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Chap ter  

 4  
Cluster Analysis

Leland Wilkinson, Laszlo Engelman, James Corter, and Mark Coward 
(Revised by Siva Athreya, Mousum Dutta, and Goutam Peri)

SYSTAT provides a variety of cluster analysis methods on rectangular or symmetric 
data matrices. Cluster analysis is a multivariate procedure for detecting natural 
groupings in data. It resembles discriminant analysis in one respect—the researcher 
seeks to classify a set of objects into subgroups although neither the number nor 
members of the subgroups are known.

CLUSTER provides three procedures for clustering: Hierarchical Clustering,  
K-Clustering, and Additive Trees. The Hierarchical Clustering procedure comprises 
hierarchical linkage methods. The K-Clustering procedure splits a set of objects into 
a selected number of groups by maximizing between-cluster variation and 
minimizing within-cluster variation. The Additive Trees Clustering procedure 
produces a Sattath-Tversky additive tree clustering.

Hierarchical Clustering clusters cases, variables, or both cases and variables 
simultaneously; K-Clustering clusters cases only; and Additive Trees clusters a 
similarity or dissimilarity matrix. Several distance metrics are available with 
Hierarchical Clustering and K-Clustering including metrics for binary, quantitative 
and frequency count data. Hierarchical Clustering has ten methods for linking clusters 
and displays the results as a tree (dendrogram) or a polar dendrogram. When the 
MATRIX option is used to cluster cases and variables, SYSTAT uses a gray-scale or 
color spectrum to represent the values.

SYSTAT further provides five indices, viz., statistical criteria by which an 
appropriate number of clusters can be chosen from the Hierarchical Tree. Options for 
cutting (or pruning) and coloring the hierarchical tree are also provided.

In the K-Clustering procedure SYSTAT offers two algorithms, KMEANS and 
KMEDIANS, for partitioning. Further, SYSTAT provides nine methods for selecting 
initial seeds for both KMEANS and KMEDIANS.
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Resampling procedures are available only in Hierarchical Clustering.

Statistical Background
Cluster analysis is a multivariate procedure for detecting groupings in data. The objects 
in these groups may be:

� Cases (observations or rows of a rectangular data file). For example, suppose 
health indicators (numbers of doctors, nurses, hospital beds, life expectancy, etc.) 
are recorded for countries (cases), then developed nations may form a subgroup or 
cluster separate from developing countries.

� Variables (characteristics or columns of the data). For example, suppose causes of 
death (cancer, cardiovascular, lung disease, diabetes, accidents, etc.) are recorded 
for each U.S. state (case); the results show that accidents are relatively independent 
of the illnesses.

� Cases and variables (individual entries in the data matrix). For example, certain 
wines are associated with good years of production. Other wines have other years 
that are better.

Types of Clustering

Clusters may be of two sorts: overlapping or exclusive. Overlapping clusters allow the 
same object to appear in more than one cluster. Exclusive clusters do not. All of the 
methods implemented in SYSTAT are exclusive.

There are three approaches to producing exclusive clusters: hierarchical, 
partitioned, and additive trees. Hierarchical clusters consist of clusters that completely 
contain other clusters that in turn completely contain other clusters, and so on, until 
there is only one cluster. Partitioned clusters contain no other clusters. Additive trees 
use a graphical representation in which distances along branches reflect similarities 
among the objects. 

The cluster literature is diverse and contains many descriptive synonyms: 
hierarchical clustering (McQuitty, 1960; Johnson, 1967); single linkage clustering 
(Sokal and Sneath, 1963), and joining (Hartigan, 1975). Output from hierarchical 
methods can be represented as a tree (Hartigan, 1975) or a dendrogram (Sokal and 
Sneath, 1963). Density estimates (Hartigan 1975; Wong and Lane, 1983) can be used 
for clustering. Silverman (1986) provides several methods for density estimation.
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Correlations and Distances

To produce clusters, we must be able to compute some measure of dissimilarity 
between objects. Similar objects should appear in the same cluster, and dissimilar 
objects, in different clusters. All of the methods available in CORR for producing 
matrices of association can be used in cluster analysis, but each has different 
implications for the clusters produced. Incidentally, CLUSTER converts correlations to 
dissimilarities by negating them. 

In general, the correlation measures (Pearson, Mu2, Spearman, Gamma, Tau) are 
not influenced by differences in scales between objects. For example, correlations 
between states using health statistics will not in general be affected by some states 
having larger average numbers or variation in their numbers. Use correlations when 
you want to measure the similarity in patterns across profiles regardless of overall 
magnitude.

On the other hand, the other measures such as Euclidean and City (city-block 
distance) are significantly affected by differences in scale. For health data, two states 
will be judged to be different if they have differing overall incidences even when they 
follow a common pattern. Generally, you should use the distance measures when 
variables are measured on common scales.

Standardizing Data

Before you compute a dissimilarity measure, you may need to standardize your data 
across the measured attributes. Standardizing puts measurements on a common scale. 
In general, standardizing makes overall level and variation comparable across 
measurements. Consider the following data:

If we are clustering the four cases (A through D), variable X4 will determine almost 
entirely the dissimilarity between cases, whether we use correlations or distances. If 
we are clustering the four variables, whichever correlation measure we use will adjust 
for the larger mean and standard deviation on X4. Thus, we should probably 

OBJECT X1 X2 X3 X4

A 10 2 11 900
B 11 3 15 895
C 13 4 12 760
D 14 1 13 874
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standardize within columns if we are clustering rows and use a correlation measure if 
we are clustering columns.

In the example below, case A will have a disproportionate influence if we are 
clustering columns.

We should probably standardize within rows before clustering columns. This requires 
transposing the data before standardization. If we are clustering rows, on the other 
hand, we should use a correlation measure to adjust for the larger mean and standard 
deviation of case A.

These are not immutable laws. The suggestions are only to make you realize that 
scales can influence distance and correlation measures. 

Hierarchical Clustering

In Hierarchical Clustering, initially, each object (case or variable) is considered as a 
separate cluster. Then two ‘closest’ objects are joined as a cluster and this process is 
continued (in a stepwise manner) for joining an object with another object, an object 
with a cluster, or a cluster with another cluster until all objects are combined into one 
single cluster. This Hierarchical clustering is then displayed pictorially as a tree 
referred to as the Hierarchical tree.

The term ‘closest’ is identified by a specified rule in each of the Linkage methods. 
Hence in different linkage methods, the corresponding distance matrix (or dissimilarity 
measure) after each merger is computed by a different formula. These formulas are 
briefly explained below.

Linkage Methods

SYSTAT provides the following linkage methods: Single, Complete, Average, 
Centroid, Median, Ward’s (Ward, 1963), Weighted Average and Flexible Beta. As 
explained above, each method differs in how it measures the distance between two 
clusters and consequently it influences the interpretation of the word ‘closest’. Initially, 

OBJECT X1 X2 X3 X4

A 410 311 613 514
B 1 3 2 4
C 10 11 12 10
D 12 13 13 11
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the distance matrix gives the original distance between clusters as per the input data. 
The key is to compute the new distance matrix every time any two of the clusters are 
merged. This is illustrated via a recurrence relationship and a table.

Suppose R, P, Q are existing clusters and P+Q is the cluster formed by merging 
cluster P and cluster Q, and nX is the number of objects in the Cluster X. The distance 
between the two clusters R and P+Q is calculated by the following relationship:

d(R,P+Q) = w1d (R, P) + w2d (R,Q) + w3d (P,Q) + w4|d(R, P) - d (R,Q)|

where the weights w1, w2, w3, w4 are method specific, provided by the table below:

From the above table it can be easily inferred that in a single linkage the distance 
between two clusters is the minimum of the distance between all the objects in the two 
clusters. Once the distances between the clusters are computed, the closest two are 
merged. The other methods can be suitably interpreted as well. Further descriptive 
details of the methods are given in the dialog-box description section. 

Density Linkage Method

SYSTAT provides two density linkage methods: the Uniform Kernel method and the 
kth Nearest Neighborhood method. In these methods a probability density estimate on 
the cases is obtained. Using this and the given dissimilarity matrix, a new dissimilarity 
matrix is constructed. Finally the single linkage cluster analysis is performed on the 
cases using the new dissimilarity measure.

For the uniform kernel method, you provide a value for the radius r. Using this, the 
density at a case x is estimated as the proportion of the cases in the sphere of radius r, 
centered at x. In the kth nearest neighborhood method, you provide the value of k upon 
which SYSTAT estimates the density at a case x as the proportion of cases in the sphere 
centered at x and the radius given by the distance to kth nearest neighbor of x. In each 

Name  w1  w2 w3 w4

Single 1/2 1/2 0 -1/2
Complete 1/2 1/2 0 1/2
Average  nP/(nP+nQ)  nQ/(nP+nQ) 0 0
Weighted 1/2 1/2 0 0
Centroid  nP/(nP+nQ)  nQ/(nP+nQ) -(nPnQ)/(nP+nQ)2 0
Median 1/2 1/2 -1/4 0
Ward (nR+nP)/(nR+nP+nQ) (nR+nQ)/(nP+nP+nQ) nR/(nR+nP+nQ) 0
Felxibeta  (1- )/2  (1- )/2 0β β β
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of the above methods, the new dissimilarity measure between two cases is given by the 
average of the reciprocal of the density values of the two cases if they both lie within 
the same sphere of reference; otherwise, they are deemed to be infinite.

To understand the cluster displays of hierarchical clustering, it is best to look at an 
example. The following data reflect various attributes of selected performance cars.

Cluster Displays

SYSTAT displays the output of hierarchical clustering in several ways. For joining 
rows or columns, SYSTAT prints a tree. For matrix joining, it prints a shaded matrix.

