
Classical Scaling via Torgerson and Guttman

Torgerson Classical Scaling is based on the following result:

Let A be a symmetric matrix of order n × n. Suppose we want to find a
matrix B of rank 1 (of order n×n) in such a way that the sum of the squared
discrepancies between the elements of A and the corresponding elements of B
(i.e.,

∑n
j=1

∑n
i=1(aij−bij)2) is at a minimum. It can be shown that the solution

is B = λkk′ (so all columns in B are multiples of k), where λ is the largest
eigenvalue of A and k is the corresponding normalized eigenvector. This the-
orem can be generalized. Suppose we take the first r largest eigenvalues and
the corresponding normalized eigenvectors. The eigenvectors are collected in
an n × r matrix K = {k1, . . . ,kr} and the eigenvalues in a diagonal matrix
Λ. Then KΛK′ is an n× n matrix of rank r and is a least-squares solution
for the approximation of A by a matrix of rank r. It is assumed, here, that
the eigenvalues are all positive. If A is of rank r by itself and we take the
r eigenvectors for which the eigenvalues are different from zero collected in
a matrix K of order n × r, then A = KΛK′. Note that A could also be
represented by A = LL′, where L = KΛ1/2 (we factor the matrix), or as a
sum of r n× n matrices — A = λ1k1k

′
1 + · · ·+ λrkrk

′
r.

Metric Multidimensional Scaling – Torgerson’s Model (Gower’s
Principal Coordinate Analysis)

Suppose I have a set of n points that can be perfectly represented spatially
in r dimensional space. The ith point has coordinates (xi1, xi2, . . . , xir). If
dij =

√∑r
k=1(xik − xjk)2 represents the Euclidean distance between points i

and j, then

d∗ij =
r∑

k=1

xikxjk,where

d∗ij = −1

2
(d2ij − Ai −Bj + C); (1)

Ai = (1/n)
n∑

j=1

d2ij;
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Bj = (1/n)
n∑

i=1

d2ij;

C = (1/n2)
n∑

i=1

n∑
j=1

d2ij.

Note that {d∗ij}n×n = XX′, where X is of order n× r and the entry in the
ith row and kth column is xik.

So, the Question: If I give you D = {dij}n×n, find me a set of coordinates to
do it. The Solution: Find D∗ = {d∗ij}, and take its Spectral Decomposition.
This is exact here.

To use this result to obtain a spatial representation for a set of n objects
given any “distance-like” measure, pij, between objects i and j, we proceed
as follows:

(a) Assume (i.e., pretend) the Euclidean model holds for pij.
(b) Define p∗ij from pij using (1).
(c) Obtain a spatial representation for p∗ij using a suitable value for r,

the number of dimensions (at most, r can be no larger than the number of
positive eigenvalues for {p∗ij}n×n):

{p∗ij} ≈ XX′

(d) Plot the n points in r dimensional space.

A Well Known General Optimization Result Justifying the Guttman
Scaling Method (The Courant-Fischer Theorem)

For an n× n symmetric matrix A, let λ1 ≥ · · · ≥ λn be its eigenvalues, and
P1, . . . ,Pn the corresponding eigenvectors. Then,

A = λ1P1P
′

1 + · · ·+ λnPnP
′

n

and
I = P1P

′

1 + · · ·+ PnP
′

n
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The maximum of
X′AX

X′X
is λ1, and obtained at P1; the minimum is λn, and obtained at Pn; the
maximum subject to being a solution orthogonal (i.e., inner products are
zero) to P1, . . . ,Pk is λk+1, and is obtained for Pk+1.

A Guttman Result

If B is a symmetric matrix of order n, having all its elements non-negative,
the following quadratic form defined by the matrix A must be positive semi-
definite: ∑

i<j

bij(xi − xj)2 =
∑
i,j

xiaijxj,

where

aij =


∑n

k=1;k 6=i bik (i = j)

−bij (i 6= j)

It can be shown that if all elements of B are positive, then A is of rank n−1,
and has one smallest eigenvalue equal to zero with an associated eigenvec-
tor having all constant elements. Because all (other) eigenvectors must be
orthogonal to the constant eigenvector, this gives a (normalizing) property
that the entries in these other eigenvectors sum to zero.

