
An Old Tale of Two Computational
Approaches to Regression, Updated for the

21st Century

One of the nice things about giving a keynote
address to the Psychometric Society, and this
is in contrast to our usual teaching assign-
ments, is that there is a vague possibility that
your audience might be interested in what you
have to say.

Over the last several years, I have given talks
on two individuals who have some importance
to the history of the Psychometric Society —
Truman Lee Kelley (an invited talk at the 2013
Psychometric Society meeting in Arnheim), and
Henry A. Wallace (an invited talk on Best Prac-
tices in Statistics in 2014 on the occasion of
Willem Heiser’s retirement at Leiden).

What I hope to do today is to connect these
two individuals, or more precisely, discuss the
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differing approaches they each took to multiple

regression.

I will then point out that the type of least-

squares iterative computational strategy devel-

oped by Truman Lee Kelley for regression is

alive and well in my own work over the last sev-

eral decades on the structural representation of

proximity matrices through ultrametrics, addi-

tive trees, city-block scalings, and similar struc-

tures.



Truman Lee Kelley (1884–1961)

Kelley was one of the most prominent psycho-
metricians of the 20th century; Professor at
Stanford (1920–1930) and then at Harvard un-
til his retirement (1931–1950)

cda.psych.uiuc.edu/kelley_handout.pdf

kelley_beamer_talk_psychometric_society.pdf

Henry A. Wallace (1888–1965)

Wallace was one of the most prominent politi-
cians of the 20th century; USDA Secretary of
Agriculture under Franklin Roosevelt and the
New Deal (1933–1940); U.S. Vice President
under Roosevelt (1941–1945)

cda.psych.uiuc.edu/wallace_handout.pdf

wallace_beamer_talk.pdf
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Both careers intersect in the early 1920s around

the issue of multiple regression, and in partic-

ular, its computational aspects.

For Truman Lee Kelley, it was in the publi-

cation of his Statistical Method (1923), and

specifically, in his approach to multiple regres-

sion and how it might be done depending on

the number of variables involved.

Hint: for many variables, think alternating least-

squares (with the setting of a convergence cri-

terion, and no fixed number of operations)

For Henry A. Wallace, it was in the 1925 pub-

lication, Correlation and Machine Calculation,

with George Snedecor (Snedecor’s first publi-

cation, by the way), and how to organize the

computational steps in solving the multiple re-

gression normal equations.
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Hint: think Gaussian elimination or the Doolit-

tle method (an algorithmic approach with a

fixed number of operations)

This Wallace and Snedecor reference (and a

second edition in 1931) was the main source

cited well into the 1940s when computational

aspects of multiple regression were of concern;

see, for example, Guilford’s 1936 Psychomet-

ric Methods, the year after the Psychometric

Society was formed and the same year the first

issue of Psychometrika appeared.



The Normal Equations:

Suppose I have p + 1 variables, Z0, Z1, . . . , Zp,
each standardized to have mean 0.0 and vari-
ance 1.0

I would like to find the set of weights, b1, . . . , bp,
such that b1Z1 + · · · + bpZp ≡ (Ẑ0) defines a
least-squares fit to the values on the dependent
variable, Z0

Let Rp×p = {rij} be the intercorrelation matrix
among the p independent variables, Z1, . . . , Zp;
rp×1 = {r0i} contains the correlations between
Z0 and Z1, . . . , Zp

To find the weights, [b1, . . . , bp] = b
′
, the nor-

mal equations

Rp×pbp×1 = rp×1

must be solved for b (there are p equations in
p unknowns)
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Direct methods based on a fixed number of
steps: Gaussian elimination (named as such,
confusedly, in the 1950s; it was known to Chi-
nese mathematics from the second century);
the Doolittle method (from the late 1800s);
Cramer’s Rule using determinants (from Gabriel
Cramer, 1750)

In Gaussian elimination and the Doolittle method
we can represent what is being done by what is
called an LU decomposition for R: L is a unit
lower-triangular matrix (thus, with ones along
its main diagonal) and U an upper-triangular
matrix.