Trees. A tree is printed with a unique ordering in which every branch is lined up such 
that the most similar objects are closest to each other. If a perfect seriation 
(one-dimensional ordering) exists in the data, the tree reproduces it. The algorithm for 
ordering the tree is given in Gruvaeus and Wainer (1972). This ordering may differ 
from that of trees printed by other clustering programs if they do not use a seriation 
algorithm to determine how to order branches. The advantage of using seriation is most 
apparent for single linkage clustering.

If you join rows, the end branches of the tree are labeled with case numbers or 
labels. If you join columns, the end branches of the tree are labeled with variable 
names.

Direct display of a matrix. As an alternative to trees, SYSTAT can produce a shaded 
display of the original data matrix in which rows and columns are permuted according 
to an algorithm in Gruvaeus and Wainer (1972). Different characters represent the 

ACCEL BRAKE SLALOM MPG SPEED NAME$

5.0 245 61.3 17.0 153 Porsche 911T
5.3 242 61.9 12.0 181 Testarossa
5.8 243 62.6 19.0 154 Corvette
7.0 267 57.8 14.5 145 Mercedes 560
7.6 271 59.8 21.0 124 Saab 9000
7.9 259 61.7 19.0 130 Toyota Supra
8.5 263 59.9 17.5 131 BMW 635
8.7 287 64.2 35.0 115 Civic CRX
9.3 258 64.1 24.5 129 Acura Legend

10.8 287 60.8 25.0 100 VW Fox GL
13.0 253 62.3 27.0 95 Chevy Nova
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magnitude of each number in the matrix (see Ling, 1973). A legend showing the range 
of data values that these characters represent appears with the display. 

Cutpoints between these values and their associated characters are selected to 
heighten contrast in the display. The method for increasing contrast is derived from 
techniques used in computer pattern recognition, in which gray-scale histograms for 
visual displays are modified to heighten contrast and enhance pattern detection. To 
find these cutpoints, we sort the data and look for the largest gaps between adjacent 
values. Tukey’s gapping method (See Wainer and Schacht, 1978) is used to determine 
how many gaps (and associated characters) should be chosen to heighten contrast for 
a given set of data. This procedure, time consuming for large matrices, is described in 
detail in Wilkinson (1979).

If you have a course to grade and are looking for a way to find rational cutpoints in 
the grade distribution, you might want to use this display to choose the cutpoints. 
Cluster the  matrix of numeric grades (n students by 1 grade) and let SYSTAT 
choose the cutpoints. Only cutpoints asymptotically significant at the 0.05 level are 
chosen. If no cutpoints are chosen in the display, give everyone an A, flunk them all, 
or hand out numeric grades (unless you teach at Brown University or Hampshire 
College). 

n 1×
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Clustering Rows

First, let us look at possible clusters of the cars in the example. Since the variables are 
on such different scales, we will standardize them before doing the clustering. This will 
give acceleration comparable influence to braking. Then we select Pearson correlations 
as the basis for dissimilarity between cars. The result is: 

If you look at the correlation matrix for the cars, you will see how these clusters hang 
together. Cars within the same cluster (for example, Corvette, Testarossa, Porsche) 
generally correlate highly.

Cluster Tree

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Distances

Corvette
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Toyota Supra
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Chevy Nova
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Saab 9000

Mercedes 560

BMW 635
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Clustering Columns

We can cluster the performance attributes of the cars more easily. Here, we do not need 
to standardize within cars (by rows) because all of the values are comparable between 
cars. Again, to give each variable comparable influence, we will use Pearson 
correlations as the basis for the dissimilarities. The result based on the data 
standardized by variable (column) is:

Porsche Testa Corv Merc Saab

 Porsche 1.00
 Testa 0.94 1.00
 Corv 0.94 0.87 1.00
 Merc 0.09 0.21 –0.24 1.00
 Saab –0.51 –0.52 –0.76 0.66 1.00
 Toyota 0.24 0.43 0.40 –0.38 –0.68
 BMW –0.32 –0.10 –0.56 0.85 0.63
 Civic –0.50 –0.73 –0.39 –0.52 0.26
 Acura –0.05 –0.10 0.30 –0.98 –0.77
 VW –0.96 –0.93 –0.98 0.08 0.70
 Chevy –0.73 –0.70 –0.49 –0.53 –0.13

Toyota BMW Civic Acura VW

 Toyota 1.00
 BMW –0.25 1.00
 Civic –0.30 –0.50 1.00
 Acura 0.53 –0.79 0.35 1.00
 VW –0.35 0.39 0.55 –0.16 1.00
 Chevy –0.03 –0.06 0.32 0.54 0.53
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Clustering Rows and Columns

To cluster the rows and columns jointly, we should first standardize the variables to 
give each of them comparable influence on the clustering of cars. Once we have 
standardized the variables, we can use Euclidean distances because the scales are 
comparable.

Single linkage is used to produce the following result:

Cluster Tree

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Distances

BRAKE

MPG

ACCEL

SLALOM

SPEED
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This figure displays the standardized data matrix itself with rows and columns 
permuted to reveal clustering and each data value replaced by one of three symbols. 
Note that the rows are ordered according to overall performance, with the fastest cars 
at the top. 

Matrix clustering is especially useful for displaying large correlation matrices. You 
may want to cluster the correlation matrix this way and then use the ordering to 
produce a scatterplot matrix that is organized by the multivariate structure.

Cluster Validity Indices

The fundamental aim of the cluster validity indices is to enable the user to choose an 
optimal number of clusters in the data subject to pre-defined conditions. Milligan and 
Cooper (1985) studied several such indices. In this section we discuss five indices that 
are provided by SYSTAT for Hierarchical clustering.

Root Mean Square Standard Deviation (RMSSTD) Index. This index is the root mean 
square standard deviation of all the variables within each cluster. This is calculated by 

Permuted Data Matrix
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calculating the within-group sum of squares of each cluster and normalizing it by the 
product of the number of elements in the cluster and the number of variables (Sharma, 
1995). More precisely,

where  is the within-group sum of squares of cluster k,  is the number of 
elements in cluster k and v is the number of variables. SYSTAT calculates the index at 
each step of the Hierarchical algorithm providing a measure of homogeneity of the 
clusters that have been formed. Thus, the smaller the value of the RMSSTD, the better 
is the cluster formed. At any hierarchical step, if the RMSSTD value rises then the new 
clustering scheme is worse.

SYSTAT provides a plot of RMSSTD for a number of steps in the hierarchical 
clustering. You can then determine the number of clusters that exist in a data set by 
spotting the ‘knee’ (in other words, the steep jump of the index value from higher to 
smaller numbers of clusters) in the graph. This index is valid for rectangular data. If a 
dissimilarity matrix is available, then the index is valid only if the methods used are 
average, centroid or Ward.

Dunn’s Index. This cluster validity index was proposed by Dunn (1973). Suppose the 
number of clusters at a given level in the hierarchical cluster tree is k. For any two 
clusters  and  let  be the distance between two clusters and  
be the diameter of cluster . Dunn’s index is defined as the minimum of the ratio of 
the dissimilarity measure between two clusters to the diameter of cluster, where the 
minimum is taken over all the clusters in the data set. More precisely,

Dunn’s Index = 

Originally, the distance between two sets is defined as the minimum distance between 
two points taken from different sets, whereas the diameter of a set is defined as the 
maximum distance between two points in the set. A generalization of the above 
measurement can be found in Bezdek and Pal (1998). If the data set contains close-knit 
but separated clusters, the distance between the clusters is expected to be large and the 
diameter of the clusters is expected to be small. So, based on the definition, large values 
of the index indicate the presence of compact and well-separated clusters. Thus, the 
clustering which attains the maximum in the plot of Dunn’s versus the number of 
clusters, is the appropriate one. This index is valid for both rectangular and 
dissimilarity data.

RMSSTD Wk v Nk 1–( )( )⁄=

Wk Nk
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Davies-Bouldin’s (DB’s) Index. Let k be the number of clusters at a given step in 
hierarchical clustering. Let  denote the centre of the cluster  and  the size of 
the cluster .

Define  =  as the measure of dispersion of cluster , 

= , as the dissimilarity measure between clusters  and  and

Then the DB (Davies and Bouldin, 1979) Index is defined as DB’s Index = .

It is clear that DB’s index quantifies the average similarity between a cluster and its 
most similar counterpart. It is desirable for the clusters to be as distinct from each other 
as possible. So a clustering which minimizes the DB index is the ideal one. This index 
can be calculated for rectangular data.

Pseudo F Index. The pseudo F statistic describes the ratio of between-cluster variance 
to within cluster variance (Calinski and Harabasz, 1974):

Pseudo F= 

where N is the number of observations, K is the number of clusters at any step in the 
hierarchical clustering, GSS is the between-group sum of squares, and WSS is the 
within group sum of squares. Large values of Pseudo F indicate close-knit and 
separated clusters. In particular, peaks in the pseudo F statistic are indicators of greater 
cluster separation. Typically, these are spotted in the plot of the index versus the 
number of clusters. This index is valid for rectangular data and for any Hierarchical 
clustering procedure. In the case of dissimilarity data, one can use this index for 
hierarchical clustering if the methods used are average, centroid or Ward.

Pseudo T-square Index. Suppose, during a step in the hierarchical clustering, cluster K 
and cluster L are merged to form a new cluster. Then, the pseudo T-square statistic for 
the clustering obtained is given by

Pseudo T-square = 

where  and  are the number of observations in clusters kand l,  and  
are within cluster sum of squares of clusters k and l, and  is the between-cluster 
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sum of squares. This index quantifies the difference between two clusters that are 
merged at a given step. Thus, if the pseudo T-square statistic has a distinct jump at step 
k of the hierarchical clustering, then the clustering in step k+1 is selected as the optimal 
cluster. The pseudo T-square statistic is closely related to Duda and Hart’s 

 index.

Partitioning via K-Clustering

To produce partitioned clusters, you must decide in advance how many clusters you 
want. K-Clustering searches for the best way to divide your objects into K different 
sections so that they are separated as well as possible. K-Clustering provides two such 
procedures: K-Means and K-Medians.

