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Chap ter  

 12  
Factor Analysis

Herb Stenson and Leland Wilkinson

FACTOR provides principal components analysis and common factor analysis 
(maximum likelihood and iterated principal axis). SYSTAT has options to rotate, sort, 
plot, and save factor loadings. With the principal components method, you can also 
save the scores and coefficients. Orthogonal methods of rotation include varimax, 
equamax, quartimax, and orthomax. A direct oblimin method is also available for 
oblique rotation. Users can explore other rotations by interactively rotating a 3-D 
Quick Graph plot of the factor loadings. Various inferential statistics (for example, 
confidence intervals, standard errors, and chi-square tests) are provided, depending on 
the nature of the analysis that is run.

Resampling procedures are available in this feature.

Statistical Background

Principal components (PCA) and common factor (MLA for maximum likelihood and 
IPA for iterated principal axis) analyses are methods of decomposing a correlation or 
covariance matrix. Although principal components and common factor analyses are 
based on different mathematical models, they can be used on the same data and both 
usually produce similar results. Factor analysis is often used in exploratory data 
analysis to:

� Study the correlations of a large number of variables by grouping the variables in 
“factors” so that variables within each factor are more highly correlated with 
variables in that factor than with variables in other factors.

� Interpret each factor according to the meaning of the variables.
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� Summarize many variables by a few factors. The scores from the factors can be 
used as input data for t tests, regression, ANOVA, discriminant analysis, and so on.

Often the users of factor analysis are overwhelmed by the gap between theory and 
practice. In this chapter, we try to offer practical hints. It is important to realize that you 
may need to make several passes through the procedure, changing options each time, 
until the results give you the necessary information for your problem.

If you understand the component model, you are on the way toward understanding 
the factor model, so let us begin with the former.

A Principal Component

What is a principal component? The simplest way to see is through real data. The 
following data consist of Graduate Record Examination verbal and quantitative scores. 
These scores are from 25 applicants to a graduate psychology department.

VERBAL  QUANTITATIVE

590 530
620 620
640 620
650 550
620 610
610 660
560 570
610 730
600 650
740 790
560 580
680 710
600 540
520 530
660 650
750 710
630 640
570 660
600 650
570 570
600 550
690 540
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Now, we could decide to try linear regression to predict verbal scores from quantitative. 
Or, we could decide to predict quantitative from verbal by the same method. The data 
does not suggest which is a dependent variable; either will do. What if we are not 
interested in predicting either one separately but instead want to know how both 
variables hang together jointly? This is what a principal component does. Karl Pearson, 
who developed principal component analysis in 1901, described a component as a “line 
of closest fit to systems of points in space.” In short, the regression line indicates best 
prediction, and the component line indicates best association.

The following figure shows the regression and component lines for our GRE data. 
The regression of y on x is the line with the smallest slope (flatter than diagonal). The 
regression of x on y is the line with the largest slope (steeper than diagonal). The 
component line is between the other two. Interestingly, when most people are asked to 
draw a line relating two variables in a scatterplot, they tend to approximate the 
component line. It takes a lot of explaining to get them to realize that this is not the best 
line for predicting the vertical axis variable (y) or the horizontal axis variable (x). 

Notice that the slope of the component line is approximately 1, which means that the 
two variables are weighted almost equally (assuming the axis scales are the same). We 
could make a new variable called GRE that is the sum of the two tests:
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GRE = VERBAL + QUANTITATIVE

This new variable could summarize, albeit crudely, the information in the other two. If 
the points clustered almost perfectly around the component line, then the new 
component variable could summarize almost perfectly both variables.

Multiple Principal Components

The goal of principal components analysis is to summarize a multivariate data set as 
accurately as possible using a few components. So far, we have seen only one 
component. It is possible, however, to draw a second component perpendicular to the 
first. The first component will summarize as much of the joint variation as possible. 
The second will summarize what is left. If we do this with the GRE data, of course, we 
will have as many components as original variables—not much of a saving. We usually 
seek fewer components than variables, so that the variation left over is negligible. 

Component Coefficients

In the above equation for computing the first principal component on our test data, we 
made both coefficients equal. In fact, when you run the sample covariance matrix using 
factor analysis in SYSTAT, the coefficients are as follows: 

GRE = 0.008 * VERBAL + 0.01 * QUANTITATIVE

They are indeed nearly equal. Their magnitude is considerably less than 1 because 
principal components are usually scaled to conserve variance. That is, once you 
compute the components with these coefficients, the total variance on the components 
is the same as the total variance on the original variables. 

Component Loadings

Most researchers want to know the relation between the original variables and the 
components. Some components may be nearly identical to an original variable; in other 
words, their coefficients may be nearly 0 for all variables except one. Other 
components may be a more even amalgam of several original variables.

Component loadings are the covariances of the original variables with the 
components. In our example, these loadings are 51.085 for VERBAL and 62.880 for 
QUANTITATIVE. You may have noticed that these are proportional to the coefficients; 
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they are simply scaled differently. If you square each of these loadings and add them 
up separately for each component, you will have the variance accounted for by each 
component.

Correlations or Covariances

Most researchers prefer to analyze the correlation rather than covariance structure 
among their variables. Sample correlations are simply covariances of sample 
standardized variables. Thus, if your variables are measured on very different scales or 
if you feel the standard deviations of your variables are not theoretically significant, 
you will want to work with correlations instead of covariances. In our test example, 
working with correlations yields loadings of 0.879 for each variable instead of 51.085 
and 62.880. When you factor the correlation instead of the covariance matrix, then the 
loadings are the correlations of each component with each original variable.

For our test data, loadings of 0.879 mean that if you created a GRE component by 
standardizing VERBAL and QUANTITATIVE and adding them together weighted by 
the coefficients, you would find the correlation between these component scores and 
the original VERBAL scores to be 0.879. The same would be true for QUANTITATIVE.

Signs of Component Loadings

The signs of loadings within components are arbitrary. If a component (or factor) has 
more negative than positive loadings, you may change minus signs to plus and plus to 
minus. SYSTAT does this automatically for components that have more negative than 
positive loadings, and thus will occasionally produce components or factors that have 
different signs from those in other computer programs. This occasionally confuses 
users. In mathematical terms,  and  are equivalent.

Factor Analysis

We have seen how principal components analysis is a method for computing new 
variables that summarize variation in a space parsimoniously. For our test variables, the 
equation for computing the first component was:

GRE = 0.008 * VERBAL + 0.01 * QUANTITATIVE

This component equation is linear, of the form:

Ax λx= Ax– λx–=
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Component = Linear combination of {Observed variables}

Factor analysts turn this equation around:

Observed variable = Linear combination of {Factors} + Error

This model was presented by Spearman near the turn of the century in the context of a 
single intelligence factor and extended to multiple mental measurement factors by 
Thurstone several decades later. Notice that the factor model makes observed variables 
a function of unobserved factors. Even though this looks like a linear regression model, 
none of the graphical and analytical techniques used for regression can be applied to 
the factor model because there is no unique, observable set of factor scores or residuals 
to examine. 

Factor analysts are less interested in prediction than in decomposing a covariance 
matrix. This is why the fundamental equation of factor analysis is not the above linear 
model, but rather its quadratic form:

Observed covariances = Factor covariances + Error covariances

The covariances in this equation are usually expressed in matrix form, so that the 
model decomposes an observed covariance matrix into a hypothetical factor covariance 
matrix plus a hypothetical error covariance matrix. The diagonals of these two 
hypothetical matrices are known, respectively, as communalities and specificities.

