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A more expansive version of this talk with greater detail and
more extensive quotes and formulas:

cda.psych.uiuc.edu/psychometric_paper.pdf

The slides you are seeing now:

cda.psych.uiuc.edu/psychometric_talk_beijing.pdf

cda.psych.uiuc.edu/psychometric_paper.pdf
cda.psych.uiuc.edu/psychometric_talk_beijing.pdf
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Over the last several years, I have given talks on two individuals
who have some importance to the history of the Psychometric
Society — Truman Lee Kelley (an invited talk at the 2013
Psychometric Society meeting in Arnheim), and Henry A.
Wallace (an invited talk on Best Practices in Statistics in 2014
on the occasion of Willem Heiser’s retirement at Leiden).

What I hope to do today is to connect these two individuals, or
more precisely, discuss the differing approaches they each took
to multiple regression.
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I will then point out that the type of least-squares iterative
computational strategy developed by Truman Lee Kelley for
regression is alive and well in my own work over the last several
decades on the structural representation of proximity matrices
through ultrametrics, additive trees, city-block scalings, and
similar structures.
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Truman Lee Kelley

Truman Lee Kelley (1884–1961)

Kelley was one of the most prominent psychometricians of the
20th century; Professor at Stanford (1920–1930) and then at
Harvard until his retirement (1931–1950)

cda.psych.uiuc.edu/kelley_handout.pdf

kelley_beamer_talk_psychometric_society.pdf

cda.psych.uiuc.edu/kelley_handout.pdf
kelley_beamer_talk_psychometric_society.pdf
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Henry A. Wallace

Henry A. Wallace (1888–1965)

Wallace was one of the most prominent politicians of the 20th
century; USDA Secretary of Agriculture under Franklin
Roosevelt and the New Deal (1933–1940); U.S. Vice President
under Roosevelt (1941–1945)

cda.psych.uiuc.edu/wallace_handout.pdf

wallace_beamer_talk.pdf

cda.psych.uiuc.edu/wallace_handout.pdf
wallace_beamer_talk.pdf
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The Multiple Regression Connection

Both careers intersect in the early 1920s around the issue of
multiple regression, and in particular, its computational aspects.

For Truman Lee Kelley, it was in the publication of his
Statistical Method (1923), and specifically, in his approach to
multiple regression and how it might be done depending on the
number of variables involved.

Hint: for many variables, think alternating least-squares (with
the setting of a convergence criterion, and no fixed number of
operations)
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For Henry A. Wallace, it was in the 1925 publication,
Correlation and Machine Calculation, with George Snedecor
(Snedecor’s first publication, by the way), and how to organize
the computational steps in solving the multiple regression
normal equations.

Hint: think Gaussian elimination or the Doolittle method (an
algorithmic approach with a fixed number of operations)

This Wallace and Snedecor reference (and a second edition in
1931) was the main source cited well into the 1940s when
computational aspects of multiple regression were of concern;
see, for example, Guilford’s 1936 Psychometric Methods, the
year after the Psychometric Society was formed and the same
year the first issue of Psychometrika appeared.
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The Normal Equations

Suppose I have p + 1 variables, Z0,Z1, . . . ,Zp, each
standardized to have mean 0.0 and variance 1.0

I would like to find the set of weights, b1, . . . , bp, such that
b1Z1 + · · ·+ bpZp ≡ (Ẑ0) defines a least-squares fit to the
values on the dependent variable, Z0

Let Rp×p = {rij} be the intercorrelation matrix among the p
independent variables, Z1, . . . ,Zp; rp×1 = {r0i} contains the
correlations between Z0 and Z1, . . . ,Zp

To find the weights, [b1, . . . , bp] = b
′
, the normal equations

Rp×pbp×1 = rp×1

must be solved for b (there are p equations in p unknowns)
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Direct Solution Methods

Direct methods based on a fixed number of steps: Gaussian
elimination (named as such, confusedly, in the 1950s; it was
known to Chinese mathematics from the second century); the
Doolittle method (from the late 1800s); Cramer’s Rule using
determinants (from Gabriel Cramer, 1750)

In Gaussian elimination and the Doolittle method we can
represent what is being done by what is called an LU
decomposition for R: L is a unit lower-triangular matrix (thus,
with ones along its main diagonal) and U an upper-triangular
matrix.

