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F A C T O R  A N A L Y S I S  A N D  A I C  

HIROTUGU AKAIKE 

THE INSTITU~ OF STATISTICAL MATHEMA'F/CS 

The information criterion AIC was introduced to extend the method of maximum likelihood 
to the multimodel situation. It was obtained by relating the successful experience of the order 
determination of an autoregressive model to the determination of the number of factors in the 
maximum likelihood factor analysis. The use of the AIC criterion in the factor analysis is particu- 
larly interesting when it is viewed as the choice of a Bayesian model. This observation shows that 
the area of application of AIC can be much wider than the conventional i.i.d, type models on 
which the original derivation of the criterion was based. The observation of the Bayesian structure 
of the factor analysis model leads us to the handling of the problem of improper solution by 
introducing a natural prior distribution of factor loadings. 

Key words: factor analysis, maximum likelihood, information criterion AIC, improper solution, 
Bayesian modeling. 

1. I n t r o d u c t i o n  

The  factor  analysis  mode l  has been p roduc ing  though t  p r o v o k i n g  stat is t ical  p rob -  
lems. The  model  is typical ly  represented  by  

y(n) = Ax(n) + u(n), n = 1, 2, . . . ,  N 

where  y(n) denotes  a p -d imens iona l  vector  of  observa t ions ,  x(n) a k -d imens iona l  vec tor  of  
factor  scores, u(n) a p -d imens iona l  vector  of  specific var ia t ions .  I t  is assumed tha t  the 
var iables  with different n's a re  mutua l ly  independen t  and  tha t  x(n) and  u(n) are  mutua l ly  
independen t ly  d i s t r ibu ted  as G a u s s i a n  r a n d o m  var iables  with var iance  covar iance  
matr ices  I k x ~ and W, respectively,  where  W is a d i agona l  matr ix .  The  covar iance  ma t r ix  X 
o f  y(n) is then given by  

E ---- A A '  + W. 

This  mode l  is charac te r ized  by  the use of  a large n u m b e r  of  unknow n  parameters ,  
much  la rger  than  the n u m b e r  of  u n k n o w n  pa ra me te r s  o f  a m o d e l  used in the conven t iona l  
mu l t iva r i a t e  analysis.  The  empir ica l  pr inciple  of  p a r s i m o n y  in s ta t is t ical  mode l  bu i ld ing  
d ic ta tes  tha t  the increase  of  the  n u m b e r  of  pa r a me te r s  shou ld  be s topped  as soon  as  i t  is 
obse rved  tha t  a fur ther  increase  does  no t  p roduc e  significant improvemen t  of  fit o f  the  
mode l  to  the  data .  Thus  the con t ro l  of  the n u m b e r  of  pa rame te r s  has  usual ly  been real ized 
by  app ly ing  a test of  significance. 
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In the case of the maximum likelihood factor analysis this is done by adopting the 
likelihood ratio test. However, in this test procedure, the unstructured saturated model is 
always used as the reference and the significance is judged by referring to a chi-square 
distribution with a large number of degrees of freedom equal to the difference between the 
number of parameters of the saturated model and that of the model being tested. As will 
be seen in section 3, an example discussed by J6reskog (1978) shows that direct appli- 
cation of such a test to the selection of a factor analysis model is not quite appropriate. 
There the expert's view clearly contradicts the conventional use of the likelihood ratio 
test. 

In 1969 the present author introduced final prediction error (FPE) criterion for the 
choice of the order of an autoregressive model of a time series (Akaike, 1969, 1970). The 
criterion was defined by an estimate of the expected mean square one-step ahead predic- 
tion error by the model with parameters estimated by the method of least squares. The 
successful experience of application of the FPE criterion to real data suggested the possi- 
bility of developing a similar criterion for the choice of the number of factors in the factor 
analysis. The choice of the order of an autoregression controlled the number of unknown 
parameters in the model, that controlled the expected mean square one-step ahead predic- 
tion error. By analogy it was easily observed that the control of the number of factors was 
required for the control of the expected prediction error by the fitted model. However, it 
was not easy to identify what the prediction error meant in the case of the factor analysis. 

In the case of the autoregressive model an estimate of the expected predictive per- 
formance was adopted as the criterion; in the case of the maximum likelihood factor 
analysis it was the fitted distribution that was evaluated by the likelihood. The realization 
of this fact quickly led to the understanding that our prediction was represented by the 
fitted model in the case of the factor analysis, which then led to the understanding that 
the expectation of the log likelihood with respect to the "true" distribution was related to 
the Kullback-Leibler information that defined the amount of deviation of the "true" 
distribution from the assumed model. 

