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A general formula (a) of which a special case is the Kuder- 
Richardson coefficient of equivalence is shown to be the mean of all 
split-half coefficients resulting from different splittings of a test. 
is therefore an estimate of the correlation between two random sam- 
ples of items from a universe of i tems like those in the test. ~ is 
found to be an appropriate index of equivalence and, except for very 
short tests, of the first-factor concentration in the test. Tests di- 
visible into distinct subtests should be so divided before using the 
formula. The index ~ j ,  derived from a ,  is shown to be an index of 
inter-item homogeneity. Comparison is made to the Guttmau and 
Loevinger approaches. Parallel split coefficients are shown to be un- 
necessary for tests of common types. In designing tests, maximum 
interpretability of scores is obtained by increasing the firat-facter 
concentration in any separately-scored subtest and avoiding sub- 
stantial group-factor clusters within a subtest. Scalability is not a 
requisite. 

I. Historical Resum~ 
Any research based on measurement  must  be concerned with the 

accuracy or dependabili ty or, as we usually call it, reliability of meas- 
urement.  A reliability coefficient demonstrates  whether  the tes t  de- 
s igner was  correct  in expecting a certain collection of i tems to yield 
interpretable s ta tements  about  individual differences (25).  

Even those invest igators  who regard reliability as a pale shadow 
of the  more vital ma t te r  of validity cannot avoid considering the re- 
liability of  their  measures.  No validity coefficient and no factor  analy- 
sis can be interpreted wi thout  some appropr ia te  est imate of the mag- 
nitude of the er ror  of measurement .  The prefer red  way  to find out  
how accurate  one's measures  are  is to make two independent measure-  
ments  and compare them. In practice, psychologists and educators 
have often not had the opportuni ty  to recapture  their  subjects  for  a 
second test. Clinical tests, or those used for  vocational guidance, a re  
generally worked into a crowded schedule, and there is a lways a de- 
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sire to give additional tests if any extra time becomes available. 
Purely scientific investigations fare little better. It is hard enough 
to schedule twenty tests for a factorial study, let alone scheduling 
another twenty just  to determine reliability. 

This difficulty was first circumvented by the invention of the split- 
hail approach, whereby the test is rescored, half the items at a time, 
to get two estimates. The Spearman-Brown formula is then applied 
to get a coefficient similar to the correlation between two forms. The 
split-half Spearman-Brown procedure has been a standard method of 
test analysis for forty years. Alternative formulas have been devel- 
oped, some of which have advantages over the original. In the course 
of our development, we shall review those formulas and show rela- 
tions between them. 

The conventional split-half approach has been repeatedly criti- 
cized. One line of criticism has been that  split-half coefficients do not 
give the same information as the correlation between two forms given 
at different times. This difficulty is purely semantic (9, 14) ; the two 
coefficients are measures of different qualities and should not be iden- 
tified by the same unqualified appellation "reliability." A retest after  
an interval, using the identical test, indicates how stable scores are 
and therefore can be called a coefficient of stability. The correlation 
between two forms given virtually at the same time, is a coefficient 
of equivalence, showing how nearly two measures of the same general 
trait agree. Then the coefficient using comparable forms with an in- 
terval between testings is a coefficient of equivalence and stability. 
This paper will concentrate on coefficients of equivalence. 

The split-half approach was criticized, first by Brownell (3), 
later by Kuder and Richardson (26), because of its lack of unique- 
ness. Instead of giving a single coefficient for the test, the procedure 
gives different coefficients depending on which items are grouped 
when the test is split in two parts. If one split may give a higher co- 
efficient than another, one can have little faith in whatever result is 
obtained from a single split. This criticism is with equal justice ap- 
plicable to any equivalent-forms coefficient. Such a coefficient is a 
property of a pair of tests, not a single test. Where four forms of a 
test have been prepared and intercorrelated, six values are obtained, 
and no one of these is the unique coefficient for Form A; rather, each 
is the coefficient showing the equivalence of one form to another spe- 
cific form. 

Kuder and Richardson derive a series of coefficients using data 
from a single trial, each of them being an approximation to the inter- 
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form coefficient of equivalence. Of the several formulas,  one has been 
justifiably preferred  by test  workers.  In this paper  we shall be espe- 
cially concerned with this, their  formula (20) : 

°( , 
rtt(~,,,~ - - - -  1 - -  ; (i--l,2,...n). (I) 

Here, i represents  an item, p~ the proport ion receiving a score of 1, 
and q~ the proport ion receiving a score of zero on the item. 

We can wri te  the more general formula 

n i 
a - - - -  i---- . (2) 

n--1 Vt 

Here  Vt is the variance of tes t  scores, and lz~ is the variance of i tem 
scores af ter  weighting. This formula reduces to (1) when all i tems 
are  scored 1 or  zero. The var iants  reported by Dressel (10) for  cer- 
tain weighted scorings, such as Rights-minus-Wrongs,  are also spe- 
cial cases of (2) ,  but  for  most  data  computat ion directly f rom (2) is 
simpler than by  Dressel 's method. Hoyt ' s  derivation (20) arr ives  
a t  a formula identical to (2) ,  although he draws at tention to its ap- 
plication only to the case where  i tems are  scored 1 or  0. Following 
the pa t te rn  of any of the  other  published derivations of  (1) (19, 22),  
making the same assumptions but  imposing no limit on the scoring 
pattern,  will permit  one to derive (2).  

Since each wr i te r  offering a derivation used his own set of as- 
sumptions, and in some cases criticized those used by his predeces- 
sors, the precise meaning of the formula became obscured. The origi- 
nal derivation unquestionably made much more s tr ingent  assumptions 
than necessary, which made it seem as if  the formula could properly 
be applied only to ra re  tests which happened to fit these conditions. 
I t  has generally been s tated that  a gives a lower bound to "the t rue  
re l iabi l i ty"--whatever  tha t  means to tha t  part icular  wri ter .  In this 
paper,  we  take formula (2) as given, and make no assumptions re- 
garding it. Instead, we proceed in the opposite direction, examining 
the propert ies  of a and thereby  ar r iv ing a t  an interpretation.  

We introduce the symbol a par t ly  as a convenience. "Kuder-  
Richardson Formula  20" is an awkward  handle for  a tool tha t  we ex- 
pect to become increasingly prominent  in the test  l i terature.  A second 
reason for  the symbol is tha t  a is one of a set of six analogous coeffi- 
cients (to be designated /~, r ,  8 ,  etc.) which deal with such other  
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concepts as like-mindedness of persons, s tabil i ty of scores, etc. Since 
we are  concentrat ing in this paper  on equivalence, the first of the six 
properties,  description of the five analogous coefficients is reserved 
for  later publication. 

Critical comments on the Kuder-Richardson formula have been 
primari ly directed to the fact  tha t  when inequalities are  used in de- 
r iving a lower bound, there  is no way  of knowing whether  a part icu-  
lar coefficient is a close es t imate  of the desired measure  of equivalence 
or a gross underestimate.  The Kuder-Richardson method is an over- 
all measure  of internal consistency, bu t  a test  which is not internally 
homogeneous may  nonetheless have a high correlation with a care- 
fully-planned equivalent form. In fact,  i tems within each tes t  may  
correlate zero, and yet the two tests  may  correlate perfect ly if  there  
is item-to-item correspondence of content. 

The essential problem set in this paper  is: How shall a be inter- 
preted ? a ,  we find, is the average of all the possible split-half coeffi- 
cients for  a given test. Juxtaposed  with fu r the r  analysis of the varia-  
tion of split-half coefficients f rom split to split, and with an examina- 
tion of the relation of  a to item homogeneity,  this relation leads to 
recommendations for  es t imat ing coefficients of equivalence and homo- 
geneity. 

II. A Comparison of Split-Half Formulas 
The problem set by  those who have worked  out  formulas  for  split- 

half  coefficients is to predict  the correlation between two equivalent 
whole tests, when data  on two half- tests  are  a t  hand. This requires  
them to define equivalent tests  in mathematical  terms.  

The first definition is tha t  introduced by  Brown (2) and b y  
Spearman (33),  namely, tha t  we seek to predic t  correlation wi th  a 
tes t  whose halves are  c and d ,  possessing da ta  f rom a tes t  w h o s e  

halves are  a and b ,  and that  

V~ ~-  Vb ~-~ V~ - -  V~;  and 
r ~  - ~  r ~  - -  r d  ~ r ~ - -  r ~  - -  r ~ .  (3) 

This assumption or definition is far from general. For many splittings 
V~ # Vb, and an equivalent form conforming to this definition is im- 
possible. 

A more general specification of equivalence credited to FIanagan 
[see (25) ] is that 

Vc~,b~ -- Vc~ ; and 
r ~ b ~ b ~  r o ~ ¢ ~  ~ ~ - - -  r o ~  - -  . . . . ( 4 )  



LEE J .  CRONBACH 301 

This assumption leads to various formulas  which are  collected in the 
first column of Table 1. All formulas  in Column A are  mathematical ly  
identical and interchangeable.  