K-Means

K-Means, which is the default procedure, begins by picking ‘seed’ cases, one for each 
cluster, which are spread apart as much as possible from the centre of all the cases. 
Then it assigns all cases to the nearest seed. Next, it attempts to reassign each case to 
a different cluster in order to reduce the within-groups sum of squares. This continues 
until the within-groups sum of squares can no longer be reduced. The initial seeds can 
be chosen from nine possible options.

K-Means does not search through every possible partitioning of the data, so it is 
possible that some other solution might have a smaller within-groups sum of squares. 
Nevertheless, it has performed relatively well on global data separated in several 
dimensions in Monte Carlo studies of cluster algorithms.

Because it focuses on reducing the within-groups sum of squares, K-Means 
clustering is like a multivariate analysis of variance in which the groups are not known 
in advance. The output includes analysis of variance statistics, although you should be 
cautious in interpreting them. Remember, the program is looking for large F-ratios in 
the first place, so you should not be too impressed by large values.

The following is a three-group analysis of the car data. The clusters are similar to 
those we found by joining. K-Means clustering uses Euclidean distances instead of 
Pearson correlations, so there are minor differences because of scaling. 

Je 2( ) Je 1( )⁄( )
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To keep the influences of all variables comparable, we standardized the data before 
running the analysis.

K-Medians

The second approach available in K-Clustering is K-Medians. The K-Medians 
procedure follows the same amalgamation approach as K-Means except for a key 
difference. It uses the median to reassign each case to a different cluster in order to 
reduce the within-groups sum of absolute deviations.

Distance Metric is Euclidean Distance
K-Means splitting cases into 3 groups

  Summary Statistics for All Cases

  Variable      Between SS   df   Within SS   df   F-ratio
 ---------------------------------------------------------
  ACCEL              7.825    2       2.175    8    14.389
  BRAKE              5.657    2       4.343    8     5.211
  SLALOM             5.427    2       4.573    8     4.747
  MPG                7.148    2       2.852    8    10.027
  SPEED              7.677    2       2.323    8    13.220
  ** TOTAL **       33.735   10      16.265   40          

  Cluster 1 of 3 Contains 4 Cases

          Members                              Statistics                    
                                                                     Standard
  Case           Distance   Variable   Minimum     Mean   Maximum   Deviation
 ----------------------------------------------------------------------------
  Mercedes 560      0.596   ACCEL       -0.451   -0.138     0.174       0.260
  Saab 9000         0.309   BRAKE       -0.149    0.230     0.608       0.326
  Toyota Supra      0.488   SLALOM      -1.952   -0.894     0.111       0.843
  BMW 635           0.159   MPG         -1.010   -0.470    -0.007       0.423
                            SPEED       -0.338    0.002     0.502       0.355

  Cluster 2 of 3 Contains 4 Cases

          Members                              Statistics                    
                                                                     Standard
  Case           Distance   Variable   Minimum     Mean   Maximum   Deviation
 ----------------------------------------------------------------------------
  Civic CRX         0.811   ACCEL        0.258    0.988     2.051       0.799
  Acura Legend      0.668   BRAKE       -0.528    0.624     1.619       1.155
  VW Fox GL         0.712   SLALOM      -0.365    0.719     1.432       0.857
  Chevy Nova        0.763   MPG          0.533    1.054     2.154       0.752
                            SPEED       -1.498   -0.908    -0.138       0.616

  Cluster 3 of 3 Contains 3 Cases

          Members                              Statistics                    
                                                                     Standard
  Case           Distance   Variable   Minimum     Mean   Maximum   Deviation
 -------------------------------------------------------------------
  Porsche 911T      0.253   ACCEL       -1.285   -1.132    -0.952       0.169
  Testarossa        0.431   BRAKE       -1.223   -1.138    -1.033       0.096
  Corvette          0.314   SLALOM      -0.101    0.234     0.586       0.344
                            MPG         -1.396   -0.779    -0.316       0.557
                            SPEED        0.822    1.208     1.941       0.635
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Additive Trees

Sattath and Tversky (1977) developed additive trees for modeling similarity/ 
dissimilarity data. Hierarchical clustering methods require objects in the same cluster 
to have identical distances to each other. Moreover, these distances must be smaller 
than the distances between clusters. These restrictions prove problematic for similarity 
data, and, as a result, hierarchical clustering cannot fit this data set well.

In contrast, additive trees use the tree branch length to represent distances between 
objects. Allowing the within-cluster distances to vary yields a tree diagram with 
varying branch lengths. Objects within a cluster can be compared by focusing on the 
horizontal distance along the branches connecting them. The additive tree for the car 
data is as follows: 

Additive Tree
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The distances between nodes of the graph are:

Each object is a node in the graph. In this example, the first 11 nodes represent the cars. 
Other graph nodes correspond to “groupings” of the objects. Here, the 12th node 
represents Porsche and Testa.

The distance between any two nodes is the sum of the (horizontal) lengths between 
them. The distance between Chevy and VW is . The 
distance between Chevy and Civic is . Consequently, 
Chevy is more similar to VW than to Civic.

Node Length Child

1 0.10 Porsche
2 0.49 Testa
3 0.14 Corv
4 0.52 Merc
5 0.19 Saab
6 0.13 Toyota
7 0.11 BMW
8 0.71 Civic
9 0.30 Acura

10 0.42 VW
11 0.62 Chevy
12 0.06 1,2
13 0.08 8,10
14 0.49 12,3
15 0.18 13,11
16 0.35 9,15
17 0.04 14,6
18 0.13 17,16
19 0.0 5,18
20 0.04 4,7
21 0.0 20,19

0.62 0.08 0.42+ + 1.12=
0.62 0.08 0.71+ + 1.41=
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Cluster Analysis in SYSTAT

Hierarchical Clustering Dialog Box

Hierarchical clustering produces hierarchical clusters that are displayed in a tree. 
Initially, each object (case or variable) is considered a separate cluster. SYSTAT begins 
by joining the two “closest” objects as a cluster and continues (in a stepwise manner) 
joining an object with another object, an object with a cluster, or a cluster with another 
cluster until all objects are combined into one cluster. 

To open the Hierarchical Clustering dialog box, from the menus choose:

Analyze 
Cluster Analysis 

Hierarchical… 

You must select the elements of the data file to cluster (Join):

� Rows. Rows (cases) of the data matrix are clustered.
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� Columns. Columns (variables) of the data matrix are clustered.

� Matrix. In Matrix, rows and columns of the data matrix are clustered—they are 
permuted to bring similar rows and columns next to one another.

Linkage allows you to specify the type of joining algorithm used to amalgamate 
clusters (that is, define how distances between clusters are measured).

� Average. Average linkage averages all distances between pairs of objects in 
different clusters to decide how far apart they are.

� Centroid. Centroid linkage uses the average value of all objects in a cluster (the 
cluster centroid) as the reference point for distances to other objects or clusters.

� Complete. Complete linkage uses the most distant pair of objects in two clusters to 
compute between-cluster distances.This method tends to produce compact, 
globular clusters. If you use a similarity or dissimilarity matrix from a SYSTAT 
file, you get Johnson’s “max” method.

� Flexibeta. Flexible beta linkage uses a weighted average distance between pairs of 
objects in different clusters to decide how far apart they are.You can choose the 
value of the weight . The range of  is between -1 and 1. 

� K-nbd. Kth nearest neighborhood method is a density linkage method. The 
estimated density is proportional to the number of cases in the smallest sphere 
containing the kth nearest neighbor. A new dissimilarity matrix is then constructed 
using the density estimate. Finally the single linkage cluster analysis is performed. 
You can specify the number k; its range is between 1 and the total number of cases 
in the data set.

� Median. Median linkage uses the median distances between pairs of objects in 
different clusters to decide how far apart they are.

� Single. Single linkage defines the distance between two objects or clusters as the 
distance between the two closest members of those clusters. This method tends to 
produce long, stringy clusters. If you use a SYSTAT file that contains a similarity 
or dissimilarity matrix, you get clustering via Johnson’s “min” method.

� Uniform. Uniform Kernel method is a density linkage method. The estimated 
density is proportional to the number of cases in a sphere of radius r. A new 
dissimilarity matrix is then constructed using the density estimate. Finally, single 
linkage cluster analysis is performed. You can choose the number r; its range is the 
positive real line.

� Ward. Ward’s method averages all distances between pairs of objects in different 
clusters, with adjustments for covariances, to decide how far apart the clusters are.

β β
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� Weighted. Weighted average linkage uses a weighted average distance between 
pairs of objects in different clusters to decide how far apart they are. The weights 
used are proportional to the size of the cluster.

For some data, some methods cannot produce a hierarchical tree with strictly 
increasing amalgamation distances. In these cases, you may see stray branches that do 
not connect to others. If this happens, you should consider Single or Complete linkage. 
For more information on these problems, see Fisher and Van Ness (1971). These 
reviewers concluded that these and other problems made Centroid, Average, Median, 
and Ward (as well as K-Means) “inadmissible” clustering procedures. In practice and 
in Monte Carlo simulations, however, they sometimes perform better than Single and 
Complete linkage, which Fisher and Van Ness considered “admissible.” Milligan 
(1980) tested all of the hierarchical joining methods in a large Monte Carlo simulation 
of clustering algorithms. Consult his paper for further details. 

In addition, the following options can be specified:

Distance. Specifies the distance metric used to compare clusters.

Polar. Produces a polar (circular) cluster tree.

Save. Save provides two options either to save cluster identifiers or to save cluster 
identifiers along with data. You can specify the number of clusters to identify for the 
saved file. If not specified, two clusters are identified.

Clustering Distances

Both Hierarchical Clustering and K-Clustering allow you to select the type of distance 
metric to use between objects. From the Distance drop-down list, you can select: 

� Absolute. Distances are computed using absolute differences. Use this metric for 
quantitative variables. The computation excludes missing values.