In ordinary language, then, the factor model expresses variation within and relations 
among observed variables as partly common variation among factors and partly 
specific variation among random errors. 
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Estimating Factors

Factor analysis involves several steps:

� First, the correlation or covariance matrix is computed from the usual cases-by-
variables data file or it is input as a matrix.

� Second, the factor loadings are estimated. This is called initial factor extraction. 
Extraction methods are described in this section.

� Third, the factors are rotated to make the loadings more interpretable—that is, 
rotation methods make the loadings for each factor either large or small, not in-
between. These methods are described in the next section.

Factors must be estimated iteratively in a computer. There are several methods 
available. The most popular approach, available in SYSTAT, is to modify the diagonal 
of the observed covariance matrix and calculate factors the same way components are 
computed. This procedure is repeated until the communalities reproduced by the factor 
covariances are indistinguishable from the diagonal of the modified matrix. 

Rotation

Usually the initial factor extraction does not give interpretable factors. One of the 
purposes of rotation is to obtain factors that can be named and interpreted. That is, if 
you can make the large loadings larger than before and the smaller loadings smaller, 
then each variable is associated with a minimal number of factors. Hopefully, the 
variables that load strongly together on a particular factor will have a clear meaning 
with respect to the subject area at hand.

It helps to study plots of loadings for one factor against those for another. Ideally, 
you want to see clusters of loadings at extreme values for each factor: like what A and 
C are for factor 1, and B and D are for factor 2 in the left plot, and not like E and F in 
the middle plot.
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In the middle plot, the loadings in groups E and F are sizeable for both factors 1 and 2. 
However, if you lift the plot axes away from E and F, rotating them 45 degrees, and then 
set them down as on the right, you achieve the desired effect. Sounds easy for two 
factors. For three factors, imagine that the loadings are balls floating in a room and that 
you rotate the floor and walls so that each loading is as close to the floor or a wall as it 
can be. This concept generalizes to more dimensions.

Researchers let the computer do the rotation automatically. There are many criteria 
for achieving a simple structure among component loadings, although Thurstone’s are 
most widely cited. For p variables and m components:

� Each component should have at least m near-zero loadings.

� Few components should have nonzero loadings on the same variable.

SYSTAT provides five methods of rotating loadings: varimax, equamax, quartimax, 
orthomax, and oblimin.

Principal Components versus Factor Analysis

SYSTAT can perform both principal components and common factor analysis. Some 
view principal components analysis as a method of factor analysis, although there is a 
theoretical distinction between the two. Principal components are weighted linear 
composites of observed variables. Common factors are unobserved variables that are 
hypothesized to account for the intercorrelations among observed variables.

One significant practical difference is that common factor scores are indeterminate, 
whereas principal component scores are not. There are no sufficient estimators of 
scores for subjects on common factors (rotated or unrotated, maximum likelihood, or 
otherwise). Some computer models provide “regression” estimates of factor scores, 
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but these are not estimates in the usual statistical sense. This problem arises not 
because factors can be arbitrarily rotated (so can principal components), but because 
the common factor model is based on more unobserved parameters than observed data 
points, an unusual circumstance in statistics.

In recent years, “maximum likelihood” factor analysis algorithms have been 
devised to estimate common factors. The implementation of these algorithms in 
popular computer packages has led some users to believe that the factor indeterminacy 
problem does not exist for “maximum likelihood” factor estimates. It does.

Mathematicians and psychometricians have known about the factor indeterminacy 
problem for decades. For a historical review of the issues, see Steiger (1979); for a 
general review, see Rozeboom (1982). For further information refer Harman (1976), 
Mulaik (1972), Gnanadesikan (1977), or Mardia, Kent, and Bibby (1979), Afifi, May, 
and Clark (2004), Clarkson and Jennrich (1988), or Dixon (1992).

Because of the indeterminacy problem, SYSTAT computes subjects’ scores only 
for the principal components model where subjects’ scores are a simple linear 
transformation of scores on the factored variables. SYSTAT does not save scores from 
a common factor model.

Applications and Caveats

While there is not room here to discuss more statistical issues, you should realize that 
there are several myths about factors versus components:

Myth. The factor model allows hypothesis testing; the component model does not. 
Fact. Morrison (2004) and others present a full range of formal statistical tests for 
components.

Myth. Factor loadings are real; principal component loadings are approximations. 
Fact. This statement is too ambiguous to have any meaning. It is easy to define things 
so that factors are approximations of components. 

Myth. Factor analysis is more likely to uncover lawful structure in your data; principal 
components are more contaminated by error.  
Fact. Again, this statement is ambiguous. With further definition, it can be shown to be 
true for some data, false for other. It is true that, in general, factor solutions will have 
lower dimensionality than corresponding component solutions. This can be an 
advantage when searching for simple structure among noisy variables, as long as you 
compare the result to a principal components solution to avoid being fooled by the sort 
of degeneracies illustrated above.
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Factor Analysis in SYSTAT

Factor Analysis Dialog Box

For factor analysis, from the menus choose:

Analyze 
Factor Analysis… 

The following options are available:

Model variables. Variables used to create factors.
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Method. SYSTAT offers three estimation methods:

� Principal components analysis (PCA) is the default method of analysis.

� Iterated principal axis (IPA) provides an iterative method to extract common 
factors by starting with the principal components solution and iteratively solving 
for communalities.

� Maximum likelihood analysis (MLA) iteratively finds communalities and common 
factors.

Display. You can sort factor loadings by size or display extended results. Selecting 
Extended results displays all possible factor output.

Sample size for matrix input. If your data are in the form of a correlation or covariance 
matrix, you must specify the sample size on which the input matrix is based so that 
inferential statistics (available with extended results) can be computed. 

Matrix for extraction. You can factor a correlation matrix or a covariance matrix. Most 
frequently, the correlation matrix is used. You can also delete missing cases pairwise 
instead of listwise. Listwise deletes any case with missing data for any variable in the 
list. Pairwise examines each pair of variables and uses all cases with both values 
present.

Extraction parameters. You can limit the results by specifying extraction parameters.

� Minimum eigenvalue. Specify the smallest eigenvalue to retain. The default is 1.0 
for PCA and IPA (not available with maximum likelihood). Incidentally, if you 
specify 0, factor analysis ignores components with negative eigenvalues (which 
can occur with pairwise deletion).

� Number of factors. Specify the number of factors to compute. If you specify both 
the number of factors and the minimum eigenvalue, factor analysis uses whichever 
criterion results in the smaller number of components.

� Iterations. Specify the number of iterations SYSTAT should perform (not 
available for principal components). The default is 25.

� convergence. Specify the convergence criterion (not available for principal 
components). The default is 0.001.
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Rotation   

This tab specifies the factor rotation method.  

The following methods are available:

� No rotation. Factors are not rotated.

� Varimax. An orthogonal rotation method that minimizes the number of variables 
that have high loadings on each factor. It simplifies the interpretation of the factors.

� Equamax. A rotation method that is a combination of the varimax method, which 
simplifies the factors, and the quartimax method, which simplifies the variables. 
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The number of variables that load highly on a factor and the number of factors 
needed to explain a variable are minimized.

� Quartimax. A rotation method that minimizes the number of factors needed to 
explain each variable. It simplifies the interpretation of the observed variables.

� Orthomax. Specifies families of orthogonal rotations. Gamma specifies the 
member of the family to use. Varying Gamma changes maximization of the 
variances of the loadings from columns (Varimax) to rows (Quartimax).