TABLE 1 
Formulas  for Spli t -Half  Coefficients 

Formulas  Assuming Equal 
Enter ing Data* Covariances Between Formulas  Assuming 

Half-Tests  aa ~ ab 

ZAt" ZB~ 
Tab ag gb 4uaab~ab 2~¢~ 

OaZ -t- ~b 2 "Jr 2aaab'rab 1 + zab 

o{ o" a o b 

9.A§ 

2 ( 1  %2+%~)u,. 
3All 

ut2 

4A¶ 4B (=--4A) 
ff$ o' d o'd2 Ud2 

1 - - - -  l - - -  u| 2 ~t 2 

5A 5B 
% .~ ~ 4 (%~ ~ %udr~) 2 (2% 2 - -  add 

4aa~ -]- a d 2 - -  4 %  o d~'ad 4 a a 2 - - U d 2  

*In th is  table, a and b are the  ha l f - ru t  ~ .  
t=~.b .d=a, -b .  

rafter Flanagan (ZS) 
$S~arman-Browa (Z, | I )  

| Guttman (19) 
]lAfter Mosier (18) 
¶Rulon (al)  

When a par t icular  split is such tha t  ~ - -  ~ ,  the Flanagan re- 
qui rement  reduces to the  original Spearman-Brown assumption, and 
in tha t  case we ar r ive  at  the formulas  in Column B. Formulas  1B 
and 5B are  not  identical, since the assumption enters  the formulas  in 
different  ways. No short  formula  is provided opposite 2A or 3A, since 
these exact formulas  are  themselves quite simple to compute. 

Because of the wide usage of Formula  1B, the Spearman-Brown,  
it is of interest  to determine how much difference it  makes which 
assumption is employed. I f  we divide 1B by any of the formulas  in 
Column A we obtain the rat io  

2mr  + m 2 + 1 1 / 1  + m ~ + r \ 

k , =  2m(1  + r )  (1 + r )  2m ' (5) ) 
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in which m = Cb/~,  u, < ~b, and r signifies r ~ .  The ratio when 5B 
is divided by any of the formulas  in the first column is as follows: 

(2mr --  m ~ + 1) (1 + 2mr + m s) 
k ~  - (6) 

2 m r ( 2 m r - -  m s + 3) 

When m equals 1, tha t  is, when the two s tandard  deviations are equal, 
the formula in Column B is identical to tha t  in Column A. As Table 
2 shows, there is increasing disagreement  between Formula  1B and 
those in Column A as m depar ts  f rom unity. The estimate by  the 
Spearman-Brown formula is a lways slightly larger than the coeffi- 
cient of equivalence computed by the more tenable definition of com- 
parabili ty.  

TABLE 2 
Ratio of Spearman-Brown Estimate to More Exact  Spli t-Half Estimate of 

Coefficient of Equivalence when S.D.'s are Unequal 

Ratio of 
Half-Test 

S.D.'s 
(greater/ lesser)  

Correlation Between Half-Tests 

.00 .20 .40 .60 .80 1.00 

1 1 1 I 1 I 1 
I.I 1.005 1.004 1.003 1.003 1.003 1.002 
1.2 1.017 1.014 1.012 1.010 1.009 1.008 
1.3 1.035 1.029 1.025 1.022 1.020 1.017 
1.4 1.057 1.048 1.041 1.036 1.032 1.029 
1.5 1.083 1.069 1.060 1.052 1.046 1.042 

Formula  5B is not  so close an approximat ion to the results f rom 
formulas  in Column A. When m is 1.1, for  example, the values of k5 
are as folIows: for  r = .20, .62 ; for  r = .60, .70 ; for  r :-- 1.00, .999. 

It  is recommended that the interchangeable formulas 2A and 4A 
be used in obtaining split-half coefficients. These formulas involve 
no assumptions contradictory to the data. They are  therefore  prefer-  
able to the Spearman-Brown formula.  However,  if the rat io of the  
s tandard  deviations of the half-tests is between .9 and 1.1, the Spear-  
man-Brown formula  gives essentially the same result. This finding 
agrees with Kelley's earlier analysis of much the same question (2, 3).  

III.  a as the Mean of Split-Half  Coefficients 

To demonstrate  the relation between a and the split-half formu- 
las, we shall need the following notat ion:  
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Let n be the number of items. 
The test t is divided into two half-tests, a and b. i' will desig- 

nate any item of half-test a, and i" will designate any item of half- 
test b. Each half-test contains ~z' items, where ~' -~ ~/2. 

Vt, V=, and Vb are the variances of the total test and the respec- 
tive half-tests. 

C~j is the covariance of two items i and j. 

C= is the total covariance for all items in pairs within half-test 
a, each pair counted once; Cb is the corresponding "within-test" co- 
variance for b. 

Ct is the total covariance of all item pairs within the test. 

DETAILED PORTION OF MATRIX 
ITEMS IN FIRST HALF 

i a FIRST HALF SECOND HALF 2 4 '" ! . . . . .  

i V~ C~ C~ C,~ FIR S T 
HALF i ~ _~ Ct 

" ~,, ~,.  w s~co~ I ~ \ \ 

C~ 

V~ 

C~ 

F~QUaE 1 

C. 
,,, ,, 

V~ 

Schematic Division of the Matrix of Item Variances and Covariances. 
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C~b is the total covariance of all item pairs such that  one item is 
within ~ and the other is within b ; it is the "between halves" covari- 
anee. 

Then 
C~ = r~b~b ; (7) 

C, ---- C~ + C~ + C~ ; (8) 

V, ---- V. + Vb + 2C.b ---- ~V, + 2C, ; and (9) 

V~=~Vi +2C~ and Vb~-~Vi..+2Cb. (I0) 
~, ~,, 

These identities are readily visible in the sketches of Figure  1, which 
is based on the matr ix  of item covariances and variances. Each point 
along the diagonal represents a variance. The sum of all entries in 
the square is the test  variance. 

Rewrit ing split-half formula 2A, we have 

( V. + V~ ) V,-- V,-- Vb 
r.-----2 1 - -  --2 (ii) 

V, V, 

4C~ 
~',, ----- (12) 

V, 

This indicates tha t  whether  a part icular  split gives a high or low co- 
efficient depends on whether  the high inter i tem covariances are placed 
in the "between halves" covariance or whether  the items having high 
correlations are placed instead within the same half. 

Now we rewri te  a: 

Therefore 

(vt 1 
n -  1 Vt ~ - -  1 Vt 

n 2C, 

-- 1 V, 

- C~ 
Cij 

,,(,~- I)/2" 

v, 

(13) 

(i4) 

(15) 

(16) 
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We proceed  now by  de t e rmin ing  the  m e a n  coefficient f r o m  all 
(2n ' )  ! /2  (n' l) 2 possible spl i ts  of  the  test .  F r o m  (12) ,  

4 ' (Jab 
rt~ - -  ( 1 7 )  

V, 

In  any  sp l i t ,  a p a r t i c u l a r  C~; has  a p robab i l i ty  of  
2 ( n  - -  1) 

into the between-halves covariance C~b. Then over all splits, 

(2n ' )  ! n 
E C,b - -  - -  E E  C(j ; (i  = 1 , 2 , - - -  n - - 1 ;  

2 ( n ' ! ) ~ 2 ( n ~ 1 )  i s 
1 - - i  + 1 , . . - ; n ) .  

But 

of  fa l l ing  

(18)  

n ( n - -  1) - 

~F. C~j :- C~j. (19) 
~j 2 

(2n') ! n ~-- 
Cab -- - -  C~, (20) 

2(n'!)~4 

and 

F r o m  (17) ,  

T h e r e f o r e  

__ n2__ 
C~ ~ - -  Cij .  (21) 

4 

r - - ,  

4n 2 - n 2 Cij 
"r,, - -  C,t - -  ( 2 2 )  

4V, V, 

@,t ~ a .  ( 2 3 )  

F r o m  (14) ,  we can  also wr i t e  a in the  f o r m  

Z Z  C,i 

a-- ; ( i , j = l , 2 , . . . n ; i ~ : D .  (24)  
n - -  1 Vc 

Th i s  i m p o r t a n t  r e l a t ion  s t a t e s  a c lear  m e a n i n g  f o r  a as  n / ( n - - l )  t imes  
the ratio of interitem covariance to total variance. The multiplier 
n/(n--1) allows for the proportion of variance in any item which is 
due to the same dements as the covariance. 
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, as  a spec ia l  case o f  t he  s p l i t - h a l f  coe f f i c i en t .  Not only is a a 
funct ion of all the split-half coefficients fo r  a tes t ;  it can also be shown 
to be a special case of the spli t-half  coefficient. 

i f  we assume tha t  the tes t  is divided into equivalent  halves such 

tha t  Cry,, (i.e., C,~/n '  2) equals C~j, the assumptions  fo r  fo rmula  2A 
still hold. We may  designate the spli t-half  coefficient f o r  this spl i t t ing 
a s  "l't t l . 