� Anderberg. Distances are computed using a dissimilarity form of Anderberg’s 
similarity coefficients for binary data. Anderberg distance is available for 
hierarchical clustering only. 

� Chi-square. Distances are computed as the chi-square measure of independence of 
rows and columns on 2-by-n frequency tables, formed by pairs of cases (or 
variables). Use this metric when the data are counts of objects or events.

� Euclidean. Clustering is computed using normalized Euclidean distance (root 
mean squared distances). Use this metric with quantitative variables. Missing 
values are excluded from computations.
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� Gamma. Distances are computed using one minus the Goodman-Kruskal gamma 
correlation coefficient. Use this metric with rank order or ordinal scales. Missing 
values are excluded from computations.

� Jaccard. Clustering is computed using the dissimilarity form of Jaccard’s 
similarity coefficient for binary data. Jaccard distance is only available for 
hierarchical clustering.

� Mahalanobis. Distances are computed using the square root of the quadratic form 
of the deviations among two random vectors using the inverse of their variance-
covariance matrix. This metric can also be used to cluster groups. Use this metric 
with quantitative variables. Missing values are excluded from computations.

� Minkowski. Clustering is computed using the pth root of the mean pth powered 
distances of coordinates. Use this metric for quantitative variables. Missing values 
are excluded from computations. Use the Power text box to specify the value of p.

� MW (available for K-Clustering only). Distances are computed as the increment in 
within sum of squares of deviations, if the case would belong to a cluster. The case 
is moved into the cluster that minimizes the within sum of squares of deviations. 
Use this metric with quantitative variables. Missing values are excluded from 
computations.

� Pearson. Distances are computed using one minus the Pearson product-moment 
correlation coefficient for each pair of objects. Use this metric for quantitative 
variables. Missing values are excluded from computations.

� Percent (available for hierarchical clustering only). Clustering uses a distance 
metric that is the percentage of comparisons of values resulting in disagreements 
in two profiles. Use this metric with categorical or nominal scales.

� Phi-square. Distances are computed as the phi-square (chi-square/total) measure 
on 2-by-n frequency tables, formed by pairs of cases (or variables). Use this metric 
when the data are counts of objects or events.

� Rsquared. Distances are computed using one minus the square of the Pearson 
product-moment correlation coefficient for each pair of objects. Use this metric 
with quantitative variables. Missing values are excluded from computations.

� RT. Clustering uses the dissimilarity form of Rogers and Tanimoto’s similarity 
coefficient for categorical data. RT distance is available only for hierarchical 
clustering.

� Russel. Clustering uses the dissimilarity form of Russel’s similarity coefficient for 
binary data. Russel distance is available only for hierarchical clustering.
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� SS. Clustering uses the dissimilarity form of Sneath and Sokal’s similarity 
coefficient for categorical data. SS distance is available only for hierarchical 
clustering.

Mahalanobis

In the Mahalanobis tab, you can specify the covariance matrix to compute Mahalanobis 
distance. 

Covariance matrix. Specify the covariance matrix to compute the Mahalanobis 
distance. Enter the covariance matrix either through the keyboard or from a SYSTAT 
file. Otherwise, by default SYSTAT computes the matrix from the data. Select a 
grouping variable for inter-group distance measures. 
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Options 

The following options are available:

Cut cluster tree at. You can choose the following options for cutting the cluster tree:

� Height. Provides the option of cutting the cluster tree at a specified distance.

� Leaf nodes. Provides the option of cutting the cluster tree by number of leaf nodes.

Color clusters by. The colors in the cluster tree can be assigned by two different 
methods:

� Length of terminal node. As you pass from node to node in order down the cluster 
tree, the color changes when the length of a node on the distance scale changes 
between less than and greater than the specified length of terminal nodes (on a scale 
of 0 to 1).

� Proportion of total nodes. Colors are assigned based on the proportion of members 
in a cluster.

Validity. Provides five validity indices to evaluate the partition quality. In particular, it 
is used to find out the appropriate number of clusters for the given data set.
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� RMSSTD. Provides root-mean-square standard deviation of the clusters at each 
step in hierarchical clustering.

� Pseudo F. Provides pseudo F-ratio for the clusters at each step in hierarchical 
clustering.

� Pseudo T-square. Provides pseudo T-square statistic for cluster assessment.

� DB. Provides Davies-Bouldin’s index for each hierarchy of clustering. This index 
is applicable for rectangular data only.

� Dunn. Provides Dunn’s cluster separation measure.

� Maximum groups. Performs the computation of indices up to this specified number 
of clusters. The default value is the square-root of number of objects.

K-Clustering Dialog Box

K-Clustering dialog box provides options for K-Means clustering and K-Medians 
clustering. Both clustering methods split a set of objects into a selected number of 
groups by maximizing between-cluster variation relative to within-cluster variation. It 
is similar to doing a one-way analysis of variance where the groups are unknown and 
the largest F value is sought by reassigning members to each group. 

By default, the algorithms start with one cluster and splits it into two clusters by 
picking the case farthest from the center as a seed for a second cluster and assigning 
each case to the nearest center. It continues splitting one of the clusters into two (and 
reassigning cases) until a specified number of clusters are formed. The reassigning of 
cases continues until the within-groups sum of squares can no longer be reduced. The 
initial seeds or partitions can be chosen from a possible set of nine options.

To open the K-Clustering dialog box, from the menus choose:

Analyze 
Cluster Analysis 

K-Clustering… 
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Algorithm. Provides K-Means and K-Medians clustering options.

� K-means. Requests K-Means clustering.

� K-medians. Requests K-Medians clustering.

Groups. Enter the number of desired clusters. Default number (Groups) is two.

Iterations. Enter the maximum number of iterations. If not stated, the maximum is 20.

Distance. Specifies the distance metric used to compare clusters.

Save. Save provides three options to save either cluster identifiers, cluster identifiers 
along with data, or final cluster seeds, to a SYSTAT file.

Mahalanobis. 

See the Mahalanobis tab in Hierarchical clustering.
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Initial Seeds.

To specify the initial seeds for clustering, click on the Initial Seeds tab. 

The following initial seeds options are available:

� None. Starts with one cluster and splits it into two clusters by picking the case 
farthest from the center as a seed for the second cluster and then assigning each 
case optimally.

� First K. Considers the first K non-missing cases as initial seeds.

� Last K. Considers the last K non-missing cases as initial seeds.

� Random K. Chooses randomly (without replacement) K non-missing cases as 
initial seeds.

� Random segmentation. Assigns each case to any of K partitions randomly. 
Computes seeds from each initial partition taking the mean or the median of the 
observations, whichever is applicable.
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� Principal component. Uses the first principal component as a single variable. Sorts 
all cases based on this single variable. It creates partitions taking the first n/K cases 
in the first partition, the next n/K cases in the second partition and so on.

� Hierarchical segmentation. Makes the initial K partitions from hierarchical 
clustering with the specified linkage method.

� Partition variable. Makes initial partitions from a specified variable.

� From file. Specify the SYSTAT file where seeds are written in case by case.

� Linkage. Specify the linkage method for hierarchical segmentation.

� Random seed. Specify the seed for random number generation.

Additive Trees Clustering Dialog Box

Additive trees were developed by Sattath and Tversky (1977) for modeling 
similarity/dissimilarity data, which hierarchical joining trees do not fit well. 
Hierarchical trees imply that all within-cluster distances are smaller than all between-
cluster distances and that within-cluster distances are equal. This so-called 
“ultrametric” condition seldom applies to real similarity data from direct judgment. 
Additive trees, on the other hand, represent similarities with a network model in the 
shape of a tree. Distances between objects are represented by the lengths of the 
branches connecting them in the tree.

To open the Additive Trees Clustering dialog box, from the menus choose:

Analyze 
Cluster Analysis 

Additive Trees… 
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At least three variables should be selected to perform Additive Tree Clustering. The 
following options can be specified:

Data. Display the raw data matrix.

Transformed. Include the transformed data (distance-like measures) with the output.

Model. Display the model (tree) distances between the objects.

Residuals. Show the differences between the distance-transformed data and the model 
distances.

NoNumbers. Objects in the tree graph are not numbered.

NoSubtract. Use of an additive constant. Additive Trees assumes interval-scaled data, 
which implies complete freedom in choosing an additive constant, so it adds or 
subtracts to exactly satisfy the triangle inequality. Use this NoSubtract option to allow 
strict inequality and not subtract a constant. 

Height. Prints the distance of each node from the root.

MinVar. Combines the last few remaining clusters into the root node by searching for 
the root that minimizes the variances of the distances from the root to the leaves. 
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Using Commands

For the Hierarchical tree method:

The distance metric is ABSOLUTE, ANDERBERG, CHISQUARE, EUCLIDEAN, GAMMA, 
JACCARD, MAHALANOBIS, MINKOWSKI, PEARSON, PERCENT, PHISQUARE, 
RSQUARED, RT, RUSSEL, SS. For MINKOWSKI, specify the root using POWER=p. For 
COV=matrix, separate columns by space and separate rows by semicolon. Use 
GROUP=var, to compute inter-group distances.

The linkage methods include AVERAGE, CENTROID, COMPLETE, MEDIAN, SINGLE, 

KNBD, UNIFORM, FLEXIBETA, WARD and WEIGHT.

More than one validity index can be specified at a time. 

Resampling is available only in joining columns.

For the K-Means clustering method:

The distance metric is ABSOLUTE, CHISQUARE, EUCLIDEAN, GAMMA, 
MAHALANOBIS, MINKOWSKI, MW, PEARSON, PHISQUARE or RSQUARED. For 
MINKOWSKI, specify the root using POWER=p. For COV=matrix, separate columns by 
space and separate rows by semicolon. Use GROUP=var, to compute inter-group 
distances.