The analogy with the FPE criterion then led to the introduction of the criterion 
AIC -- ( -  2) log maximum likelihood + 2 (number of parameters), 

as the measure of the badness of fit of a model defined with parameters estimated by the 
method of maximum likelihood, where log denotes a natural logarithm (Akaike, 1973, 
1974). We will present a simple explanation of AIC in the next section and illustrate its 
use by applying it to an example in section 3. 

Although AIC produces a satisfactory solution to the problem of the choice of the 
number of factors, the application of AIC is hampered by the frequent appearance of 
improper solutions. This shows that successive increase of the number of factors quickly 
lead to models that are not quite appropriate for the direct application of the method of 
maximum likelihood. 

In section 4 it will be discussed that the factor analysis model may be viewed as a 
Bayesian model and the choice of a factor analysis model by minimizing the AIC criterion 
is essentially concerned with the choice of a Bayesian model. This recognition encourages 
the use of further Bayesian modeling for the elimination of improper solutions. In section 
5 a natural prior distribution for the factor loadings is introduced through the analysis of 
the likelihood function. Numerical examples will be given in Section 6 to show that the 
introduction of the prior distribution suppresses the appearance of improper solutions 
and that the indefinite increase of a communality caused by the conventional maximum 
likelihood procedure may be viewed as of little practical significance. 



HIROTUGU AKAIKE 319 

The paper concludes with brief remarks on the contribution of factor analysis to the 
development of general statistical methodology. 

2. Brief Review of AIC 

The fundamental ideas underlying the introduction of AIC are: 
1. The predictive use of the fitted model. 
2. The adoption of the expected log likelihood as the basic criterion. 

Here the concept of parameter estimation is replaced by the estimation of a distribution 
and the accuracy is measured by a universal criterion, the expected log likelihood of the 
fitted model. 

The relation between the expected log likelihood and the Kullback-Leibler infor- 
mation number is given by 

l ( f ;  g) = E log f ( x )  - E log #(x), 

where l ( f ;  g) denotes the Kullback-Leibler information of the distributionfrelative to the 
distribution g, and E denotes the expectation with respect to the "true" distributionf(x) of 
x. The second term on the right-hand side represents the expected log likelihood of an 
assumed model #(x) with respect to the "true" distribution f (x) .  Since I(f;  0) provides a 
measure of the deviation of f from g and since log g(x) provides an unbiased estimate of E 
log g(x) the above equation provides a justification for the use of log likelihoods for the 
purpose of comparison of statistical models. 

Consider the situation where the model g(x) contains unknown parameter 0, that is, 
g(x) = g(xlO). When the data x are observed and the maximum likelihood estimate O(x) of 
0 is obtained, the predictive point of view suggests the evaluation of O(x) by the goodness 
of #(. I O(x)) as an estimate of the true distribution f ( .  ). By adopting the information l ( f ;  
g) as the basic criterion we are led to the use of Ey log g(Yl O(x)) as the measure of the 
goodness of O(x), where Ey denotes the expectation with respect to the true distribution 
f (y )  of y. To relate this criterion to the familiar log likelihood ratio test statistic we adopt 
2Ey log g(y I 0) as our measure of the goodness of g(y I 0) as an estimate off(y). 

Here we consider the conventional setting where the true distributionf(y) is given by 
g(Y I 0o), that is, 0 o is the true value of the unknown parameter, the data x are a realization 
of the vector of i.i.d, random variables x 1, x2, . . . ,  xN, and the log likelihood ratio test 
statistic asymptotically satisfies the relation 

2 log g(x[ O(x)) -- 2 log g(xl 0 o) = X~, 

where ;~ denotes a chi-squared with degrees of freedom m which is equal to the dimen- 
sion of the parameter vector 0. Under this setting it is expected that the curvature of the 
log likelihood surface provides a good approximation to that of the expected log likeli- 
hood surface. This observation leads to another asymptotic equality 

2Ey log a(Y 10(x)) -- 2Ey log #(y I 0o) = -- X~, 

where it is assumed that y is another independent observation from the same distribution 
as that of x and the chi-squared variable is identical to that defined by the log likelihood 
ratio test statistic. 

