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A general formula (a) of which a special case is the Kuder-
Richardson coeflicient of equivalence is shown to be the mean of all
split-half coefficients resulting from different splittings of a test. o
is therefore an estimate of the correlation between two random sam-
ples of items from a universe of items like those in the test. a is
found to be an appropriate index of equivalence and, except for very
short tests, of the first-factor concentration in the test. Tests di-
visible into distinct subtests should be so divided before using the

formula. The index '_r',-, , derived from a, is shown to be an index of

inter-item homogeneity. Comparison is made to the Guttman and
Loevinger approaches. Parallel split coefficients are shown to be un-
necessary for tests of common types. In designing tests, maximum
interpretability of scores is obtained by increasing the first-factor
concentration in any separately-scored subtest and avoiding sub-
stantial group-factor clusters within a subtest. Scalability is not a
requisite.

1. Historical Resumé

Any research based on measurement must be concerned with the
accuracy or dependability or, as we usually call it, reliability of meas-
urement, A reliability coefficient demonstrates whether the test de-
signer was correct in expecting a certain collection of items to yield
interpretable statements about individual differences (25).

Even those investigators who regard reliability as a pale shadow
of the more vital matter of validity cannot avoid considering the re-
liability of their measures. No validity coefficient and no factor analy-
sis can be interpreted without some appropriate estimate of the mag-
nitude of the error of measurement. The preferred way to find out
how accurate one’s measures are is to make two independent measure-
ments and compare them. In practice, psychologists and educators
have often not had the opportunity to recapture their subjects for a
second test. Clinical tests, or those used for vocational guidance, are
generally worked into a crowded schedule, and there is always a de-
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sire to give additional tests if any extra time becomes available.
Purely scientific investigations fare little better. It is hard enough
to schedule twenty tests for a factorial study, let alone scheduling
another twenty just to determine reliability.

This difficulty was first eircumvented by the invention of the split-
half approach, whereby the test is rescored, half the items at a time,
to get two estimates. The Spearman-Brown formula is then applied
to get a coefficient similar to the correlation between two forms. The
split-half Spearman-Brown procedure has been a standard method of
test analysis for forty years. Alternative formulas have been devel-
oped, some of which have advantages over the original. In the course
of our development, we shall review those formulas and show rela-
tions between them.

The conventional split-half approach has been repeatedly criti-
cized. One line of criticism has been that split-half coefficients do not
give the same information as the correlation between two forms given
at different times. This difficulty is purely semantic (9, 14) ; the two
coefficients are measures of different qualities and should not be iden-
tified by the same unqualified appellation “reliability.” A retest after
an interval, using the identical test, indicates how stable scores are
and therefore can be called a coefficient of stability. The correlation
between two forms given virtually at the same time, is a coefficient
of equivalence, showing how nearly two measures of the same general
trait agree. Then the coefficient using comparable forms with an in-
terval between testings is a coefficient of equivalence and stability.
This paper will concentrate on coeflicients of equivalence.

The split-half approach was criticized, first by Brownell (3),
later by Kuder and Richardson (26), because of its lack of unique-
ness. Instead of giving a single coefficient for the test, the procedure
gives different coefficients depending on which items are grouped
when the test is split in two parts. If one split may give a higher co-
efficient than another, one can have little faith in whatever result is
obtained from a single split. This eriticism is with equal justice ap-
plicable to any equivalent-forms coefficient. Such a coefficient is a
property of a pair of tests, not a single test. Where four forms of a
test have been prepared and intercorrelated, six values are obtained,
and no one of these is the unique coefficient for Form A ; rather, each
is the coefficient showing the equivalence of one form to another spe-
cific form.

Kuder and Richardson derive a series of coefficients using data
from a single trial, each of them being an approximation to the inter-
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form coefficient of equivalence. Of the several formulas, one has been

justifiably preferred by test workers. In this paper we shall be espe-
cially concerned with this, their formula (20):

" 22’5‘15
Tti(xRa0) — (1_“ ); (t=1,2,---n). (1)

n—1 ot

Here, 1 represents an item, p; the proportion receiving a score of 1,
and g; the proportion receiving a score of zero on the item.
We can write the more general formula

AL
n i
a= 1— . (2)
n—1 Vg

Here V, is the variance of test scores, and V, is the variance of item
scores after weighting. This formula reduces to (1) when all items
are scored 1 or zero. The variants reported by Dressel (10) for cer-
tain weighted scorings, such as Rights-minus-Wrongs, are also spe-
cial cases of (2), but for most data computation directly from (2) is
simpler than by Dressel’s method. Hoyt's derivation (20) arrives
at a formula identical to (2), although he draws attention to its ap-
plication only to the case where items are scored 1 or 0. Following
the pattern of any of the other published derivations of (1) (19, 22),
making the same assumptions but imposing no limit on the scoring
pattern, will permit one to derive (2).

Since each writer offering a derivation used his own set of as-
sumptions, and in some cases criticized those used by his predeces-
sors, the precise meaning of the formula became obscured. The origi-
nal derivation unquestionably made much more stringent assumptions
than necessary, which made it seem as if the formula could properly
be applied only to rare tests which happened to fit these conditions.
It has generally been stated that a gives a lower bound to “the true
reliability”—whatever that means to that particular writer. In this
paper, we fake formula (2) as given, and make no assumptions re-
garding it. Instead, we proceed in the opposite direction, examining
the properties of a and thereby arriving at an interpretation.

We introduce the symbol a partly as a convenience. “Kuder-
Richardson Formula 20” is an awkward handle for a tool that we ex-
pect to become increasingly prominent in the test literature. A second
reason for the symbol is that a is one of a set of six analogous coeffi-
cients (to be designated 8, y, 8, etc.) which deal with such other




300 PSYCHOMETRIKA

concepts as like-mindedness of persons, stability of scores, etc. Since
we are concentrating in this paper on equivalence, the first of the six
properties, description of the five analogous coefficients is reserved
for later publication.

Critical comments on the Kuder-Richardson formula have been
primarily directed to the fact that when inequalities are used in de-
riving a lower bound, there is no way of knowing whether a particu-
lar coefficient is a close estimate of the desired measure of equivalence
or a gross underestimate. The Kuder-Richardson method is an over-
all measure of internal consistency, but a test which is not internally
homogeneous may nonetheless have a high correlation with a care-
fully-planned equivalent form. In fact, items within each test may
correlate zero, and yet the two tests may correlate perfectly if there
is item-to-item correspondence of content.

The essential problem set in this paper is: How shall a be inter-
preted? a, we find, is the average of all the possible split-half coeffi-
cients for a given test. Juxtaposed with further analysis of the varia-
tion of split-half coefficients from split to split, and with an examina-
tion of the relation of a to item homogeneity, this relation leads to
recommendations for estimating coefficients of equivalence and homo-
geneity.

I11. A Comparison of Split-Half Formulas

The problem set by those who have worked out formulas for split-
half coefficients is to predict the correlation between two equivalent
whole tests, when data on two half-tests are at hand. This requires
them to define equivalent tests in mathematical terms.

The first definition is that introduced by Brown (2) and by
Spearman (33), namely, that we seek to predict correlation with a
test whose halves are ¢ and d, possessing data from a test whose
halves are ¢ and b, and that

Vo=V,=V.=Vs; and
Tab = Tac = Tad = oo = Tha = Tot « 3

This assumption or definition is far from general. For many splittings
V.# V5, and an equivalent form conforming to this definition is im-
possible.