CLUSTER
     USE filename

 IDVAR var$
 SAVE filename / NUMBER=n DATA
 JOIN varlist / ROWS or COLUMNS or MATRIX POLAR DISTANCE=metric 

POWER=p COV=matrix or ‘filename’ GROUP=var
LINKAGE=method RADIUS=r K=k BETA=b MAX=n 

 VALIDITY= RMSSTD, CHF, PTS, DB, DUNN, HEIGHT=r,
LEAF=n, LENGTH=r PROP=r
SAMPLE = BOOT(m,n) or SIMPLE(m,n) or JACK

CLUSTER
     USE filename
     IDVAR var$
     SAVE filename / NUMBER=n DATA
     KMEANS varlist / NUMBER=n ITER=n DISTANCE=metric POWER=p 

COV=matrix or ‘filename’ GROUP=var 
INITIAL=option INIFILE=‘filename’ 
PARTITION=var LINKAGE=method
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The options for initial seeds are NONE, FIRSTK, LASTK, RANDOMK, RANDSEG, 
PCA and HIERSEG. Initial seeds can also be specified from a file or through a variable. 
For HIERSEG, specify the linkage method using LINKAGE=method. The linkage 
methods are mentioned below: 

AVERAGE, CENTROID, COMPLETE, MEDIAN, SINGLE, WARD, WEIGHTED. 

For the K-Medians clustering method:

The distance metric is ABSOLUTE, CHISQUARE, EUCLIDEAN, GAMMA, 
MAHALANOBIS, MINKOWSKI, MW, PEARSON, PHISQUARE or RSQUARED. For 
MINKOWSKI, specify the root using POWER=p. For COV=matrix, separate columns by 
space and separate rows by semi colon. Use GROUP=var, to compute inter-group 
distances.

The options for initial seeds are NONE, FIRSTK, LASTK, RANDOMK, RANDSEG, PCA 
and HIERSEG. Initial seeds can also be specified from a file or through a variable. For 
HIERSEG, specify the linkage method using LINKAGE=method. The linkage methods 
are mentioned below: 

AVERAGE, CENTROID, COMPLETE, MEDIAN, SINGLE, WARD, WEIGHTED. 

For the Additive trees:

CLUSTER
     USE filename
     IDVAR var$
     SAVE filename / NUMBER=n DATA or SEEDS
     KMEDIANS varlist / NUMBER=n ITER=n DISTANCE=metric POWER=p 

COV=matrix or ‘filename’ GROUP=var 
INITIAL=option INIFILE=‘filename’ 
PARTITION=var LINKAGE=method

CLUSTER
     USE filename
     ADD varlist / DATA TRANSFORMED MODEL RESIDUALS

 TREE NUMBERS NOSUBTRACT HEIGHT
MINVAR ROOT = n1, n2
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Usage Considerations

Types of data. Hierarchical Clustering works on either rectangular SYSTAT files or 
files containing a symmetric matrix, such as those produced with Correlations.  
K-Clustering works only on rectangular SYSTAT files. Additive Trees works only on 
symmetric (similarity or dissimilarity) matrices.

Print options. PLENGTH options are effective only in Additive Trees.

Quick Graphs. Cluster analysis includes Quick Graphs for each procedure. 
Hierarchical Clustering and Additive Trees have tree diagrams. For each cluster,  
K-Clustering displays a profile plot of the data, a parallel coordinates display and a 
display of the variable means and standard deviations. Also, K-Clustering produces a 
scatterplot matrix with different colors and symbols based on final cluster identifiers. 
To omit Quick Graphs, specify GRAPH NONE.

Saving files. CLUSTER saves cluster indices as a new variable.

BY groups. CLUSTER analyzes data by groups.

Labeling output. For Hierarchical Clustering and K-Clustering, be sure to consider 
using the ID Variable (on the Data menu) for labeling the output.
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Examples

Example 1  
K-Means Clustering

The data in the file SUBWORLD are a subset of cases and variables from the 
OURWORLD file:

The distributions of the economic variables (GDP_CAP, EDUC, HEALTH, and MIL) 
are skewed with long right tails, so these variables are analyzed in log units.

This example clusters countries (cases). 

The input is:

Note that KMEANS must be specified last.

URBAN Percentage of the population living in cities
BIRTH_RT Births per 1000 people
DEATH_RT Deaths per 1000 people
B_TO_D Ratio of births to deaths
BABYMORT Infant deaths during the first year per 1000 live births
GDP_CAP Gross domestic product per capita (in U.S. dollars)
LIFEEXPM Years of life expectancy for males
LIFEEXPF Years of life expectancy for females
EDUC U.S. dollars spent per person on education
HEALTH U.S. dollars spent per person on health
MIL U.S. dollars spent per person on the military
LITERACY Percentage of the population who can read

CLUSTER
USE SUBWORLD
IDVAR COUNTRY$
LET (GDP_CAP, EDUC, MIL, HEALTH) = L10(@)
STANDARDIZE / SD
KMEANS URBAN BIRTH_RT DEATH_RT BABYMORT LIFEEXPM,
       LIFEEXPF GDP_CAP B_TO_D LITERACY EDUC, 
       MIL HEALTH / NUMBER=4
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The output is:

Distance Metric is Euclidean Distance
Single Linkage Method (Nearest Neighbor)
K-Means splitting cases into 4 groups

  Summary Statistics for All Cases

  Variable      Between SS   df   Within SS    df   F-ratio
 ----------------------------------------------------------
  URBAN             18.606    3       9.394    25    16.506
  BIRTH_RT          26.204    3       2.796    26    81.226
  DEATH_RT          23.663    3       5.337    26    38.422
  BABYMORT          26.028    3       2.972    26    75.887
  LIFEEXPM          24.750    3       4.250    26    50.473
  LIFEEXPF          25.927    3       3.073    26    73.122
  GDP_CAP           26.959    3       2.041    26   114.447
  B_TO_D            22.292    3       6.708    26    28.800
  LITERACY          24.854    3       4.146    26    51.947
  EDUC              25.371    3       3.629    26    60.593
  MIL               24.787    3       3.213    25    64.289
  HEALTH            24.923    3       3.077    25    67.488
  ** TOTAL **      294.362   36      50.638   309          

  Cluster 1 of 4 Contains 12 Cases

         Members                              Statistics                    
                                                                    Standard
  Case          Distance   Variable   Minimum     Mean   Maximum   Deviation
 ---------------------------------------------------------------------------
  Austria          0.283   URBAN       -0.166    0.602     1.587       0.540
  Belgium          0.091   BIRTH_RT    -1.137   -0.934    -0.832       0.105
  Denmark          0.189   DEATH_RT    -0.770    0.000     0.257       0.346
  France           0.140   BABYMORT    -0.852   -0.806    -0.676       0.052
  Switzerland      0.260   LIFEEXPM     0.233    0.745     0.988       0.230
  UK               0.137   LIFEEXPF     0.430    0.793     1.065       0.182
  Italy            0.160   GDP_CAP      0.333    1.014     1.275       0.257
  Sweden           0.228   B_TO_D      -1.092   -0.905    -0.462       0.180
  WGermany         0.310   LITERACY     0.540    0.721     0.747       0.059
  Poland           0.391   EDUC         0.468    0.947     1.281       0.277
  Czechoslov       0.265   MIL          0.285    0.812     1.109       0.252
  Canada           0.301   HEALTH       0.523    0.988     1.309       0.234

  Cluster 2 of 4 Contains 5 Cases

         Members                              Statistics                    
                                                                    Standard
  Case          Distance   Variable   Minimum     Mean   Maximum   Deviation
 ---------------------------------------------------------------------------
  Ethiopia         0.397   URBAN       -2.008   -1.694    -1.289       0.305
  Guinea           0.519   BIRTH_RT     1.458    1.580     1.687       0.102
  Somalia          0.381   DEATH_RT     1.284    1.848     3.081       0.757
  Afghanistan      0.383   BABYMORT     1.384    1.883     2.414       0.440
  Haiti            0.298   LIFEEXPM    -2.783   -1.900    -1.383       0.557
                           LIFEEXPF    -2.475   -1.912    -1.477       0.447
                           GDP_CAP     -1.999   -1.614    -1.270       0.300
                           B_TO_D      -0.376   -0.018     0.252       0.258
                           LITERACY    -2.268   -1.828    -0.764       0.619
                           EDUC        -2.411   -1.582    -1.096       0.511
                           MIL         -1.763   -1.509    -1.374       0.173
                           HEALTH      -2.222   -1.638    -1.290       0.438
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  Cluster 3 of 4 Contains 11 Cases

         Members                             Statistics                    
                                                                   Standard
  Case         Distance   Variable   Minimum     Mean   Maximum   Deviation
 --------------------------------------------------------------------------
  Argentina       0.450   URBAN       -0.885    0.157     1.137       0.764
  Brazil          0.315   BIRTH_RT    -0.603    0.070     0.923       0.490
  Chile           0.397   DEATH_RT    -1.284   -0.700     0.000       0.415
  Colombia        0.422   BABYMORT    -0.698   -0.063     0.551       0.465
  Uruguay         0.606   LIFEEXPM    -0.628    0.057     0.772       0.492
  Ecuador         0.364   LIFEEXPF    -0.569    0.042     0.611       0.435
  ElSalvador      0.520   GDP_CAP     -0.753   -0.382     0.037       0.278
  Guatemala       0.646   B_TO_D      -0.651    0.630     1.680       0.759
  Peru            0.369   LITERACY    -0.943    0.200     0.730       0.506
  Panama          0.514   EDUC        -0.888   -0.394     0.135       0.357
  Cuba            0.576   MIL         -1.250   -0.591     0.371       0.492
                          HEALTH      -0.911   -0.474     0.284       0.382

  Cluster 4 of 4 Contains 2 Cases

      Members                           Statistics                    
                                                              Standard
  Case    Distance   Variable   Minimum     Mean   Maximum   Deviation
 ---------------------------------------------------------------------
  Iraq       0.285   URBAN       -0.301    0.059     0.418       0.508
  Libya      0.285   BIRTH_RT     0.923    1.267     1.610       0.486
                     DEATH_RT    -0.770   -0.770    -0.770       0.000
                     BABYMORT     0.441    0.474     0.507       0.046
                     LIFEEXPM    -0.090   -0.036     0.018       0.076
                     LIFEEXPF    -0.297   -0.206    -0.115       0.128
                     GDP_CAP     -0.251    0.053     0.357       0.430
                     B_TO_D       1.608    2.012     2.417       0.573
                     LITERACY    -0.943   -0.857    -0.771       0.122
                     EDUC        -0.037    0.444     0.925       0.680
                     MIL          1.344    1.400     1.456       0.079
                     HEALTH      -0.512   -0.045     0.422       0.661



I-99

Cluster Analysis

Cluster Parallel Coordinate Plots
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For each variable, cluster analysis compares the between-cluster mean square 
(Between SS/df) to the within-cluster mean square (Within SS/df) and reports the  
F-ratio. However, do not use these F-ratios to test significance because the clusters are 
formed to characterize differences. Instead, use these statistics to characterize relative 
discrimination. For example, the log of gross domestic product (GDP_CAP) and 
BIRTH_RT are better discriminators between countries than URBAN or DEATH_RT. 
For a good graphical view of the separation of the clusters, you might rotate the data 
using the three variables with the highest F-ratios.