The above equations show that the amount of increase of 2 log #(x I O(x)) from 2 log # 
(xl0o) obtained by adjusting the parameter value by the method of maximum likelihood 
is asymptotically equal to the amount of decrease of 2Ey log #(Yl O(x)) from 2Ey log 
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0(Yl 0o). Thus, to measure the deviation of O(x) from 0 o in terms of the basic criterion of 
twice the expected log likelihood, X~ must be subtracted twice from 2 log O(xlO(x)) to 
make the difference of twice the log likelihoods an unbiased estimate of that of twice the 
expected log likelihoods. 

Since Z~ is unobservable, as we do not know 0 o, we consider the use of its expected 
value m. The negative of the quantity thus obtained defines 

AIC = ( -  2) log O(x 1 O(x)) + 2m. 

When several different O's are compared the one that gives the minimum of AIC repre- 
sents the best fit. Such an estimate is denoted as MAICE (minimum AIC estimate). For 
more detailed discussion of the predictive point of view of statistics and the use of the 
information criterion readers are referred to Akaike (1985), 

3. How AIC Works With The Factor Analysis Model 

Given a set of observations y = (y (n ) ;  n = 1, 2 ,  " - ,  N) the maximum likelihood factor 
analysis starts with the definition of the log likelihood function given by 

log L(k) = -2XN[log l ~ J  + tr X~-IS-J, 

where S denotes the sample covariance matrix of y and k the number of factors and ~k is 
given by 

where A~ denotes the matrix of factor loadings and W the uniqueness variance matrix. 
The diagonal elements of A~ A~, define the communalities. The AIC statistic for the k- 
factor model is then defined by 

AIC(k) = ( -2 )  log L(k) + [2p(k + 1) - k(k - 1)]. 

To show the use of AIC in the maximum likelihood factor analysis and to illustrate 
the difference between the AIC and conventional test approach in particular here we will 
discuss an example treated by J6reskog (1978, p.457). This examle is concerned with the 
analysis of Harman's example of twenty-four psychological variables. The unrestricted 
four factor model was first fitted which produced 

~21s 6 = 246.36. 

This model was considered to be "representing a reasonably good fit" but a further 
restriction of parameters produced a simple structure model with 

X231 = 301.42. 

Thismodel was accepted as the best fitting simple structure. 
Now we have 

Prob {Xx2a6 >- 246.361Ho} ~ 0.0009, 

and 

Prob{z23t ->_ 301.421 n~)} ~ 0.0005, 

where H o and H~ denote the hypotheses of the four factor and the simple structure, 
respectively, and the chi-squared variables stand for the random variables with respective 
degrees of freedom. By the standard of conventional tests these figures show that the 
results are extremely significant and both H 0 and H~) should be rejected. In spite of this, 
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the expert judgment of J6reskog was to accept the four factor model as a reasonable fit 
and prefer the simple structure model to the unrestricted. This conclusion suggests that 
the large values of the degrees of freedom appearing in the chi-squared statistics preclude 
the application of conventional levels of significance, such as 0.05 or 0.01, in making the 
final judgment  of models in this situation. 

The chi-squared statistic is defined by 

•2 = ( _  2) max log L(H) - ( - 2 )  max log L ( H J ,  

where max log L(H) denotes the maximum log likelihood under the hypothesis H and H~  
denotes the saturated or completely unconstrained model. Since AIC for an hypothesis H 
is defined by 

AIC(H) = ( - 2 )  max log L(H) + 2 dim 0, 

where dim 0 denotes the dimension of the vector of unknown parameters 0, we have 

AIC(H) - A I C ( H J  = Zd.f.2 _ 2(d.f.), 

where d.f. denotes the difference between the number of unknown parameters of Hoo and 
that of H. By neglecting the common additive constant AIC (Hoo) we may define AIC(H) 
simply by 

AIC(H) = Z2.f . -  2(d.f.). 

For  the models discussed by J6reskog we get 

and 

AIC(Ho) = 246.36 -- 2 x 186 

= -- 125.64, 

AIC(H~) -- 301.42 - 2 x 231 

= - 160.58. 

Since AIC(H~) = 0, these AIC's show that both H o and H~ are by far better than H ~  and 
that the simple structure model H~ is showing a better fit than the unrestricted four factor 
model H o . 

This result by AIC is in complete agreement with J6reskog's conclusion. The conven- 
tional theory of statistics does not tell how to evaluate the significance of a test in each 
particular application and there is no hope of arriving at a similar conclusion. Obviously 
the objective procedure of model selection by an information criterion can be fully imple- 
mented to define an automatic  factor analysis procedure. Such a possibility is discussed 
by Bozdogan and Ramirez (1987). 