The Guttman metric multidimensional scaling method uses the eigenvec-
tors corresponding to the largest eigenvalues of A for the axes of the scaling.
Each axis is normalized so the sum of the squared entries is equal to the
corresponding eigenvalue. As a method of multidimensional scaling (mds),
this Guttman result is one that seems to get reinvented periodically in the
literature. Generally, this method has been used to provide rational starting
points in iteratively-defined nonmetric mds. But more recently, the Guttman
strategy (although not attributed to him as such) has been applied to graphs
and the corresponding 0/1 adjacency matrix (treated as a similarity mea-
sure). In this case, we have what are called Laplacian eigenmaps, where the
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graphs are imbedded into a space by using the coordinates from the smallest
nonzero eigenvectors.

What follows are M-files that provide both a Torgerson and a Guttman
scaling of a proximity matrix (assumed keyed as a dissimilarity matrix):

Torgerson Scaling:

function [coordinates,vaf,vectors,roots] = torgerson(prox,numdim)

n = size(prox,1);

dstar = zeros(n,n);

a = (1/n)*(sum(prox.^2,2));

b = (1/n)*(sum(prox.^2,1));

c = (1/(n*n))*(sum(sum(prox.^2,2)));

for i = 1:n

for j = 1:n

dstar(i,j) = (-1/2)*((prox(i,j)^2) - a(i) - b(j) + c);

end

end

[vectors,roots] = eig(dstar);

[vals,inds] = sort(diag(roots));

inds = flipud(inds);

vals = flipud(vals);

vectors = vectors(:,inds);

roots = diag(vals);
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coordinates = vectors(:,1:numdim)*diag(sqrt(vals(1:numdim)));

distances = pdist(coordinates);

proximities = squareform(prox);

corrmatrix = corrcoef(distances’,proximities’);

vaf = corrmatrix(1,2)^2;

Guttman Scaling:

function [coordinates,vaf,vectors,roots] = guttman(prox,numdim)

n = size(prox,1);

amatrix = zeros(n,n);

proxsums = sum(prox);

for i = 1:n

for j = 1:n

if(i == j)

amatrix(i,j) = proxsums(i);

else

amatrix(i,j) = -prox(i,j);

end

end

end
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[vectors,roots] = eig(amatrix);

[vals,inds] = sort(diag(roots));

inds = flipud(inds);

vals = flipud(vals);

vectors = vectors(:,inds);

roots = diag(vals);

coordinates = vectors(:,1:numdim)*diag(sqrt(vals(1:numdim)));

distances = pdist(coordinates);

proximities = squareform(prox);

corrmatrix = corrcoef(distances’,proximities’);

vaf = corrmatrix(1,2)^2;

An example
Ekman produced a data set among 14 colors that varied primarily in hue,

by presenting the colors to subjects two at a time and asking for a rating of
“similarity” on a five-step scale. Ekman averaged the ratings over subjects
and transformed these to range from 0 (for “no similarity at all”) to 1 (for
“identity”). The Ekman data are given below, along with the wavelengths
for each of the colors (and as ekman.dat at
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http://cda.psych.uiuc.edu/594_datafiles).