Following the summary statistics, for each cluster, cluster analysis prints the 
distance from each case (country) in the cluster to the center of the cluster. Descriptive 
statistics for these countries appear on the right. For the first cluster, the standard scores 
for LITERACY range from 0.54 to 0.75 with an average of 0.72. B_TO_D ranges from 
–1.09 to –0.46. Thus, for these predominantly European countries, literacy is well 
above the average for the sample and the birth-to-death ratio is below average. In 
cluster 2, LITERACY ranges from –2.27 to –0.76 for these five countries, and B_TO_D 
ranges from –0.38 to 0.25. Thus, the countries in cluster 2 have a lower literacy rate 
and a greater potential for population growth than those in cluster 1. The fourth cluster 
(Iraq and Libya) has an average birth-to-death ratio of 2.01, the highest among the four 
clusters.
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Cluster Parallel Coordinates

The variables in this Quick Graph are ordered by their F-ratios. In the top left plot, 
there is one line for each country in cluster 1 that connects its z scores for each of the 
variables. Zero marks the average for the complete sample. The lines for these 12 
countries all follow a similar pattern: above average values for GDP_CAP, below 
average for BIRTH_RT and so on. The lines in cluster 3 do not follow such a tight 
pattern.

Cluster Profiles

The variables in cluster profile plots are ordered by the F-ratios. The vertical line under 
each cluster number indicates the grand mean across all data. A variable mean within 
each cluster is marked by a dot. The horizontal lines indicate one standard deviation 
above or below the mean. The countries in cluster 1 have above average means of gross 
domestic product, life expectancy, literacy, and urbanization, and spend considerable 
money on health care and the military, while the means of their birth rates, infant 
mortality rates, and birth-to-death ratios are low. The opposite is true for cluster 2. 

Scatterplot Matrix 

In the scatterplot matrix (SPLOM), the off-diagonal cells are the scatterplot of two 
variables at a time and the diagonal cells are the histogram of variables. The off-
diagonal cells in the SPLOM are such that observations belonging to the same cluster 
will have the same color and symbol.

K-Medians Cluster Analysis with Subworld

The input is:

CLUSTER
USE SUBWORLD
IDVAR COUNTRY$
LET (GDP_CAP, EDUC, MIL, HEALTH) = L10(@)
STANDARDIZE / SD
KMEDIANS URBAN BIRTH_RT DEATH_RT BABYMORT LIFEEXPM,
       LIFEEXPF GDP_CAP B_TO_D LITERACY EDUC, 
       MIL HEALTH / DISTANCE =ABSOLUTE NUMBER=4
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The output is:

Distance Metric is Absolute Distance
Single Linkage Method (Nearest Neighbor)
K-Medians splitting cases into 4 groups

  Summary Statistics for 4 Clusters

                Within Sum of
                     Absolute
  Variable          Deviation
 ----------------------------
  URBAN                12.087
  BIRTH_RT              5.648
  DEATH_RT              8.985
  BABYMORT              3.835
  LIFEEXPM              6.249
  LIFEEXPF              4.902
  GDP_CAP               5.459
  B_TO_D                9.610
  LITERACY              6.247
  EDUC                  8.453
  MIL                  10.136
  HEALTH                6.734
  ** TOTAL **          88.346

  Cluster 1 of 4 Contains 12 Cases

         Members                                Statistics                      
                                                                   Mean Absolute
  Case          Distance   Variable   Minimum   Median   Maximum       Deviation
 -------------------------------------------------------------------------------
  Austria          0.142   URBAN       -0.166    0.643     1.587           0.425
  Belgium          0.035   BIRTH_RT    -1.137   -0.946    -0.832           0.089
  Denmark          0.093   DEATH_RT    -0.770    0.257     0.257           0.257
  France           0.114   BABYMORT    -0.852   -0.830    -0.676           0.027
  Switzerland      0.206   LIFEEXPM     0.233    0.772     0.988           0.135
  UK               0.075   LIFEEXPF     0.430    0.838     1.065           0.136
  Italy            0.163   GDP_CAP      0.333    1.079     1.275           0.139
  Sweden           0.132   B_TO_D      -1.092   -0.949    -0.462           0.127
  WGermany         0.130   LITERACY     0.540    0.747     0.747           0.026
  Poland           0.384   EDUC         0.468    0.959     1.281           0.215
  Czechoslov       0.218   MIL          0.285    0.847     1.109           0.189
  Canada           0.224   HEALTH       0.523    1.007     1.309           0.183

  Cluster 2 of 4 Contains 5 Cases

        Members                               Statistics                      
                                                                 Mean Absolute
  Case        Distance   Variable   Minimum   Median   Maximum       Deviation
 -----------------------------------------------------------------------------
  Argentina      0.169   URBAN       -0.435    1.002     1.137           0.431
  Chile          0.102   BIRTH_RT    -0.603   -0.374     0.084           0.183
  Uruguay        0.185   DEATH_RT    -1.284   -0.770     0.000           0.411
  Panama         0.453   BABYMORT    -0.698   -0.479    -0.260           0.105
  Cuba           0.240   LIFEEXPM     0.126    0.449     0.772           0.172
                         LIFEEXPF     0.248    0.430     0.611           0.337
                         GDP_CAP     -0.347   -0.216     0.037           0.345
                         B_TO_D      -0.651   -0.102     1.554           0.867
                         LITERACY     0.437    0.575     0.730           0.271
                         EDUC        -0.427   -0.175     0.135           0.487
                         MIL         -0.560   -0.368     0.371           0.498
                         HEALTH      -0.448   -0.243     0.284           0.525
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  Cluster 3 of 4 Contains 5 Cases

         Members                                Statistics                      
                                                                   Mean Absolute
  Case          Distance   Variable   Minimum   Median   Maximum       Deviation
 -------------------------------------------------------------------------------
  Ethiopia         0.216   URBAN       -2.008   -1.783    -1.289           0.234
  Guinea           0.433   BIRTH_RT     1.458    1.534     1.687           0.076
  Somalia          0.266   DEATH_RT     1.284    1.540     3.081           0.513
  Afghanistan      0.352   BABYMORT     1.384    1.778     2.414           0.342
  Haiti            0.202   LIFEEXPM    -2.783   -1.814    -1.383           0.388
                           LIFEEXPF    -2.475   -1.749    -1.477           0.657
                           GDP_CAP     -1.999   -1.701    -1.270           0.529
                           B_TO_D      -0.376    0.050     0.252           0.494
                           LITERACY    -2.268   -1.978    -0.764           0.686
                           EDUC        -2.411   -1.563    -1.096           0.649
                           MIL         -1.763   -1.450    -1.374           0.372
                           HEALTH      -2.222   -1.520    -1.290           0.670

  Cluster 4 of 4 Contains 8 Cases

         Members                               Statistics                      
                                                                  Mean Absolute
  Case         Distance   Variable   Minimum   Median   Maximum       Deviation
 ------------------------------------------------------------------------------
  Iraq            0.585   URBAN       -0.885   -0.031     0.418           0.511
  Libya           0.659   BIRTH_RT     0.084    0.542     1.610           0.410
  Brazil          0.263   DEATH_RT    -1.284   -0.770    -0.257           0.160
  Colombia        0.364   BABYMORT    -0.129    0.408     0.551           0.159
  Ecuador         0.160   LIFEEXPM    -0.628   -0.305     0.233           0.229
  ElSalvador      0.215   LIFEEXPF    -0.569   -0.297     0.157           0.136
  Guatemala       0.343   GDP_CAP     -0.753   -0.579     0.357           0.275
  Peru            0.301   B_TO_D       0.483    1.158     2.417           0.512
                          LITERACY    -0.943   -0.236     0.368           0.733
                          EDUC        -0.888   -0.487     0.925           0.680
                          MIL         -1.250   -0.838     1.456           0.960
                          HEALTH      -0.911   -0.721     0.422           0.545
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Cluster Parallel Coordinate Plots
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Scatter Plot Matrix 

Example 2  
Hierarchical Clustering: Clustering Cases

This example uses the SUBWORLD data (see the K-Means example for a description) 
to cluster cases. 

