly.
main	Plot title.
xlab	Label of x-axis.
ylab	Label of y-axis.
zlab	Label of z-axis.
col	Color of the text labels.
bgpng	Background image from rgl library; NULL for white background
ax.grid	If TRUE, axes grid is plotted.
sphere.rgl	If TRUE, rgl sphere (background) is plotted.
\ldots	Further plot arguments passed: see plotin package scatterplot 3 d for de- tailed information.

Details

smacofsym () creates object of class "smacof", whereas smacofRect () produces "smacofR" and smacofIndDiff() generates "smacofID".
For smacofindDiff() the configuration plot represents the group stimulus space (i.e., joint configurations).

See Also

```
plot.smacof
```


Examples

```
## 3D plot for spherical SMACOF
data(trading)
res <- smacofSphere.dual(trading, ndim = 3)
plot3d(res, plot.type = "confplot", sphere = TRUE, sphere.rgl = FALSE)
plot3dstatic(res)
## Group stimulus space for rectangular SMACOF
data(breakfast)
res <- smacofRect(breakfast, ndim = 3)
plot3d(res, joint = TRUE)
```

```
rectangles Rectangles
```


Description

These data are based on an experiment by Borg and Leutner (1983). They constructed rectangles based on a specific grid structure. The size of the rectangles is given in the constraints matrix. In total, we have 16 rectangles. 21 subjects had to rate twice the similarity of each pair of rectangles on a scale from 0 (identical) to 9 (very different). The dist object contains the average ratings which are dissimilarities.

Usage

data(rectangles)
data(rect_constr)

Format

The rectangles are object of class dist, the constraints are given as matrix

Details

Note that the labels are given in German.

References

Borg, I., \& Leutner, D. (1983). Dimensional models for the perception of rectangles. Perception and Psychophysics, 34, 257-269.
Borg, I., Groenen, P. J. F., \& Mair, P. (2010). Multidimensionale Skalierung. Muenchen: Hampp Verlag.

Examples

```
data(rectangles)
data(rect_constr)
```

```
residuals.smacof Residuals
```


Description

Computes the residuals by subtracting the configuration dissimilarites from the observed dissimilarities.

Usage

```
## S3 method for class 'smacof':
residuals(object, ...)
## S3 method for class 'smacofR':
residuals(object, ...)
## S3 method for class 'smacofID':
residuals(object, ...)
```


Arguments

```
object Object of class smacof, smacofR (rectangular), or smacofiD (individual
    differences)
    . . . Ignored
```


Examples

```
data(kinshipdelta)
res <- smacofSym(kinshipdelta)
residuals(res)
```

 sim2diss Converts similarites to dissimilarities

Description

Utility function for converting similarities into dissimilarities. Different methods are provided.

Usage

sim2diss(similmat, method = "corr", to.dist = TRUE)

Arguments

similmat Similarity matrix (not necessarily symmetric, nor quadratic)
method Various methods for converting similarities into dissimilarities: "corr", "neglog", "counts", or an integer value (see details)
to.dist If TRUE, object of class dist is produced

Details

We provide the following methods for converting similarities S into dissimilarities D : "corr" is suited for correlation matrices and takes $\mathrm{D}=\mathrm{sqrt}(1-\mathrm{S})$. "neglog" takes the negative logarithm in terms of $-\log (S)$. Having frequencies, " counts " is appropriate which does $-\log ((S[i, j] * S[j, i) /(S[i, i] * S[j, j]))$. The user can specify also an integer value v. In this case sim2diss () computes v-S.

Value

Returns dissimiarities either as matrix or as dist object.

Examples

```
## Converting Ekman data (similarities) into dissimilarities by subtraction from 1
data(ekman)
ekman.diss <- sim2diss(ekman, method = 1)
res <- smacofSym(ekman.diss)
```

```
smacofConstraint SMACOF Constraint
```


Description

SMACOF with constraints on the configuration

Usage

smacofConstraint(delta, constraint = "linear", external, ndim $=2$, weightmat = NULI metric = TRUE, ties = "primary", verbose = FALSE, modulus = 1, itmax = 1000, eps =