First, find y so that Ly = r, and then find b so Ub = y. The
LU decomposition was introduced by Alan Turing in 1948
(“Rounding-Off Errors in Matrix Processes”)
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Indirect Solution Methods

Direct methods are algorithmic in the sense that the process
will terminate by itself after a finite number of operations.
Indirect methods terminate when we conclude that the
accuracy of the result thus far achieved is sufficient for our
present purposes.

Indirect methods based on iteration: suppose the least-squares
fit equation, b1Z1 + · · ·+ bpZp, is relaxed to
w1Z1 + (b2Z2 + · · ·+ bpZp), where w1 replaces b1; b1 can be
retrieved by a three variable problem predicting Z0 from Z1 and
(b2Z2 + · · ·+ bpZp)

So, one iterative scheme for multiple regression starts with
arbitrary weights, w1, . . . ,wp, and then improves the weights
with three variable systems, one-at-a-time, until convergence.
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So, where are our two people (Wallace and Kelley) with respect
to computational matters and the solution of the normal
equations?

Wallace: the monograph with Snedecor discusses Gaussian
elimination (the Doolittle method) for the solution; this
approach was taken up by Mordecai Ezekiel (1899–1974), a
close colleague of Wallace at the Department of Agriculture,
who compared it to Truman Lee Kelley’s suggestion of an
iterative method for “big data” (that is, for many variables)
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Mordecai Ezekiel was the economic advisor for Wallace during
his time as U.S. Secretary of Agriculture (during the depression
years of 1933–1940); and as far as I can tell, he operated as a
thug for Wallace

Kelley: his 1923 text discussed a number of methods for
solving the normal equations: simple Gauss elimination for a
small number of variables; determinantal solution for an
intermediate number of variables (Cramer’s Rule); a Kelley
iterative method for a large number of variables.
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Papers From JASA in the 1920s

I want to mention briefly four papers from the Journal of the
American Statistical Association in the 1920s.

a) H. R. Tolley and M.J.B. Ezekiel (1923). A method of
handling multiple correlation problems.

This emphasized only the Doolittle method (from 1878) for
solving the normal equations (as developed in Yule’s classic
text). However, there is the following sentence: “ ... Kelley in
his first paper on partial correlation [in 1916] has a very
suggestive table of gross correlation coefficients, with a method
outline for obtaining the final regression equation by a series of
approximations.”
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Spoiler alert: Kelley published a working alternating
least-squares method in 1916 for solving the multiple regression
problem; this was foreshadowed in Kelley’s 1914 thesis under
E.L. Thorndike (Educational Guidance). By the way, Thorndike
provided the Introduction to this Kelley 1916 publication:
Tables: to facilitate the calculation of partial coefficients of
correlation and regression equations

b) Truman L. Kelley and Frank S. Salisbury (1926). An
iteration method for determining multiple correlation constants.

c) H.R. Tolley and Mordecai Ezekiel (1927). The Doolittle
method for solving multiple correlation equations versus the
Kelley-Salisbury “iteration” method.
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Quote from Tolley and Ezekiel

... Since, however, so eminent a statistician as Dr. Kelley has
apparently not become acquainted with it [the Doolittle
method], it would seem worth while taking space in this
JOURNAL to present this technique, which gives exact results
to five decimal places and an automatic check on the accuracy
of all the arithmetic with approximately one-half the work
required by the iteration method to get results accurate only to
the second decimal place.

... It would certainly be desirable to lighten the arithmetic of
multiple correlation problems, which is heavy enough even with
the Doolittle method; but until further evidence is forthcoming
it would seem that the iteration method has not done so.
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Kelley and McNemar Reaction

d) Truman L. Kelley and Quinn McNemar (1929). Doolittle
versus the Kelley-Salisbury iteration method for computing
multiple regression coefficients.

... It is believed that for a problem containing a small number
of variables the Doolittle method is the best available, but it
seems evident that for a large number of variables the iteration
method is much the shorter. If great accuracy is demanded the
Doolittle method tends to become the more expeditious, but if
computation accuracy of the order of .1 of the probable error of
the regression coefficient involved (assuming samples of less
than 20,000) is sufficient, and the authors do so deem it to be,
then for practical purposes there is no real point in choosing
the longer Doolittle method.
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... The long delay in presenting this present reply to Tolley and
Ezekiel’s 1927 criticism of the iteration method is due to the
fact that the present authors have felt it incumbent upon them
actually to test out the two methods in question upon a critical
problem before rushing into print, and they have not earlier had
the time in which to do this.
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Data Representation Uses of an Iterative Projection
Strategy for Solving Linear Systems of Equations

A common problem in linear algebra:

Given A = {aij} of order m × n, x′ = {x1, . . . , xn},
b′ = {b1, . . . , bm}, and assuming the linear system Ax = b is
consistent, find x.