The input is:

The output is:

CLUSTER
USE SUBWORLD
IDVAR COUNTRY$
LET (GDP_CAP, EDUC, MIL, HEALTH) = L10(@)
STANDARDIZE / SD
JOIN URBAN BIRTH_RT DEATH_RT BABYMORT LIFEEXPM,

           LIFEEXPF GDP_CAP B_TO_D LITERACY EDUC MIL HEALTH 

Distance Metric is Euclidean Distance
Single Linkage Method (Nearest Neighbor)

     Clusters Joining       at Distance   No. of Members
 ---------------------------------------------------------
  WGermany      Belgium             0.087                2
  WGermany      Denmark             0.111                3
  WGermany      UK                  0.113                4
  Sweden        WGermany            0.128                5
  Austria       Sweden              0.161                6
  Austria       France              0.194                7
  Austria       Italy               0.194                8
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The numerical results consist of the joining history. The countries at the top of the 
panel are joined first at a distance of 0.087. The last entry represents the joining of the 
largest two clusters to form one cluster of all 30 countries. Switzerland is in one of the 
clusters and Ethiopia is in the other.

The clusters are best illustrated using a tree diagram. Because the example joins 
rows (cases) and uses COUNTRY as an ID variable, the branches of the tree are labeled 
with countries. If you join columns (variables), then variable names are used. The scale 
for the joining distances is printed at the bottom. Notice that Iraq and Libya, which 

  Austria       Canada              0.211                9
  Uruguay       Argentina           0.215                2
  Switzerland   Austria             0.236               10
  Czechoslov    Poland              0.241                2
  Switzerland   Czechoslov          0.260               12
  Guatemala     ElSalvador          0.315                2
  Guatemala     Ecuador             0.316                3
  Uruguay       Chile               0.370                3
  Cuba          Uruguay             0.374                4
  Haiti         Somalia             0.397                2
  Switzerland   Cuba                0.403               16
  Guatemala     Brazil              0.417                4
  Peru          Guatemala           0.421                5
  Colombia      Peru                0.443                6
  Ethiopia      Haiti               0.474                3
  Panama        Colombia            0.516                7
  Switzerland   Panama              0.556               23
  Libya         Iraq                0.570                2
  Afghanistan   Guinea              0.583                2
  Ethiopia      Afghanistan         0.597                5
  Switzerland   Libya               0.860               25
  Switzerland   Ethiopia            0.908               30

Cluster Tree
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form their own cluster as they did in the K-Means example, are the second-to-last 
cluster to link with others. They join with all the countries listed above them at a 
distance of 0.860. Finally, at a distance of 0.908, the five countries at the bottom of the 
display are added to form one large cluster. 

Polar Dendrogram

Adding the POLAR option to JOIN yields a polar dendrogram. 

Cluster Tree
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Example 3  
Hierarchical Clustering: Clustering Variables

This example joins columns (variables) instead of rows (cases) to see which variables 
cluster together. 

The input is:

The output is:

CLUSTER
USE SUBWORLD
IDVAR COUNTRY$
LET (GDP_CAP, EDUC, MIL, HEALTH) = L10(@)
STANDARDIZE / SD
JOIN URBAN BIRTH_RT DEATH_RT BABYMORT LIFEEXPM,

           LIFEEXPF GDP_CAP B_TO_D LITERACY, 
           EDUC MIL HEALTH / COLUMNS DISTANCE=PEARSON

Distance Metric is 1-Pearson Correlation Coefficient
Single Linkage Method (Nearest Neighbor)

   Clusters Joining     at Distance   No. of Members
 -----------------------------------------------------
  LIFEEXPF    LIFEEXPM          0.011                2
  HEALTH      GDP_CAP           0.028                2
  EDUC        HEALTH            0.038                3
  LIFEEXPF    LITERACY          0.074                3
  BABYMORT    BIRTH_RT          0.077                2
  EDUC        LIFEEXPF          0.102                6
  MIL         EDUC              0.120                7
  MIL         URBAN             0.165                8
  B_TO_D      BABYMORT          0.358                3
  B_TO_D      DEATH_RT          0.365                4
  B_TO_D      MIL               1.279               12
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The scale at the bottom of the tree for the distance (1–r) ranges from 0.0 to 1.5. The 
smallest distance is 0.011—thus, the correlation of LIFEEXPM with LIFEEXPF is 
0.989.

Example 4  
Hierarchical Clustering: Clustering Variables and Cases

To produce a shaded display of the original data matrix in which rows and columns are 
permuted according to an algorithm in Gruvaeus and Wainer (1972), use the MATRIX 
option. Different shadings or colors represent the magnitude of each number in the 
matrix (Ling, 1973). 

If you use the MATRIX option with Euclidean distance, be sure that the variables are 
on comparable scales because both rows and columns of the matrix are clustered. 
Joining a matrix containing inches of annual rainfall and annual growth of trees in feet, 
for example, would split columns more by scales than by covariation. In cases like this, 
you should standardize your data before joining.

Cluster Tree
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The input is:

The output is:

This clustering reveals three groups of countries and two groups of variables. The 
countries with more urban dwellers and literate citizens, longest life-expectancies, 
highest gross domestic product, and most expenditures on health care, education, and 
the military are on the top left of the data matrix; countries with the highest rates of 
death, infant mortality, birth, and population growth (see B_TO_D) are on the lower 
right. You can also see that, consistent with the KMEANS and JOIN examples, Iraq 
and Libya spend much more on military, education, and health than their immediate 
neighbors.

CLUSTER
USE SUBWORLD
IDVAR COUNTRY$
LET (GDP_CAP, EDUC, MIL, HEALTH) = L10(@)
STANDARDIZE / SD
JOIN URBAN BIRTH_RT DEATH_RT BABYMORT LIFEEXPM,

           LIFEEXPF GDP_CAP B_TO_D LITERACY EDUC, 
           MIL HEALTH / MATRIX

Distance Metric is Euclidean Distance
Single Linkage Method (Nearest Neighbor)
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Example 5  
Hierarchical Clustering: Distance Matrix Input

This example clusters a matrix of distances. The data, stored as a dissimilarity matrix 
in the CITIES data file, are airline distances in hundreds of miles between 10 global 
cities. The data are adapted from Hartigan (1975).

The input is:

The output is:

CLUSTER
USE CITIES
JOIN BERLIN BOMBAY CAPETOWN CHICAGO LONDON,

 MONTREAL NEWYORK PARIS SANFRAN SEATTLE

Single Linkage Method (Nearest Neighbor)

   Clusters Joining     at Distance   No. of Members
 -----------------------------------------------------
  PARIS       LONDON            2.000                2
  NEWYORK     MONTREAL          3.000                2
  BERLIN      PARIS             5.000                3
  CHICAGO     NEWYORK           7.000                3
  SEATTLE     SANFRAN           7.000                2
  SEATTLE     CHICAGO          17.000                5
  BERLIN      SEATTLE          33.000                8
  BOMBAY      BERLIN           39.000                9
  BOMBAY      CAPETOWN         51.000               10

Cluster Tree
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The tree is printed in seriation order. Imagine a trip around the globe to these cities. 
SYSTAT has identified the shortest path between cities. The itinerary begins at San 
Francisco, leads to Seattle, Chicago, New York, and so on, and ends in Capetown.

Note that the CITIES data file contains the distances between the cities; SYSTAT 
did not have to compute those distances. When you save the file, be sure to save it as 
a dissimilarity matrix.

This example is used both to illustrate direct distance input and to give you an idea 
of the kind of information contained in the order of the SYSTAT cluster tree. For 
distance data, the seriation reveals shortest paths; for typical sample data, the seriation 
is more likely to replicate in new samples so that you can recognize cluster structure.

Example 6  
Density Clustering Examples

K-th Nearest Neighbor Density Linkage Clustering

The data file CARS is used for analysis of Hierarchical Clustering using K-th Nearest 
Neighbor density linkage clustering.

The variables in the CARS data which are used for analysis are ACCEL, BRAKE, 

SLALOM, MPG and SPEED.

The input is:

The output is:

CLUSTER
USE CARS
IDVAR NAME$
STANDARDIZE ACCEL BRAKE SLALOM MPG SPEED
JOIN ACCEL BRAKE SLALOM MPG SPEED/LINKAGE=KNBD K=3

Distance Metric is Euclidean Distance
KNBD Density Linkage Method for K = 3

      Clusters Joining        at Distance   No. of Members
 -----------------------------------------------------------
  BMW 635        Saab 9000            0.914                2
  Toyota Supra   BMW 635              0.914                3
  Testarossa     Porsche 911T         2.715                2
  Corvette       Testarossa           2.715                3
  Mercedes 560   Toyota Supra         2.808                4
  Mercedes 560   Acura Legend        12.274                5
  Corvette       Mercedes 560        13.309                8
  VW Fox GL      Corvette            17.320                9
  VW Fox GL      Chevy Nova          28.192               10
  VW Fox GL      Civic CRX           31.941               11



I-113

Cluster Analysis

Uniform Kernel Density Linkage Clustering

The data file CARS is used for analysis of Hierarchical Clustering using Uniform 
Kernel density linkage clustering.

The variables in CARS data which are used for analysis are ACCEL, BRAKE, SLALOM, 
MPG and SPEED.

The input is:

CLUSTER
USE CARS
IDVAR NAME$
STANDARDIZE ACCEL BRAKE SLALOM MPG SPEED
JOIN ACCEL BRAKE SLALOM MPG SPEED/LINKAGE=UNIFORM RADIUS=1.2

Cluster Tree
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The output is:

Distance Metric is Euclidean Distance
Uniform Density Linkage Method for Radius = 1.200

      Clusters Joining        at Distance   No. of Members
 -----------------------------------------------------------
  BMW 635        Toyota Supra        18.010                2
  BMW 635        Porsche 911T        19.296                3
  Saab 9000      BMW 635             19.296                4
  Acura Legend   Saab 9000           19.296                5
  Acura Legend   Corvette            21.011                6
  VW Fox GL      Acura Legend        21.011                7
  VW Fox GL      Mercedes 560        23.413                8
  VW Fox GL      Testarossa          34.304                9
  Civic CRX      VW Fox GL           34.304               10
  Chevy Nova     Civic CRX           34.304               11

Cluster Tree
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Example 7  
Flexible Beta Linkage Method for Hierarchical Clustering

The data file CARS is used for the analysis of Hierarchical Clustering using Flexible 
beta linkage clustering.