4. Factor  Analysis Model Viewed as a Bayesian Model 

As was demonstrated by the application to J6reskog's example the AIC approach 
produced a satisfactory solution to the model selection problem in factor analysis. In spite 
of this success the use of AIC in the maximum likelihood factor analysis has been severely 
limited by the frequent occurrence of improper  solutions, that is, by the appearance of 
zero estimates of specific variances. Apparently this is caused by the overparametrization 
of the model. 

The introduction of AIC is motivated by the desire to control the effect of over- 
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parametrization and the minimum AIC procedure for model selection is considered to be 
a realization of the well-known empirical principle of parsimony in statistical modeling. 
However the application of the minimum AIC procedure assumes the existence of proper 
maximum likelihood estimates of the models considered. The frequent occurrence of 
improper  solutions in the maximum likelihood factor analysis means that the models are 
often too much overparametrized for the application of the method of maximum likeli- 
hood. This suggests the necessity of further control of the likelihood function. This can be 
realized by the use of some proper  Bayesian modeling. 

Before going into the discussion of this Bayesian modeling we will first notice the 
essentially Bayesian characteristic of the factor analysis model and point out that the 
minimum AIC procedure is concerned with the problem of the selection of a Bayesian 
model. In the basic factor analysis model y = Ax + u the vector of observations y is 
assumed to be distributed following a Gaussian distribution with mean Ax and unique 
variance W. The vector of factor scores x is unobservable but is assumed to be distributed 
following a Gaussian distribution with zero mean and variance lk× k. Since x is never 
observed this distribution is simply a psychological construction for the explanation of 
the behavior of y. Under the assumption that A is fixed the distribution of x specifies the 
prior distribution of the mean of the observation y. Thus we can see that the choice of k, 
the number  of factors, is essentially concerned with the choice of a Bayesian model. 
Incidentally, the recognition of the Bayesian characteristic of the factor analysis model 
also suggests the use of the posterior distribution of x for the estimation of the factor 
scores as is discussed by Bartholomew (1981). 

The basic problem in the use of a Bayesian model is how to justify the use of a 
subjectively constructed model. Our  belief is that it is possible only by considering various 
possibilities as alternative models and comparing them with an objectively defined cri- 
terion. In particular we propose the use of the log likelihood, or the AIC when some 
parameters  are estimated by the method of maximum likelihood, as the criterion of fit. 

Let us consider the likelihood of a factor analysis model as a Bayesian model. For  a 
Bayesian model specified by the data distribution p(. 10) and prior distribution p(O) its 
likelihood with respect to the observed data y is given by 

  p(yl 0)p(0) do. 

From the representation y(n) = Ax(n) + u(n), n = 1, 2, . . . ,  N, and the assumption of the 
mutual  independence among the variables the likelihood of the Bayesian model defined 
with 0 = (x(1), x(2), -- -, x(N)) is given by 

L = ~=1 \2rc]  I~;I -x/2 exp -- ~ tr ~-ly(n)y(n) '  

= 1 - m 2 e x p  -- - t r Z - 1 S  , 

where E = AA' + tI', I E I denotes the determinant, and 

1 N 

= - _ E  1 S N y(n)y(n)'. 
= 

For  simplicity the mean of y(n) is assumed to be zero. Thus we get 

N 
log L = -- -~- [log I EI + tr SE-  1] + const. 
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This is exactly the likelihood function used in the conventional maximum likelihood 
factor analysis. Thus the maximum likelihood estimates of A and W in the classical sense 
are the maximum likelihood estimates of the unknown parameters of a Bayesian model. 

The above result shows that the AIC criterion defined for the factor analysis model is 
actually the ABIC criterion for the evaluation of a Bayesian model with parameters 
estimated by the method of maximum likelihood, where ABIC is defined by (Akaike, 
1980) 

ABIC = (-- 2) maximum log likelihood of a Bayesian model 

+ 2 (number of estimated parameters). 

In the case of the factor analysis model we have 

ABIC = AIC. 

This identity clearly shows that there is no essential distinction between the classical and 
Bayesian models when they are viewed from the point of view of the information cri- 
terion. 

5. Control of Improper Solutions by a Bayesian Modeling 

The appearance of improper solutions suggests the necessity of the reduction of the 
number of parameters to be estimated by the method of maximum likelihood. The recog- 
nition of the Bayesian structure of the factor analysis model suggests that further mod- 
eling of the prior distribution of the unknown parameters in A and W is possible. The use 
of the Bayesian approach for the control of improper solutions is already discussed in an 
earlier paper by Martin and McDonald (1975). These authors point out the importance of 
choosing a prior distribution that does not have the appearance of arbitrariness and 
discuss the use of a reasonably defined prior distribution of specific variances. 