A more general specification of equivalence credited to Flanagan
[see (25)] is that

V(a¢b) == V(c«;d) ; and
704020 — Tad0a0d = ThcOYTc = T'oa0cda = -+ - . (4)
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This assumption leads to various formulas which are collected in the
first column of Table 1. All formulas in Column A are mathematically
identical and interchangeable.

TABLE 1
Formulas for Split-Half Coefficients

Formulas Assuming Equal

Entering Data* Covariances Between Formulas Assuming
Half-Tests 0,==0,
1AY 1B}
Tab %2 Op 4”a°b'rab 21‘“
602 + ﬂbz + Zaaabrub 1+ Tab
2A§
o, 0,0, 2 1_”,,2‘*“"1,2)
o,2
3A]
U' Un ‘ra' 4 (ra‘aua| - daﬂ)
0‘2
4AY 4B (=4A)
og,o [ o2
t7d 1— A 1—_%
0,2 o2
5A 5B
%% Tad 4 (0,2 —o,00my,) 2(20,2 — 0,2)
4”{12 + adz - 40"0'1'1'“ 40112 — ﬂdz
*In this table, ¢ and b are the half-test scores, §Guttman (19)
t=a+db,d=a-b. l|After Mosier (28)
tAfter Flanagan (25) {Rulon (31)

}{Spearman-Brown (2, 33)

When a particular split is such that ¢, = o3, the Flanagan re-
quirement reduces to the original Spearman-Brown assumption, and
in that case we arrive at the formulas in Column B. Formulas 1B
and 5B are not identical, since the assumption enters the formulas in
different ways. No short formula is provided opposite 2A or 3A, since
these exact formulas are themselves quite simple to compute.

Because of the wide usage of Formula 1B, the Spearman-Brown,
it is of interest to determine how much difference it makes which

assumption is employed. If we divide 1B by any of the formulas in
Column A we obtain the ratio

2mr + m* + 1 1 1+m?*+r
k.= = ( ) (5)

T o2m(+r)  (L+7) om
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in which m = os/0a, 0a < ov, and r signifies 7,, . The ratio when 5B
is divided by any of the formulas in the first column is as follows:

. @Cmr—m?+ 1) (1 + 2mr + m?)

ks = . (6)
2mr (2mr — m? + 3)

When m equals 1, that is, when the two standard deviations are equal,
the formula in Column B is identical to that in Column A. As Table
2 shows, there is increasing disagreement between Formula 1B and
those in Column A as m departs from unity. The estimate by the
Spearman-Brown formula is always slightly larger than the coeffi-
cient of equivalence computed by the more tenable definition of com-
parability.

TABLE 2
Ratio of Spearman-Brown Estimate to More Exact Split-Half Estimate of
Coefficient of Equivalence when S.D.’s are Unequal

Ratio of
Half-Test
S.D.’s Correlation Between Half-Tests
(greater/lesser)
.00 20 .40 .60 .80 1.00

1 1 1 1 1 i 1
1.1 1.0056 1.004 1.003 1.003 1.003 1.002
1.2 1.017 1.014 1.012 1.010 1,009 1.008
1.3 1.035 1.029 1.025 1.022 1.020 1.017
14 1.067 1.048 1.041 1.036 1,032 1.029
1.5 1.083 1.069 1.060  1.052 1,046 1.042

Formula 5B is not so close an approximation to the results from
formulas in Column A. When m is 1.1, for example, the values of k;
are as follows: for » = .20, .62; for r = .60, .70 ; for r = 1.00, .999.

It is recommended that the interchangeable formulas 2A and 4A
be used in obtaining split-half coefficients. These formulas involve
no assumptions contradictory to the data. They are therefore prefer-
able to the Spearman-Brown formula. However, if the ratio of the
standard deviations of the half-tests is between .9 and 1.1, the Spear-
man-Brown formula gives essentially the same result. This finding
agrees with Kelley’s earlier analysis of much the same question (2, 3).

I11. a as the Mean of Split-Half Coefficients

To demonstrate the relation between a and the split-half formu-
las, we shall need the following notation:
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Let n be the number of items.

The test ¢ is divided into two half-tests, ¢ and b. ¢ will desig-
nate any item of half-test a, and i" will designate any item of half-
test b. Each half-test contains #' items, where n' = n/2.

V:, Va, and Vy are the variances of the total test and the respec-

tive half-tests.

C,; is the covariance of two items 1 and j.

C. is the total covariance for all items in pairs within half-test
a, each pair counted once; C, is the corresponding ‘“‘within-test” co-
variance for b.

C. is the total covariance of all item pairs within the test.

DETAILED PORTION OF MATRIX
lTFMS lgl F!RS;T HALf

ITEMS IN FIRST HALF

Cn

Cw | FIRST
HALF

SECOND
HALF

Ca

Ca

Gy

G

Fieure 1

FIRST HALF SECOND HALF
¥

Ca

Ceb

\'A

Schematic Division of the Matrix of Item Variances and Covariances.
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C.s 1s the total covariance of all item pairs such that one item is
within ¢ and the other is within b; it is the “between halves” covari-
ance.

Then
Car = Tuy0a0n; (7
Ci=C,+Cy+Cu; (8)
Vg = Vg + Vb + 2Cgb :EVg + 2Cg; and (9)
N
V.= Vi +2C, and V=3 V;.. + 2C,. (10)
‘l ‘Il

These identities are readily visible in the sketches of Figure 1, which
is based on the matrix of item covariances and variances. Each point
along the diagonal represents a variance. The sum of all entries in
the square is the test variance.

Rewriting split-half formula 2A, we have

V.+ Vb Vg—Va'—‘Va
r..=2<1— )=2——-———————. (11)

: Vi

4C,
Ty — - . (12)
t

This indicates that whether a particular split gives a high or low co-
efficient depends on whether the high interitem covariances are placed
in the “between halves” covariance or whether the items having high
correlations are placed instead within the same half.

Now we rewrite a:

EVi V:“"EV&
n i n i
a— 1— = . (13)
n—1 V: n—1 V.

n 20;
a= - — (14)

n—1 Vf

- C‘
Cij=—. (15)
n(n—1)/2
Therefore _
n? 6'“

a= . (16)

Ve
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We proceed now by determining the mean coefficient from all
(2n') 1/2(n'1)® possible splits of the test. From (12),
4C,
=, (17)

t

n -
In any split, a particular C;; has a probability of —— of falling

2(n—1)
into the between-halves covariance C,, . Then over all splits,
(2n') ! n .
Ecub: EECU; ("':‘:192!"‘“_1;
2(WH)22(n—1) ;i ; ..
j=t+1,.-;m). (18)
But
n(n—1) —
22 Ciyy=——0Cy;. (19)
i4 2
(2n’) ! m2--
SCu= —Ciy, (20)
2(n'1)24
and
—_ n:—
Cop—— Ci;- (21)
4
From (17),
_ 4n? E n? 6;, (22)
Popg — =
111 4V‘ i V‘
Therefore
'F'“ —a. (23)
From (14), we can also write a in the form
Z2Cy
o4y ., .,
a= H (1':?:1’2:“'”;3#:’)' (24)
n—1 Vg

This important relation states a clear meaning for a as n/(n—1) times
the ratio of interitem covariance to total variance. The multiplier
n/(n—1) allows for the proportion of variance in any item which is
due to the same elements as the covariance.
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u as a special case of the split-half coefficient. Not only is a a
function of all the split-half coefficients for a test; it can also be shown
to be a special case of the split-half coeflicient.

If we assume that the test is divided into equivalent halves such
that C;.;. (i.e., Co/n 2) equals C;;, the assumptions for formula 2A
still hold. We may designate the split-half coefficient for this splitting
as '1"””.