Direct methods having a fixed number of steps (such as LU
matrix factorization) may be the most well-known strategies for
solving such linear systems of equations, but another method,
typically attributed to Kaczmarz (1937) and based on an
iterative projection strategy, could also be used.
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The Kaczmarz Strategy

Define the set Ci = {x |
∑n

j=1 aijxj = bi}, for 1 ≤ i ≤ m.

The projection of any n × 1 vector y onto Ci is simply
y − (a′iy − bi )ai (a

′
iai )
−1, where a′i = {ai1, . . . , ain}.

Begin with a vector x0, and successively project x0 onto C1,
and that result onto C2, and so on, and cyclically and
repeatedly reconsidering projections onto the sets C1, . . . ,Cm.

At convergence we have a vector x∗0 closest (in a least-squares
sense) to x0 satisfying Ax∗0 = b.

So, if we start with the data to be fit as x0 (such as a given
proximity measure), x∗0 is a least-squares fitted structure to the
proximities that satisfy the equality constraints.
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The Dykstra Strategy

A close relative to the Kaczmarz strategy (for solving linear
equality constrained least-squares tasks) is known as Dykstra’s
method for solving linear inequality constrained weighted
least-squares tasks (JASA, 1983).

The Dykstra extension to the use of a weight vector and
weighted least-squares allows for an Iteratively Reweighted
Least-Squares method, and for a general strategy of replacing
an L2 (least squares) loss criterion with L1 (least absolute
residuals).
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Applied Statistics/Psychometrics Use of the
Dykstra Method

The Dykstra method is currently serving as the major
computational tool for a variety of newer data representation
devices in applied statistics/psychometrics (AS/P).

For an arbitrary symmetric proximity matrix P = {pij} (of order
q × q and with diagonal entries typically set to zero), a number
of applications of Dykstra’s method have been discussed for
approximating P in a least-squares sense by P1 + · · ·+ PK ,
where K is typically small (such as 2 or 3).

each Pk is patterned in a particularly informative way that can
be characterized by a set of linear inequality constraints that its
entries should satisfy.
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We will note three exemplar classes of patterns that Pk might
have, and all with a substantial history in the AS/P literature.

In each instance, Dykstra’s method can be used to fit the
additive structures satisfying the inequality constraints once
they are identified,

possibly through an initial combinatorial optimization task
seeking an optimal reordering of a given (residual) data matrix,

or in some instances in a heuristic form to identify the
constraints to impose in the first place.



An Old Tale
of Two Com-
putational

Approaches to
Regression,
Updated for
the 21st
Century

Lawrence
Hubert

Linear and Circular Unidimensional Scales:

The entries in Pk should be represented by a linear
unidimensional scale (suppressing throughout an additional
subscript k for clarity):

pij = |xj − xi | for some set of coordinates x1, . . . , xq;

(or |xj − xi | − c , for an additional additive constant c)

or a circular unidimensional scale:

pij = min{|xj − xi |, x0 − |xj − xi |} for some set of coordinates
x1, . . . , xq and x0 representing the circumference of the circular
structure

(or min{|xj − xi |, x0 − |xj − xi |} − c , for an additional additive
constant c)
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Ultrametric and additive trees:

The entries in Pk should be represented by an ultrametric:

for all i , j , and h, pij ≤ max{pih, pjh};

(or equivalently, among pij , pih, and pjh, the largest two values
are equal)

or an additive tree:
for all i , j , h, and l , pij + phl ≤ max{pih + pjl , pil + pjh}.

(or equivalently, among pij + phl , pih + pjl , and pil + pjh, the
largest two values are equal)
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Order constraints:

The entries in Pk = {pij} should satisfy the anti-Robinson
constraints:

there exists a permutation on the first q integers ρ(·) such that
pρ(i)ρ(j) ≤ pρ(i)ρ(j ′) for 1 ≤ i < j < j ′ ≤ q,

and pρ(i)ρ(j) ≤ pρ(i ′)ρ(j) for 1 ≤ i < i ′ < j ′ ≤ q.
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