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Notes on Principal Component
Analysis

A preliminary introduction to principal components was given in

our brief discussion of the spectral decomposition (i.e., the eigen-

vector/eigenvalue decomposition) of a matrix and what it might be

used for. We will now be a bit more systematic, and begin by making

three introductory comments:

(a) Principal component analysis (PCA) deals with only one set of

variables without the need for categorizing the variables as being in-

dependent or dependent. There is asymmetry in the discussion of the

general linear model; in PCA, however, we analyze the relationships

among the variables in one set and not between two.

(b) As always, everything can be done computationally without

the Multivariate Normal (MVN) assumption; we are just getting

descriptive statistics. When significance tests and the like are desired,

the MVN assumption becomes indispensable. Also, MVN gives some

very nice interpretations for what the principal components are in

terms of our constant density ellipsoids.

(c) Finally, it is probably best if you are doing a PCA, not to

refer to these as “factors”. A lot of blood and ill-will has been spilt

and spread over the distinction between component analysis (which

involves linear combinations of observable variables), and the esti-

mation of a factor model (which involves the use of underlying latent
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variables or factors, and the estimation of the factor structure). We

will get sloppy ourselves later, but some people really get exercised

about these things.

We will begin working with the population (but everything trans-

lates more-or-less directly for a sample):

Suppose [X1, X2, . . . , Xp] = X′ is a set of p random variables, with

mean vector µ and variance-covariance matrix Σ. I want to define p

linear combinations of X′ that represent the information in X′ more

parsimoniously. Specifically, find a1, . . . , ap such that a′1X, . . . , a
′
pX

gives the same information as X′, but the new random variables,

a′1X, . . . , a
′
pX, are “nicer”.

Let λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 be the p roots (eigenvalues) of the

matrix Σ, and let a1, . . . , ap be the corresponding eigenvectors. If

some roots are not distinct, I can still pick corresponding eigenvectors

to be orthogonal. Choose an eigenvector ai so a′iai = 1, i.e., a

normalized eigenvector. Then, a′iX is the ith principal component of

the random variables in X′.

Properties:

1) Var(a′iX) = a′iΣai = λi

We know Σai = λiai, because ai is the eigenvector for λi; thus,

a′iΣai = a′iλiai = λi. In words, the variance of the ith principal

component is λi, the root.

Also, for all vectors bi such that bi is orthogonal to a1, . . . , ai−1,

and b′ibi = 1, Var(b′iX) is the greatest it can be (i.e., λi) when

bi = ai.
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2) ai and aj are orthogonal, i.e., a′iaj = 0

3) Cov(a′iX, a
′
jX) = a′iΣaj = a′iλjaj = λja

′
iaj = 0

4) Tr(Σ) = λ1 + · · · + λp = sum of variances for all p principal

components, and for X1, . . . , Xp. The importance of the ith principal

component is

λi/Tr(Σ) ,

which is equal to the variance of the ith principal component di-

vided by the total variance in the system of p random variables,

X1, . . . ,Xp; it is the proportion of the total variance explained by

the ith component.

If the first few principal components account for most of the vari-

ation, then we might interpret these components as “factors” under-

lying the whole set X1, . . . ,Xp. This is the basis of principal factor

analysis.

The question of how many components (or factors, or clusters,

or dimensions) usually has no definitive answer. Some attempt has

been made to do what are called Scree plots, and graphically see how

many components to retain. A plot is constructed of the value of the

eigenvalue on the y-axis and the number of the eigenvalue (e.g., 1, 2,

3, and so on) on the x-axis, and you look for an “elbow” to see where

to stop. Scree or talus is the pile of rock debris (detritus) at the foot

of a cliff, i.e., the sloping mass of debris at the bottom of the cliff. I,

unfortunately, can never see an “elbow”!

If we let a population correlation matrix corresponding to Σ be

denoted as P, then Tr(P) = p, and we might use only those principal
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components that have variance of λi ≥ 1 — otherwise, the compo-

nent would “explain” less variance than would a single variable.

A major rub — if I do principal components on the correlation

matrix, P, and on the original variance-covariance matrix, Σ, the

structures obtained are generally different. This is one reason the

“true believers” might prefer a factor analysis model over a PCA be-

cause the former holds out some hope for an invariance (to scaling).

Generally, it seems more reasonable to always use the population

correlation matrix, P; the units of the original variables become ir-

relevant, and it is much easier to interpret the principal components

through their coefficients.