� Oblimin. Specifies families of oblique (non-orthogonal) rotations. Gamma 
specifies the member of the family to use. For Gamma, specify 0 for moderate 
correlations, positive values to allow higher correlations, and negative values to 
restrict correlations. 
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Save

You can save factor analysis results for further analyses. 

For the maximum likelihood and iterated principal axis methods, you can save only 
loadings. For the principal components method, select from these options:

� Do not save results. Results are not saved.

� Factor scores. Standardized factor scores

� Residuals. Residuals for each case. For a correlation matrix, the residual is the 
actual z score minus the predicted z score using the factor scores times the loadings 
to get the predicted scores. For a covariance matrix, the residuals are from 
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unstandardized predictions. With an orthogonal rotation, Q and PROB are also 
saved. Q is the sum of the squared residuals, and PROB is its probability.

� Principal components. Unstandardized principal components scores with mean 0 
and variance equal to the eigenvalue for the factor (only for PCA without rotation).

� Factor coefficients. Coefficients that produce standardized scores. For a correlation 
matrix, multiply the coefficients by the standardized variables; for a covariance 
matrix, use the original variables.

� Eigenvectors. Eigenvectors (only for PCA without a rotation). Use to produce 
unstandardized scores.

� Factor loadings. Factor loadings.

� Save data with scores. Saves the selected item and all the variables in the working 
data file as a new data file. Use with options for scores (not loadings, coefficients, 
or other similar options).

If you save scores, the variables in the file are labeled FACTOR(1), FACTOR(2), and so 
on. Any observations with missing values on any of the input variables will have 
missing values for all scores. The scores are normalized to have zero mean and, if the 
correlation matrix is used, unit variance. If you use the covariance matrix and perform 
no rotations, SYSTAT does not standardize the component scores. The sum of their 
variances is the same as for the original data.

If you want to use the score coefficients to get component scores for new data, 
multiply the coefficients by the standardized data. SYSTAT does this when it saves 
scores. Another way to do cross-validation is to assign a zero weight to those cases not 
used in the factoring and to assign a unit weight to those cases used. The zero-weight 
cases are not used in the factoring, but scores are computed for them.

When Factor scores or Principal components is requested, T2 and PROB are also saved. 
The former is the Hotelling T2 statistic that squares the standardized distance from each 
case to the centroid of the factor space (that is, the sum of the squared, standardized 
factor scores). PROB is the upper-tail probability of T2. Use this statistic to identify 
outliers within the factor space. T2 is not computed with an oblique rotation.
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Using Commands

After selecting a data file with USE filename, continue with:

Usage Considerations 

Types of data. Data for factor analysis can be a cases-by-variables data file, a 
correlation matrix, or a covariance matrix.

Print options. Factor analysis offers three categories of output: Short (the default), 
Medium, and Long. Each has specific output panels associated with it. 

For Short, the default, panels are: Latent roots or eigenvalues (not MLA), initial 
communality estimates (not PCA), component loadings (PCA) or factor pattern (MLA, 
IPA), variance explained by components (PCA) or factors (MLA, IPA), percentage of 
total variance explained, change in uniqueness and log likelihood at each iteration 
(MLA only), and canonical correlations (MLA only). When a rotation is requested: 
rotated loadings (PCA) or pattern (MLA, IPA) matrix, variance explained by rotated 
components, percentage of total variance explained, and correlations among oblique 
components or factors (oblimin only).

By specifying Medium, you get the panels listed for Short, plus: the matrix to factor, 
the chi-square test that all eigenvalues are equal (PCA only), the chi-square test that 
the last k eigenvalues are equal (PCA only), and differences of original correlations or 
covariances minus fitted values. For covariance matrix input (not MLA or IPA): 
asymptotic 95% confidence limits for the eigenvalues and estimates of the population 
eigenvalues with standard errors.

With Long, you get the panels listed for Short and Medium, plus: latent vectors 
(eigenvectors) with standard errors (not MLA) and the chi-square test that the number 
of factors is k (MLA only) and factor coefficients. With an oblimin rotation: direct and 
indirect contribution of factors to variances and the rotated structure matrix.

Quick Graphs. Factor analysis produces a scree plot and a factor loadings plot.

FACTOR
MODEL varlist
SAVE filename / SCORES  DATA  LOAD  COEF  VECTORS  PC  RESID
ESTIMATE / METHOD = PCA or IPA or MLA , 
           LISTWISE or PAIRWISE  N=n  CORR or COVA , 
           NUMBER=n  EIGEN=n  ITER=n  CONV=n  SORT , 
           ROTATE = VARIMAX or EQUAMAX or QUARTIMAX  
                    or ORTHOMAX or OBLIMIN   
           GAMMA=n SAMPLE = BOOT(m,n) JACK SIMPLE(m,n) 
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Saving files. You can save factor scores, residuals, principal components, factor 
coefficients, eigenvectors, or factor loadings as a new data file. For the iterated 
principal axis and maximum likelihood methods, you can save only factor loadings. 
You can save only eigenvectors and principal components for unrotated solutions using 
the principal components method.

BY groups. Factor analysis produces separate analyses for each level of any BY 
variables.

Case frequencies. Factor analysis uses FREQUENCY variables to duplicate cases for 
rectangular data files.

Case weights. For rectangular data, you can weight cases using a WEIGHT variable.

Examples

Example 1  
Principal Components

Principal components (PCA, the default method) is a good way to begin a factor 
analysis (and possibly the only method you may need). If one variable is a linear 
combination of the others, the program will not stop (MLA and IPA both require a 
nonsingular correlation or covariance matrix). The PCA output can also provide 
indications that:

� One or more variables have little relation to the others and, therefore, are not suited 
for factor analysis - so in your next run, you might consider omitting them.

� The final number of factors may be three or four and not double or triple this 
number.

To illustrate this method of factor extraction, we borrow data from Harman (1976), 
who borrowed them from a 1937 unpublished thesis by Mullen. This classic data set is 
widely used in the literature. For example, Jackson (2003) reports loadings for the 
PCA, MLA, and IPA methods. The data are measurements recorded for 305 youth aged 
seven to seventeen: height, arm span, length of forearm, length of lower leg, weight, 



I-470

Chapter 12

bitrochanteric diameter (the upper thigh), girth, and width. Because the units of these 
measurements differ, we analyze a correlation matrix:

The correlation matrix is stored in the YOUTH file. SYSTAT knows that the file 
contains a correlation matrix, so no special instructions are needed to read the matrix. 