4 C~b 
r .  - - ~  (12) 

V, 

Then  

F rom (16) ,  

r u  ~ - -  - - - - - - -  - -  (25) 
~- -  Vt --V, V, 

rt~o ~ a. (26) 

This  amounts  to a p roof  tha t  a is an exact  de te rmina t ion  of the  paral-  
lel-form correlat ion when we can assume tha t  the  mean  covariance 
between parallel i tems equals the mean covariance between unpai red  
items. This is the least res t r ic t ive  assumption usable in "p rov ing"  
the Kuder-Richardson formula.  

a as  t he  e q u i v a l e n o e  o f  r a n d o m  s a m p l e s  o f  i t e m s .  T h e  foregoing 
demonst ra t ions  show tha t  a measures  essential ly the same th ing  as 
the split-half coefficient. I f  all the  splits f o r  a tes t  were  made, the 
mean of the coefficients obtained would be a .  When we make only 
one split, and make tha t  split at  random, we obtain a value somewhere 
in the distr ibution of which a is the mean. I f  spli t-half  coefficients are  
dis t r ibuted more  or  less symmetrical ly,  an obtained spli t-half  coeffi- 
cient will be h igher  than  a about  as of ten as it  is lower than  a. This  
average  tha t  is a is based on the  ve ry  best splits and also on some 
very  poor  splits where  the  i tems going into the two halves are  quite 
unlike each other.  

Suppose we have a universe  of  i tems fo r  which the  mean covari-  
ance is t h e  same as the  mean covariance wi thin  the given test .  Then  
suppose two tests  a re  made by  twice sampling n i tems at  r andom 
f r o m  this  universe  wi thout  replacement ,  and adminis tered  a t  the  same 
sit t ing. The i r  corre la t ion would be a coefficient of  equivalence. The  
mean  of  such coefficients would be the same as the  computed a .  a is 
t he r e fo r e  an es t imate  of the  corre la t ion expected between two tes ts  
d r awn  a t  r andom f r o m  a pool of  i tems like the  i tems in this  test .  I tems 
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are not selected at  random for psychological tests where any differen- 
t iation among the items' contents or difficulties permits a planned 
selection. Two planned samplings may be expected to have higher 
correlations than  two random samplings, as Kelley pointed out (25). 
We shall show tha t  this difference is usually small. 

IV. A n  Examination of Previous Interpretations and Criticisms of a 

1. Is a a conservative estimate of reliability? The findings 
jus t  presented call into question the frequently repeated state- 
ment  tha t  a is a conservative estimate or an underestimate or a lower 
bound to " the reliability coefficient." The source of this conception 
is the original derivation, where Kuder and Richardson set up a def- 
inition of two equivalent tests, expressed their  correlation algebra- 
ically, and proceeded to show by inequalities tha t  a was lower than  
this correlation. Kuder and Richardson assumed tha t  corresponding 
items in test and parallel test  have the same common content and the 
same specific content, i.e., t ha t  they are as alike as two trials of the  
same item would be. In other words, they took the zero-interval re- 
test correlation as their  standard.  Guttman also began his derivation 
by defining equivalent tests as identical. Coombs (6) offers the some- 
what  more sat isfactory name "coefficient of precision" for this index 
which reports the absolute minimum error  to be found if the same 
ins t rument  is applied twice independently to the same subject. A co- 
efficient of stability can be obtained by making the two observations 
wi th  any desired interval between. A rigorous definition of the co- 
efficient of precision, then, is tha t  it  is the limit of the coefficient of 
stability, as the t ime between testings becomes infinitesimal. 

Obviously, any coefficient of equivalence is less than the coeffi- 
cient of precision, for  one is based on a comparison of different items, 
the other on two trials o f t h e  same items. To put i t  another way:  a 

or any other coefficient of equivalence t rea ts  the specific content of an 
item as error, but the coefficient of precision t reats  it  as par t  of the 
thing being measured. I t  is very doubtful if testers have any practi- 
cal need for  a coefficient of precision. There is no practical test ing 
problem where the items in the test  and only these items constitute the 
t ra i t  under  examination. We may be unable to compose more items 
because of our limited skill as tes tmakers  but  any group of items in a 
test of intelligence or knowledge or emotionality is regarded as a sam- 
ple of items. I f  there weren ' t  "plenty more where these came f rom,"  
performance on the test  would not represent performance on any more 
significant variable. 
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We therefore turn to the question, does a underestimate appro- 
priate coefficients of equivalence? Following Kelley's argument, the 
way to make equivalent tests is to make them as similar as possible, 
similar in distribution of item difficulty and in item content. A pair 
of tests so designed that corresponding items measure the same fac- 
tors, even if each one also contains some specific variance, will have a 
higher correlation than a pair of tests drawn at random from the 
pool of items. A planned split, where items in opposite halves are as 
similar as the test permits, may logically be expected to have a higher 
between-halves covariance than within-halves covariance, and in that 
case, the obtained coefficient would be larger than a. a is the same 
type of coefficient as the split-half coefficient, and while it may be low- 
er, it may also be higher than the value obtained by actually splitting 
a particular test at random. Both the random or odd-even split-half 
coefficient and a will theoretically be lower than the coefficient from 
parallel forms or parallel splits. 

2. Is a less than the coefficient of stabil i ty ? Some wr i te r s  ex- 
pect a to be lower than the coefficient of  stability. Thus Gut tman says 
(34, p. 311) : 

F o r  the  case of  scale scores,  t hen ,  . . . we h a v e  t he  a s s u r a n c e  t h a t  i f  
t he  i t ems  a r e  a p p r o x i m a t e l y  sca lable  [ in  wh ich  case  a wil l  be  h i g h ] ,  t h e n  
they  necessa r i ly  h a v e  v e r y  s u b s t a n t i a l  t e s t - r e t e s t  re l i ab i l i ty .  

Guilford says (16, p. 485) : 
T h e r e  can  be  v e r y  low i n t e r n a l  cons i s t ency  a n d  ye t  s u b s t a n t i a l  o r  

h i g h  r e t e s t  re l iab i l i ty .  I t  is  p r o b a b l y  no t  t r u e ,  however ,  t h a t  t h e r e  c an  be  
h i g h  i n t e r n a l  cons i s t ency  a n d  a t  t he  s ame  t i m e  low r e t e s t  re l iab i l i ty ,  ex- 
cept  a f t e r  v e r y  long  t i m e  in t e rva l s .  I f  t he  t wo  indices  of  r e l i ab i l i ty  dis- 
ag ree  fo r  a tes t ,  we can  place some confidence in t he  in fe rence  t h a t  the  
t e s t  is he te rogeneous .  

The comment by Guttman is based on sound thinking, provided 
we re interpret  tes t - re tes t  coefficient on the basis of the context of the 
comment to re fe r  to the instantaneous re tes t  (i.e., coefficient of pre-  
cision) ra ther  than the re tes t  a f t e r  elapsed time. Guilford's s ta tement  
is acceptable only if  viewed as a summary  of his experience. There  
is no mathematical  necessi ty for  his r emarks  to be true. In the  co- 
efficient of  stability, var iance in total score be tween tr ia ls  (within per-  
sons) is regarded as a source of  error,  and var iance in specific fac- 
tors  (between i tems within persons)  within tr ials  is regarded as t rue  
variance. In the  coefficient of equivalence, such as a, this  is j u s t  re- 
versed:  variance in specific factors  is t rea ted as error.  Var ia t ion 
be tween trials is non-existent and does not  reduce t rue  variance (9) .  
Whether  the coefficient of s tabi l i ty  is higher  or  lower than the co- 
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efficient of equivalence depends on the relative magni tude of these 
variances, both of which are likely to be small for long tests of stable 
variables. Tests are also used for unstable variables such as mood, 
morale, social interaction, and daily work output, and studies of this 
sort  are becoming increasingly prominent.  Suppose one builds a 
homogeneous scale to obtain students '  evaluations of each day's class- 
work, the students marking  the checklist at the end of each class hour. 
Homogeneous items could be found for this. Yet the scale would have 
marked instability f rom day to day, if class activities varied or the 
topics discussed had different interest  value for different students. 

The only proper  conclusion is tha t  a may be either higher or low- 
er than the coefficient of  stability over an interval of time. 

3. Are coefficients from ~arallel splits appreciably l~igher than 
random-split coefficients or a? The logical presumption is s t rong 
that  planned splits as proposed by Kelley (25) and Cronbach (7) 
would yield coefficients nearer  to the equivalent-tests coefficient than  
random splits do. There is still the empirical question whether  this 
advantage is large enough to be considered seriously. This raises 
two questions: Is there appreciable variation in coefficients f rom split 
to split? I f  so, does the judgment  made in spli t t ing the test  into a 
priori equivalent halves raise the coefficient? Brownell (3), Cronbach 
(8), and Clark (5) have compared coefficients obtained by split t ing 
a test  in many ways. There is doubt that  the variation among co- 
efficients is ordinarily a serious mat te r ;  Clark in part icular  found that  
variation f rom split to split was small compared to variation arising 
from sampling of subjects. 