The jth principal component is a′jX:

Cov(a′jX, Xi) = Cov(a′jX,b
′X), where b′ = [0 · · · 0 1 0 · · · 0],

with the 1 in the ith position, = a′jΣb = b′Σaj = b′λjaj = λj
times the ith component of aj = λjaij. Thus, Cor(a′jX, Xi) =

λjaij√
λjσi

=

√
λjaij
σi

,

where σi is the standard deviation of Xi. This correlation is called

the loading ofXi on the jth component. Generally, these correlations

can be used to see the contribution of each variable to each of the

principal components.

If the population covariance matrix, Σ, is replaced by the sample

covariance matrix, S, we obtain sample principal components; if the

population correlation matrix, P, is replaced by the sample correla-

tion matrix, R, we again obtain sample principal components. These

structures are generally different.
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The covariance matrix S (or Σ) can be represented by

S = [a1, . . . , ap]


√
λ1 · · · 0
... ...

0 · · ·
√
λp




√
λ1 · · · 0
... ...

0 · · ·
√
λp




a′1
...

a′p

 ≡ LL′

or as the sum of p, p× p matrices,

S = λ1a1a
′
1 + · · · + λpapa

′
p .

Given the ordering of the eigenvalues as λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0,

the least-squares approximation to S of rank r is λ1a1a
′
1 + · · · +

λrara
′
r, and the residual matrix, S − λ1a1a

′
1 − · · · − λrara

′
r, is

λr+1ar+1a
′
r+1 + · · · + λpapa

′
p.

Note that for an arbitrary matrix, Bp×q, the Tr(BB′) = sum of

squares of the entries in B. Also, for two matrices, B and C, if both

of the products BC and CB can be taken, then Tr(BC) is equal

to Tr(CB). Using these two results, the least-squares criterion value

can be given as

Tr([λr+1ar+1a
′
r+1 + · · · + λpapa

′
p][λr+1ar+1a

′
r+1 + · · · + λpapa

′
p]
′) =

∑
k≥r+1

λ2k .

This measure is one of how bad the rank r approximation might be

(i.e., the proportion of unexplained sum-of-squares when put over∑p
k=1 λ

2
k).

For a geometric interpretation of principal components, suppose

we have two variables, X1 and X2, that are centered at their respec-

tive means (i.e., the means of the scores on X1 and X2 are zero). In
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the diagram below, the ellipse represents the scatter diagram of the

sample points. The first principal component is a line through the

widest part; the second component is the line at right angles to the

first principal component. In other words, the first principal compo-

nent goes through the fattest part of the “football,” and the second

principal component through the next fattest part of the “football”

and orthogonal to the first; and so on. Or, we take our original frame

of reference and do a rigid transformation around the origin to get a

new set of axes; the origin is given by the sample means (of zero) on

the two X1 and X2 variables. (To make these same geometric points,

we could have used a constant density contour for a bivariate normal

pair of random variables, X1 and X2, with zero mean vector.)

X1

X2
first component

second component

As an example of how to find the placement of the components in

the picture given above, suppose we have the two variables, X1 and

X2, with variance-covariance matrix

Σ =

 σ21 σ12
σ12 σ22

 .
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Let a11 and a21 denote the weights from the first eigenvector of Σ;

a12 and a22 are the weights from the second eigenvector. If these

are placed in a 2 × 2 orthogonal (or rotation) matrix T, with the

first column containing the first eigenvector weights and the second

column the second eigenvector weights, we can obtain the direction

cosines of the new axes system from the following:

T =

 a11 a12
a21 a22

 =

 cos(θ) cos(90 + θ)

cos(θ − 90) cos(θ)

 =

 cos(θ) − sin(θ)

sin(θ) cos(θ)

 .

These are the cosines of the angles with the positive (horizontal and

vertical) axes. If we wish to change the orientation of a transformed

axis (i.e., to make the arrow go in the other direction), we merely

use a multiplication of the relevant eigenvector values by −1 (i.e.,

we choose the other normalized eigenvector for that same eigenvalue,

which still has unit length).

θ

θ − 90
θ

90 + θ

If we denote the data matrix in this simple two variable problem

as Xn×2, where n is the number of subjects and the two columns
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represent the values on variables X1 and X2 (i.e., the coordinates of

each subject on the original axes), the n × 2 matrix of coordinates

of the subjects on the transformed axes, say Xtrans can be given as

XT.