The input is:

Notice the shortcut notation (..) for listing consecutive variables in a file. 
The output is:

Height Arm_Span Forearm Lowerleg Weight Bitro Girth Width

Height 1.000

Arm_Span 0.846 1.000

Forearm 0.805 0.881 1.000

Lowerleg 0.859 0.826 0.801 1.000

Weight 0.473 0.376 0.380 0.436 1.000

Bitro 0.398 0.326 0.319 0.329 0.762 1.000

Girth 0.301 0.277 0.237 0.327 0.730 0.583 1.000

Width 0.382 0.415 0.345 0.365 0.629 0.577 0.539 1.000

FACTOR
   USE YOUTH
   MODEL HEIGHT..WIDTH
   ESTIMATE / METHOD=PCA  N=305  SORT  ROTATE=VARIMAX

 
Latent Roots (Eigenvalues)
  1        2        3        4        5     
 -------------------------------------------
  4.6729   1.7710   0.4810   0.4214   0.2332

  6        7        8     
 -------------------------
  0.1867   0.1373   0.0965

  Component Loadings

           ¦      1         2
 ----------+-----------------
  HEIGHT   ¦ 0.8594    0.3723
  ARM_SPAN ¦ 0.8416    0.4410
  LOWERLEG ¦ 0.8396    0.3953
  FOREARM  ¦ 0.8131    0.4586
  WEIGHT   ¦ 0.7580   -0.5247
  BITRO    ¦ 0.6742   -0.5333
  WIDTH    ¦ 0.6706   -0.4185
  GIRTH    ¦ 0.6172   -0.5801
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Notice that we did not specify how many factors we wanted. For PCA, the assumption 

  Variance Explained by Components

  1        2     
 ----------------
  4.6729   1.7710

  Percent of Total Variance Explained

  1         2      
 ------------------
  58.4110   22.1373

  Rotated Loading Matrix (VARIMAX, Gamma = 1.000000)

           ¦      1        2
 ----------+----------------
  ARM_SPAN ¦ 0.9298   0.1955
  FOREARM  ¦ 0.9191   0.1638
  HEIGHT   ¦ 0.8998   0.2599
  LOWERLEG ¦ 0.8992   0.2295
  WEIGHT   ¦ 0.2507   0.8871
  BITRO    ¦ 0.1806   0.8404
  GIRTH    ¦ 0.1068   0.8403
  WIDTH    ¦ 0.2509   0.7496

  "Variance" Explained by Rotated Components

  1        2     
 ----------------
  3.4973   2.9465

  Percent of Total Variance Explained

  1         2      
 ------------------
  43.7165   36.8318
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is to compute as many factors as there are eigenvalues greater than 1.0—so, in this run, 
you study results for two factors. After examining the output, you may want to specify 
a minimum eigenvalue or, very rarely, a lower limit.

Unrotated loadings (and orthogonally rotated loadings) are correlations of the 
variables with the principal components (factors). They are also the eigenvectors of the 
correlation matrix multiplied by the square roots of the corresponding eigenvalues. 
Usually these loadings are not useful for interpreting the factors. For some industrial 
applications, researchers prefer to examine the eigenvectors alone.

The Variance explained for each component is the eigenvalue for the factor. The 
first factor accounts for 58.4% of the variance; the second, 22.1%. The Total Variance 
is the sum of the diagonal elements of the correlation (or covariance) matrix. By 
summing the Percent of Total Variance Explained for the two factors 
( ), you can say that more than 80% of the variance of all 
eight variables is explained by the first two factors. 

In the Rotated Loading Matrix, the rows of the display have been sorted, placing the 
loadings > 0.5 for factor 1 first, and so on. These are the coefficients of the factors after 
rotation, so notice that large values for the unrotated loadings are larger here and the 
small values are smaller. The sum of squares of these coefficients (for each factor or 
column) are printed below under the heading Variance Explained by Rotated 
Components. Together, the two rotated factors explain more than 80% of the variance. 
Factor analysis offers five types of rotation. Here, by default, the orthogonal varimax 
method is used.

To interpret each factor, look for variables with high loadings. The four variables 
that load highly on factor 1 can be said to measure “lankiness”; while the four that load 
highly on factor 2, “stockiness.” Other data sets may include variables that do not load 
highly on any specific factor.

In the factor scree plot, the eigenvalues are plotted against their order (or associated 
component). Use this display to identify large values that separate well from smaller 
eigenvalues. This can help to identify a useful number of factors to retain. Scree is the 
rubble at the bottom of a cliff; the large retained roots are the cliff, and the deleted ones 
are the rubble.

The points in the factor loadings plot are variables, and the coordinates are the 
rotated loadings. Look for clusters of loadings at the extremes of the factors. The four 
variables at the right of the plot load highly on factor 1 and all reflect length. The 
variables at the top of the plot load highly on factor 2 and reflect width.

58.411 22.137+ 80.548=
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Example 2  
Maximum Likelihood

This example uses maximum likelihood for initial factor extraction and 2 as the 
number of factors. Other options remain as in the principal components example. 

The input is:

The output is:

FACTOR
   USE YOUTH
   MODEL HEIGHT..WIDTH
   ESTIMATE / METHOD=MLA  N=305  NUMBER=2  SORT  ROTATE=VARIMAX

Initial Communality Estimates

1        2        3        4        5        6        7        8     
---------------------------------------------------------------------
0.8162   0.8493   0.8006   0.7884   0.7488   0.6041   0.5622   0.4778

Iterative Maximum Likelihood Factor Analysis: Convergence = 0.0010.

Iterations History

            Maximum Change                  
Iteration          in SQRT   Negative log of
   Number     (uniqueness)        Likelihood
--------------------------------------------
        1           0.7226            0.3841
        2           0.2438            0.2733
        3           0.0512            0.2537
        4           0.0104            0.2532
        5           0.0005            0.2532

Canonical Correlations

1        2     
---------------
0.9823   0.9489

Factor Pattern

         ¦                    Communality    Specific
         ¦      1         2     Estimates   Variances
---------+-------------------------------------------
HEIGHT   ¦ 0.8797    0.2375        0.8302      0.1698
ARM_SPAN ¦ 0.8735    0.3604        0.8929      0.1071
LOWERLEG ¦ 0.8551    0.2633        0.8006      0.1994
FOREARM  ¦ 0.8458    0.3442        0.8338      0.1662
WEIGHT   ¦ 0.7048   -0.6436        0.9109      0.0891
BITRO    ¦ 0.5887   -0.5383        0.6363      0.3637
WIDTH    ¦ 0.5743   -0.3653        0.4633      0.5367
GIRTH    ¦ 0.5265   -0.5536        0.5837      0.4163

Variance Explained by Factors

1        2     
---------------
4.4337   1.5179
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Percent of Total Variance Explained

1         2      
-----------------
55.4218   18.9742

Rotated Pattern Matrix (VARIMAX, Gamma = 1.000000)

         ¦      1        2
---------+----------------
ARM_SPAN ¦ 0.9262   0.1873
FOREARM  ¦ 0.8942   0.1853
HEIGHT   ¦ 0.8628   0.2928
LOWERLEG ¦ 0.8569   0.2576
WEIGHT   ¦ 0.2268   0.9271
BITRO    ¦ 0.1891   0.7750
GIRTH    ¦ 0.1289   0.7530
WIDTH    ¦ 0.2734   0.6233

"Variance" Explained by Rotated Factors

1        2     
---------------
3.3146   2.6370

Percent of Total Variance Explained

1         2      
-----------------
41.4331   32.9628

Percent of Common Variance Explained

1         2      
-----------------
55.6927   44.3073

Factor Loadings Plot
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The first panel of output contains the communality estimates. The communality of a 
variable is its theoretical squared multiple correlation with the factors extracted. For 
MLA (and IPA), the assumption for the initial communalities is the observed squared 
multiple correlation with all the other variables.

The canonical correlations are the largest multiple correlations for successive 
orthogonal linear combinations of factors with successive orthogonal linear 
combinations of variables. These values are comfortably high. If, for other data, some 
of the factors have values that are much lower, you might want to request fewer factors.

The loadings and amount of variance explained are similar to those found in the 
principal components example. In addition, maximum likelihood reports the 
percentage of common variance explained. Common variance is the sum of the 
communalities. If A is the unrotated MLA factor pattern matrix, common variance is 
the trace of A’A.

Number of Factors

In this example, we specified two factors to extract. If you were to omit this 
specification and rerun the example, SYSTAT adds this report to the output

SYSTAT will also report this message if you request more than four factors for these 
data. This result is due to a theorem by Lederman and indicates that the degrees of 
freedom allow estimates of loadings and communalities for only four factors.