The informational approach to statistics puts very much faith in the information 
supplied by the log likelihood. Hence in the present paper we try to develop a prior 
distribution without using outside information except for the knowledge of the likelihood 
function of the data distribution. In the present situation this is particularly appropriate 
as the prior distribution is considered only for the purpose of tempering the likelihood 
function to clarify the nature of improper solutions. 

By this approach we need a detailed analysis of the likelihood function. For the 
convenience of the analysis let us consider 

( 
where the log likelihood log L is defined in the preceding section. By ignoring the additive 
constant we have 

q = - l o g  ]Z-ISI + tr Z-1S. 

By putting W = D 2, where D is a diagonal matrix with positive diagonal elements, we get 

IF, = A A '  + D 2 

= 0 ( I  + CC')O, 

where A is p x k, I is a p x p identity matrix and C = D - 1 A ,  the matrix of standardized 
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factor loadings. We have 

and 

tr Z - t S  = tr (I + C C ' ) - I D - 1 S D  -1,  

I X - I S I  = I(I + C C ' ) - ~ I I D - X S D - t l .  

The modified negative log likelihood q can conveniently be expressed by using the 
eigenvectors z~ and eigenvalues (i of  D - X S D  -1,  the s tandardized sample covariance 
matrix. Define the matrix Z by 

Z = [ z .  z 2 ,  " " ,  z . ] .  

It  is assumed that  Z is normalized so that Z ' Z '  = I holds. Represent C by Z in the form 

C = Z F .  

Adopt  the representation 

p 
FF'  = ~ #i mim; ,  

t = 1  

where ~i > 0, for i = 1, 2, . . . ,  k, = 0, otherwise, and m'i m~ = 6 o, where 3~j = 1, for i = j, 0, 
otherwise. Then  we get 

p 

CC' = Z F F ' Z '  = ~ #~ l~ l'~, 
i = l  

where I i = Z m  i with 1' i lj = 3 i j ,  and 

p 

E;~ ' I + C C '  = ~ I i l i ,  
i = 1  

where h i = 1 + ~.L i . F r o m  this representat ion we get 

p 

(I + CC') -1  = E ,~ ,Z l l i l ' i ,  
i = 1  

and 

tr (I + C C ' ) - I D - I S D  -1 = tr ~ 27 t l ,  l'i ~ ~ j z j z '  i 
i i 

-~- E E ) ~ i - l C j m 2 ( j ) ,  
i j 

where mi(j) denotes the j - th  element of m i . The last relation is obtained from the equat ion 

z) I i = mi(j). 

We also have 

P P 

I(I + CC') -X  l I D - ' S D - '  I = I-I ;Li -1 ]-I ~j. 
i = 1  j = '  

Thus we get the following representat ion of  the modified negative likelihood function 
as a function of  2 = (41, 2 2 , . . . ,  2p)and m = (ml, m 2 , . . . ,  rap): 

p p p 

i = 1  i = '  j = l  
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Assume that (i and 2~ are arranged in the descending order, that is, (1 > (2 > "'" -~ (p and 
21 > 22 > ' " >  2p, where 2k+1 . . . . .  2p = 1. Then the successive minimization of q(2, 
m) with respect to m r,  m r_ 1, " " ,  ml leads to 

k p 

q(2) = Z E2,-1~, - log (2;1~,)] + Z (~, - log ~,). 
i = 1  l = k + l  

As a function of 2, (2 -10  - log (2 -10  attains its minimum at ;t = ~, for ~ > 1, and at 
2 = 1, otherwise. Thus we get 

P 

M i n q ( 2 ) = k * +  ~ (z,-- log ~), 
l = k * + l  

where (i > 1, for i < k*, < 1, otherwise. This last quantity is equal to the quantity given 
by the Equation (18) of J6reskog (1967, p.448) and is ( - 2 / N )  times the maximum log 
likelihood of the factor analysis model when D is given. 

In maximizing the likelihood we would normally hope that a too small value of some 
of the diagonal elements of D will reduce the maximum likelihood of the corresponding 
model. However, that this is not the case is shown by the above result which explains that 
the value of the maximum likelihood is sensitive only to the behavior of smaller eigen- 
values of D- 1SD- 1. A very small diagonal element of D will only produce a very large 
eigenvalue. Thus the process of maximizing the likelihood with respect to the elements of 
D does not eliminate the possibility of some of these elements going down to zero. 