For another interpretation of principal components, the first com-

ponent could be obtained by minimizing the sum of squared per-

pendicular residuals from a line (and in analogy to simple regression

where the sum of squared vertical residuals from a line is minimized).

This notion generalizes to more than than one principal component

and in analogy to the way that multiple regression generalizes simple

regression — vertical residuals to hyperplanes are used in multiple

regression, and perpendicular residuals to hyperplanes are used in

PCA.

There are a number of specially patterned matrices that have in-

teresting eigenvector/eigenvalue decompositions. For example, for

the p× p diagonal variance-covariance matrix

Σp×p =


σ21 · · · 0
... ...

0 · · · σ2p

 ,

the roots are σ21, . . . , σ
2
p, and the eigenvector corresponding to σ2i

is [0 0 . . . 1 . . . 0]′ where the single 1 is in the ith position. If we

have a correlation matrix, the root of 1 has multiplicity p, and the

eigenvectors could also be chosen as these same vectors having all

zeros except for a single 1 in the ith position, 1 ≤ i ≤ p.

If the p × p variance-covariance matrix demonstrates compound
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symmetry,

Σp×p = σ2


1 · · · ρ
... ...

ρ · · · 1

 ,

or is an equicorrelation matrix,

P =


1 · · · ρ
... ...

ρ · · · 1

 ,

then the p − 1 smallest roots are all equal. For example, for the

equicorrelation matrix, λ1 = 1 + (p − 1)ρ, and the remaining p −
1 roots are all equal to 1 − ρ. The p × 1 eigenvector for λ1 is

[ 1√
p, . . . ,

1√
p]
′, and defines an average. Generally, for any variance-

covariance matrix with all entries greater than zero (or just non-

negative), the entries in the first eigenvector must all be greater than

zero (or non-negative). This is known as the Perron-Frobenius theo-

rem.

Although we will not give these tests explicitly here (they can be

found in Johnson and Wichern’s (2007) multivariate text), they are

inference methods to test the null hypothesis of an equicorrelation

matrix (i.e., the last p− 1 eigenvalues are equal); that the variance-

covariance matrix is diagonal or the correlation matrix is the identity

(i.e., all eigenvalues are equal); or a sphericity test of independence

that all eigenvalues are equal and Σ is σ2 times the identity matrix.
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0.1 Analytic Rotation Methods

Suppose we have a p × m matrix, A, containing the correlations

(loadings) between our p variables and the first m principal compo-

nents. We are seeking an orthogonal m ×m matrix T that defines

a rotation of the m components into a new p ×m matrix, B, that

contains the correlations (loadings) between the p variables and the

newly rotated axes: AT = B. A rotation matrix T is sought that

produces “nice” properties in B, e.g., a “simple structure”, where

generally the loadings are positive and either close to 1.0 or to 0.0.

The most common strategy is due to Kaiser, and calls for maxi-

mizing the normal varimax criterion:

1

p

m∑
j=1

[
p∑
i=1

(bij/hi)
4 − γ

p
{
p∑
i=1

(bij/hi)
2}2] ,

where the parameter γ = 1 for varimax, and hi =
√∑m

j=1 b
2
ij (this

is called the square root of the communality of the ith variable in a

factor analytic context). Other criteria have been suggested for this

so-called orthomax criterion that use different values of γ — 0 for

quartimax, m/2 for equamax, and p(m−1)/(p+m−2) for parsimax.

Also, various methods are available for attempting oblique rotations

where the transformed axes do not need to maintain orthogonality,

e.g., oblimin in SYSTAT; Procrustes in MATLAB.

Generally, varimax seems to be a good default choice. It tends to

“smear” the variance explained across the transformed axes rather

evenly. We will stick with varimax in the various examples we do

later.
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0.2 Little Jiffy

Chester Harris named a procedure posed by Henry Kaiser for “factor

analysis,” Little Jiffy. It is defined very simply as “principal com-

ponents (of a correlation matrix) with associated eigenvalues greater

than 1.0 followed by normal varimax rotation”. To this date, it is

the most used approach to do a factor analysis, and could be called

“the principal component solution to the factor analytic model”.