If we set the print length to long, SYSTAT reports:

The results of this chi-square test indicate that you do not reject the hypothesis that 
there are four factors (p-value > 0.05). Technically, the hypothesis is that “no more than 

The Maximum Number of Factors for your Data is 4.

Chi-square Test that the Number of Factors is 4

Chi-square : 4.3187 
df         : 2.0000 
p-value    : 0.1154 
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four factors are required.” This, of course, does not negate 2 as the right number. For 
the YOUTH data, here are rotated loadings for four factors:

The loadings for the last two factors do not make sense. Possibly, the fourth factor has 
one variable, GIRTH, but it still has a healthier loading on factor 2. This test is based 
on an assumption of multivariate normality (as is MLA itself). If not true, then the test 
is invalid.

Example 3  
Iterated Principal Axis

This example continues with the YOUTH data described in the principal components 
example, this time using the IPA (iterated principal axis) method to extract factors. 

The input is:

The output is:

Rotated Pattern Matrix (VARIMAX, Gamma = 1.000000)

           ¦      1        2         3         4
 ----------+------------------------------------
  ARM_SPAN ¦ 0.9372   0.1984   -0.2831    0.0465
  LOWERLEG ¦ 0.8860   0.2142    0.1878    0.1356
  HEIGHT   ¦ 0.8776   0.2819    0.1134   -0.0077
  FOREARM  ¦ 0.8732   0.1957   -0.0851   -0.0065
  WEIGHT   ¦ 0.2414   0.8830    0.1077    0.1080
  BITRO    ¦ 0.1823   0.8233    0.0163   -0.0784
  GIRTH    ¦ 0.1133   0.7315   -0.0048    0.5219
  WIDTH    ¦ 0.2597   0.6459   -0.1400    0.0819

FACTOR
   USE YOUTH
   MODEL HEIGHT..WIDTH
   ESTIMATE / METHOD=IPA  SORT  ROTATE=VARIMAX

Initial Communality Estimates

1        2        3        4        5        6        7        8     
---------------------------------------------------------------------
0.8162   0.8493   0.8006   0.7884   0.7488   0.6041   0.5622   0.4778

Iterative Maximum Likelihood Factor Analysis: Convergence = 0.0010.
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Iterations History

            Maximum Change                  
Iteration          in SQRT   Negative log of
   Number     (uniqueness)        Likelihood
--------------------------------------------
        1           0.7226            0.3841
        2           0.2438            0.2733
        3           0.0512            0.2537
        4           0.0104            0.2532
        5           0.0005            0.2532

Canonical Correlations

1        2     
---------------
0.9823   0.9489

Factor Pattern

         ¦                    Communality    Specific
         ¦      1         2     Estimates   Variances
---------+-------------------------------------------
HEIGHT   ¦ 0.8797    0.2375        0.8302      0.1698
ARM_SPAN ¦ 0.8735    0.3604        0.8929      0.1071
LOWERLEG ¦ 0.8551    0.2633        0.8006      0.1994
FOREARM  ¦ 0.8458    0.3442        0.8338      0.1662
WEIGHT   ¦ 0.7048   -0.6436        0.9109      0.0891
BITRO    ¦ 0.5887   -0.5383        0.6363      0.3637
WIDTH    ¦ 0.5743   -0.3653        0.4633      0.5367
GIRTH    ¦ 0.5265   -0.5536        0.5837      0.4163

Variance Explained by Factors

1        2     
---------------
4.4337   1.5179

Percent of Total Variance Explained

1         2      
-----------------
55.4218   18.9742

Rotated Pattern Matrix (VARIMAX, Gamma = 1.000000)

         ¦      1        2
---------+----------------
ARM_SPAN ¦ 0.9262   0.1873
FOREARM  ¦ 0.8942   0.1853
HEIGHT   ¦ 0.8628   0.2928
LOWERLEG ¦ 0.8569   0.2576
WEIGHT   ¦ 0.2268   0.9271
BITRO    ¦ 0.1891   0.7750
GIRTH    ¦ 0.1289   0.7530
WIDTH    ¦ 0.2734   0.6233

"Variance" Explained by Rotated Factors

1        2     
---------------
3.3146   2.6370
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Before the first iteration, the communality of a variable is its multiple correlation 
squared with the remaining variables. At each iteration, communalities are estimated 
from the loadings matrix, A, by finding the trace of A’A, where the number of columns 
in A is the number of factors. Iterations continue until the largest change in any 
communality is less than that specified with Convergence. Replacing the diagonal of 
the correlation (or covariance) matrix with these final communality estimates and 
computing the eigenvalues yields the latent roots in the next panel.

Example 4  
Rotation

Let us compare the unrotated and orthogonally rotated loadings from the principal 
components example with those from an oblique rotation. 

Percent of Total Variance Explained

1         2      
-----------------
41.4331   32.9628

Percent of Common Variance Explained

1         2      
-----------------
55.6927   44.3073
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The input is:

We focus on the output directly related to the rotations.

The output is:

FACTOR
   USE YOUTH
   PLENGTH LONG
   MODEL HEIGHT..WIDTH
   ESTIMATE / METHOD=PCA  N=305  SORT

   MODEL HEIGHT..WIDTH
   ESTIMATE / METHOD=PCA  N=305  SORT  ROTATE=VARIMAX

   MODEL HEIGHT..WIDTH
   ESTIMATE / METHOD=PCA  N=305  SORT  ROTATE=OBLIMIN

 
Component Loadings
           ¦      1         2
 ----------+-----------------
  HEIGHT   ¦ 0.8594    0.3723
  ARM_SPAN ¦ 0.8416    0.4410
  LOWERLEG ¦ 0.8396    0.3953
  FOREARM  ¦ 0.8131    0.4586
  WEIGHT   ¦ 0.7580   -0.5247
  BITRO    ¦ 0.6742   -0.5333
  WIDTH    ¦ 0.6706   -0.4185
  GIRTH    ¦ 0.6172   -0.5801

  Variance Explained by Components

  1        2     
 ----------------
  4.6729   1.7710

  Percent of Total Variance Explained

  1         2      
 ------------------
  58.4110   22.1373
  Rotated Loading Matrix (VARIMAX, Gamma = 1.000000)

           ¦      1        2
 ----------+----------------
  ARM_SPAN ¦ 0.9298   0.1955
  FOREARM  ¦ 0.9191   0.1638
  HEIGHT   ¦ 0.8998   0.2599
  LOWERLEG ¦ 0.8992   0.2295
  WEIGHT   ¦ 0.2507   0.8871
  BITRO    ¦ 0.1806   0.8404
  GIRTH    ¦ 0.1068   0.8403
  WIDTH    ¦ 0.2509   0.7496

  "Variance" Explained by Rotated Components

  1        2     
 ----------------
  3.4973   2.9465
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  Percent of Total Variance Explained

  1         2      
 ------------------
  43.7165   36.8318

  Rotated Pattern Matrix (OBLIMIN,   Gamma = 0.000000)

           ¦       1         2
 ----------+------------------
  ARM_SPAN ¦  0.9572   -0.0166
  FOREARM  ¦  0.9533   -0.0482
  LOWERLEG ¦  0.9157    0.0276
  HEIGHT   ¦  0.9090    0.0604
  WEIGHT   ¦  0.0537    0.8975
  GIRTH    ¦ -0.0904    0.8821
  BITRO    ¦ -0.0107    0.8642
  WIDTH    ¦  0.0876    0.7487