4 Cab
Tt — . (12)
t
Then
4n' ? 61"@” 4n' 2 6{; n* 5{5
Ty — = = . (25)
— Ve ~V: V.

From (16),

7‘;;0: a. (26)

This amounts to a proof that a is an exact determination of the paral-
lel-form correlation when we can assume that the mean covariance
between parallel items equals the mean covariance between unpaired
items. This is the least restrictive assumption usable in ‘“proving”
the Kuder-Richardson formula.

a as the equivalence of random samples of items. The foregoing
demonstrations show that a measures essentially the same thing as
the split-half coefficient. If all the splits for a test were made, the
mean of the coefficients obtained would be «. When we make only
one split, and make that split at random, we obtain a value somewhere
in the distribution of which a is the mean. If split-half coefficients are
distributed more or less symmetrically, an obtained split-half coeffi-
cient will be higher than a about as often as it is lower than a. This
average that is « is based on the very best splits and also on some
very poor splits where the items going into the two halves are quite
unlike each other.

Suppose we have a universe of items for which the mean covari-
ance is the same as the mean covariance within the given test. Then
suppose two tests are made by twice sampling n items at random
from this universe without replacement, and administered at the same
sitting. Their correlation would be a coefficient of equivalence. The
mean of such coefficients would be the same as the computed a. a is
therefore an estimate of the correlation expected between two tests
drawn at random from a pool of items like the items in this test. Items
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are not selected at random for psychological tests where any differen-
tiation among the items’ contents or difficulties permits a planned
selection. Two planned samplings may be expected to have higher
correlations than two random samplings, as Kelley pointed out (25).
We shall show that this difference is usually small.

IV. An Examination of Previous Interpretations and Criticisms of a

1. Is o a conservative estimate of reliability? The findings
just presented call into question the frequently repeated state-
ment that « is a conservative estimate or an underestimate or a lower
bound to “the reliability coefficient.” The source of this conception
is the original derivation, where Kuder and Richardson set up a def-
inition of two equivalent tests, expressed their correlation algebra-
ically, and proceeded to show by inequalities that a was lower than
this correlation. Kuder and Richardson assumed that corresponding
items in test and parallel test have the same common content and the
same specific content, i.e., that they are as alike as two trials of the
same item would be. In other words, they took the zero-interval re-
test correlation as their standard. Guttman also began his derivation
by defining equivalent tests as identical. Coombs (6) offers the some-
what more satisfactory name “coefficient of precision” for this index
which reports the absolute minimum error to be found if the same
instrument is applied twice independently to the same subject. A co-
efficient of stability can be obtained by making the two observations
with any desired interval between. A rigorous definition of the co-
efficient of precision, then, is that it is the limit of the coefficient of
stability, as the time between testings becomes infinitesimal.

Obviously, any coefficient of equivalence is less than the coeffi-
cient of precision, for one is based on a comparison of different items,
the other on two trials of the same items. To put it another way: a
or any other coefficient of equivalence treats the specific content of an
item as error, but the coefficient of precision treats it as part of the
thing being measured. It is very doubtful if testers have any practi-
cal need for a coefficient of precision. There is no practical testing
problem where the items in the test and only these items constitute the
trait under examination. We may be unable to compose more items
because of our limited skill as testmakers but any group of items in a
test of intelligence or knowledge or emotionality is regarded as a sam-
ple of items. If there weren’t “plenty more where these came from,”
performance on the test would not represent performance on any more
significant variable.
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We therefore turn to the question, does a underestimate appro-
priate coeflicients of equivalence? Following Kelley’s argument, the
way to make equivalent tests is to make them as similar as possible,
similar in distribution of item difficulty and in item content. A pair
of tests so designed that corresponding items measure the same fac-
tors, even if each one also contains some specific variance, will have a
higher correlation than a pair of tests drawn at random from the
pool of items. A planned split, where items in opposite halves are as
similar as the test permits, may logically be expected to have a higher
between-halves covariance than within-halves covariance, and in that
case, the obtained coefficient would be larger than a. « is the same
type of coefficient as the split-half coefficient, and while it may be low-
er, it may also be higher than the value obtained by actually splitting
a particular test at random. Both the random or odd-even split-half
coefficient and a wiil theoretically be lower than the coefficient from
parallel forms or parallel splits.

2. Is a less than the coefficient of stability? Some writers ex-
pect a to be lower than the coefficient of stability. Thus Guttman says
(34, p. 311):

For the case of scale scores, then, . . . we have the assurance that if

the items are approximately scalable [in which case a will be high], then
they necessarily have very substantial test-retest reliability.

Guilford says (16, p. 485):

There can be very low internal consistency and yet substantial or
high retest reliability. It is probably not true, however, that there can be
high internal consistency and at the same time low retest relisbility, ex-
cept after very long time intervals. If the two indices of reliability dis-
agree for a test, we can place some confidence in the inference that the
test is heterogeneous.

The comment by Guttman is based on sound thinking, provided
we reinterpret test-retest coefficient on the basis of the context of the
comment to refer to the instantaneous retest (i.e., coefficient of pre-
cision) rather than the retest after elapsed time. Guilford’s statement
is acceptable only if viewed as a summary of his experience. There
is no mathematical necessity for his remarks to be true. In the co-
efficient of stability, variance in total score between trials (within per-
sons) is regarded as a source of error, and variance in specific fac-
tors (between items within persons) within trials is regarded as true
variance. In the coefficient of equivalence, such as a, this is just re-
versed: variance in specific factors is treated as error. Variation
between trials is non-existent and does not reduce true variance (9).
Whether the coefficient of stability is higher or lower than the co-
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efficient of equivalence depends on the relative magnitude of these
variances, both of which are likely to be small for long tests of stable
variables. Tests are also used for unstable variables such as mood,
morale, social interaction, and daily work output, and studies of this
sort are becoming increasingly prominent. Suppose one builds a
homogeneous scale to obtain students’ evaluations of each day’s class-
work, the students marking the checklist at the end of each class hour.
Homogeneous items could be found for this. Yet the scale would have
marked instability from day to day, if class activities varied or the
topics discussed had different interest value for different students.

The only proper conclusion is that a may be either higher or low-
er than the coefficient of stability over an interval of time.

3. Are coefficients from parallel splits appreciably higher than
random-split coefficients or a? The logical presumption is strong
that planned splits as proposed by Kelley (25) and Cronbach (7)
would yield coefficients nearer to the equivalent-tests coefficient than
random splits do. There is still the empirical question whether this
advantage is large enough to be considered seriously. This raises
two questions: Is there appreciable variation in coefficients from split
to split? If so, does the judgment made in splitting the test into a
priori equivalent halves raise the coefficient? Brownell (3), Cronbach
(8), and Clark (5) have compared coefficients obtained by splitting
a test in many ways. There is doubt that the variation among co-
efficients is ordinarily a serious matter ; Clark in particular found that
variation from split to split was small compared to variation arising
from sampling of subjects.

Empirical evidence. To obtain further data on this question, two
analyses were made. One employs responses of 250 ninth-grade boys
who took Mechanical Reasoning Test Form A of the Differential
Abilities Tests. The second study uses a ten-item morale scale, adapted
from the Rundquist-Sletto General Morale Scale by Donald M. Sharpe
and administered by him to teachers and school administrators.*

The Mechanical Reasoning Test seems to contain items requir-
ing specific knowledges regarding pulleys, gears, etc. Other items
seem to be answerable on the basis of general experience or reason-
ing. The items seemed to represent sufficiently heterogeneous content
that grouping into parallel splits would be possible. We found, how-
ever, that items grouped on a priori grounds had no higher correla-
tions than items believed to be unlike in content. This finding is con-

*Thanks are expressed to Dr. A. G. Wesman and the Psychological Corpora-

tion, and to Dr. Sharpe, for making available the data for the two studies, re-
spectively.
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firmed by Air Force psychologists who made a similar attempt to cate-
gorize items from a mechanical reasoning test and found that they
could not. These items, they note, “are typically complex factorially”
(15, p. 309).