First, find y so that Ly = r, and then find b

so Ub = y. The LU decomposition was intro-
duced by Alan Turing in 1948 (“Rounding-Off
Errors in Matrix Processes”)

Direct methods are algorithmic in the sense
that the process will terminate by itself after a
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finite number of operations. Indirect methods

terminate when we conclude that the accuracy

of the result thus far achieved is sufficient for

our present purposes.

Indirect methods based on iteration: suppose

the least-squares fit equation, b1Z1+· · ·+bpZp,

is relaxed to w1Z1 + (b2Z2 + · · ·+ bpZp), where

w1 replaces b1; b1 can be retrieved by a three

variable problem predicting Z0 from Z1 and

(b2Z2 + · · ·+ bpZp)

So, one iterative scheme for multiple regression

starts with arbitrary weights, w1, . . . , wp, and

then improves the weights with three variable

systems, one-at-a-time, until convergence.



So, where are our two people (Wallace and
Kelley) with respect to computational matters
and the solution of the normal equations?

Wallace: the monograph with Snedecor dis-
cusses Gaussian elimination (the Doolittle meth-
ods) for the solution; this approach was taken
up by Mordecai Ezekiel (1899–1974), a close
colleague of Wallace at the Department of Agri-
culture, who compared it to Truman Lee Kel-
ley’s suggestion of an iterative method for “big
data” (that is, for many variables)

Mordecai Ezekiel was the economic advisor for
Wallace during his time as U.S. Secretary of
Agriculture (during the depression years of 1933–
1940); and as far as I can tell, he operated as
a thug for Wallace

Kelley: his 1923 text discussed a number of
methods for solving the normal equations: sim-
ple Gauss elimination for a small number of
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variables; determinantal solution for an inter-

mediate number of variables (Cramer’s Rule);

a Kelley iterative method for a large number

of variables.



I want to mention briefly four papers from the

Journal of the American Statistical Association

in the 1920s.

a) H. R. Tolley and M.J.B. Ezekiel (1923). A

method of handling multiple correlation prob-

lems.

This emphasized only the Doolittle method

(from 1878) for solving the normal equations

(as developed in Yule’s classic text). However,

there is the following sentence: “ ... Kelley in

his first paper on partial correlation [in 1916]

has a very suggestive table of gross correlation

coefficients, with a method outline for obtain-

ing the final regression equation by a series of

approximations.”

Spoiler alert: Kelley published a working alter-

nating least-squares method in 1916 for solving
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the multiple regression problem; this was fore-

shadowed in Kelley’s 1914 thesis under E.L.

Thorndike (Educational Guidance). By the

way, Thorndike provided the Introduction to

this Kelley 1916 publication: Tables: to facil-

itate the calculation of partial coefficients of

correlation and regression equations

b) Truman L. Kelley and Frank S. Salisbury

(1926). An iteration method for determining

multiple correlation constants.

c) H.R. Tolley and Mordecai Ezekiel (1927).

The Doolittle method for solving multiple cor-

relation equations versus the Kelley-Salisbury

“iteration” method.

Quote: In presenting a new “iteration” method

for solving normal equations by the use of con-

version formulae Kelley and Salisbury make the

statement “that it cuts down the labor of a



16 variable problem from that of a solution

by determinants by 95 per cent is a conserva-

tive estimate.” From this statement it would

seem that they are unfamiliar with the many

methods for solving normal equations which

are far superior to the use of determinants.