Arguments

delta Either a symmetric dissimilarity matrix or an object of class "dist"
constraint Type of constraint: "linear", "unique", "diagonal", or a user-specified function (see details)
external Data frame or matrix with external covariates, or list for simplex and circumplex (see details)
ndim Number of dimensions

weightmat	Optional matrix with dissimilarity weights
startconf	Optional matrix with starting values for configurations (see details)
metric	If FALSE non-metric MDS is performed
ties	Tie specification for non-metric MDS only: "primary", "secondary", or "tertiary"
verbose	If TRUE, intermediate stress is printed out
modulus	Number of smacof iterations per monotone regression call
itmax	Maximum number of iterations eps

Details

The user can specify a function with the following arguments: configuration matrix with starting values, matrix V (based on the weight matrix, see package vignette), external scale matrix. The function must return a matrix of resulting configurations.
A matrix with starting configurations can be specifiied. For constraint = "linear" it has to be of dimension ($\mathrm{n} \times \mathrm{p}$). For constraint $=$ "unique" it is typically of the form $\mathrm{X}=(\mathrm{Y} \mid \mathrm{D})$ with D as ($n \times n$) diagonal matrix and $Y(n \times p)$ configuration matrix. Hence X is of dimension (n $\mathrm{x}(\mathrm{n}+\mathrm{p})$). For constraint $=$ "diagonal" it is typically of dimension (n xq$)$ where q is the number of columns of the external scale matrix (and thus number of dimensions). If constraint is user-specified the specification of startconf is mandatory.
The argument external allows for the specification of a covariate data frame (or matrix) of dimension (n x q). Alternatively, for simplex fitting the user can specify a list of the following structure: external = list("simplex", dim2) with dim2 denoting the dimension of the simplex with $\operatorname{dim} 2<n$. For a circumplex the list has to be of the following form: external $=$ list("circumplex", dim2, k1, k2) with $1<=\mathrm{k} 1<=\mathrm{k} 2<=\mathrm{n}$ (see also examples section). k 1 and k 2 denote the circumplex width.

Value

obsdiss	Observed dissimilarities, normalized
confdiss	Configuration dissimilarities
conf	Matrix of final configurations
stress.m	stress value for metric MDS
stress.nm	stress value for non-metric MDS (if computed)
ndim	Number of dimensions
model	Type of smacof model
niter	Number of iterations
nobj	Number of objects

Author(s)

Jan de Leeuw and Patrick Mair

References

de Leeuw, J.
\& Mair, P. (2009). Multidimensional scaling using majorization: The R package smacof. Journal of Statistical Software, 31(3), 1-30, http://www.jstatsoft.org/v31/ i03/
de Leeuw, J.,
\& Heiser, W. (1980). Multidimensional scaling with restrictions on the configurations. In P. R. Krishnaiah (eds.), Multivariate Analysis V, pp. 501-522. North-Holland.

See Also

smacofsym, smacofRect, smacofIndDiff,smacofsphere.primal, smacofsphere.dual

Examples

```
## SMACOF with linear configuration constraints
data(kinshipdelta)
data(kinshipscales)
res.lin1 <- smacofConstraint(kinshipdelta, constraint = "linear", external = kinshipscales)
## SMACOF with unique constraints
res.unique <- smacofConstraint(kinshipdelta, constraint = "unique", external = kinshipscales
## SMACOF with diagonal constraints
res.diag <- smacofConstraint(kinshipdelta, constraint = "diagonal", external = kinshipscales
## Fitting a simplex with q = 14 (i.e., n-1), diagonal constraints
res.simp <- smacofConstraint(kinshipdelta, constraint = "diagonal", external = list("simplex
## Fitting a circumplex with q = 10, k1 = 2, k2 = 8, diagonal constraints
res.circ <- smacofConstraint(kinshipdelta, constraint = "diagonal", external = list("circump
```

smacofIndDiff smacoffor Individual Differences

Description

Performs smacof for individual differences also known as Three-Way smacof on a list of dissimilarity matrices. Various restrictions decompositions and restrictions on the weight matrix are provided.