The form of q(2) shows that if we introduce an additive term pEg~ with p > 0 then 
the minimization of 

P p 

q(2) = ~ [ 2 F 1 ~ , -  log (;tF 1~,)] + p ~ #,, 
l 1 i = 1  

with respect to 2 does not allow any of 2~ (=  1 + #~) going to infinity. Taking into account 
the relations C = ZF and FF' = Y~#i m~ m'~ we get 

P 

#~ = tr FF' = tr CC'. 
i = 1  

Since C = D - t A  the minimization of q(2) produces an estimate that is given as the 
posterior mode under the assumption of the prior distribution given by 

I N t K e x p  - - ~ - p t r D - I A A ' D - 1  , 

where K denotes the normalizing constant and N the sample size. This prior distribution 
is defined by a spherical normal distribution of the standardized factor loadings and will 
be referred to as the standard spherical prior distribution of the factor loadings. 

For  the complete specification of the Bayesian model it is necessary to define the 
prior distribution of D. However, an arbitrarily defined prior distribution of the elements 
of D can easily eliminate improper solutions if only it penalizes smaller values sufficiently. 
Since our  interest here is mainly in the clarification of the nature of improper solutions 
obtained by the conventional maximum likelihood procedure we will not proceed to the 
modeling of the prior distribution of D and simply adopt the uniform prior. 
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TABLE 1 

Communality estimates* 

Harman : eight physical 

p = 0 (MLE) 
~/. 1 2 

1 842 865 
2 830 893 
3 872 1000 

p =0.1 
LA/, 1 

1 837 
2 828 
3 858 
4 865 
5 

p = 1.0 
Lki, 1 

1 763 
2 766 
3 
4 
5 

3 4 5 6 7 8 

810 813 240 171 123 199 
834 801 911 636 584 463 
806 844 909 641 589 509 

2 3 4 5 6 7 8 

858 804 810 241 172 124 200 
881 828 800 855 647 591 476 
910 830 832 859 650 590 523 
910 832 843 851 689 649 521 

same as above 

2 3 4 5 6 7 8 

768 725 739 252 181 134 204 
781 742 743 590 486 440 409 

same as above 

* In this and following tables maximum possible communality is 
normalized to 1000. 

6. Numerical Examples 

The Bayesian model defined with the standard spherical prior distribution of the 
factor loadings was applied to six published examples of improper solutions. These exam- 
ples are Harman's  eight physical variables data (Harman, 1960, p.82), with p = 8 and 
improper at k = 3, Davis data (Rao, 1955, p.ll0),  with p = 9 and improper at k = 2, 
Maxwelrs normal children data (Maxwell, 1961, p.55), with p = 10 and improper at k = 4, 
Emmett data (Lawley & Maxwell, 1971, p.43), with p = 9 and improper at k = 5, Max- 
well's neurotic children data (p.53), with p = 10 and improper at k = 5, and Harman's 
twenty-four psychological variables data (Harman, 1960, p.137), with p = 24 and im- 
proper at k = 6. 

The informational point of view suggests that hyperparameter 19 of the prior distri- 
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TABLE 2 

Communality estimates 

Davis data 

327 

p = 0 (MLE) 

~ 1 2 3 

1 658 661 228 
2 652 1000 243 
3 1000 661 220 

p =0.1 
k\~ 1 2 3 

1 653 656 226 
2 694 689 227 
3 701 695 251 
4 

p = 1.0 
L~ 1 

1 596 
2 
3 
4 

4 5 6 7 8 9 

168 454 800 705 434 703 
168 464 816 704 435 70t 
204 451 1000 701 488 696 

4 5 6 7 8 9 

167 451 790 700 431 697 
171 470 800 698 434 696 
197 470 801 698 444 696 

same as above 

2 3 4 5 6 7 8 9 

598 210 156 415 702 633 400 631 

same as above 

bution may be "estimated" by maximizing the likelihood of the Bayesian model with 
respect to p. However, for this purpose integration in a high-dimensional space is re- 
quired. In this paper we will limit our attention to the analysis of solutions with some 
fixed values of p. 