Gauss himself developed a direct process of

elimination which was much shorter than solu-

tion by determinants. Methods of elimination

by successive trials and approximations were

also suggested by Gauss, and as early as 1855

the United States Coast Survey was employing

various methods of this kind. Later, however,

M. H. Doolittle of the United States Coast and

Geodetic Survey made various improvements

on the direct method of solution developed by

Gauss, and by 1878 this direct method had

apparently entirely replaced the earlier approx-

imation methods. The Doolittle method has

been subsequently described in standard texts



on least squares, and is in customary employ-
ment in the computation of geodetic correc-
tions. The advantages of the Doolittle method
for multiple correlation work were pointed out
by the present authors in 1923, and it has
subsequently been incorporated in several sta-
tistical texts [such as the 1925 Wallace and
Snedecor monograph] as well as been taught
and used in many institutions. Since, how-

ever, so eminent a statistician as Dr. Kel-

ley has apparently not become acquainted

with it, it would seem worth while taking

space in this JOURNAL to present this

technique, which gives exact results to five

decimal places and an automatic check on

the accuracy of all the arithmetic with ap-

proximately one-half the work required by

the iteration method to get results accu-

rate only to the second decimal place. ...

It is barely possible that for problems of 15
variables or more the iteration method may



possess advantages over the Doolittle method

which do not appear in this smaller problem.

From the lack of accuracy in this small prob-

lem, however, it would seem improbable that

such would be the case. It would certainly be

desirable to lighten the arithmetic of mul-

tiple correlation problems, which is heavy

enough even with the Doolittle method;

but until further evidence is forthcoming it

would seem that the iteration method has

not done so.

d) Truman L. Kelley and Quinn McNemar (1929).

Doolittle versus the Kelley-Salisbury iteration

method for computing multiple regression co-

efficients.

Quote: It is believed that for a problem

containing a small number of variables the

Doolittle method is the best available, but

it seems evident that for a large number



of variables the iteration method is much

the shorter. If great accuracy is demanded

the Doolittle method tends to become the

more expeditious, but if computation ac-

curacy of the order of .1 of the probable

error of the regression coefficient involved

(assuming samples of less than 20,000) is

sufficient, and the authors do so deem it to

be, then for practical purposes there is no

real point in choosing the longer Doolittle

method.

It is interesting to note that the time for the so-
lution of a twenty-one-variable problem, whether
the 20 hours of the iteration method or the 60
hours of the Doolittle method, is so short as
to be quite negligible in comparison with the
other time costs of a twenty-one-variable prob-
lem.

The long delay in presenting this present

reply to Tolley and Ezekiel’s 1927 criticism



of the iteration method is due to the fact

that the present authors have felt it in-

cumbent upon them actually to test out

the two methods in question upon a criti-

cal problem before rushing into print, and

they have not earlier had the time in which

to do this.



Data Representation Uses of an Iterative

Projection Strategy for Solving

Linear Systems of Equations

A common problem in linear algebra:

Given A = {aij} of order m×n, x′ = {x1, . . . , xn},
b′ = {b1, . . . , bm}, and assuming the linear sys-
tem Ax = b is consistent, find x.

Direct methods having a fixed number of steps
(such as LU matrix factorization) may be the
most well-known strategies for solving such lin-
ear systems of equations, but another method,
typically attributed to Kaczmarz (1937) and
based on an iterative projection strategy, could
also be used.

The latter has some very close connections
with several more recent approaches in the ap-
plied statistics/psychometrics literature to the
representation of a data matrix.
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A close relative to the Kaczmarz strategy is
known as Dykstra’s method for solving linear
inequality constrained weighted least-squares
tasks (JASA, 1983).

Kaczmarz’s method can be characterized as
follows:

Define the set Ci = {x |
∑n
j=1 aijxj = bi}, for

1 ≤ i ≤ m.

The projection of any n × 1 vector y onto Ci
is simply y − (a′iy − bi)ai(a

′
iai)
−1, where a′i =

{ai1, . . . , ain}.

Begin with a vector x0, and successively project
x0 onto C1, and that result onto C2, and so
on, and cyclically and repeatedly reconsidering
projections onto the sets C1, . . . , Cm.

At convergence we have a vector x∗0 closest (in
a least-squares sense) to x0 satisfying Ax∗0 = b.
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So, if we start with the data to be fit as x0

(such as a given proximity measure), x∗0 is a

least-squares fitted structure to the proximities

that satisfy the equality constraints.