Empirical evidence. To obtain fur ther  data on this question, two 
analyses were made. One employs responses of 250 ninth-grade boys 
who took Mechanical Reasoning Test  Form A of the Differential  
Abilities Tests. The second study uses a ten-item morale scale, adapted 
f rom the Rundquist-Sletto General Morale Scale by Donald M. Sharpe 
and administered by him to teachers and school administrators.* 

The Mechanical Reasoning Test seem~ to contain items requir- 
ing specific knowledges regarding pulleys, gears, etc. Other items 
seem to be answerable on the basis of general experience or reason- 
ing. The items seemed to represent  sufficiently heterogeneous content  
tha t  grouping into parallel splits would be possible. We found, how- 
ever, tha t  items grouped on a pr/ori  grounds had no higher  correla- 
tions than items believed to be unlike in content. This finding is con- 

*Thanks are expressed to Dr. A. G. Wesrnan and the Psychological Corpora- 
tion, and to Dr. Sharpe, for making available the data for the two studies, re- 
spectively. 
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firmed by Air Force psychologists who made a similar attempt to cate- 
gorize items from a mechanical reasoning test and found that they 
could not. These items, they note, "are typically complex factorially" 
(15, p. 309). 

Eight items which some students omitted were dropped. An item 
analysis was made for 50 papers. Using this information, ten paral- 
lel splits were made such that items in opposite halves had comparable 
difficulty. These we call Type I splits. Then eight more splits were 
made, placing items in opposite halves on the basis of both difficulty 
and apparent content (Type II splits).  Fifteen random splits were 
made. For all splits, Formula 2A was applied, using the 200 remain- 
ing cases. Results appear in Table 3. 

TABLE 3 

Summary of Data  from Repeated Spli t t ings of Mechanical Reasoning Test  
(60 it,~-; a ~ .811) 

Splits Where 
All  Splits 1.05 > %/% > .95 

Type of Split No. of No. of 
Coefli- Range Mean Coeifi- Range Mean 
cients eients 

Random 15 .779,-.860 .810 8 .795-.860 .817 
Para l le l  Type I 10 .798--.846 .820 6 .798-,846 ~22 
Paral le l  Type I I  8 .801-.833 .817 4 .809-.826 ,818 

There are only 126 possible splits for the morale test, and it is 
possible to compute all half-test standard deviations directly from the 
item variances and covariances. Of the 126 splits, six were designated 
in advance as Type II parallel splits, on the basis of content and an 
item analysis of a supplementary sample of papers. Results based on 
200 cases appear in Table 4. 

TABLE 4 
Summary of  Data  from Repeated Spli t t inge of  Morale Scale 

(I0 items; a ~-" .715) 

Splits Where 
All Splits  1.1 > %/% > .9 

Type of Split No. of No. of 
Coefli- Range Mean Coeftl- Range 
cients cienlm 

All Splits 126 .609-.797 .715 82 ,609-.797 
Paral lel  (Type I I )  6 .681-.780 .737 5 ,712-.780 

~e~n 

.717 

.748 
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The highest and lowest coefficients for the mechanical test differ 
by only .08, a difference which would be important only when a very 
precise estimate of reliability is needed. The range for the morale 
scale is greater (.20), but the probability of obtaining one of the ex- 
treme values in sampling is slight. Our findings agree with Clark, that  
the variation from split to split is less than the variation expected 
from sample to sample for the same split. The standard error of a 
Spearman-Brown coefficient based on 200 cases using the same split is 
.03 when rtt = .8, .04 when r~t --  .7. The former value compares with 
a standard deviation of .02 for all random-split coefficients of the me- 
chanical test. The standard error of .04 compares with a standard 
deviation of .035 for the 126 coefficients of the morale test. 

This bears on Kelley's comment on proposals to obtain a unique 
estimate: "A determinate answer would result if the mean for all 
possible spilts were gotten, but, even neglecting the labor involved, 
this would seem to contravene the judgment of comparability." (25, 
p. 79). As our tables show, the splittings where half-test standard 
deviations are unequal, which "contravene the judgment of compar- 
ability," have coefficients about like those which have equal standard 
deviations. 

Combining our findings with those of Clark and Cronbach we 
have studies of seven tests which seem to show that  the variation from 
split to split is too small to be of practical importance. Brownell finds 
appreciable variation, however, for the four tests he studied. The ap- 
parent contradiction is explained by the fact that the former results 
applied to tests having fairly large coefficients of equivalence (.70 or 
over). Brownell worked with tests whose coefficients were much low- 
er, and the larger range of r's does not represent any greater varia- 
tion in z values at this lower level. 

In Tables 3 and 4, the values obtained from deliberately equated 
half-tests differ slightly, but only slightly, from those for random 
splits. Where a is .715 for the morale scale, the mean of parallel splits 
is .748--a difference of no practical importance. One parallel split 
reaches .780, but this split could not have been defended a priori as 
more logical than the other planned splits. In Table 3, we find that  
neither Type I nor Type II splits averaged more than .01 higher than 
a .  Here, then, is evidence that  the sort of judgment a tester might 
make on typical items, knowing their content and difficulty, does not, 
contrary to the earlier opinion of Kelley and Cronbach, permit him to 
make more comparable half-tests than would be obtained by random 
splitting. The data from Cronbach's earlier study agree with this. This 
conclusion seems to apply to tests of any length (the morale scale has 
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only ten items). Where items fall into obviously diverse subgroups in 
ei ther  content or difficulty, as, say, in the California Test of Mental 
Maturi ty,  the tester 's  judgment  could provide a bet ter- than-random 
split. I t  is dubious whether  he could improve on a random division 
wi th in  subtests. 

It should be noted tha t  in this empirical s tudy no a t tempt  was 
made to divide items on the basis of r , ,  as Gulliksen (18, p. 207-210) 
has recently suggested. Provided this is done on a large sample of 
cases other than  those used to estimate r , ,  Gulliksen's plan might  
indeed give parallel-split coefficients which are consistently at  least a 
few points higher than  a. 

The failure of the data  to support our expectation led to a fu r the r  
s tudy of the problem. We discovered tha t  even tests which seem to 
be heterogeneous are often highly sa tura ted  with  the first factor  
among the items. This forces us not only to extend the interpretat ion 
of a ,  but also to reexamine certain theories of test  design. 

Factorial composition of the test variance. To make fully clear 
the relations involved, our analytic procedure will be spelled out in 
detail. We postulate tha t  the variance of any  item can be divided 
among k + 1 orthogonal factors  (k common with  other items and one 
unique).  Of these, we shall refer  to the first, f l ,  as the general factor,  
even though it is possible tha t  some items would have a zero load- 
ing on this  factor.* Then if  f.-~ is the loading of common factor  z on 
item i ,  

1.00 = N '  (f21, + f"2~ + P,~ + . . .  + f ' v , ) .  (27) 

C~j : N' ~ ~,. (f~i flj + f,~ f,j +-" + fk~ fkj). (28) 

C, - -  Y.~,C,j : N'  ~.. ~. ~, ~j f~i f ,  + " "  + N '  Y. Y~ ,n (rj f . ,  fkj ; 

( i = l , 2 , . . . n - - 1 ; i = i +  1 , . . . , n ) .  (29) 

V, ---- N" Y. o~, ( f ' ,  + . . .  f '~, + f'~,, ) + ~ "  Y. ~.. ,,, ~j L ,  f~j 

+ . . .  + 2N 2 F. ~ .~ uj f ~  f~ j .  ( 3 0 )  
4 i 

I f  n~ items contain non-zero loadings on factor  1, and n~ items 
contain factor  2, etc., then Vt consists of 

*This factor may be a so-called primary or reference factor like Verbal, but 
it  is more likely to be a composite of several such elements which contribute to 
every item. 
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~h ~ terms of the form N ~ w j f l d , ,  plus 

z~ ~ terms of the form N'~jf2~f2j, plus (31) 

ns ' terms of the form N'~jfsJs~, plus and so on to 

~,~ terms of the form N ~ j  f~dkj, plus 

n terms of the form N ~  .~; ' J U  i • 

We rarely know the values of the factor  loadings for an actual 
test, but we can substitute values representing different kinds of test 
s t ructure  in (30) and observe the proportionate influence of each 
factor  in the total test. 

F i r s t  we shall examine a test  made up of a general factor  and five 
group factors, in effect a test  which might  be a r ranged into five cor- 
related subtests, k ~ 6 .  Let  ~ ~ n ,  so fl is t ruly  general, and let 
z~ --  na ~- n, ~ n~ - -  ne ---- 1/5 n .  To keep the illustration simple, we 
shall assume tha t  all items have equal variances and tha t  any factor  
has the same loading (f,) in all i tems where it appears. Then 

1 n2 ~2 ,'~2 
~ V , = n ~ A ' +  /,~ + ~ / , ~  + . . .  + ~ / , ~  + E fu:. (39.) 
NJa~ ' 25 25 25 

I t  follows tha t  in this part icular  example, there are n '  general factor  
terms,  n~/5 group factor  terms, and only n unique fac tor  terms. There 
are, in all, 6n~/5 + ~ terms in the variance. Let  p** be the proportion 
of tes t  variance due to each factor.  Then if  we assume tha t  all the 
terms making up the variance are of the same approximate m~gni- 
tude, 

5n' 5n 
-- = ~ .  (33) 

P~' 6n'+5~z 6 ~ + 5  

5 
Lira f ' . - -  --.83. (34) 

f"' ----"" --f;' 6~' + 5n" (35) 

L i m  f ; ,  - -  .03. (36) 

5 
~Pv~' 6n + 5" (37) 

L~ E I' 5 , ---- __ O. (38) 
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Note that  among the te rms making up the variance of any test,  the 
number  of terms represent ing the general fac tor  is n t imes the num- 
ber  represent ing item specific and er ror  factors.  