  "Variance" Explained by Rotated Components

  1        2     
 ----------------
  3.5273   2.9166

  Percent of Total Variance Explained

  1         2      
 ------------------
  44.0913   36.4569

  Direct and Indirect Contributions of Factors to Variance

         1      2     
 --------------------
  1   3.5087 
  2   0.0186   2.8979

  Rotated Structure Matrix

           ¦      1        2
 ----------+----------------
  ARM_SPAN ¦ 0.9500   0.3962
  FOREARM  ¦ 0.9325   0.3629
  LOWERLEG ¦ 0.9277   0.4225
  HEIGHT   ¦ 0.9350   0.4523
  WEIGHT   ¦ 0.4407   0.9206
  GIRTH    ¦ 0.2900   0.8431
  BITRO    ¦ 0.3620   0.8596
  WIDTH    ¦ 0.4104   0.7865
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The values in Direct and Indirect Contributions of Factors to Variance are useful for 
determining if a part of a factor’s contribution to “Variance” Explained is due to its 
correlation with another factor. Notice that

3.5087 + 0.0186 = 3.5273 

is the “Variance” Explained for factor 1, and

2.8979 + 0.0186 = 2.9165

is the “Variance” Explained for factor 2.
Think of the values in the Rotated Structure Matrix as correlations of the variable 

with the factors. Here we see that the first four variables are highly correlated with the 
first factor. The remaining variables are highly correlated with the second factor.
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The factor loading plots illustrate the effects of the rotation methods. While the 
unrotated factor loadings form two distinct clusters, they both have strong positive 
loadings for factor 1. The “lanky” variables have moderate positive loadings on factor 
2 while the “stocky” variables have negative loadings on factor 2. With the varimax 
rotation, the “lanky” variables load highly on factor 1 with small loadings on factor 2; 
the “stocky” variables load highly on factor 2. The oblimin rotation does a much better 
job of centering each cluster at 0 on its minor factor.

Example 5  
Factor Analysis Using a Covariance Matrix

Jackson (1991) describes a project in which the maximum thrust of ballistic missiles 
was measured. For a specific measure called “total impulse,” it is necessary to calculate 
the area under a curve. Originally, a planimeter was used to obtain the area, and later 
an electronic device performed the integration directly but unreliably in its early usage. 
As data, two strain gauges were attached to each of 40 Nike rockets, and both types of 
measurements were recorded in parallel (making four measurements per rocket). The 
covariance matrix of the measures is stored in the MISSLES file.

In this example, we illustrate features associated with covariance matrix input 
(asymptotic 95% confidence limits for the eigenvalues, estimates of the population 
eigenvalues with standard errors, and latent vectors (eigenvectors or characteristic 
vectors) with standard errors). 

The input is:

The output is: 

FACTOR
   USE MISSLES
   MODEL INTEGRA1 PLANMTR1 INTEGRA2 PLANMTR2
   PLENGTH LONG
   ESTIMATE / METHOD=PCA  COVA  N=40

Latent Roots (Eigenvalues)
  1          2         3         4      
 ---------------------------------------
  335.3355   48.0344   29.3305   16.4096

Empirical Upper Bound for the First Eigenvalue : 398.0000 

Asymptotic 95% Confidence Limits for the Eigenvalues, N = 40
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        Upper Limits

  1          2         3         4      
 ---------------------------------------
  596.9599   85.5102   52.2138   29.2122

        Lower Limits

  1          2         3         4      
 ---------------------------------------
  233.1534   33.3975   20.3930   11.4093

  Unbiased Estimates of Population Eigenvalues

  1          2         3         4      
 ---------------------------------------
  332.6990   46.9298   31.0859   18.3953

  Unbiased Estimates of Standard Errors of Eigenvalues

  1         2         3        4     
 ------------------------------------
  74.9460   10.1768   5.7355   3.2528

  Chi-square Test that All Eigenvalues are Equal

  N          : 40.0000  
  Chi-square : 110.6871 
  df         : 9.0000   
  p-value    : 0.0000   

   Latent Vectors (Eigenvectors)

           ¦      1         2         3         4
 ----------+-------------------------------------
  INTEGRA1 ¦ 0.4681    0.6215    0.5716    0.2606
  PLANMTR1 ¦ 0.6079    0.1788   -0.7595    0.1473
  INTEGRA2 ¦ 0.4590   -0.1387    0.1677   -0.8614
  PLANMTR2 ¦ 0.4479   -0.7500    0.2615    0.4104

  Standard Error for Each Eigenvector Element

           ¦      1        2        3        4
 ----------+----------------------------------
  INTEGRA1 ¦ 0.0532   0.1879   0.2106   0.1773
  PLANMTR1 ¦ 0.0412   0.2456   0.0758   0.2066
  INTEGRA2 ¦ 0.0342   0.1359   0.2366   0.0519
  PLANMTR2 ¦ 0.0561   0.1058   0.2633   0.1276

  Component Loadings

           ¦       1         2         3         4
 ----------+--------------------------------------
  INTEGRA1 ¦  8.5727    4.3072    3.0954    1.0559
  PLANMTR1 ¦ 11.1325    1.2389   -4.1131    0.5965
  INTEGRA2 ¦  8.4051   -0.9616    0.9084   -3.4893
  PLANMTR2 ¦  8.2017   -5.1983    1.4165    1.6625

  Variance Explained by Components

  1          2         3         4      
 ---------------------------------------
  335.3355   48.0344   29.3305   16.4096
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SYSTAT performs a test to determine if all eigenvalues are equal. The null hypothesis 
is that all eigenvalues are equal against an alternative hypothesis that at least one root 
is different. The results here indicate that you reject the null hypothesis (p < 0.00005). 
At least one of the eigenvalues differs from the others.

The size and sign of the loadings reflect how the factors and variables are related. 
The first factor has fairly similar loadings for all four variables. You can interpret this 
factor as an overall average of the area under the curve across the four measures. The 
second factor represents gauge differences because the signs are different for each. The 
third factor is primarily a comparison between the first planimeter and the first 
integration device. The last factor has no simple interpretation.

When there are four or more factors, the Quick Graph of the loadings is a SPLOM. 
The first component represents 78% of the variability of the product, so plots of 

  Percent of Total Variance Explained

  1         2         3        4     
 ------------------------------------
  78.1467   11.1940   6.8352   3.8241

  Differences: Original Minus Fitted Correlations or Covariances

           ¦ INTEGRA1   PLANMTR1   INTEGRA2   PLANMTR2
 ----------+------------------------------------------
  INTEGRA1 ¦   0.0000                                 
  PLANMTR1 ¦   0.0000     0.0000                      
  INTEGRA2 ¦   0.0000     0.0000     0.0000           
  PLANMTR2 ¦   0.0000     0.0000     0.0000     0.0000
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loadings for factors 2 through 4 convey little information (notice that values in the 
stripe displays along the diagonal concentrate around 0, while those for factor 1 fall to 
the right).

Example 6  
Factor Analysis Using a Rectangular File

Begin this analysis from the OURWORLD cases-by-variables data file. Each case 
contains information for one of 57 countries. We will study the interrelations among a 
subset of 13 variables including economic measures (gross domestic product per capita 
and U.S. dollars spent per person on education, health, and the military), birth and 
death rates, population estimates for 1983, 1986, and 1990 plus predictions for 2020, 
and the percentages of the population who can read and who live in cities.