Eight items which some students omitted were dropped. An item
analysis was made for 50 papers. Using this information, ten paral-
lel splits were made such that items in opposite halves had comparable
difficulty. These we call Type I splits. Then eight more splits were
made, placing items in opposite halves on the basis of both difficulty
and apparent content (Type II splits). Fifteen random splits were
made. For all splits, Formula 2A was applied, using the 200 remain-
ing cases. Results appear in Table 3.

TABLE 3

Summary of Data from Repeated Splittings of Mechanical Reasoning Test
(60 items; o — .811)

Splits Where
All Splits 1.05 > o,/0, > .95

Type of Split No. of No. of

Coeffi- Range Mean Coeffi- Range Mean

cients cients
Random 15 779860 810 8 795860 817
Parallel Type I 10 798-.846 820 6 798846 B22
Parallel Type II 8 .801-.833 817 4 .B809-.826 818

There are only 126 possible splits for the morale test, and it is
possible to compute all half-test standard deviations directly from the
item variances and covariances. Of the 126 splits, six were designated
in advance as Type II parallel splits, on the basis of content and an
item analysis of a supplementary sample of papers. Results based on
200 cases appear in Table 4.

TARBLE 4

Summary of Data from Repeated Splittings of Morale Scale
(10 items; o — .715)

Splits Where
All Splits 11> 0y/0,> .8
Type of Split No. of No. of
Coefi- Range Mean Coefi- Range Mean
cients cients
All Splits 126 .609-.797 716 82 .609--797 17

Parallel (Type I1) 6 .681-.780 137 b 112780 748
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The highest and lowest coefficients for the mechanical test differ
by only .08, a difference which would be important only when a very
precise estimate of reliability is needed. The range for the morale
scale is greater (.20), but the probability of obtaining one of the ex-
treme values in sampling is slight. Our findings agree with Clark, that
the variation from split to split is less than the variation expected
from sample to sample for the same split. The standard error of a
Spearman-Brown coefficient based on 200 cases using the same split is
.03 when 7 = .8, .04 when 7;; = .7. The former value compares with
a standard deviation of .02 for all random-split coefficients of the me-
chanical test. The standard error of .04 compares with a standard
deviation of .035 for the 126 coefficients of the morale test.

This bears on Kelley’s comment on proposals to obtain a unique
estimate: “A determinate answer would result if the mean for all
possible spilts were gotten, but, even neglecting the labor involved,
this would seem to contravene the judgment of comparability.” (25,
p. 79). As our tables show, the splittings where half-test standard
deviations are unequal, which “contravene the judgment of compar-
ability,” have coeflicients about like those which have equal standard
deviations.

Combining our findings with those of Clark and Cronbach we
have studies of seven tests which seem to show that the variation from
split to split is too small to be of practical importance. Brownell finds
appreciable variation, however, for the four tests he studied. The ap-
parent contradiction is explained by the fact that the former results
applied to tests having fairly large coefficients of equivalence (.70 or
over). Brownell worked with tests whose coefficients were much low-
er, and the larger range of 7's does not represent any greater varia-
tion in 2z values at this lower level.

In Tables 8 and 4, the values obtained from deliberately equated
half-tests differ slightly, but only slightly, from those for random
splits. Where a is.715 for the morale scale, the mean of parallel splits
is .748—a difference of no practical importance. One parallel split
reaches .780, but this split could not have been defended a priori as
more logical than the other planned splits. In Table 3, we find that
neither Type I nor Type 11 splits averaged more than .01 higher than
a . Here, then, is evidence that the sort of judgment a tester might
make on typical items, knowing their content and difficulty, does not,
contrary to the earlier opinion of Kelley and Cronbach, permit him to
make more comparable half-tests than would be obtained by random
splitting. The data from Cronbach’s earlier study agree with this. This
conclusion seems to apply to tests of any length (the morale scale has
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only ten items). Where items fall into obviously diverse subgroups in
either content or difficulty, as, say, in the California Test of Mental
Maturity, the tester’s judgment could provide a better-than-random
split. It is dubious whether he could improve on a random division
within subtests.

It should be noted that in this empirical study no attempt was
made to divide items on the basis of r;;, as Gulliksen (18, p. 207-210)
has recently suggested. Provided this is done on a large sample of
cases other than those used to estimate r;;, Gulliksen’s plan might
indeed give parallel-split coefficients which are consistently at least a
few points higher than a.

The failure of the data to support our expectation led to a further
study of the problem. We discovered that even tests which seem to
be heterogeneous are often highly saturated with the first factor
among the items. This forces us not only to extend the interpretation
of a, but also to reexamine certain theories of test design.

Factorial composition of the test variance. To make fully clear
the relations involved, our analytic procedure will be spelled out in
detail. We postulate that the variance of any item can be divided
among k + 1 orthogonal factors (k common with other items and one
unique). Of these, we shall refer to the first, f, , as the general factor,
even though it is possible that some items would have a zero load-
ing on this factor.* Then if f.; is the loading of common factor z on
item 1,

1.00 = N2(f*; + foas + f2as + - + f20,) . (27)

Ciy=N2oio;j(fii fas + fas foy + - + fri fus) . (28)
Ct=220u=_N"EIEmwfﬁfu + .- +N’§§vi os fui frss

(i=1,2,---n—1;7=i+1,---,n). (29)
V.=N’2ilo’-s(f’u + e fi + f;) +2N"Z,2_<ﬂ oy fui fus

+ - +2N23 S o 05 fri fri . (30)
4 4

If n, items contain non-zero loadings on factor 1, and n. items
contain factor 2, etc., then V. consists of

*This factor may be a so-called primary or reference factor like Verbal, but
it is more likely to be a composite of several such elements which contribute to
every item.
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n,? terms of the form NZoy0f1ify; , plus

n,? terms of the form NZ¢i0,f2if2i , plus (31)
ns® terms of the form NZe;0,fsifs5 , plus and so on to

m* terms of the form NZ2o;0; fiifxs , plus

7 terms of the form N?o:*f,2.

We rarely know the values of the factor loadings for an actual
test, but we can substitute values representing different kinds of test
structure in (30) and observe the proportionate influence of each
factor in the total test.

First we shall examine a test made up of a general factor and five
group factors, in effect a test which might be arranged into five cor-
related subtests. £k = 6. Let n, = n, so f, is truly general, and let
Ny = Ny = My == Ny = Ng — 1/5 n. To keep the illustration simple, we
shall assume that all items have equal variances and that any factor
has the same loading (f,) in all items where it appears. Then

n? n2

n2
Vi=ntf2+—f2+—f2 4+ +—f + . 32
R s g5 /¢ T 21 (D)

N3gs2

It follows that in this particular example, there are n* general factor
terms, n?/6 group factor terms, and only n unique factor terms. There
are, in all, 6n%/5 + n terms in the variance. Let f2, be the proportion
of fest variance due to each factor. Then if we assume that all the
terms making up the variance are of the same approximate magni-
tude,

bn? bn
= = . (33)
6n*+6m 6n+5H
5
%_’ix:x 2 :EZ .83. (34)
n*/5
fzztz"':f2u=_“‘""—‘”- (8b)
én* + bn
Lim 2 =.08. (36)
Zfiy = 5 (37)
e v en+b

Lim 3 f3, : =0. (38)
o 4 —
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Note that among the terms making up the variance of any test, the
number of terms representing the general factor is n times the num-
ber representing item specific and error factors.