We have seen tha t  the general factor  cumulates a very  large in- 
fluence in the test. This is made even clearer by  Figure  2, where  we 
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NUMBER OF I'IIEMS 

Xt : . 3  G + .3F....,+ .35 $~+ .84E 
Fm~ms 2 

Change in Proportion of Test Variance due to General, Group, and Unique 
Factors among the Items as n Increases, 

plot the trend in variance for  a par t icular  case of the above tes t  struc- 
ture. Here  we set k - 6 ,  n ~  - -  n ,  n 2  = n a  - -  n ,  = n ~  = n 6  - -  n / 5  . Then 
we assume that  each-item h-~Ethe composl%Ton: 9% general factor,  9% 
f rom some one group factor,  827~ unique. Fur ther ,  the  unique vari-  
ance is divided by 70/12 between er ror  and specific stable variance.  I t  
is seen tha t  even wi th  unreliable i tems such as these, which intercor- 
relate only .09 or  .18, the general fac tor  quickly becomes the predomi- 
nant  portion of the variance. In the limit, as  n becomes indefinitely 
large, the general factor  is 5,/6 of the variance, and each group fac tor  
is 1/30 of the total variance. 
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This relation has such important consequences that  we. work out 
two more illustrative substitutions in Table 5. We first consider the 
test which is very heterogeneous in one sense, in that  each group of 
five items introduces a different group factor. No factor save factor 
1 is found in more than 5 items. Here great weight in each item is 
given to the group factor, yet even so, the general factor quickly 
cumulates in the covariance terms and outweighs the group factors. 

The other illustration involves a case where the general factor 
is much less important in the items than two group factors, each pres- 
ent in half the items. In this type of test, the general factor takes on 
some weight through cumulation, but the group factors do not fade 
into insignificance as before. We can generalize that  when the pro- 
portion of items containing each common factor remains constant as 
a test is lengthened (factor loadings being constant also), the ratio 
of the variances contributed by any two common factors remains con- 
stant. That is, in such a test pattern each item accounts for a nearly 
constant fraction of the non-unique variance. 

While our description has discussed number of terms, and has 
simplified by holding constant both item variances and factor load- 
ings, the same general trends hold if these conditions are not imposed. 
The mathematical notation required is intricate, and we have not 
attempted a formal derivation of these general principles: 

I f  the magnitude of item intercorrelations is the same, on the 
average, in successive groups of items as a test is lengthened, 

(a) Specific factors and unreliability of responses on single items 
account for a rapidly decreasing proportion of the variance 
if the added items represent the same factors as the original 
items. Roughly, the contribution is inversely proportional 
to test length. 

(b) The ratio in which the remaining variance is divided among 
the general factor and group factors 

(i) is constant if these factors are  represented in the added 
items to the same extent as in the original items ;* 

(ii) increases, if  the group factors present in the original 
items have less weight in the added items. 

As a test is lengthened, the general factor accounts for a larger 
and larger proportion of the total variance. In the case where only a 
few group factors are present no matter  how many items are added, 

*This is the case discussed in the recent paper of Guilford and Michael (17). 
Our conclusion is identical to theirs. 
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these also account for an increasing and perhaps substantial portion 
of the variance. But when each factor other than the first is present 
in only a few items, the general factor accounts for the lion's share 
of the variance as the test reaches normal length. We shall return to 
the implications of this for test design and for homogeneity theory. 

Next, however, we apply this to coefficients of equivalence. We 
may study the composition of half-tests just as we have studied the 
total test. And we may also examine the composition of C,~, the be- 
tween-halves covariance. In Table 6, we consider first the test where 
there is a general factor and two group factors. If the test is divided 
into halves such that every item is factorialty identical to its opposite 
number, save for the unique factor in each, the covariance C~b none- 
theless depends primarily upon the general-factor terms. Note, for 
example, the twenty-item test. Two-thirds of the covariance terms 
are the result of item similarity in the general factor. Suppose that  
these general factor terms are about equal in size. Then, should the 
test be split differently, the covariance would be reduced to the extent 
that more than half the items loaded with (say) factor 2 fall in the 
same half, but even the most drastic possible departure from the par- 
allel split would reduce the covariance by only one-third of its terms. 
In the event that  the group-factor loadings in the items are larger 
than the general-factor loadings, the size of the covariance is reduced 
by more than one-third. I t  is in this case that  the parallel split has 
special advantage: where a few group factors are present and have 
loadings in the items larger than the general factor does. 

The nature of the split has even less importance for the pattern 
where each factor is found in but a few items. Suppose, for exam- 
ple, that  we are dealing with the 60-item test containing 15 factors 
in four items each. Then suppose that it is so very "badly" split that 
items containing 5 of the factors were assigned only to one of the half- 
tests, and items containing the second 5 factors were assigned to the 
other half-test. This would knock out 40 terms from the between- 
halves covariance, but such a shift would reduce the covariance only 
by 40/960 of its terms. Only in the exceptional conditions where gen- 
eral factor loadings are miniscule or where they vary substantially 
would different splits of such a test produce marked differences in the 
covariance. 

It follows from this analysis that  marked variation in the coef- 
ficients obtained when a test is split in several ways can result only 
when 
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(a) a few group factors have substantial loadings in a large 
fraction of the items or 

(b) when first-factor loadings in the items tend to be very small 
or where they vary considerably. Even these conditions are likely to 
produce substantial variations only when the variance of a test is con- 
tributed to by only a few items. 

In the experimental tests studied by Clark, by Cronbach, and in 
the present study, general-factor loadings were probably greater, on 
the whole, than group-factor loadings. Moreover, none of the tests 
seems to have been divisible into large blocks of items each represent- 
ing one group factor. (Such large "lumps" of group factor content 
are most often found in tests broken into subtests, viz., the Number 
Series, Analogies, and other portions of the ACE Psychological ex- 
amination.) 

This establishes on theoretical grounds the fact  that for  certain 
common types of test, there is likely to be negligible variation among 
split-half  coefficients. Therefore a ,  the mean coefficient, represents  
such tests as well as any parallel split. 

This interpretation differs from the Wherry-Gaylord conclusion 
(38) that "the Kuder-Richardson formula tends to underestimate the 
true reliability by the ratio (n  ~ K ) / ( n  ~ 1) when the number of 
factors, K ,  is greater than one." They arrive at this by highly restric- 
tive assumptions: that  all factors are present in an equal number of 
items, that no item contains more than one factor, that  there is no 
general factor, and that  all items measuring a factor have equal vari- 
ances and covariances. This type of test would never be intended to 
yield a psychologically interpretable score. For psychological tests 
where the intention is that  all items include the same factor, our de- 
velopment shows that  the quoted statement does not apply. 

The problem of differential weighting has been studied repeated- 
ly, the clearest mathematical analyses being those of Richardson (30) 
and Burr (4). This problem is closely related to our own study of test 
composition. Making different splits of a test is essentially the same 
as weighting the component items differently. The conditions under 
which split-half coefficients differ considerably are identical to those 
where differential weighting of components alters a total score appre- 
ciably: few components, lack of general factor or variation in its load- 
ings, large concentrations of variance in group factors. The more for- 
mal mathematical studies of weighting lead to the same conclusions 
as our study of special cases of test construction. 

4. How is a related ~o ~he homogeneity, internal consistency, o~ 
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saturation of a test?* During the last ten years,  var ious wr i te rs  (12, 
19, 27) directed at tention to a proper ty  they re fe r  to as homogeneity, 
scalability, internal consistency, or  the like. The concept has not been 
sharply defined, save in the formulas used to evaluate it. The gen- 
eral notion is clear: In a homogeneous test, the i tems measure  the 
same things. 

I f  a test  has substantial  internal consistency, i t  is psychologically 
interpretable.  Two tests, composed of  different i tems of this type, 
will ordinari ly give essentially the same report .  If,  on the other  hand, 
a test  is composed of groups of items, each measur ing  a different fac- 
to,', it is uncertain which factor  to invoke to explain the meaning of 
a single score. For a test to be interpretable, however, it  is not es- 
sential that all i tems be factorially similar. What  is required is tha t  
a large proport ion of the  tes t  var iance be a t t r ibutable  to the principal 
factor  running through the tes t  (37).  

a est imates the proport ion of the  tes t  var iance due to all common 
factors  among the items. That  is, it  repor ts  how much the tes t  score 
depends upon general and group, ra ther  than i tem specific, factors.  I f  
we assume that  the mean variance in each item at t r ibutable  to corn- 

equals the mean in ter i tem covariance mon factors  (~ ,,~" f,~') 

21 (-, ~, f., f.,), 
;E 

1 2 2 

n , ~ n ( n - - l )  ~ , n ( n - - l )  

2 
Y. ~. ~' f.~ - -  - -  C , ,  (40) 
, ~ n--1 

and the total variance (item variance plus covarianee) due to com- 

mon factors is 2 - -  C,. Therefore, from (14), a is the proportion 
n--1 

of test variance due to common factors. Our assumption does not hold 
true when the interitem correlation matrix has rank higher than one. 
Normally, therefore, a underestimates the common-factor variance, 
but not seriously unless the test contains distinct clusters. 