We request principal components extraction with an oblique rotation. As a first step, 
SYSTAT computes the correlation matrix. Correlations measure linear relations. 
However, plots of the economic measures and population values as recorded indicate 
a lack of linearity, so you use base 10 logarithms to transform six variables, and you 
use square roots to transform two others. 

The input is:

The output is:

FACTOR
   USE OURWORLD
   LET (GDP_CAP, GNP_86, POP_1983, POP_1986, POP_1990, POP_2020), 
        = L10(@)
   LET (MIL,EDUC) = SQR(@)
   MODEL URBAN BIRTH_RT DEATH_RT GDP_CAP GNP_86 MIL, 
         EDUC B_TO_D LITERACY POP_1983 POP_1986, 
         POP_1990 POP_2020
   PLENGTH MEDIUM
   SAVE pcascore / SCORES
   ESTIMATE / METHOD=PCA SORT ROTATE=OBLIMIN

 
Matrix to be Factored
           ¦   URBAN   BIRTH_RT   DEATH_RT   GDP_CAP    GNP_86
 ----------+--------------------------------------------------
  URBAN    ¦  1.0000                                          
  BIRTH_RT ¦ -0.8002     1.0000                               
  DEATH_RT ¦ -0.5126     0.5110     1.0000                    
  GDP_CAP  ¦  0.7636    -0.9189    -0.4012    1.0000          
  GNP_86   ¦  0.7747    -0.8786    -0.4518    0.9736    1.0000
  MIL      ¦  0.6453    -0.7547    -0.1482    0.8657    0.8514
  EDUC     ¦  0.6238    -0.7528    -0.2151    0.8996    0.9207
  B_TO_D   ¦ -0.3074     0.5106    -0.4340   -0.5293   -0.4411
  LITERACY ¦  0.7997    -0.9302    -0.6601    0.8337    0.8404



I-486

Chapter 12

  POP_1983 ¦  0.2133    -0.0836     0.0152    0.0583    0.0090
  POP_1986 ¦  0.1898    -0.0523     0.0291    0.0248   -0.0215
  POP_1990 ¦  0.1700    -0.0252     0.0284   -0.0015   -0.0447
  POP_2020 ¦  0.0054     0.1880     0.0743   -0.2116   -0.2484

           ¦     MIL      EDUC    B_TO_D   LITERACY   POP_1983
 ----------+--------------------------------------------------
  MIL      ¦  1.0000                                          
  EDUC     ¦  0.8869    1.0000                                
  B_TO_D   ¦ -0.6184   -0.5252    1.0000                      
  LITERACY ¦  0.6421    0.6869   -0.2737     1.0000           
  POP_1983 ¦  0.2206   -0.0062   -0.1526    -0.0050     1.0000
  POP_1986 ¦  0.1942   -0.0306   -0.1358    -0.0327     0.9984
  POP_1990 ¦  0.1727   -0.0513   -0.1070    -0.0534     0.9966
  POP_2020 ¦ -0.0339   -0.2555    0.0617    -0.2360     0.9531

           ¦ POP_1986   POP_1990   POP_2020
 ----------+-------------------------------
  POP_1986 ¦   1.0000                      
  POP_1990 ¦   0.9992     1.0000           
  POP_2020 ¦   0.9605     0.9673     1.0000

   Latent Roots (Eigenvalues)

  1        2        3        4        5     
 -------------------------------------------
  6.3950   4.0165   1.6557   0.4327   0.2390

  6        7        8        9        10    
 -------------------------------------------
  0.0966   0.0812   0.0403   0.0251   0.0110

  11       12       13    
 -------------------------
  0.0054   0.0012   0.0002

Empirical Upper Bound for the First Eigenvalue : 7.4817 

Chi-square Test that All Eigenvalues are Equal

N          : 49.0000   
Chi-square : 1542.2903 
df         : 78.0000   
p-value    : 0.0000    

 Chi-square Test that the Last 10 Eigenvalues are Equal

Chi-square : 636.4350 
df         : 59.8885  
p-value    : 0.0000   

  Component Loadings

           ¦       1         2         3
 ----------+----------------------------
  GDP_CAP  ¦  0.9769   -0.0366   -0.0606
  GNP_86   ¦  0.9703   -0.0846    0.0040
  BIRTH_RT ¦ -0.9512    0.0136   -0.0774
  LITERACY ¦  0.8972   -0.1008    0.3004
  EDUC     ¦  0.8927   -0.0857   -0.2296
  MIL      ¦  0.8770    0.1501   -0.2909
  URBAN    ¦  0.8393    0.1425    0.2300
  B_TO_D   ¦ -0.5166   -0.1225    0.7762
  POP_1990 ¦  0.0382    0.9972    0.0394
  POP_1986 ¦  0.0636    0.9966    0.0253
  POP_1983 ¦  0.0945    0.9940    0.0248
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  POP_2020 ¦ -0.1796    0.9748    0.1002
  DEATH_RT ¦ -0.4533    0.0820   -0.8662

  Variance Explained by Components

  1        2        3     
 -------------------------
  6.3950   4.0165   1.6557

  Percent of Total Variance Explained

  1         2         3      
 ----------------------------
  49.1924   30.8964   12.7361

  Rotated Pattern Matrix (OBLIMIN,   Gamma = 0.0000)

           ¦       1         2         3
 ----------+----------------------------
  GDP_CAP  ¦  0.9779   -0.0399    0.0523
  GNP_86   ¦  0.9714   -0.0816   -0.0146
  BIRTH_RT ¦ -0.9506    0.0040    0.0843
  EDUC     ¦  0.8961   -0.1049    0.2194
  LITERACY ¦  0.8956   -0.0700   -0.3112
  MIL      ¦  0.8777    0.1242    0.2924
  URBAN    ¦  0.8349    0.1658   -0.2285
  B_TO_D   ¦ -0.5224   -0.0501   -0.7787
  POP_1990 ¦  0.0236    0.9977    0.0095
  POP_1986 ¦  0.0491    0.9958    0.0234
  POP_1983 ¦  0.0801    0.9932    0.0235
  POP_2020 ¦ -0.1945    0.9805   -0.0510
  DEATH_RT ¦ -0.4459   -0.0011    0.8730

  "Variance" Explained by Rotated Components

  1        2        3     
 -------------------------
  6.3946   4.0057   1.6669

  Percent of Total Variance Explained

  1         2         3      
 ----------------------------
  49.1895   30.8129   12.8225

  Correlations Among Oblique Factors or Components

      1         2        3     
 ------------------------------
  1   1.0000                   
  2   0.0127    1.0000         
  3   -0.0020   0.0452   1.0000
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By default, SYSTAT extracts three factors because three eigenvalues are greater than 
1.0. On factor 1, seven or eight variables have high loadings. The eighth, B_TO_D (a 
ratio of birth-to-death rate) has a higher loading on factor 3. With the exception of 
BIRTH_RT, the other variables are economic measures, so let us identify this as the 
“economic” factor. Clearly, the second factor can be named “population,” and the third, 
less clearly, “death rates.”

The economic and population factors account for 80% (49.19 + 30.81) of the total 
variance, so a plot of the scores for these factors should be useful for characterizing 
differences among the countries. The third factor accounts for 13% of the total 
variance, a much smaller amount than the other two factors. Notice, too, that only 7% 
of the total variance is not accounted for by these three factors.