We have seen that the general factor cumulates a very large in-
fluence in the test. This is made even clearer by Figure 2, where we
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FIGURE 2

Change in Proportion of Test Variance due to General, Group, and Unique
Factors among the Items as n Increases.

plot the trend in variance for a particular case of the above test struc-
ture. Hereweset k =6 ,n, —=n, N, = Ny = N — N5 — Ny — /6. Then
we assume that each item has the composition: 9% general factor, 9%
from some one group factor, 829 unique. Further, the unique vari-
ance is divided by 70/12 between error and specific stable variance. It
is seen that even with unreliable items such as these, which intercor-
relate only .09 or .18, the general factor quickly becomes the predomi-
nant portion of the variance. In the limit, as » becomes indefinitely
large, the general factor is 5/6 of the variance, and each group factor
is 1/80 of the total variance.
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This relation has such important consequences that we work out
two more illustrative substitutions in Table 5. We first consider the
test which is very heterogeneous in one sense, in that each group of
five items introduces a different group factor. No factor save factor
1 is found in more than 5 items. Here great weight in each item is
given to the group factor, yet even so, the general factor quickly
cumulates in the covariance terms and outweighs the group factors.

The other illustration involves a case where the general factor
is much less important in the items than two group factors, each pres-
ent in half the items. In this type of test, the general factor takes on
some weight through cumulation, but the group factors do not fade
into insignificance as before. We can generalize that when the pro-
portion of items containing each common factor remains constant as
a test is lengthened (factor loadings being constant also), the ratio
of the variances contributed by any two common factors remains con-
stant. That is, in such a test pattern each item accounts for a nearly
constant fraction of the non-unique variance.

While our description has discussed number of terms, and has
simplified by holding constant both item variances and factor load-
ings, the same general trends hold if these conditions are not imposed.
The mathematical notation required is intricate, and we have not
attempted a formal derivation of these general principles:

If the magnitude of item intercorrelations is the same, on the
average, in successive groups of items as a test is lengthened,

(a) Specific factors and unreliability of responses on single items
account for a rapidly decreasing proportion of the variance
if the added items represent the same factors as the original
items. Roughly, the contribution is inversely proportional
to test length.

(b) The ratio in which the remaining variance is divided among
the general factor and group factors

(i) is constant if these factors are represented in the added
items to the same extent as in the original items;*

(ii) increases, if the group factors present in the original
items have less weight in the added items.

As a test is lengthened, the general factor accounts for a larger
and larger proportion of the total variance. In the case where only a
few group factors are present no matter how many items are added,

*This is the case discussed in the recent paper of Guilford and Michael (17).
Our conclusion is identical to theirs.
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these also account for an increasing and perhaps substantial portion
of the variance. But when each factor other than the first is present
in only a few items, the general factor accounts for the lion’s share
of the variance ag the test reaches normal length. We shall return to
the implications of this for test design and for homogeneity theory.

Next, however, we apply this to coefficients of equivalence. We
may study the composition of half-tests just as we have studied the
total test. And we may also examine the composition of C.y, the be-
tween-halves covariance. In Table 6, we consider first the test where
there is a general factor and two group factors. If the test is divided
into halves such that every item is factorially identical to its opposite
number, save for the unique factor in each, the covariance C,; none-
theless depends primarily upon the general-factor terms. Note, for
example, the twenty-item test. Two-thirds of the covariance terms
are the result of item similarity in the general factor. Suppose that
these general factor terms are about equal in size. Then, should the
test be split differently, the covariance would be reduced to the extent
that more than half the items loaded with (say) factor 2 fall in the
same half, but even the most drastic possible departure from the par-
allel split would reduce the covariance by only one-third of its terms.
In the event that the group-factor loadings in the items are larger
than the general-factor loadings, the size of the covariance is reduced
by more than one-third. It is in this case that the parallel split has
special advantage: where a few group factors are present and have
loadings in the items larger than the general factor does.

The nature of the split has even less importance for the pattern
where each factor is found in but a few items. Suppose, for exam-
ple, that we are dealing with the 60-item test containing 15 factors
in four items each. Then suppose that it is so very “badly” split that
items containing 5 of the factors were assigned only to one of the half-
tests, and items containing the second 5 factors were assigned to the
other half-test. This would knock out 40 terms from the between-
halves covariance, but such a shift would reduce the covariance only
by 40/960 of its terms. Only in the exceptional conditions where gen-
eral factor loadings are miniscule or where they vary substantially

would different splits of such a test produce marked differences in the
covariance.

It follows from this analysis that marked variation in the coef-

ficients obtained when a test is split in several ways can result only
when
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(a) a few group factors have substantial loadings in a large
fraction of the items or

{b) when first-factor loadings in the items tend to be very small
or where they vary considerably. Even these conditions are likely to
produce substantial variations only when the variance of a test is con-
tributed to by only a few items.

In the experimental tests studied by Clark, by Cronbach, and in
the present study, general-factor loadings were probably greater, on
the whole, than group-factor loadings. Moreover, none of the tests
seems to have been divisible into large blocks of items each represent-
ing one group factor. (Such large “lumps” of group factor content
are most often found in tests broken into subtests, viz., the Number
Series, Analogies, and other portions of the ACE Psychological ex-
amination.)

This establishes on theoretical grounds the fact that for certain
common types of test, there is likely to be negligible variation among
split-half coefficients. Therefore a, the mean coefficient, represents
such tests as well as any parallel split.

This interpretation differs from the Wherry-Gaylord conclusion
(38) that “the Kuder-Richardson formula tends to underestimate the
true reliability by the ratio (n — K)/(n — 1) when the number of
factors, K, is greater than one.” They arrive at this by highly restric-
tive assumptions: that all factors are present in an equal number of
items, that no item contains more than one factor, that there is no
general factor, and that all items measuring a factor have equal vari-
ances and covariances. This type of test would never be intended to
vield a psychologically interpretable score. For psychological tests
where the intention is that all items include the same factor, our de-
velopment shows that the quoted statement does not apply.

The problem of differential weighting has been studied repeated-
ly, the clearest mathematical analyses being those of Richardson (30)
and Burt (4). This problem is closely related to our own study of test
composition. Making different splits of a test is essentially the same
as weighting the component items differently. The conditions under
which split-half coefficients differ considerably are identical to those
where differential weighting of components alters a total score appre-
ciably: few components, lack of general factor or variation in its load-
ings, large concentrations of variance in group factors. The more for-
mal mathematical studies of weighting lead to the same conclusions
as our study of special cases of test construection.

4. How 1is a related to the homogeneity, internal consistency, or
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saturation of a test?* During the last ten years, various writers (12,
19, 27) directed attention to a property they refer to as homogeneity,
scalability, internal consistency, or the like. The concept has not been
sharply defined, save in the formulas used to evaluate it. The gen-
eral notion is clear: In a homogeneous test, the items measure the
same things.