More explicitly, we start with the p× p sample correlation matrix

R and assume it has r eigenvalues greater than 1.0. R is then

approximated by a rank r matrix of the form:

R ≈ λ1a1a
′
1 + · · · + λrara

′
r =

(
√
λ1a1)(

√
λ1a

′
1) + · · · + (

√
λrar)(

√
λra

′
r) =

b1b
′
1 + · · · + brb

′
r =

(b1, . . . ,br)


b′1
...

b′r

 = BB′ ,

where

Bp×r =



b11 b12 · · · b1r
b21 b22 · · · b2r
... ... ...

bp1 bp2 · · · bpr


.

The entries in B are the loadings of the row variables on the column

components.

For any r × r orthogonal matrix T, we know TT′ = I, and

R ≈ BIB′ = BTT′B′ = (BT)(BT)′ = B∗p×rB
∗′
r×p .
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For example, varimax is one method for constructing B∗. The

columns of B∗ when normalized to unit length, define r linear com-

posites of the observable variables, where the sum of squares within

columns of B∗ defines the variance for that composite. The compos-

ites are still orthogonal.

0.3 Principal Components in Terms of the Data Ma-

trix

For convenience, suppose we transform our n × p data matrix X

into the z-score data matrix Z, and assuming n > p, let the SVD of

Zn×p = Un×pDp×pV
′
p×p. Note that the p× p correlation matrix

R =
1

n
Z′Z =

1

n
(VDU′)(UDV′) = V(

1

n
D2)V′ .

So, the rows of V′ are the principal component weights. Also,

ZV = UDV′V = UD .

In other words, (UD)n×p are the scores for the n subjects on the p

principal components.

What’s going on in “variable” space: Suppose we look at a rank

2 approximation of Zn×p ≈ Un×2D2×2V
′
2×p. The ith subject’s row

data vector sits somewhere in p-dimensional “variable” space; it is

approximated by a linear combination of the two eigenvectors (which

gives another point in p dimensions), where the weights used in the

linear combination come from the ith row of (UD)n×2. Because we

do least-squares, we are minimizing the squared Euclidean distances
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between the subject’s row vector and the vector defined by the par-

ticular linear combination of the two eigenvectors. These approxi-

mating vectors in p dimensions are all in a plane defined by all linear

combinations of the two eigenvectors. For a rank 1 approximation,

we merely have a multiple of the first eigenvector (in p dimensions)

as the approximating vector for a subject’s row vector.

What’s going on in “subject space”: Suppose we begin by look-

ing at a rank 1 approximation of Zn×p ≈ Un×1D1×1V
′
1×p. The

jth column (i.e., variable) of Z is a point in n-dimensional “subject

space,” and is approximated by a multiple of the scores on the first

component, (UD)n×1. The multiple used is the jth element of the

1 × p vector of first component weights, V′1×p. Thus, each column

of the n× p approximating matrix, Un×1D1×1V
′
1×p, is a multiple of

the same vector giving the scores on the first component. In other

words, we represent each column (variable) by a multiple of one spe-

cific vector, where the multiple represents where the projection lies

on this one single vector (the term “projection” is used because of the

least-squares property of the approximation). For a rank 2 approx-

imation, each column variable in Z is represented by a point in the

plane defined by all linear combinations of the two component score

columns in Un×2D2×2; the point in that plane is determined by the

weights in the jth column of V′2×p. Alternatively, Z is approximated

by the sum of two n×p matrices defined by columns being multiples

of the first or second component scores.

As a way of illustrating a graphical way of representing principal

components of a data matrix (through a biplot), suppose we have

the rank 2 approximation, Zn×p ≈ Un×2D2×2V
′
2×p, and consider
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a two-dimensional Cartesian system where the horizontal axis cor-

responds to the first component and the vertical axis corresponds

to the second component. Use the n two-dimensional coordinates

in (Un×2D2×2)n×2 to plot the rows (subjects), let Vp×2 define the

two-dimensional coordinates for the p variables in this same space.

As in any biplot, if a vector is drawn from the origin through the

ith row (subject) point, and the p column points are projected onto

this vector, the collection of such projections is proportional to the

ith row of the n× p approximation matrix (Un×2D2×2V
′
2×p)n×p.

The emphasis in this notes has been on the descriptive aspects of

principal components. For a discussion of the statistical properties of

these entities, consult Johnson and Wichern (2007) — confidence in-

tervals on the population eigenvalues; testing equality of eigenvalues;

assessing the patterning present in an eigenvector; and so on.
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