Dykstra’s method can be characterized as fol-

lows:

Given A = {aij} of order m×n, x′0 = {x01, . . . , x0n},
b′ = {b1, . . . , bm}, and w′ = {w1, . . . , wn}, where

wj > 0 for all j, find x∗0 such that a′ix
∗
0 ≤ bi for

1 ≤ i ≤ m and
∑n
i=1wi(x0i−x∗0i)

2 is minimized.

Again, (re)define the (closed convex) sets Ci =

{x |
∑n
j=1 aijxj ≤ bi} and when a vector y /∈ Ci,

its projection onto Ci (in the metric defined by

the weight vector w) is

y − (a′iy − bi)aiW
−1(a′iW

−1ai)
−1,

where W−1 = diag{w−1
1 , . . . , w−1

n }.

We again initialize the process with the vec-

tor x0 and each set C1, . . . , Cm is considered in

turn.
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If the vector being carried forward to this point

when Ci is (re)considered does not satisfy the

constraint defining Ci, a projection onto Ci oc-

curs.

The sets C1, . . . , Cm are cyclically and repeat-

edly considered but with one difference from

the operation of Kaczmarz’s method — each

time a constraint set Ci is revisited, any changes

from the previous time Ci was reached are first

“added back”.

This last process ensures convergence to an

optimal solution x∗0 (see Dykstra, 1983).

The extension to the use of a weight vector,

w, allows for an Iteratively Reweighted Least-

Squares method, and for a general strategy of

replacing an L2 (least squares) loss criterion

with L1 (least absolute residuals).



The Dykstra method is currently serving as the

major computational tool for a variety of newer

data representation devices in applied statis-

tics/psychometrics (AS/P).

For an arbitrary symmetric proximity matrix

P = {pij} (of order q × q and with diagonal

entries typically set to zero), a number of ap-

plications of Dykstra’s method have been dis-

cussed for approximating P in a least-squares

sense by P1 + · · · + PK, where K is typically

small (such as 2 or 3) —

each Pk is patterned in a particularly informa-

tive way that can be characterized by a set

of linear inequality constraints that its entries

should satisfy.

We will note three exemplar classes of patterns

that Pk might have, and all with a substantial

history in the AS/P literature.
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In each instance, Dykstra’s method can be

used to fit the additive structures satisfying the

inequality constraints once they are identified,

possibly through an initial combinatorial opti-

mization task seeking an optimal reordering of

a given (residual) data matrix,

or in some instances in a heuristic form to iden-

tify the constraints to impose in the first place.



Linear and circular unidimensional scales:

The entries in Pk should be represented by a

linear unidimensional scale (suppressing through-

out an additional subscript k for clarity):

pij = |xj−xi| for some set of coordinates x1, . . . , xq;

(or |xj − xi| − c, for an additional additive con-

stant c)

or a circular unidimensional scale:

pij = min{|xj−xi|, x0−|xj−xi|} for some set of

coordinates x1, . . . , xq and x0 representing the

circumference of the circular structure

(or min{|xj − xi|, x0 − |xj − xi|} − c, for an ad-

ditional additive constant c)
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Ultrametric and additive trees:

The entries in Pk should be represented by an

ultrametric:

for all i, j, and h, pij ≤ max{pih, pjh};

(or equivalently, among pij, pih, and pjh, the

largest two values are equal)

or an additive tree:

for all i, j, h, and l, pij+phl ≤ max{pih+pjl, pil+

pjh}.

(or equivalently, among pij + phl, pih+ pjl, and

pil + pjh, the largest two values are equal)
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Order constraints:

The entries in Pk = {pij} should satisfy the

anti-Robinson constraints:

there exists a permutation on the first q in-

tegers ρ(·) such that pρ(i)ρ(j) ≤ pρ(i)ρ(j′) for

1 ≤ i < j < j′ ≤ q,

and pρ(i)ρ(j) ≤ pρ(i′)ρ(j) for 1 ≤ i < i′ < j′ ≤ q.
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