The estimation of specific variances under the present Bayesian model was realized 
by the following procedure. Given the initial estimate De of D 2 the sample covariance 
matrix S is replaced by S 1 = D~ 1SD~ t and the next estimate D 2 of D 2 is obtained by the 
relation D 2 = diag(S -- DIB1B'ID1) , where B 1 is a p x k matrix such that BtB' 1 provides a 
least squares fit 

p - - I  p k p k 

2 ~ ~ [Sl(i,j)-- ~ B,(i, l)Bl(j, l)]2 + p ~ ~ B2(i,j)= Min., 
z = t  j = i + l  1=1 i = 1  j = l  

where B(i, j) denotes (i, j)th element of B. The estimates of communalities are defined by 
diag (D1B1B'~D1). The process is repeated until convergence is established. 

When p = 0 the above procedure produced maximum likelihood solutions that were 
confirmed by a procedure based on the result of Jennrich and Robinson (1969). When 
p > 0 the solution may only be considered as an arbitrary approximation to the posterior 
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TABLE 3 

Three factor maximum likelihood solution of Emmett data 

i A(. i) A(-2) A(. 5) ku 

1 .664 .321 .074 .450 
2 .689 .247 -.193 .427 
3 .493 .302 -.222 .617 
4 .837 -.292 -.035 .212 
5 .705 -.315 -.153 .381 
6 .819 -.377 .105 .177 
7 .611 .396 -.078 .400 
8 .458 .296 .491" .462 
9 .766 .427 -.012 .231 

* The value suggests singular increase of the 8th 
communality. 

mode. Nevertheless it will be sufficient for the purpose of confirming of the effect of the 
tempering of the likelihood function. For  convenience we will call the solution the Bayes- 
ian estimate. 

In the case of the above six examples the choice of  p = 1.0 produced solutions with 
signficant overall reduction of communalities, or increase of specific variances. With the 
choice of p = 0.1 solutions were usually close to the conventional maximum likelihood 
estimates but with the improper  estimates of communalities suppressed. Improper  esti- 
mates disappeared completely, unless p was made extremely small. For  a fixed p estimates 
of communalities usually stabilized as k, the number  of factors, was increased. 

It was generally observed that when the maximum likelihood method produced an 
improper  solution first at k =/c  o the corresponding Bayesian estimate with p = 0.1 was 
proper  but with only one communali ty  estimate inflated compared with the estimate at 
k = k o - 1. Such a singular increase of the communali ty  means the reinterpretation of a 
part  of the specific variation as an independent factor. This fact and the result of our 
analysis of the likelihood function suggest that the singular increase of the communal i ty  is 
usually caused by the overparametrization that makes the estimate sensitive to the sam- 
piing variability of the data rather than by the structural change of the best fitting model 
at k = k o . This is in agreement with the earlier observation of Tsumura  and Sato (1981) 
on the nature of improper  solutions. 

Tables 1 and 2 provide estimates of communalities of Harman ' s  eight physical varia- 
bles data and of Davis'  data, respectively, for various choices of the order, k, and p. In the 
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TABLE 4 

Communality estimates by various procedures 

Emmett data 

329 

p = 0 (MLE) 

~ 1 2 3 4 5 6 7 8 9 

1 510 537 300 548 390 481 525 224 665 
2 538 536 332 809 592 778 597 256 782 
3 550 573 384 788 619 823 600 538 769 
4 554 666 379 772 663 856 648 480 759 
5 556 868 1000 780 664 836 666 464 743 

p =0.1 
/~/, 1 

1 502 
2 535 
3 549 
4 
5 

p = l . 0  
L~/, 1 

1 425 
2 433 
3 
4 
5 

2 3 4 5 6 7 8 9 

529 296 545 388 478 516 221 652 
531 330 790 588 762 590 252 753 
561 378 783 611 786 590 399 750 

same as above 

2 3 4 5 6 7 8 9 

448 254 478 344 422 434 189 540 
450 261 522 391 472 445 196 551 

same as above 

case of the Harman data the result in Table 1 shows that the improper value 1000 at i = 2 
with k = 3, obtained with p = 0, disappeared for the positive values of p. In particular, 
with p = 0.1, the solutions with k = 2, 3 and 4 are all mutually very close and they are 
close to the solutions with p = 0 and k = 2 and 3, except for the improper component at 
k = 3. This suggests that the two-factor model is an appropriate choice, which is in 
agreement with Harman's original observation. The soltuion with p = 1.0 conforms with 
this observation. 