Usage

```
smacofIndDiff(delta, ndim = 2, weightmat = NULL, init = NULL, metric = TRUE,
    ties = "primary", constraint = NULL, verbose = FALSE, modulus = 1,
    itmax = 1000, eps = 1e-6)
```


Arguments

delta	A list of dissimilarity matrices or a list objects of class dist
ndim	Number of dimensions
weightmat	Optional matrix with dissimilarity weights
init	Matrix with starting values for configurations (optional)
metric	If FALSE non-metric MDS is performed
ties	Tie specification for non-metric MDS
constraint	Either NULL, "idioscal", "diagonal ", or "identity" (see details)
verbose	If TRUE, intermediate stress is printed out
modulus	Number of smacof iterations per monotone regression call
itmax	Maximum number of iterations
eps	Convergence criterion

Details

If the constraint is NULL, INDSCAL is performed with identity configuration weight matrices. An additional restriction can be imposed with "identity" which restricts the configurations across individuals/replications/ways to be equal. More unrestricted models are "diagonal" which restricts only the configuration weight matrices to be diagonal and "idioscal" is unrestricted.

Value

obsdiss	List of observed dissimilarities, normalized
confdiss	List of configuration dissimilarities
conf	List of matrices of final configurations
gspace	Joint configurations aka group stimulus space
cweights	Configuration weights
stress.m	stress value for metric MDS
stress.nm	stress value for non-metric MDS (if computed)
stress.co	Constrained stress value
ndim	Number of dimensions
model	Type of smacof model
niter	Number of iterations
nobj	Number of objects

Author(s)
Jan de Leeuw and Patrick Mair

References

de Leeuw, J.
\& Mair, P. (2009). Multidimensional scaling using majorization: The R package smacof. Journal of Statistical Software, 31(3), 1-30, http://www.jstatsoft.org/v31/ i03/

See Also

```
smacofConstraint,smacofSym, smacofRect,smacofSphere.primal, smacofSphere.dual
```


Examples

```
data(perception)
res <- smacofIndDiff(perception)
res
summary(res)
res.id <- smacofIndDiff(perception, constraint = "identity")
res.diag <- smacofIndDiff(perception, constraint = "diagonal")
res.idio <- smacofIndDiff(perception, constraint = "idioscal")
```

smacofRect Rectangular smacof

Description

Variant of smacof for rectangular matrices (typically ratings, preferences) which is also known as metric unfolding.

Usage

```
smacofRect(delta, ndim = 2, weightmat = NULL, init = NULL, verbose = FALSE,
                    itmax = 1000, reg = 1e-6, eps = 1e-6)
```


Arguments

delta	Data frame or matrix of preferences, ratings, dissimilarities.
ndim	Number of dimensions
weightmat	Optional matrix with dissimilarity weights
init	Matrix with starting values for configurations (optional)
verbose	If TRUE, intermediate stress is printed out
itmax	Maximum number of iterations
reg	Regularization factor, prevents distances from beeing 0
eps	Convergence criterion

Details

Creates an object of class smacofR.

Value

obsdiss	Observed dissimilarities
confdiss	Configuration dissimilarities
conf.row	Matrix of final row configurations
conf.col	Matrix of final column configurations
stress	Final stress value
ndim	Number of dimensions
model	Type of smacof model
niter	Number of iterations
nind	Number of individuals (rows)
nobj	Number of objects (columns)

Author(s)

Jan de Leeuw and Patrick Mair

References

de Leeuw, J.
\& Mair, P. (2009). Multidimensional scaling using majorization: The R package smacof. Journal of Statistical Software, 31(3), 1-30, http://www.jstatsoft.org/v31/ i03/

See Also

smacofConstraint, smacofSym, smacofIndDiff, smacofSphere.primal, smacofsphere.dual

Examples

```
data(breakfast)
res <- smacofRect(breakfast)
res
summary(res)
```

```
smacofSphere.dual Spherical SMACOF
```


Description

Dual and primal approach for spherical SMACOF.

Usage

```
smacofSphere.dual <- function(delta, penalty = 100, ndim = 2, weightmat = NULL, ini
metric = TRUE, ties = "primary", verbose = FALSE, relax = 1, modulus = 1, itmax =
smacofSphere.primal (delta, ndim = 2, weightmat = NULL, init = NULL,
metric = TRUE, ties = "primary", verbose = FALSE, modulus = 1, itmax = 100, eps = 1
```


Arguments

delta	Either a symmetric dissimilarity matrix or an object of class dist
penalty	Penalty parameter for dual algorithm (larger 0)
ndim	Number of dimensions
weightmat	Optional matrix with dissimilarity weights
init	Matrix with starting values for configurations (optional)
metric	If FALSE non-metric MDS is performed
ties	Tie specification for non-metric MDS only
verbose	If TRUE, intermediate stress is printed out
relax	Relaxed smacof update
modulus	Number of smacof iterations per monotone regression call
itmax	Maximum number of iterations
eps	Convergence criterion