Revisiting the Correlation Matrix

Let us examine the correlation matrix for these variables. In an effort to group the 
variables contributing to each factor, we order the variables according to their factor 
loadings for the factor on which they load the highest. 
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The input is:

The output is:

CORR
   USE OURWORLD
   LET (GDP_CAP, GNP_86, POP_1983, POP_1986, POP_1990, 
        POP_2020) = L10(@)
   LET (MIL,EDUC) = SQR(@)
   PEARSON GDP_CAP GNP_86 BIRTH_RT EDUC LITERACY MIL URBAN , 
           POP_1990 POP_1986 POP_1983 POP_2020 B_TO_D DEATH_RT

 
 Pearson Correlation Matrix
           ¦ GDP_CAP    GNP_86   BIRTH_RT      EDUC   LITERACY       MIL  
 ----------+--------------------------------------------------------------
  GDP_CAP  ¦  1.0000                                                      
  GNP_86   ¦  0.9736    1.0000                                            
  BIRTH_RT ¦ -0.9189   -0.8786     1.0000                                 
  EDUC     ¦  0.8996    0.9207    -0.7528    1.0000                       
  LITERACY ¦  0.8337    0.8404    -0.9302    0.6869     1.0000            
  MIL      ¦  0.8657    0.8514    -0.7547    0.8869     0.6421    1.0000  
  URBAN    ¦  0.7636    0.7747    -0.8002    0.6238     0.7997    0.6453  
  POP_1990 ¦ -0.0015   -0.0447    -0.0252   -0.0513    -0.0534    0.1727  
  POP_1986 ¦  0.0248   -0.0215    -0.0523   -0.0306    -0.0327    0.1942  
  POP_1983 ¦  0.0583    0.0090    -0.0836   -0.0062    -0.0050    0.2206  
  POP_2020 ¦ -0.2116   -0.2484     0.1880   -0.2555    -0.2360   -0.0339  
  B_TO_D   ¦ -0.5293   -0.4411     0.5106   -0.5252    -0.2737   -0.6184  
  DEATH_RT ¦ -0.4012   -0.4518     0.5110   -0.2151    -0.6601   -0.1482  

           ¦   URBAN   POP_1990   POP_1986   POP_1983   POP_2020    B_TO_D  
 ----------+----------------------------------------------------------------
  GDP_CAP  ¦                                                                
  GNP_86   ¦                                                                
  BIRTH_RT ¦                                                                
  EDUC     ¦                                                                
  LITERACY ¦                                                                
  MIL      ¦                                                                
  URBAN    ¦  1.0000                                                        
  POP_1990 ¦  0.1700     1.0000                                             
  POP_1986 ¦  0.1898     0.9992     1.0000                                  
  POP_1983 ¦  0.2133     0.9966     0.9984     1.0000                       
  POP_2020 ¦  0.0054     0.9673     0.9605     0.9531     1.0000            
  B_TO_D   ¦ -0.3074    -0.1070    -0.1358    -0.1526     0.0617    1.0000  
  DEATH_RT ¦ -0.5126     0.0284     0.0291     0.0152     0.0743   -0.4340  
  
  Pearson Correlation Matrix (contd...)

           ¦ DEATH_RT
 ----------+---------
  GDP_CAP  ¦         
  GNP_86   ¦         
  BIRTH_RT ¦         
  EDUC     ¦         
  LITERACY ¦         
  MIL      ¦         
  URBAN    ¦         
  POP_1990 ¦         
  POP_1986 ¦         
  POP_1983 ¦         
  POP_2020 ¦         
  B_TO_D   ¦         
  DEATH_RT ¦   1.0000
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The top triangle of the matrix shows the correlations of the variables within the 
“economic” factor. BIRTH_RT has strong negative correlations with the other 
variables. Correlations of the population variables with the economic variables are 
displayed in the four rows below this top portion, and correlations of the death rates 
variables with the economic variables are in the next two rows. Correlations within the 
population factor are displayed in the top triangle of the bottom panel. The correlation 
between the variables in factor 3 (B_TO_D and DEATH_RT) is –0.434 and is smaller 
than any of the other within-factor correlations.

Factor Scores

Look at the scores just stored in PCASCORE. First, merge the name of each country 
and the grouping variable GROUP$ with the scores. The values of GROUP$ identify 
each country as Europe, Islamic, or New World. Next, plot factor 2 against factor 1 
(labeling points with country names) and factor 3 against factor 1 (labeling points with 
the first letter of their group membership). Finally, use SPLOMs to display the scores, 
adding 75% confidence ellipses for each subgroup in the plots and normal curves for 
the univariate distributions. Repeat the latter using kernel density estimators.

The input is:

MERGE PCASCORE.SYD(FACTOR(1) FACTOR(2) FACTOR(3)),  
OURWORLD.SYD(GROUP$ COUNTRY$)
PLOT FACTOR(2)*FACTOR(1) / XLABEL='Economic' , 
                           YLABEL='Population' SYMBOL=4,2,3,  
                           SIZE= 1.250 LABEL=COUNTRY$ CSIZE=1.250
PLOT FACTOR(3)*FACTOR(1) / XLABEL='Economic' , 
                           YLABEL='Death Rate' COLOR=2,1,10,  
                           SYMBOL=GROUP$ SIZE= 1.250 ,1.250 ,1.250
SPLOM FACTOR(1) FACTOR(2) FACTOR(3)/ GROUP=GROUP$ OVERLAY, 
                                     DENSITY=NORMAL  ELL =0.750, 
                                     COLOR=2,1,10  SYMBOL=4,2,3, 
                                     DASH=1,1,4
SPLOM FACTOR(1) FACTOR(2) FACTOR(3)/ GROUP=GROUP$ OVERLAY, 
                                     DENSITY=KERNEL COLOR=2,1,10, 
                                     SYMBOL=4,2,3 DASH=1,1,4
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The output is: 

High loadings on the “economic” factor show countries that are strong economically 
(Germany, Canada, Netherlands, Sweden, Switzerland, Denmark, and Norway) 
relative to those with low loadings (Bangladesh, Ethiopia, Mali, and Gambia). Not 
surprisingly, the population factor identifies Barbados as the smallest and Bangladesh, 
Pakistan, and Brazil as largest. The questionable third factor (death rate) does help to 
separate the New World countries from the others.

In each SPLOM, the dashed lines marking curves, ellipses, and kernel contours 
identify New World countries. The kernel contours in the plot of factor 3 against factor 
1 identify a pocket of Islamic countries within the New World group.
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Computation

Algorithms

Provisional methods are used for computing covariance or correlation matrices (see 
Correlations for references). Components are computed by using a Householder 
tridiagonalization and implicit QL iterations. Rotations are computed with a variant of 
Kaiser’s iterative algorithm, described in Mulaik (1972).

Missing Data

Ordinarily, Factor Analysis and other multivariate procedures delete all cases having 
missing values on any variable selected for analysis. This is listwise deletion. For data 
with many missing values, you may end up with too few complete cases for analysis. 
Select Pairwise deletion if you want covariances or correlations computed separately for 
each pair of variables selected for analysis. Pairwise deletion takes more time than the 
standard listwise deletion because all possible pairs of variances and covariances are 
computed. The same option is offered for Correlations, should you decide to create a 
symmetric matrix for use in factor analysis that way. Also notice that Correlation 
provides an EM algorithm for estimating correlation or covariance matrices when data 
are missing. 

Be careful. When you use pairwise deletion, you can end up with negative 
eigenvalues for principal components or be unable to compute common factors at all. 
With either method, it is desirable that the pattern of missing data be random. 
Otherwise, the factor structure you compute will be influenced systematically by the 
pattern of how values are missing. 
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