For the Davis data with k o = 2 the non-uniqueness of the convergence of iterative 
procedures for the maximum likelihood was first reported by Tsumura, Fukutomi, and 
Asoo (1968). With k = 2, JSreskog (1967, p.474) reported improper estimate of specific 
variance for the 1st component and Tsumura et al. (p.57) found one for the 8th compo- 
nent. As is shown in Table 2 our procedure found one at the 2nd component. The result 
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TABLE 5 

Suggested choices of dimensionalities* 

Harman: eight physical 

p = 8 k o = 3 k s = 2 

MAICE = oo** 

Davis 

p = 9  

Maxwell: 

p = l O  

Emmett 

p = 9  

Maxwell: 

p = 1 0  

Harman • 

p = 24 

normal 

k o = 2 k s = 1 

MAICE = co**  

k o = 4 k s = 3 

MAICE = oo** 

neurotic 

k o = 5 k s = 2 

M A I C E  = 3 

k o = 5 k s = 2 

M A I C E  = 3 

24 variables 

k o = 6 k s = 5 

MAICE = 5 

* p • dimension of observation 

k o • lowest order with improper solution 

k s • suggested order by the Bayesian analysis 

** oo denotes saturated model. 

given in Table 4 of Martin and McDonald  (1975, p.515) also suggests the existence of 
improper  solution with zero unique variance for the 2nd component.  These results suggest 
the existence of local maxima of the likelihood function. Table 2 also gives improper  
estimates for the 1st and 6th components  with k = 3, which is in agreement with the result 
reported by JSreskog. 

The estimates obtained with p = 0.1 may be viewed as practically identical and are 
close to the solution with p = 0, the maximum likelihood estimate, for k = 1. This result 
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strongly suggests that the improper solutions are spurious in the sense that they can be 
suppressed by mild tempering of the likelihood function. The one-factor model seems a 
reasonable choice in this case. The solution with p = 1.0 conforms with the present 
observation. 

The phenomenon of the singular increase of a communality estimate is observed even 
with k < k 0 . Such an example is given by the three-factor maximum likelihood solution of 
the Emmett data. The maximum likelihood solution by Lawley and Maxwell (1971, p.43) 
is reproduced in Tabl~ 3 which suggests the singular increase of the communality of the 
8th component at k = 3. In Table 4 the estimate with p = 0.1 shows substantial increase 
of communality at only the 8th component at k = 3, compared with the estimate at k = 2. 
The increase is completely suppressed with p = 1.0. This result suggests that the high 
value of the communality estimate of the 8th component at k = 3 obtained with p = 0 is 
spurious. Similar phenomenon was observed with Maxwell's data of neurotic children for 
the 2nd component at k = 3. 

Tsumura and Sato (t981, p.163) report that, by their experience, improper solutions 
were always with "quasi-specific factors" that respectively showed singular contributions 
to some specific variances. The above example shows that our present Bayesian approach 
can detect the appearance of such a factor even before one gets a definitely improper 
solution. Thus we can expect that the present approach will realize a reasonable control 
of improper solutions. 

Table 5 summarizes the suggested choices of the number of factors for the six 
examples where the choices by the minimum AIC procedure, MAICE, are also included. 
The suggested choices are based on subjective judgments of the numerical results. It is 
quite desirable to develop a numerical procedure for the evaluation of the likelihood of 
each Bayesian model to arrive at an objective judgment. 

It is interesting to note here that by a proper choice of p the Bayesian approach can 
produce estimate of A even with k -- p. This explains the drastic change of the emphasis 
between the modelings by the conventional and Bayesian approach. By the Bayesian 
approach there is no particular meaning in trying to reduce the number of factors. To 
avoid unnecessary distortion of the model it is even advisable to adopt a large value of k 
and control the estimation procedure by a proper choice of p. 

7. Concluding Remarks 

It is remarkable that the idea of factor analysis has been producing so much stimulus 
to the development of statistical modeling. In terms of the structure of the model it is 
essentially Bayesian. Nevertheless, the practical use of the model was realized by the 
application of the method of maximum likelihood and this eventually led to the introduc- 
tion of AIC. 

The concept of the information measure underlying the introduction of AIC leads 
our attention from parameters to the distribution. This then provides a conceptual frame- 
work for the handling of the Bayesian modeling as a natural extension of the convention- 
al statistical modeling. The occurence of improper solutions in the maximum likelihood 
factor analysis is a typical example that explains the limitation of the conventional mod- 
eling. The introduction of the standard spherical prior distribution of factor loadings 
provided an example of overcoming the limitation by a proper Bayesian modeling. 

This series of experiences clearly explains the close dependence between the factor 
analysis and AIC, or the informational point of view of statistics, and illustrates their 
contribution to the development of general statistical methodology. It is hoped that this 
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close contact between psychometrics and statistics will be maintained in the future and 
contribute to the advancement of  both fields. 
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