If a test has substantial internal consistency, it is psychologically
interpretable. Two tests, composed of different items of this type,
will ordinarily give essentially the same report. If, on the other hand,
a test is composed of groups of items, each measuring a different fac-
tor, it is uncertain which factor to invoke to explain the meaning of
a single score. For a test to be interpretable, however, it is not es-
sential that all items be factorially similar. What is required is that
a large proportion of the test variance be attributable to the principal
factor running through the test (37).

a estimates the proportion of the test variance due to all common
factors among the items. That is, it reports how much the test score
depends upon general and group, rather than item specific, factors. If
we assume that the mean variance in each item attributable to com-

mon factors (S o f.;¢) equals the mean interitem covariance
F

2 (Ui Uifzijzj)p

2z

1 2 2

- 0 3t = —— Ciyy=—C;. 39

nzz? fu n(n—-—l)?% M n(n—1) f (88)
ST et fur= C:, (40)
z 4 —1

and the total variance (item variance plus covariance) due to com-

mon factors is 2 C:. Therefore, from (14), a is the proportion

n—1
of test variance due to common factors. Our assumption does not hold
true when the interitem correlation matrix has rank higher than one.
Normally, therefore, a underestimates the common-factor variance,
but not seriously unless the test eontains distinct clusters.
The proportion of the test variance due to the first factor among
the items is the essential determiner of the interpretability of the

*Several of the comments made in the following sections, particularly re-
garding Loevinger's concepts, were developed during the 1949 APA meetings in
a paper by Humphreys (21) and in a symposium on homogeneity and reliability.
The thinking has been aided by subsequent discussions with Dr. Loevinger.
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scores. o is an upper bound for this. For those test patterns described
in the last section, where the first factor accounts for the preponder-
ance of the common-factor variance, a is a close estimate of first-fac-
tor concentration.

a applied to batteries of tests or sublests. Instead of regarding
a as an index of item consistency, we may apply it to questions of sub-
test consistency. If each subtest is regarded as an “item” composing
the test, formula (2) becomes

Vlu teaLs
a=— (71— 2 Veu i (41)
n—1 V!esl

Here n is the number of subtests. If this formula is applied to a test
or battery composed of separate subtests, it yields useful information
about the interpretability of the composite. Under the assumption
that the variance due to common factors within each subtest is on
the average equal to the mean covariance between subtests, a indi-
cates what proportion of the variance of the composite is due to com-
mon factors among the subtests. In many instruments the subtests
are positively correlated and intended to measure a general factor.
If the matrix of intercorrelations is approximately hierarchical, so
that group factors among subtests are small in influence, « is a meas-
ure of first-factor concentration in the composite.

Sometimes the variance of the test is not immediately known,
but correlations between subtests are known. In this case one can
compute covariances (Cu = o, ob Tw), Or the variance of the com-
posite (V, is the sum of subtest variances and covariances), and ap-
ply formula (41). But if subtest variances are not at hand, an in-
ference can be made directly from correlations. If all subtests are
assigned weights such that their variances are equal, i.e., they make
equal contributions to the total,

2227y (42)

< i § >;(1::1’2’.-.”—1;7':1:-}-1'.,_n)-
n+ 2331y

‘g

a=—=
n—1

Here ¢ and j are subtests, of which there are n. This formula tells
what part of the total variance is due to the first factor among the
subtests, when the weighted subtest variances are equal.

A few applications will suggest the usefulness of this analysis.
The California Test of Mental Maturity, Primary, has two part scores,
Language and Non-Language. For a group of 725, according to the
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test authors, these scores correlate .668. Then, by (42), a, the com-
mon-factor concentration, is .80. Turning to the Primary Mental
Abilities Tests, we have a set of moderate positive correlations re-
ported when these were given to a group of eighth-graders (35). The
question may be asked: How much would a composite score on these
tests reflect common elements rather than a hodgepodge of elements
each specific to one subtest? The intercorrelations suggest that there
is one general factor among the tests. Computing a on the assump-
tion of equal subtest variances, we get .77. The total score is loaded
to this extent with a general intellective factor. Our third illustra-
tion relates to four Air Force scores related to carefulness. Each
score is the count of number wrong on a plotting test. The four scores
have rather small intercorrelations (15, p. 687), and each score has
such low reliability that its use alone as a measure of carefulness is
not advisable. The question therefore arises whether the tests are
enough intercorrelated that the general factor would cumulate in a
preponderant way in their total. The sum of the six intercorrela-
tions is 1.76. Therefore a is .62. l.e., 62% of the variance in the
equally weighted composite is due to the common factor among the
tests.

From this approach comes a suggestion for obtaining a superior
coefficient of equivalence for the “lumpy” test. It was shown that a
test containing distinct clusters of items might have a parallel-split
coefficient appreciably higher than «. If so, we should divide the test
into subtests, each containing what appears to be a homogeneous
group of items. a is computed for each subtest separately by (2).
Then o2« gives the covariance of each cluster with the opposite clus-
ter in a parallel form, and the covariance between subtests is an esti-
mate of the covariance of similar pairs “between forms.” Hence

2 0ioTy
7‘;::‘,—"‘"; (:1=1,2,---m;7=1,2,---0), (43)
12 V‘

where a; is entered for 7, , 7 and j being subtests. To the extent that

@; is higher than the mean correlation between subtests, the parallel-
forms coefficient will be higher than a, computed from (2).

The relationships developed are summarized in Figure 3. a falls
somewhere between the proportion of variance due to the first factor
and the proportion due to all common factors. The blocks represent-
ing “other common factors” and “item specifics” are small, for tests
not containing clusters of items with distinctive content.
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FIGURE 3

Certain Coefficients related to the Composition of the Test Variance.

An index unrelated to test length. Conceptually, it seems as if
the “homogeneity” or “internal consistency” of a test should be in-
dependent of its length. A gallon of homogenized milk is no more
homogeneous than a quart. a increases as the test is lengthened, and
so to some extent do the Loevinger-Ferguson homogeneity indices.
We propose to obtain an indication of interitem consistency by apply-
ing the Spearman-Brown formula to «,, thereby estimating the mean
correlation between items. The formula is entered with the recipro-
cal of the number of items as the multiple of test length. The formula
can be simplified to

a
Pijomty = (44)
Hime n+ (1—n)a
or (cf. 24, p. 213 and 30, p. 387),
1 Vg — zvi
Tijeaty = . . (45)
— a—1 2V¢

Fisceety (7 bar) is the correlation required, among items having equal
variances and equal covariances, to obtain a test of length n having
common-factor concentration a. 7., or its special case ¢ for di-
chotomously-scored items is recommended as an overall index of in-
ternal consistency, if one is needed. It is independent of test length.
It is not, in my opinion, important for a test to have a high # if a is
high. Woodbury’s “standard length” (39) is an index of internal con-
sistency which can be derived from #;, and has the same advantages
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and limitations. =, , the standard length, is the number of items which
yields an o of .50 . Then
1 - ?{"
n; — - . (46)
Tij

If 7 is high, a is high. But a may be high even when items have
small intercorrelations. If 7 is low, the test may be a smooth mixture
of items all having low intercorrelations. In this case, each item
would have some loading with the general factor and if the test is
long a could be high. Such items are illustrated by very difficult psy-
chophysical discriminations such as a series of near-threshold speech
signals to be interpreted; with enough of these items we have a high-
ly satisfactory measuring instrument. In fact, save for random er-
ror of performance, it may be unidimensional. A low value of ¥ may
instead indicate a lumpy test composed of discrete and homogeneous
subtests. Guttman (34, p. 176n.) describes a questionnaire of this
type. The concept of homogeneity has no particular meaning for a
“lumpy” test. It is logically meaningless to inquire whether a set of
ten measures of physical size plus fen intercorrelated vocabulary
items is more homogeneous than twenty slightly correlated biographi-
cal questions. A high 7 is sufficient but not necessary evidence that
the test lacks important group factors. When 7 is low, only a study of
correlations among items or trial clusters of items shows whether the
test can be broken into more homogeneous subtests.