Value

obsdiss	Observed dissimilarities, normalized
obsdiss1	Dual SMACOF: Observed dissimilarities
obsdiss2	Dual SMACOF: Restriction matrix
confdiss	Configuration dissimilarities
conf	Matrix of final configurations
stress.m	stress value for metric MDS
stress.nm	stress value for non-metric MDS (if computed)
ndim	Number of dimensions
dummyvec	Dummy vector of restriction matrix
model	Type of smacof model
niter	Number of iterations
nobj	Number of objects

Author(s)

Jan de Leeuw and Patrick Mair

References

de Leeuw, J.
\& Mair, P. (2008). Multidimensional scaling using majorization: The R package smacof.

See Also

smacofRect, smacofIndDiff, smacofsym,smacofConstraint

Examples

```
## spherical SMACOF solution for trading data
data(trading)
res <- smacofSphere.dual(trading)
res
summary(res)
```

smacof Sym

Symmetric smacof

Description

Basic smacof on symmetric dissimilarity matrix

Usage

smacofSym(delta, ndim = 2, weightmat $=$ NULL, init $=$ NULL, metric = TRUE, ties = "pr

Arguments

delta	Either a symmetric dissimilarity matrix or an object of class "dist"
ndim	Number of dimensions
weightmat	Optional matrix with dissimilarity weights
init	Matrix with starting values for configurations (optional)
metric	If FALSE non-metric MDS is performed
ties	Tie specification for non-metric MDS only: "primary", "secondary", or "tertiary"
verbose	If TRUE, intermediate stress is printed out
relax	Relaxed smacof update
modulus	Number of smacof iterations per monotone regression call
itmax	Maximum number of iterations
eps	Convergence criterion

Value

obsdiss	Observed dissimilarities, normalized
confdiss	Configuration dissimilarities
conf	Matrix of final configurations
stress.m	stress value for metric MDS

stress.nm	stress value for non-metric MDS (if computed)
ndim	Number of dimensions
model	Type of smacof model
niter	Number of iterations
nobj	Number of objects

Author(s)

Jan de Leeuw and Patrick Mair

References

de Leeuw, J.
\& Mair, P. (2009). Multidimensional scaling using majorization: The R package smacof. Journal of Statistical Software, 31(3), 1-30, http://www.jstatsoft.org/v31/ i03/

See Also

smacofConstraint,smacofRect,smacofIndDiff,smacofSphere.primal, smacofsphere.dual

Examples

```
## simple SMACOF solution for kinship data
data(kinshipdelta)
res <- smacofSym(kinshipdelta)
res
summary(res)
## 3D nonmetric SMACOF solution for trading data
data(trading)
res <- smacofSym(trading, ndim = 3, metric = FALSE, ties = "secondary")
res
```

stardist Distances among stars in zodiac signs

Description

A distance matrix for the 10 brightest stars in each of the 12 zodiac signs was computed. Astronomers measure the projected positions of objects on the celestial sphere in two angles, i.e. right ascension α and declination δ. For every zodiac sign, the projected distances on the sky between individual stars S_{i} and S_{j} have been calculated in decimal degrees by means of the Pythagorean theorem

$$
d_{i, j}=\sqrt{\left(\alpha_{i}-\alpha_{j}\right) 2+\left(\delta_{i}-\delta_{j}\right) 2}
$$

assuming planar geometry. Since the zodiac signs are relatively small compared to the whole celestial sphere and the computation is only done for illustrative purposes, such a simplified assumption is appropriate.

Usage

```
data(stardist)
```


Format

A dist object contaning the star distances.

Note

Thanks to Paul Eigenthaler, Department of Astronomy, University of Vienna for calculating the distances.

Examples

```
data(stardist)
```

summary.smacofB \quad S3 methods for smacof

Description

Print and summary methods for objects of class smacofB, smacofR (rectangular), and smacofid (individual differences).