The proportion of the test variance due to the first factor among 
the items is the essential determiner of the interpretability of the 

*Several of the comments made in the following sections, particularly re- 
garding Loevinger's concepts, were developed during the 1949 APA meetings in 
a paper by Humphreys (21) and in a symposium on homogeneity and reliability. 
The thinking has been aided by subsequent discussions with Dr. Loevinger. 
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scores, a is an upper bound for  this. For  those test  pat terns  described 
in the last section, where the first factor accounts for  the preponder-  
ance of the common-factor variance, a is a close estimate of first-fac- 
tor  concentration. 

a applied to batteries of tests or subtests. Instead of regarding 
a as an index of i tem consistency, we may apply it to questions of sub- 
test consistency. If  each subtest  is regarded as an "i tem" composing 
the test, formula (2) becomes 

a - - - -  1 . ( 4 1 )  

Here  n is the number  of subtests .  I f  this formula is applied to a tes t  
or ba t te ry  composed of separate  subtests,  it yields useful inform-t ion 
about the interpretabi l i ty  of the composite. Under  the assumption 
that  the variance due to common factors  within each subtest  is on 
the average equal to the mean covariance between subtests,  a indi- 
cates what  proportion of the variance of the composite is due to com- 
mon factors  among the subtests. In many instruments  the subtests  
are positively correlated and intended to measure a general factor.  
I f  the matr ix  of  intercorrelations is approximately hierarchical, so 
that  group factors  among subtests  are small in influence, a is a meas- 
ure of first-factor concentration in the composite. 

Sometimes the variance of the test  is not immediately known, 
but  correlations between subtests  are known. In this case one can 
compute covariances (Cab : ~, ~b r~u), or the variance of the com- 
posite (Vt is the sum of subtest  variances and covariances),  and ap- 
ply formula (41). But  if subtest  variances are not at  hand, an in- 
ference can be made directly f rom correlations. I f  all subtests  a re  
assigned weights such that  their  variances are equal, i.e., they make 
equal contributions to the total, 

( 2 ~..r,i ) (42) 

a - - - -  ; ( i = l , 2 , . . . n - - l ; ] = i +  l , . . . n ) .  

i 1 

Here  i and ] are  subtests,  of  which there are  n .  This formula tells 
wha t  pa r t  of the total  variance is due to the first factor  -mong  t h e  

subtests,  when the weighted subtest  variances are equal. 
A few applications will suggest  the usefulness of this analysis. 

The California Test  of Mental Maturi ty,  Pr imary ,  has two pa r t  scores, 
Language and Non-Language.  Fo r  a group of  725, according to the  
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tes t  authors,  these scores correlate .668. Then, by (42),  a ,  the com- 
mon-factor  concentration, is .80.  Turning to the  P r imary  Mental  
Abilities Tests, we have a set of moderate  positive correlations re- 
ported when these were given to a group of eighth-graders (35).  The 
question may be asked: How much would a composite score on these 
tests  reflect common elements ra ther  than a hodgepodge of elements 
each specific to one subtest  ? The intercorrelat ions suggest  tha t  there  
is one general fac tor  ~mong the tests. Computing a on the assump- 
tion of equal subtes t  variances,  we get  .77.  The total  score is loaded 
to this extent  with a general  intellective factor .  Our third illustra- 
tion relates to four  Air  Force  scores related to carefulness.  Each  
score is the count of  number  w r o n g  on a plott ing test. The four  scores 
have ra ther  small intercorrelat ions (15, p. 687),  and each score has  
such l o w  reliability tha t  i ts  use alone as a measure  of carefulness is 
not  advisable. The question therefore  arises whe ther  the tes ts  a re  
enough intereorrelated tha t  the  general fac tor  would cumulate in a 
preponderant  way  in thei r  total. The sum of the six intercorrela-  
t ions is 1.76. Therefore  a is .62.  I.e., 62% of the  variance in the 
equally weighted composite is due to the common fac tor  among the 
tests. 

F rom this approach comes a suggestion for  obtaining a superior  
coefficient of equivalence for  the " lumpy" test. I t  was  shown tha t  a 
tes t  containing distinct clusters of i tems might  have a parallel-split 
coefficient appreciably higher than a .  I f  so, we should divide the tes t  
into subtests,  each containing what  appears  to be a homogeneous 
group of items. ~ is computed for  each subtest  separately by  (2) .  
Then ~ a  gives the covariance of each cluster with the opposite clus- 
ter  in a parallel form, and the eovariance between subtests  is an esti- 
mate  of the covariance of similar pairs '%etween forms."  Hence 

t j 
r ,  t = ; ( i = l , 2 , . . . n ; j = l , 2 , . . . n ) ,  (43) 

x 2 V t  

where  a~ is entered for  ~ ' , ,  i and 3" being subtests.  To the  extent  tha t  

, ,  is h igher  than the mean correlat ion be tween subtests,  the parallel- 
forms coefficient will be higher than  a, computed f rom (2).  

The relat ionships developed are  summarized in F igure  3. a fal ls  
somewhere  between the proport ion of  var iance due to the  first fac tor  
and the  proport ion due to all common factors .  The blocks represent-  
ing "o ther  common fac tors"  and " i tem specifics" are  small, fo r  tes ts  
not  containing clusters of i tems wi th  distinctive content. 



LEE J .  CRONBACH 323 

Mean s p l i t - h a l f  coe f f i c ien t  about here- 

P r i n c i p a l  common f a c t o r  
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0 

Parallel-£orms coef f ic ient  

~ r e a t e a t  split-half c o e f £ i -  
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0 ~ E C! e r r o r  

r l l  based  on c t , r l t h i n  c l u s t e r s  

Pe r  c e n t  100 

FIOUeE 3 
Cer ta in  Coefficients re la ted  to the  Composit ion of  the  Tes t  Var iance.  

An index unrelated to test length. Conceptually, it seems as if 
the "homogeneity" or "internal consistency" of a test should be in- 
dependent of its length. A gallon of homogenized milk is no more 
homogeneous than a quart, a increases as the test is lengthened, and 
so to some extent do the Loevinger-Ferguson homogeneity indices. 
We propose to obtain an indication of interitem consistency by apply- 
ing the Spearman-Brown formula to a, ,  thereby estimating the mean 
correlation between items. The formula is entered with the recipro- 
cal of the number of items as the multiple of test length. The formula 
can be simplified to 

{I 
~,~¢..t, -- (44) 

n + (l--n)a 

or (cf. 24, p. 213 and 30, p. 387), 

1 V, -- ~V, 
#,j,..t, -- - -  (45) 

-- n - - 1  :~V4 

P,#(.t~ (r  bar) is the correlation required, among items having equal 
variances and equal covariances, to obtain a test of length n having 

common-factor concentration a .  r ,  jc~t, or its special case ~ for  di- 
chotomously-scored items is recommended as an overall index of in- 
ternal consistency, if one is needed. It is independent of test length. 
It  is not, in my opinion, important for a test to have a high P if  a is 
high. Woodbury's "standard length" (39) is an index of internal con- 
sistency which can be derived from @,j and has the same advantages 
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and limitations, n,, the standard length, is the number of items which 
yields an a of .50. Then 

i -- ~ 
n~ - -  - - .  ( 4 6 )  

I f  # is high, a is high. But  a may  be high even when i ~ m a  have 
small intercorrelations. I f  ~ is low, the  tes t  may  be a smooth mixture  
of items all having low intercorrelations.  In this  case, each i tem 
would have some loading with the general fac tor  and if the tes t  is 
long a could be high. Such items are i l lustrated by very  difficult psy- 
chophysical discriminations such as a series of near-threshold speech 
signals to be interpreted;  with enough of these items we have a high- 
ly sa t is factory  measur ing  instrument.  In fact,  save for  random er- 
ror  of  performance,  it may  be unidimensional. A low value of P may  
instead indicate a lumpy tes t  composed of  discrete and homogeneous 
subtests. Guttman (34, p. 176n.) describes a questionnaire of this 
type. The concept of homogeneity has no particular meaning for a 
"lumpy" test. It is logically meaningless to inquire whether a set of 
ten measures of physical size plus ten intercorrelated vocabulary 
items is more homogeneous than twenty slightly correlated biographi- 
cal questions. A high ~ is sufficient but not necessary evidence that 
the test lacks important group factors. When ~ is low, only a study of 
correlations among items or trial clusters of items shows whether the 
test can be broken into more homogeneous subtests. 