Comparison with the index of reproducibility. Guttman’s coeffi-
cient of reproducibility has appeared to some reviewers (Loevinger,
28 ; Festinger, 13) as an ad hoc index with no mathematical rationale.
It may therefore be worthwhile to note that this coefficient can be
approximated by a mathematical form which makes clear what it
measures. The correlation of any two-choice item with a total score
on a test may be expressed as a phi coefficient, and this is common in
conventional item analysis. Guttman dichotomizes the test scores at
a cutting point selected by inspection of the data. We will get similar
results if we dichotomize scores at that point which cuts off the same
proportion of cases as pass the item under study. (Our ¢;; will be
less in some cases than it would be if determined by Guttman’s inspec-
tion procedure.) Simple substitution in Guttman’s definition (34, p.
117) leads to

R=1—202(1— ¢i:), (47)

where the approximation is introduced by the difference in ways of
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dichotomizing. The actual R obtained by Guttman will be larger than
that from (47). For multiple-alternative items, a similar but more
complex formula involving the phi coefficient of the alternative with
the test is required to approximate Guittman’s result. R is independ-
ent of test length; if a Guttman scale is divided into equivalent por-
tions, the two halves will have the same R as the original test. In this
respect, B is most comparable to our 7. Both ¢:; and 7 are low, so
long as items are unreliable or contain substantial specific factors.

5. Is the usefulness of a limited by properties of the phi coef-
ficient between items having unequal difficulties? The criticism has
been made, most vehemently by Loevinger (27), that a is a poor in-
dex because, being based on product-moment correlations, it cannot
attain unity unless all items have distributions of the same shape.
For the pass/fail item, this requires that all p; be equal. The infer-
ence is drawn that since the coefficient cannot reach unity for such
items, a and 7 do not properly represent homogeneity.

There are two ways of examining this criticism. The simpler is
empirical. The alleged limitation upon the product-moment coefficient
has no practical effect upon the coefficient, for items of the sort cus-
tomarily employed in psychological tests. To demonstrate this, we
consider the change in ¢ with changes in item difficulty. To hold con-
stant the relation between the “underlying traits,” we fix the tetra-
choric correlation. When the tetrachoric coefficient is .30, »; = .50
and p, ranges from .10 to .90, ¢;; ranges only from .14 to .19. Figure 4
shows the relation of ¢:; to p; and p; for three levels of correlation:
e = .30, 7o, = .50, and 7. =.80. The correlation among items in
psychometric tests is ordlnanly below .30. For example, even for a
five-grade range of talent, the $;; for the California Test of Mental
Maturity subtests range only from .13 to .25. That is, for tests hav-
ing the degree of item intercorrelation found in present practice, ¢
is very nearly constant over a wide range of item difficulties.

TABLE 7

Variation in Certain Indices of Interitem Consistency with Changes in Item
Difficulty (Tetrachoric Correlation Held Constant)

p; 5 B0 50 .60 .60 5O .50 .50 .50
?, —»00 .10 20 .40 .50 .60 .80 .90 —>1.00
i gter 30 380 30 30 30 .30 .30 .30 .30
i —00 A4 A7 19 19 19 17 14 —>.00

H,, —1.00 42 B34 .23 19 23 .34 42 100
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Examining Loevinger’'s proposed coefficient of homogeneity (29),

Hi; = ¢i5/dijiamnn) » (48)

we find that 4t is markedly affected by variations in item difficulty.
One example is worked out in Table 7. As many investigators includ-
ing Loevinger have noted, Guttman’s R is drastically affected by item
difficulty. For any single item, B must be greater than »; or g; , which-
ever is greater. Evidently the indices of homogeneity which might re-
place ¢ suffer more from the effects of differences in difficulty than
does the phi coefficient.

Further evidence on the alleged limitation of a is obtained by
preparing four hypothetical 45-item tests. In each case, all 7i;(:e1) &Te
fixed at .30 . Phi coefficients reflect both heterogeneity in content and
heterogeneity in difficulty. To assess the effect of the latter hetero-
geneity upon ¢ and a , we compared one test of uniform item difficulty,
where all heterogeneity is in content, with another where ‘“hetero-
geneity due to difficulty” was allowed to enter. As Table 8 indicates,
even when extreme ranges of item difficulty are allowed, neither @
nor a is affected in any practically important way. For tests where
item difficulties are higher, or correlations are lower, the effect would
be even more negligible.

TABLE 8

Comparison of ¢ and « for Hypothetical 45-Item Tests With and Without
“Heterogeneity Due to Item Difficulty”

Distribution of Range of

Test Difficulties P; Py ¢ Diff. o Diff.
A Normal .20 to .80 b0 A81 4., .909 005
A’ Peaked .50 .50 192 914
B Normal .10 to .90 .50 176 016 906 008
B’ Peaked .50 .50 192 914
C Normal .50 to .90 .70 170 011 902 007
c’ Peaked .70 .70 181 909
D = Rectangular .10 to .90 .50 .153 039 892 022

D’ Peaked .50 .60 .192 914

Still another small study leading to the same essential conclusion
was made by examining a “perfect scale,” where all py; equal ¢:;max) -
Items were placed at five difficulty levels, the p; being .50, .58, .71,
.80, and .89. Then the correlations (phis) of items range from 1.00
(at same level) to .85 (highest between levels) to .36. In a test of
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only five items, a reaches .86 . This is the maximum e could have, for
this set of 5 items and specified ;. As the number of items increases,
a rises toward 1.00 . Thus, for 10 items, two at each level ag,, = .951;
for 20 items, .977. It follows that even if items are much more ho-
mogeneous in content than present tests and much freer from error,
the cumulative properties of covariance terms make the failure of all
¢'s to reach unity of next-to-no importance. am., would be lower if
difficulties range over the full scale, but the same principle holds. a
is a good measure of common-factor concentration, for tests of rea-
sonable length, in spite of the fact that it falls short of 1.00 if items
vary in difficulty.

In the case of the perfect scale, of course, ¢ does fall well short
of unity and for such tests it does not reflect the homogeneity in con-

tent. From the five-item case just considered, ¢ is .54 .

The second way to analyze this criticism is to examine the nature
of redundancy (using a term from Shannon’s information theory,
32). If two items repeat the same information, they are totally re-
dundant. Thus, if one item divides people 50/50, and the second item
does also, the two items always placing exactly the same people to-
gether, the second item gives no new information about individual
differences. (Cf. Tucker, 36). Suppose, though, that the second item
is passed by 60 per cent of the subjects. Even if ;) = 1.00, this
second item conveys new information because it discriminates among
the fifty people who failed the first item. A five-item test where all
items have perfect tetrachoric intercorrelations, and the p; are .40,
.45 ,.50,.565, .60, is perfectly homogeneous (a la Guttman, Loevinger,
et al). So is a ten-item test composed of these items plus five others
whose p’s are .30, .35, .65, .70, .75. The two tests are not equiva-
lent in measuring power, however; the second makes a much greater
number of discriminations. Because there is less redundancy, the

longer test has a lower ¢ .

From the viewpoint of information theory, we should be equally
concerned with heterogeneity in content and heterogeneity in difficulty.
We get one bit of information when we place the person as above the
mean in (say) pitch discrimination. Now with another item or set
of items, we might place him relative to the mean in visual acuity.
The two tests together place him in one of four categories. If our sec-
ond test had been a further measure of pitch, placing the subject
above or below the 75th percentile, then the two tests would have
placed him in one of four categories. Either set of tests gives the
same amount of information. Which information we most want de-
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pends on practical considerations.