Usage

```
## S3 method for class 'smacofB':
summary(object, ...)
## S3 method for class 'smacofB':
print(x, ...)
## S3 method for class 'smacofR':
summary(object, ...)
## S3 method for class 'smacofR':
print(x, ...)
## S3 method for class 'smacofID':
summary(object, ...)
## S3 method for class 'smacofID':
print(x, ...)
```


Arguments

object Object of class smacofB, smacofR, smacofid
x
Object of class smacofB, smacofR, smacofid
... Ignored

Examples

```
data(kinshipdelta)
res <- smacofSym(kinshipdelta)
res
summary(res)
```

trading Trading data

Description

Data from the New Geographical Digest (1986), analysed in Cox and Cox (2001), on which countries traded with other countries. For 20 countries the main trading partners are dichotomously scored $(1=$ trade performed, $0=$ trade not performed). Based on this dichotomous matrix the dissimilarities are computed using the Jaccard coefficient.

Usage

data(trading)

Format

Object of class "dist" with dissimilarities of the following countries:
Arge: Argentina
Aust: Australia
Braz: Brazil
Cana: Canada
Chin: China
Czec: Czechoslovakia
Egyp: Egypt
E.Ge: East Germany

Fran: France
Hung: Hungary
Indi: India
Ital: Italy
Japa: Japan
N.Ze: New Zealand

Pola: Poland
Swed: Sweden
USA

USSR: Soviet Union
U.K.: United Kingdom
W.Ge: West Germany

References

Cox, T.F., Cox, M.A.A. (1991). Multidimensional scaling on a sphere. Communications in Statistics: Theory and Methods, 20, 2943-2953.

Examples

data(trading)

```
wish_ger Wish dataset
```


Description

Similarity ratings for 12 countries. There were no instructions concerning the characteristics on which these similarity judgements were to be made, this was information to discover rather than to impose.

Usage

```
data(wish_ger)
```


Format

Object of class dist

Details

Note that the country labels are given in German. For smacof, the data must be converted into a dissimilarity matrix (see examples).

References

Borg, I., Groenen, P. J. F., \& Mair, P. (2010). Multidimensionale Skalierung. Muenchen: Hampp Verlag.
Wish, M. (1971). Individual differences in perceptions and preferences among nations. In C. W. King and D. Tigert (Eds.), Attitude research reaches new heights, pp. 312-328. Chicago: American Marketing Association.

Examples

```
data(wish_ger)
sim2diss(wish_ger)
```


Index

*Topic datasets

bread, 3
breakfast, 3
ekman, 4
EW_ger, 5
kinshipdelta, 6
partypref, 6
perception, 7
rectangles, 11
stardist, 21
trading, 23
wish_ger, 24

*Topic hplot

plot.smacof, 8
plot3d.smacof, 9

*Topic methods

residuals.smacof, 12
summary.smacofB, 22
*Topic models
sim2diss, 12
smacofConstraint, 13
smacofIndDiff, 15
smacofRect, 17
smacofSphere.dual, 18
smacofsym, 20
$*$ Topic package
smacof-package, 2
bread, 3
breakfast, 3
ekman, 4
EW_ger, 5
kinshipdelta, 6
kinshipscales(kinshipdelta), 6
partypref, 6
perception, 7
plot, 8,10

```
plot.smacof, 8,10
plot.smacofID(plot.smacof), 8
plot.smacofR(plot.smacof), 8
plot3d.smacof, 9,9
plot3d.smacofID(plot3d.smacof), 9
plot3d.smacofR(plot3d.smacof), 9
plot3dstatic(plot3d.smacof), 9
print.smacofB(summary.smacofB),
    22
print.smacofID(summary.smacofB),
        22
print.smacofR(summary.smacofB),
            22
rect_constr(rectangles), 11
rectangles,11
residuals.smacof, 12
residuals.smacofID
        (residuals.smacof), 12
residuals.smacofR
            (residuals.smacof), 12
sim2diss,12
smacof,2
smacof(smacof-package), 2
smacof-package, 2
smacofConstraint, 13, 16,18, 19, 21
smacofIndDiff, 2, 15, 15, 18, 19, 21
smacofRect, 2, 15, 16, 17, 19, 21
smacofSphere.dual, 2, 15,16,18, 18, 21
smacofSphere.primal, 2, 15, 16, 18, 21
smacofSphere.primal
            (smacofSphere.dual), 18
smacofSym, 2, 15, 16, 18, 19, 20
stardist,21
summary.smacofB,22
summary.smacofID
            (summary.smacofB), 22
summary.smacofR
    (summary.smacofB), 22
```

trading, 23
wish_ger, 24