Comparison with the index of ~eproducibility. Guttman's  coeffi- 
cient of reproducibil i ty has appeared to some reviewers  (Loevinger,  
28; Fest inger,  13) as an ad hoc index with no mathematical  rationale. 
I t  may  therefore  be worthwhi le  to note tha t  this coefficient can be 
approximated by a mathematical  form which makes clear wha t  i t  
measures.  The correlation of  any two-choice i tem wi th  a total score 
on a tes t  may be expressed as a phi coefficient, and this is common in 
conventional i tem analysis. Gut tman dichotomizes the  test  scores a t  
a cut t ing point selected by  inspection of  the data. We will get  s imilar  
results  i f  we dichotomize scores a t  tha t  point  which cuts off the  same 
proport ion of cases as pass  the  i tem under  study. (Our ~ t  will be  
less in some cases than it would be if  determined by  Guttman's  inspec- 
tion procedure.)  Simple subst i tut ion in Gut tman 's  definition (34, p. 
1 1 7 )  leads to 

R - -  1 - -  2 ~ '  ( 1  - -  ~ , ) ,  ( 4 7 )  

where  the approximation is introduced by  the difference in ways  of  
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dichotomizing. The actual R obtained by Guttman will be larger than 
that from (47). For multiple-alternative items, a similar but more 
complex formula involving the phi coefficient of the alternative with 
the test is required to approximate Guttman's result. R is independ- 
ent of test length; if a Guttman scale is divided into equivalent por- 
tions, the two halves will have the same R as the original test. In this 
respect, R is most comparable to our ~. Both ~, and ~ are low, so 
long as items are unreliable or contain substantial specific factors. 

5. Is the usefulness of a limited by properties of the ~hi coef- 
ficient between items having unequal difficulties ? The criticism has 
been made, most vehemently by Loevinger (27), that  a is a poor in- 
dex because, being based on product-moment correlations, it cannot 
attain unity unless all items have distributions of the same shape. 
For the pass/fail item, this requires that all p~ be equal. The infer- 
ence is drawn that since the coefficient cannot reach unity for such 
items, a and @ do not properly represent homogeneity. 

There are two ways of examining this criticism. The simpler is 
empirical. The alleged limitation upon the product-moment coefficient 
has no practical effect upon the coefficient, for items of the sort cus- 
tomarily employed in psychological tests. To demonstrate this, we 
consider the change in ~ with changes in item difficulty. To hold con- 
stant the relation between the "underlying traits," we fix the tetra- 
choric correlation. When the tetrachoric coefficient is .30, p~ ~ .50 
and pj ranges from .10 to .90, @~j ranges only from .14 to .19. Figure 4 
shows the relation of ~,j to ~, and pj for three levels of correlation: 
rt.t -- .30, rt.t ~ .50, and r~o~ -- .80. The correlation among items in 
psychometric tests is ordinarily below .30. For example, even for a 

five-grade range of talent, the ~'~j for the California Test of Mental 
Maturity subtests range only from .13 to .25. That is, for tests hav- 
ing the degree of item intercorrelation found in present practice, 
is very nearly constant over a wide range of item difficulties. 

TABLE 7 
Variation in Certain Indices of Interitem Consistency with Changes in Item 

Difficulty (Tetrachorie Correlation Held Constant) 

p~ .50 .50 .50 .50 .50 .50 .50 .50 .50 
pj -->.00 .10 .20 .40 .50 .60 .80 .90 --~1.00 

rijte t .30 .30 .30 .30 .30 .30 .80 .30 .30 

~j  "-'~.00 .14 .17 .19 .19 .19 .17 .14 -'-.00 

Hij ---~1.00 .42 .34 .23 .19 .23 .~4 .42 -->1.00 
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Examining Loevinger's proposed coefficient of homogeneity (29), 

H, j  = ~ . / ~ , j ( ~ . ) ,  (48) 

we find that it is markedly affected by variations in item difficulty. 
One example is worked out in Table 7. As many investigators includ- 
ing Loevinger have noted, Guttman's R is drastically affected by item 
difficulty. For any single item, R must be greater than p~ or qj, which- 
ever is greater. Evidently the indices of homogeneity which might re- 

place ~ suffer more from the effects of differences in difficulty than 
does the phi coefficient. 

Further evidence on the alleged limitation of a is obtained by 
preparing four hypothetical 45-item tests. In each case, all r~jct.t) are 
fixed at .30. Phi coefficients reflect both heterogeneity in content and 
heterogeneity in difficulty. To assess the effect of the latter hetero- 

geneity upon ~ and a, we compared one test of uniform item difficulty, 
where all heterogeneity is in content, with another where '"netero= 
geneity due to difficulty" was allowed to enter. As Table 8 indicates, 

even when extreme ranges of item difficulty are allowed, neither 
nor a is affected in any practically important way. For tests where 
item difficulties are higher, or correlations are lower, the effect would 
be even more negligible. 

TABLE 

Comparison of ~ and u for Hypothetical 

8 

45-Item Tests With and Without 
"Heterogeneity Due to I tem Difficulty" 

Distribution of Range of 
Test Difficulties Pt p~ ~ Diff. a Diff. 

A Normal .20 to .80 .50 .181 .909 .011 .005 
A' Peaked .50 .50 .192 .914 

B Normal .10to.90 .50 .176 .016 .906 .008 
B' Peaked .50 .50 .192 .914 

C Normal .50 to .90 .70 .170 ,902 .011 .007 
C' Peaked .70 .70 .181 .909 

D Rectangular .10 to .90 .50 .153 .892 .039 .02°~ 
D' Peaked .50 .50 .192 .914 

Still another small study leading to the same essential conclusion 
was made by examining a "perfect scale," where all p~j equal ~ j ( . . . ) .  
Items were placed at five difficulty levels, the p,  being .50, .58, .71, 
.80, and .89. Then the correlations (phis) of items range from 1.00 
(at same level) to .85 (highest between levels) to .36. In a test of 
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only five items, a reaches .86. This is the maximum a could have, for  
this set of 5 items and specified p~. As the number  of items increases, 
a rises toward 1.00. Thus, for  10 items, two at each level a ~  = .951 ; 
for  20 items, .977. I t  follows that  even if  i tems are  much more  ho- 
mogeneous in content than present  tests and much f reer  f rom error,  
the cumulative propert ies  of covariance terms make the fai lure of all 
#'s to reach unity of next-to-no importance, a~= would be lower if 
difficulties range over the full scale, but  the same principle holds, a 
is a good measure  of common-factor  concentration, for  tests of rea- 
sonable length, in spite of the fact  tha t  it falls short  of 1.00 if i tems 
vary  in difficulty. 

In the case of the perfect  scale, of course, ~ does fall well short  
of  unity and for  such tests  it does not reflect the homogeneity in con- 

tent. F rom the five-item case jus t  considered, ~ is .54.  
The second way  to analyze this criticism is to examine the nature  

of redundancy (using a te rm from Shannon's  information theory,  
32).  I f  two items repeat  the same information,  they are total ly re- 
dundant.  Thus, if  one item divides people 50/50, and the second item 
does also, the two items always placing exactly the same people to- 
gether,  the second item gives no new informat ion about  individual 
differences. (Cf. Tucker,  36). Suppose, though, tha t  the second item 
is passed by 60 per  cent of the subjec__ts. Even if  r~jctet~ - -  1.00, this 
second item conveys new information because it  discriminates among 
the fifty people who failed the first item. A five-item test  where  all 
i tems have perfect  te trachoric  intercorrelations, and the p~ are  .40,  
.45, .50, .55, .60, is perfect ly homogeneous (a la Guttman, Loevinger, 
et al) .  So is a ten-item test  composed of these items plus five others 
whose p's are .30,  .35, .65,  .70, .75. The two tests  are  not equiva- 
lent in measur ing power, however ;  the second makes a much grea ter  
number  of discriminations. Because there is less redundancy,  the 

longer test  has a lower ~ .  
F rom the viewpoint  of information theory,  we should be equally 

concerned with heterogenei ty in content and heterogenei ty in difficulty. 
We get  one bit  of information when we place the person as above the 
mean in (say) pitch discrimination. Now with another  item or set 
of items, we might  place him relative to the mean in visual acuity. 
The two tests together  place him in one of  four  categories. I f  our  sec- 
ond test  had been a fu r ther  measure  of pitch, placing the subject  
above or  below the 75th percentile, then the two tests  would have 
placed him in one of four  categories. E i ther  set of tests gives the 
same amount  of information.  Which informat ion we most  wan t  de- 
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pends on practical considerations. 
The phi coefficient reports  whether  a second item gives new in- 

format ion that  the first does not. Then a tetrachoric v must  be com- 
puted to determine if  the new information relates to a new content 
dimension or to a finer discrimination on the same content dimension. 
I f  the phi coefficient between t rue scores is 1.00, redundancy is com- 
plete and there is no new information.  Redundancy is desirable when 
accuracy of a single item is low. To test  whether  men can hear  a 10- 
cycle difference, the best  way  is to use a large number  of i tems of 
jus t  that  difficulty. Such items usually also discriminate to some de- 
gree at  other points on the scale, but  cannot give information about  
ability at  the 5-cycle level if  a single i tem is extremely reliable. 
With very  accurate items a pitch test  which is not  homogeneous will 
be bet ter  for  differentiation all along the scale. The "fac tors"  found 
by  Ferguson (11) due to the higher correlation (redundancy)  of i tems 
with equal difficulty need not  be regarded as ar t i fac ts  (38).* These 
"difficulty factors"  are  factors  on which the tes t  gives information 
and on which the tester  may well want  information. They are not 
"content  factors,"  but  they must  be considered in tes t  analysis. Fo r  
example, if one regards pitch tests  in this light, it  is seen that  a tes t  
containing 5-cycle items, 10-cycle items, and 15-cycle items will be 
slightly influenced by  undesired factors,  when the criterion requires 
discrimination only at  the 15-cycle level. (Problems of this type  oc- 
cur in validating tests  for  selecting mil i tary personnel using detec- 
tion appara tus ) .  One would maximize the loading in the test  of the 
group factor  among 15-cycle items, to maximize validity. This factor  
is of course a mathematical  factor,  and not  a proper ty  of the audi tory 
machinery.  While the mathematics  is not clear, it seems very  likely 
tha t  the group factors  found among phi coefficients are interchange- 
able wi th  Guttman's  "components of scale analysis" to which he gives 
serious psychological interpretat ion.  