The phi coefficient reports whether a second item gives new in-
formation that the first does not. Then a tetrachoric » must be com-
puted to determine if the new information relates to a new content
dimengion or to a finer discrimination on the same content dimension.
If the phi coefficient between true scores is 1.00, redundancy is com-
plete and there is no new information. Redundancy is desirable when
accuracy of a single item is low. To test whether men can hear a 10-
cycle difference, the best way is to use a large number of items of
just that difficulty. Such items usually also discriminate to some de-
gree at other points on the scale, but cannot give information about
ability at the 5-cycle level if a single item is extremely reliable.
With very accurate items a pitch test which is not homogeneous will
be better for differentiation all along the scale. The “factors” found
by Ferguson (11) due to the higher correlation (redundancy) of items
with equal difficulty need not be regarded as artifacts (38).* These
“difficulty factors” are factors on which the test gives information
and on which the tester may well want information. They are not
“content factors,” but they must be considered in test analysis. For
example, if one regards pitch tests in this light, it is seen that a test
containing b-cycle items, 10-cycle items, and 15-cycle items will be
slightly influenced by undesired factors, when the criterion requires
discrimination only at the 15-cycle level. (Problems of this type oc-
cur in validating tests for selecting military personnel using detec-
tion apparatus). One would maximize the loading in the test of the
group factor among 15-cycle items, to maximize validity. This factor
is of course a mathematical factor, and not a property of the auditory
machinery. While the mathematics is not clear, it seems very likely
that the group factors found among phi coefficients are interchange-
able with Guttman’s “components of scale analysis” to which he gives
serious psychological interpretation.

From this point of view, the phi coefficient which tells when items
do and do not duplicate each other is a better index just because it
does not reach unity for items of unequal difficulty. Phi and 7... are
both useful in test analysis. Brogden (1, pp. 199, 201) makes a simi-
lar point, although approaching the problem from another tack.

*It is not mecessary, as Ferguson seems to think, for difficulty factors to
emerge if product-moment correlations are used with multi-category variates.
On @ priori grounds, difficulty factors will appear only if the shapes of the dis-
tributions of the variates are different. In Ferguson’s data it appears likely that
the hardest and easiest tests were skewed in opposite directions,
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Implications for Test Design

In view of the relations detailed above, we find it unnecessary to
create homogeneous scales such as Guttman, Loevinger, and others
have urged.

It is true that a test where all items represent the same content
factor with no error of measurement is maximally interpretable.
Everyone attaining the same score would mark items in the same way.
Yet the question we really wish to ask is whether the individual dif-
ferences in test score are attributable to the first factor within the
test. If a large proportion of the score variance relates to this factor,
the residue due to specific characteristics of the items little handicaps
interpretability. It has been shown that a high first-factor saturation
indicated by a high a can be attained by cumulating many items which
have low correlations. The standard proposed by Ferguson, Loeving-
er, and Guttman is unreasonably severe, since it would rule out tests
which do have high first-factor concentrations.

These writers seem to wish to infer the person’s score on each
item from his total score. This appears unimportant, but even if it
were important, the interest would attach to predicting his frue stand-
ing on the item, not his fallible obtained score. For the unreliable
items used in psychological and educational tests, the aim of Guttman
et al. will not be approached in practice. Perhaps sociological data
have such greater reliability that prediction of obtained scores is tan-
tamount to predicting true scores.

Increasing interpretability by lengthening a test is not without
its disadvantages. Using more and more time to get at the same in-
formation employs the principle of redundancy (32). When a mes-
sage is repeated over and over, it is easier to infer the true message
even when there is substantial interference (item unreliability). But
the more you repeat messages already transmitted, the less time is
allowed for conveying other information. A set of redundant items
can carry much less information than a set of independent items. In
other words, when we lengthen certain tests or subtests to make their
scores more interpretable, we sacrifice the possibility of obtaining
separate measures of additional factors in the same time.

From the viewpoint of both interpretability and efficient predic-
tion of criteria, the smallest element on which a score is obtained
should be a set of items having a substantial « and not capable of
division into discrete item clusters which themselves have high a.
Such separately interpretable tests can sometimes be combined into
an interpretable composite, as in the case of the PMA tests. Although
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it is believed that the test designer should seek interitem consistency,
and judge the effectiveness of his efforts by the coefficient a , the pure
scale should not be viewed as an ideal. It should be remembered that
Tucker (36) and Brogden (1) have demonstrated that increases in
internal consistency may lead to decreases in the product-moment
validity coefficient when the shape of the test-score distribution dif-
fers from that of the criterion distribution.

Summary

1. Formulas for split-half coefficients of equivalence are com-
pared, and those of Rulon and Guttman are advocated for practical
use rather than the Spearman-Brown formula.

2. a, the general formula of which Kuder-Richardson formula
20 is a special case, is found to have the following important mean-
ings:

(a) a is the mean of all possible split-half coefficients.

{b) ais the value expected when two random samples of
items from a pool like those in the given test are correlated.

(¢} a is a lower bound for the coefficient of precision (the
instantaneous accuracy of this test with these particular items). «
is also a lower bound for coefficients of equivalence obtained by simul-
taneous administration of two tests having matched items. But for
reasonably long tests not divisible into a few factorially-distinct sub-
tests, a is nearly equal to “parallel-split” and “parallel-forms” coeffi-
cients of equivalence.*

(d) a estimates, and is a lower bound to, the proportion of
test variance attributable to common factors among the items. That
is, it is an index of common-factor concentration. This index serves
purposes claimed for indices of homogeneity. a may be applied by a
modified technique to determine the common-factor concentration
among a battery of subtests.

*W. G. Madow suggests that the amount of disagreement between two ran-
dom or two planned samples of items from a larger population of items could be
anticipated from sampling theory. The person’s score on a test is a sample mean,
intended to estimate the population mean or “true score” over all items. The vari-
ance of such a mean from one sample to another decreases rapidly as the sample
is enlarged by lengthening the test, whether samples are drawn at random or are
drawn after stratifying the universe as to difficulty and content. The conditions
under which the radom splits correlate about as highly as parallel splits are those
in which stratified sampling has comparatively little advantage. Madows comment
has implications also for the preparation of comparable forms of tests and for
develo;_:ing objective methods of selecting a sample of items to represent a larger
set of items so that the variance of the difference between the score based on the
sample and the score based on the universe of items is as small as possible.
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(e) e« is an upper bound to the concentration in the test of
the first factor among the items. For reasonably long tests not divis-
ible into a few factorially-distinct subtests, ¢ is very little greater
than the exact proportion of variance due to the first factor.

3. Parallel-splits yield coefficients little larger than random
splits, unless tests contain large blocks of items representing group
factors. For such tests, a computed for separate blocks and combined

by a special formula gives a satisfactory estimate of first-factor con-
centration.

4. Interpretability of a test score is enhanced if the score has a
high first-factor concentration. A high « is therefore to be desired,
but a test need not approach a perfect scale to be interpretable. Items
with quite low intercorrelations can yield an interpretable scale.

5. A coefficient 7;; (or ‘E,) is derived which is the intercorrela-
tion required, among items with equal intercorrelations and variances,
to reproduce a test of n items having common-factor concentration a.

¢ , as a measure of item interdependence, draws attention to hetero-
geneity in both difficulty and content factors. Heterogeneity in test
difficulty merits the attention of the test designer, since the validity of
the test may be increased by capitalizing on “difficulty factors” pres-
ent in the criterion.

6. To obtain subtest scores for interpretation or to be weighted
in an empirical composite, the ideal set of items is one having a sub-
stantial a and not further divisible into a few discrete smaller blocks
of items.
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