Wavelength Label

674(red) a 1.0 .86 .42 .48 .18 .06 .07 .04 .02 .07 .09 .12 .13 .16

651 b .86 1.0 .50 .44 .22 .09 .07 .07 .02 .04 .07 .11 .13 .14

628 c .42 .50 1.0 .81 .47 .17 .10 .08 .02 .01 .02 .01 .05 .03

610 d .48 .44 .81 1.0 .54 .25 .10 .09 .02 .01 .00 .01 .02 .04

600 e .18 .22 .47 .54 1.0 .61 .31 .26 .07 .02 .02 .01 .02 .00

584(yellow)f .06 .09 .17 .25 .61 1.0 .62 .45 .14 .08 .02 .02 .02 .01

555 g .07 .07 .10 .10 .31 .62 1.0 .73 .22 .14 .05 .02 .02 .00

537 h .04 .07 .08 .09 .26 .45 .73 1.0 .33 .19 .04 .03 .02 .02

504(green) i .02 .02 .02 .02 .07 .14 .22 .33 1.0 .58 .37 .27 .20 .23

490 j .07 .04 .01 .01 .02 .08 .14 .19 .58 1.0 .74 .50 .41 .28

472(blue) k .09 .07 .02 .00 .02 .02 .05 .04 .37 .74 1.0 .76 .62 .55

465 l .12 .11 .01 .01 .01 .02 .02 .03 .27 .50 .76 1.0 .85 .68

445 m .13 .13 .05 .02 .02 .02 .02 .02 .20 .41 .62 .85 1.0 .76

434(violet)n .16 .14 .03 .04 .00 .01 .00 .02 .23 .28 .55 .68 .76 1.0

We carry out a two-dimensional scaling of these 14 colors below [using
the transformation to“distance-like measures” of -1.0(similarity value) +1.0].
The various commands and results using MATLAB are given on the pages to
follow, including a set of commands to produce two-dimensional plots based
on both the Guttman and Torgerson ideas discussed above, and a Procrustes
comparison of the two representations.

load ekman.dat

prox = ((-1.0)*ekman) + 1.0;

n = size(prox,1);
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[torg_coordinates,torg_vaf,torg_vectors,torg_roots] = torgerson(prox,2);

[gutt_coordinates,gutt_vaf,gutt_vectors,gutt_roots] = guttman(prox,2);

torg_vaf

gutt_vaf

for i = 1:n

objectlabels{i,1} = int2str(i);

end

figure(1)

axis square

plot(torg_coordinates(:,1),torg_coordinates(:,2),’ko’)

hold on

text(torg_coordinates(:,1),torg_coordinates(:,2),objectlabels,’fontsize’,

10,’verticalalignment’,’bottom’)

figure(2)

axis square

plot(gutt_coordinates(:,1),gutt_coordinates(:,2),’ko’)

hold on

text(gutt_coordinates(:,1),gutt_coordinates(:,2),objectlabels,’fontsize’,

10,’verticalalignment’,’bottom’)
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t_coord = [torg_coordinates(:,1),torg_coordinates(:,2)]

g_coord = [gutt_coordinates(:,1),gutt_coordinates(:,2)]

[d,z,transform] = procrustes(t_coord,g_coord);

figure(3)

axis square

plot(t_coord(:,1),t_coord(:,2),’rx’,...

g_coord(:,1),g_coord(:,2),’b.’,z(:,1),z(:,2),’go’)

hold on

text(torg_coordinates(:,1),torg_coordinates(:,2),objectlabels,

’fontsize’,8,’verticalalignment’,’bottom’)

text(z(:,1),z(:,2),objectlabels,’fontsize’,8,

’verticalalignment’,’bottom’)

transform(1).b

transform(1).T

transform(1).c

corrcoef([t_coord,g_coord])

Exercises:
a) Redo the Ekman analyses to make sure the plots you can obtain are like

the ones given. Also, you can see what you are getting with some color.

b) Replicate the analyses done in (a) with the Lincoln Mapquest data (I
put the Mapquest data (lincoln_eighth_circuit_time.dat) at the same
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website referenced above for the Ekman data. When you do the objects
labels, try:

object_labels = char(’Urbana’, ’Danville’, ’Paris’, ’Shelbyville’,

’Sullivan’, ’Decatur’, ’Taylorville’, ’Springfield’, ’Pekin’,

’Metamora’, ’Bloomington’, ’Mt. Pulaski’, ’Clinton’, ’Monticello’);

Does it appear that the Guttman scaling is “as good” as the Torgerson
scaling? What are your indications? And did you see any of this difference
with the Ekman data.
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