F rom this point  of view, the  phi coefficient which tells when items 
do and do not duplicate each other is a bet ter  index lust  because it  
does not reach unity for  items of unequal difficulty. Phi  and ~'tet are  
both useful in test  analysis. Brogden (1, pp. 199, 201) makes a simi- 
lar point, although approaching the problem from another tack. 

*It is not ~zecesea~.y, as Ferguson seems to think, for difficulty factors to 
emerge if product-moment correlations are used with multi-category variates. 
On a Fr/o~/grounds, difficulty factors will appear only if the shapes of the dis- 
tributions of the variates are different. In Ferguson's data it appears likely that 
the hardest and easiest tests were skewed in opposite directions. 
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Implications for Tes~ Design 
In view of the relations detailed above, we find it unnecessary to 

create homogeneous scales such as Guttman, Loevinger, and others 
have urged. 

It  is true tha t  a test  where all items represent  the same content 
factor  with no error  of measurement  is maximally interpretable. 
Everyone a t ta ining the same score would mark  items in the same way. 
Yet the question we really wish to ask is whether  the individual dif- 
ferences in test  score are at tr ibutable to the first factor  within the 
test. I f  a large proportion of the score variance relates to this factor,  
the residue due to specific characteristics of the items little handicaps 
interpretabili ty.  I t  has been shown tha t  a high first-factor sa turat ion 
indicated by a high a can be at tained by cumulat ing many  items which 
have low correlations. The s tandard  proposed by Ferguson, Loeving- 
er, and Guttman is unreasonably severe, since it would rule out tests 
which do have high first-factor concentrations. 

These wri ters  seem to wish to infer  the person's score on each 
item from his total score. This appears unimportant ,  but even if  i t  
were important,  the interest  would at tach to predicting his ~rue stand- 
ing on the item, not his fallible obtained score. For  the unreliable 
items used in psychological and educational tests, the aim of Gut tman 
et ah will not be approached in practice. Perhaps  sociological data  
have such greater  reliability tha t  prediction of obtained scores is tan- 
tamount  to predicting t rue  scores. 

Increasing interpretabi l i ty  by lengthening a test is not without  
its disadvantages. Using more and more t ime to get  a t  the same in- 
formation employs the principle of redundancy (32). When a mes- 
sage is repeated over and over, it is easier to infer  the t rue message 
even when there is substantial  interference (item unreliabil i ty).  But  
the more you repeat  messages already t ransmit ted ,  the less t ime is 
allowed for conveying other information.  A set of redundant  items 
can carry  much less informat ion than a set of independent items. In 
other words, when we lengthen certain tests or subtests to make their  
scores more interpretable, we sacrifice the possibility of obtaining 
separate measures of additional factors in the same time. 

From the viewpoint of both interpretabi l i ty  and efficient predic- 
tion of criteria, the smallest element on which a score is obtained 
should be a set of items having a substantial  a and not capable of 
division into discrete item clusters which themselves have high a .  
Such separately interpretable tests can sometimes be combined into 
an interpretable composite, as in the case of the PMA tests. Although 
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i t  is be l ieved t h a t  the  t e s t  de s igne r  should  seek  i n t e r i t e m  consis tency,  
a n d  j u d g e  the  e f fec t iveness  of  h is  e f for t s  b y  the  coefficient a ,  t he  p u r e  
scale  should  no t  be  v i ewed  as  a n  ideal.  I t  should  be  r e m e m b e r e d  t h a t  
T u c k e r  (36) and  B r o g d e n  (1) h a v e  d e m o n s t r a t e d  t h a t  inc reases  in 
i n t e rna l  cons i s tency  m a y  lead to dec reases  in the  p r o d u c t - m o m e n t  
va l i d i t y  coefficient w h e n  the  s h a p e  of  the  t e s t - sco re  d i s t r i bu t i on  d i f -  
f e r s  f r o m  t h a t  o f  t he  c r i t e r i o n  d i s t r ibu t ion .  

1. F o r m u l a s  f o r  sp l i t -ha l f  coefficients of  equiva lence  a r e  com- 
pa red ,  a n d  those  of  Rulon a n d  G u t t m a n  a r e  a d v o c a t e d  f o r  p r ac t i ca l  
use  r a t h e r  t h a n  the  S p e a r m a n - B r o w n  f o r m u l a .  

2. a ,  the  g e n e r a l  f o r m u l a  of  wh ich  K u d e r - R i c h a r d s o n  f o r m u l a  
20 is a special  case,  is f o u n d  to h a v e  the  fo l lowing  i m p o r t a n t  m e a n -  
ings :  

(a )  a is t he  m e a n  of  all  poss ib le  sp l i t -ha l f  coefficients. 
(b) a is the value expected when two ral,tdom samples of 

items from a pool like those in the given test are correlated. 
(c) a is a lower bound for the coefficient of precision (the 

instantaneous accuracy of this test with these particular items), a 
is also a lower bound for coefficients of equivalence obtained by simul- 
taneous a d m i n i s t r a t i o n  o f  t w o  t e s t s  h a v i n g  m a t c h e d  i tems.  B u t  f o r  
r e a s o n a b l y  long t e s t s  no t  d ivis ible  in to  a f e w  f a c t o r i a l l y - d i s t i n c t  sub-  
tes t s ,  a is n e a r l y  equal  to  "pa r a l l e l - s p l i t "  and  " p a r a l l e l - f o r m s "  coeffi- 
c ien ts  of  equivalence.* 

(d) a e s t ima te s ,  and  is a l ower  bound  to, t he  p r o p o r t i o n  of  
t e s t  v a r i a n c e  a t t r i b u t a b l e  to  c o m m o n  f a c t o r s  a m o n g  the  i tems .  T h a t  
is, i t  is  a n  index  o f  c o m m o n - f a c t o r  concen t r a t i on .  T h i s  i ndex  s e rve s  
p u r p o s e s  c la imed  f o r  indices  of  homogene i t y ,  a m a y  be  app l ied  b y  a 
modif ied t echn ique  to  d e t e r m i n e  the  c o m m o n - f a c t o r  c o n c e n t r a t i o n  
a m o n g  a b a t t e r y  of  sub tes t s .  

*w. G. Madow suggests that the amount of disagreement between two ran- 
dom or two planned samples of items from a larger population of items could be 
anticipated from sampling theory. The person's score on a test is a sample mean, 
intended to estimate the population mean or "true score" over all items. The vari- 
ance of such a mean from one sample to another decreases rapidly as the sample 
is enlarged by lengthening the test, whether samples are drawn at random or are 
drawn after stratifying the universe as to difIlculty and content. The conditions 
under which the radom splits correlate about as highly as parallel splits are those 
in which stratified sampling has comparatively little advantage. Madows comment 
has implications also for the preparation of comparable forms of tests and for 
developing objective methods of selecting a sample of items to represent a larger 
set of items so that the variance of the difference between the score based on th e  
sample and the score based on the universe of items is as small as possible. 
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(e) a is an upper  bound to the concentration in the test  of 
the first factor  among the items. For  reasonably long tests  not  divis- 
ible into a few factorially-distinct  subtests,  a is very  little grea te r  
than the exact proport ion of  variance due to the first factor.  

3. Parallel-splits yield coefficients little larger  than random 
splits, unless tests contain large blocks of items representing group 
factors. For such tests, a computed for separate blocks and combined 
by a special formula gives a satisfactory estimate of first-factor con- 
centration. 

4. Interpretability of a test score is enhanced if the score has a 
high first-factor concentration. A high a is therefore to be desired, 
but a test need not approach a perfect scale to be interpretable. Items 
with quite low intercorrelations can yield an interpretable scale. 

5. A coefficient r~j (or ~-~j) is derived which is the intercorrela- 
tion required, among items wi th  equal intercorrelat ions and variances,  
to reproduce a test  of n i tems having common-factor  concentration a .  

~ ,  as a measure  of i tem interdependence, d raws  at tention to hetero- 
geneity in both d i~cu l ty  and content factors .  Heterogenei ty  in tes t  
difficulty meri ts  the at tent ion of the tes t  designer, since the validity of 
the tes t  may be increased by  capitalizing on "difficulty factors"  pres-  
ent  in the criterion. 

6. To obtain subtest  scores for  in terpreta t ion or to be weighted 
in an empirical composite, the ideal set of i tems is one having a sub- 
stantial  a and not fu r the r  divisible into a few discrete smaller blocks 
of items. 
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