The variables in CARS data which are used for analysis are ACCEL, BRAKE, 
SLALOM, MPG and SPEED.

The input is:

The output is:

CLUSTER
USE CARS
IDVAR NAME$
STANDARDIZE ACCEL BRAKE SLALOM MPG SPEED
JOIN ACCEL BRAKE SLALOM MPG SPEED/LINKAGE=FLEXIBETA BETA=-0.25

Distance Metric is Euclidean Distance
Flexible Beta Linkage Method for Beta = -0.250

      Clusters Joining        at Distance   No. of Members
 -----------------------------------------------------------
  Corvette       Porsche 911T         0.373                2
  BMW 635        Saab 9000            0.392                2
  Toyota Supra   BMW 635              0.563                3
  Corvette       Testarossa           0.746                3
  Mercedes 560   Toyota Supra         1.013                4
  Chevy Nova     Acura Legend         1.038                2
  VW Fox GL      Civic CRX            1.161                2
  VW Fox GL      Chevy Nova           1.339                4
  Corvette       Mercedes 560         1.842                7
  VW Fox GL      Corvette             2.997               11
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Example 8  
Validity indices RMSSTD, Pseudo F, and Pseudo T-square with cities

In this example we have used the CITIES data file for the analysis of Hierarchical 
clustering for the validity of RMSSTD, PSEUDO F and PSEUDO T-SQUARE.

This analysis specifies how many good partitions can be made for the given data in 
hierarchical clustering.

The input is:

The output is:

CLUSTER
USE CITIES
JOIN/LINKAGE=CENTROID VALIDITY = RMSSTD CHF PTS MAX=9

Centroid Linkage Method

  Clusters Joining     at Distance   No. of Members   RMSSTD   Pseudo F  
-------------------------------------------------------------------
PARIS      LONDON           2.000                2    1.000     25.350  
NEWYORK    MONTREAL         3.000                2    1.225     23.006  
BERLIN     PARIS            5.000                3    1.472     16.969  
CHICAGO    NEWYORK          6.750                3    1.732     14.978  
SEATTLE    SANFRAN          7.000                2    1.871     17.166  
SEATTLE    CHICAGO         18.583                5    2.820      9.280  
BERLIN     SEATTLE         35.929                8    3.845      3.392  
CAPETOWN   BOMBAY          51.000                2    5.050      4.639  
CAPETOWN   BERLIN          46.750               10    4.759          .  

 Pseudo T-square
----------------
               .
               .
           3.333
           3.000
               .
           7.042
          11.186
               .
           4.639
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We observe that there is a “knee” in the RMSSTD plot at 5, a jump in the plot of the 
pseudo T-square also at 5 and a peak at the same point in the graph of pseudo F. Hence 
the appropriate number of clusters appears to be 5. In some data sets the indices may 
not all point to the same clustering; you must then choose the appropriate clustering 
scheme based on the type of data.

Cluster Tree
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Example 9  
Hierarchical Clustering with Leaf Option

In this example we have used the IRIS data file for leaf option analysis in hierarchical 
clustering. The IRIS data file contains the following variables: SPECIES, SEPALLEN, 
SEPALWID, PETALLEN and PETALWID. It becomes difficult to understand the 
substructures of the data from the cluster trees when there are a large number of 
objects. In such cases, the LEAF option helps the user to concentrate on the upper part 
of the tree. In the following example with LEAF =13, SYSTAT provides another tree 
with 13 leaf nodes along with a partition table. The table shows the content of each 
node.

The input is:

The following is a part of the output:

CLUSTER
USE IRIS
JOIN SEPALLEN SEPALWID PETALLEN PETALWID/LINKAGE=WARD LEAF=13

Distance Metric is Euclidean Distance
Ward Minimum Variance Method

Cluster Tree and Partition Table for LEAF = 13

Cluster Tree
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 Node1     Node2     Node3     Node4     Node5     Node6      Node7     
 -------------------------------------------------------------------
  Case 6    Case 1    Case 2    Case 58   Case 54   Case 56    Case 69   
  Case 11   Case 5    Case 3    Case 61   Case 60   Case 67    Case 73   
  Case 15   Case 8    Case 4    Case 94   Case 63   Case 85    Case 84   
  Case 16   Case 18   Case 7    Case 99   Case 65   Case 89    Case 88   
  Case 17   Case 20   Case 9              Case 68   Case 91    Case 120  
  Case 19   Case 22   Case 10             Case 70   Case 95    Case 124  
  Case 21   Case 24   Case 12             Case 80   Case 96    Case 127  
  Case 32   Case 25   Case 13             Case 81   Case 97    Case 134  
  Case 33   Case 27   Case 14             Case 82   Case 100   Case 147  
  Case 34   Case 28   Case 23             Case 83   Case 107             
  Case 37   Case 29   Case 26             Case 90                        
  Case 49   Case 38   Case 30             Case 93                        
            Case 40   Case 31                                            
            Case 41   Case 35                                            
            Case 44   Case 36                                            
            Case 45   Case 39                                            
            Case 47   Case 42                                            
            Case 50   Case 43                                            
                      Case 46                                            
                      Case 48                                            

  Node8      Node9     Node10    Node11     Node12     Node13  
 --------------------------------------------------------------
  Case 71    Case 52   Case 51   Case 101   Case 104   Case 103
  Case 102   Case 57   Case 53   Case 111   Case 105   Case 106
  Case 114   Case 62   Case 55   Case 113   Case 109   Case 108
  Case 115   Case 64   Case 59   Case 116   Case 112   Case 110
  Case 122   Case 72   Case 66   Case 121   Case 117   Case 118
  Case 128   Case 74   Case 76   Case 125   Case 129   Case 119
  Case 139   Case 75   Case 77   Case 137   Case 133   Case 123
  Case 143   Case 79   Case 78   Case 140   Case 135   Case 126
  Case 150   Case 86   Case 87   Case 141   Case 138   Case 130
             Case 92             Case 142              Case 131
             Case 98             Case 144              Case 132
                                 Case 145              Case 136
                                 Case 146                      
                                 Case 148                      
                                 Case 149                      

Cluster Tree
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Example 10  
Additive Trees

These data are adapted from an experiment by Rothkopf (1957) in which 598 subjects 
were asked to judge whether Morse code signals presented two in succession were the 
same. All possible ordered pairs were tested. For multidimensional scaling, the data for 
letter signals is averaged across the sequence and the diagonal (pairs of the same 
signal) is omitted. The variables are A through Z.

The input is:

The output is:

CLUSTER
USE ROTHKOPF
ADD A .. Z

Similarities linearly transformed into distances
77.000 needed to make distances positive
104.000 added to satisfy triangle inequality
Checking 14950 quadruples
Checking 1001 quadruples
Checking 330 quadruples
Checking 70 quadruples
Checking 1 quadruples
Stress Formula 1                         : 0.061 
Stress Formula 2                         : 0.399 
R-squared(Monotonic)                     : 0.841 
R-squared (Present Value Annuity Factor) : 0.788 

  Node   Length   Child
 ----------------------
     1   23.396   A    
     2   15.396   B    
     3   14.813   C    
     4   13.313   D    
     5   24.125   E    
     6   34.837   F    
     7   15.917   G    
     8   27.875   H    
     9   25.604   I    
    10   19.833   J    
    11   13.688   K    
    12   28.620   L    
    13   21.813   M    
    14   22.188   N    
    15   19.083   O    
    16   14.167   P    
    17   18.958   Q    
    18   21.438   R    
    19   28.000   S    
    20   23.875   T    
    21   23.000   U    
    22   27.125   V    
    23   21.563   W    
    24   14.604   X    
    25   17.188   Y    
    26   18.042   Z    
    27   16.943   1,9  
    28   15.380   2,24 
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(SYSTAT also displays the raw data, as well as the model distances.) 

    29   15.716   3,25 
    30   19.583   4,11 
    31   26.063   5,20 
    32   23.843   7,15 
    33    6.114   8,22 
    34   17.175   10,16
    35   18.807   13,14
    36   13.784   17,26
    37   15.663   18,23
    38    8.886   19,21
    39    4.562   27,35
    40    1.700   29,36
    41    8.799   33,38
    42    4.180   39,31
    43    1.123   12,28
    44    5.049   34,40
    45    2.467   42,41
    46    4.585   30,43
    47    2.616   32,44
    48    2.730   6,37 
    49    0.000   45,48
    50    3.864   46,47
    51    0.000   50,49
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Computation

Algorithms

JOIN follows the standard hierarchical amalgamation method described in Hartigan 
(1975). The algorithm in Gruvaeus and Wainer (1972) is used to order the tree. The  
Kth-Nearest Neighborhood method and the Uniform Kernel method use the algorithm 
prescribed in Wong and Lane (1983).

KMEANS follows the algorithm described in Hartigan (1975). Its speed can be 
improved using modifications proposed by Hartigan and Wong (1979). There is an 
important difference between SYSTAT’s KMEANS algorithm and implementations of 
Hartigan’s algorithm in BMDP, SAS, and SPSS: in SYSTAT, by default, seeds for 
new clusters are chosen by finding the case farthest from the centroid of its cluster; in 
Hartigan’s algorithm, seeds forming new clusters are chosen by splitting on the 
variable with largest variance. KMEDIANS essentially follows the same algorithm but 
uses the median instead of the mean. The median is determined by a modification of 
binary search.

Missing Data

In cluster analysis, all distances are computed with pairwise deletion of missing values. 
Since missing data are excluded from distance calculations by pairwise deletion, they 
do not directly influence clustering when you use the MATRIX option for JOIN. To use 
the MATRIX display to analyze patterns of missing data, create a new file in which 
missing values are recoded to 1, and all other values to 0. Then use JOIN with MATRIX 
to see whether missing values cluster together in a systematic pattern. 
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