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Techniques for partitioning objects into optimally homogeneous 
groups on the basis of empirical measures of similarity among those objects 
have received increasing attention in several different fields. This paper 
develops a useful correspondence between any hierarchical system of such 
clusters, and a particular type of distance measure. The correspondence 
gives rise to two methods of clustering that are computationally rapid and 
invariant under monotonic transformations of the data. In an explicitly 
defined sense, one method forms clusters that are optimally "connected," 
while the other forms clusters that are optimally "compact." 

Introduction 

In  many empirical fields there is an increasing interest in identifying 
those groupings or clusterings of the "objects" under s tudy that  best represent 
certain empirically measured relations of similarity. For  example, often 
large arrays of data  are collected, but  strong theoretical structures (which 
might otherwise guide the analysis) are lacking; the problem is then one of 
discovering whether there is any structure (i.e., natural  arrangement of the 
objects into homogeneous groups) inherent in the data  themselves. Recent  
work along these lines in the biological sciences has gone under the name 
"numerical taxonomy" [Sokal, 1963]. 

Although the techniques to be described here may  find useful application 
in biology, medicine and other fields as well, we shall use psychology as an 
illustrative field of application. In  tha t  field, the "objects"  under s tudy might, 
for example, be individual human or animal subjects, or various visual or 
acoustic stimuli presented to such subjects. We might want  to use measures 
tha t  we have obtained on the similarities (or psychological "proximities") 
among the "objects" to classify the obiects into optimally homogeneous 
groups; tha t  is, similar obiects are assigned to different groups. 

Suitable data  on the similarities among the objects (from which such a 
natural  grouping might be derived) may  be obtained directly or indirectly. 
For  example, sometimes one obtains for every pair of objects a subjective 

*I am indebted to R. N. Shepard and J. D. Carroll for many stimulating discussions 
about this work, and for aid in preparing this paper. 
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rating of similarity, or, (what is often very closely related) a measure of the 
confusion or "interchangeability" of the objects. Less directly, we may 
measure a number of attributes of the objects (often termed a profile of 
measures) and combine them to form a single measure of similarity. Various 
kinds of measures of profile similarity can be used for this purpose (e.g., 
product-moment-correlation, covariance, or the sum of squared or absolute 
differences between corresponding components of the profiles). 

The problem of course, is that if the number of objects is large, the re- 
sulting array of similarity measures (containing, as it does, one value for 
each pair of objects) can be so enormous that the underlying pattern or struc- 
ture is not evident from inspection alone. This paper discusses procedures 
which, when applied to such an array of similarity measures, constructs 
a hierarchical system of clustering representations, ranging from one in 
which each of the n objects is represented as a separate cluster to one in 
which all n objects are grouped together as a single cluster. 

An algorithm for finding such a clustering representation was sought 
that would have the following features: 

1. The input should consist solely of the n(n  - 1)/2 similarity measures 
among the n objects under study. This is in contrast to some previous methods 
which additionally require that each object be initially represented as a point 
in Euclidean space. (In many applications the restriction to a representa- 
tion of the grouping in the concrete, spatial sense of an Euclidean metric 
seems unnecessarily and undesirably severe). 

2. There should be a clear, explicit, and intuitive description of the 
clustering; i.e., the clusters should mean something. Some of the published 
clustering methods have nice algorithms, but  when they have been carried 
out it is difficult to see exactly what problem has been solved. 

3. The clustering procedure should be essentially invariant under 
monotone transformations of the similarity data. Often in psychology we 
have confidence in our data only up to rank-order; the absolute numbers 
obtained from the experiments may lie along virtually any scale. The method 
of Ward [1963], which inspired much of this current study, is indeed so 
general as to permit :monotone invariant methods, but  they are not explicitly 
treated. 

The notion of a hierarchical clustering scheme, the central idea of this 
paper, was abstracted from examples given by Ward [1963]. We first consider 
such schemes, and develop a correspondence between hierarchical clustering 
schemes and a certain type of metric. Two recursive methods are then given 
for obtaining hierarchical clustering schemes from a given similarity matrix, 
and finally the significance of these two methods is discussed and illustrated 
by application to real data. 
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I. Clusterings and Metrics 

Figure 1 gives the typical results of a hierarchical clustering method, 
such as those discussed by  Ward [1963] and others. 

Object Number 

1 3 5 6 4 2 
.00 

"Strength" .04 X X X X X 
or .07 X X X X X X X X X 

"Value" .23 X X X X X X X X X X X X X X X X X X 
.31 X X X X X X X X X X X X X X X X X X-X X X 

Fm~ms 1 
A Hierarchical Clustering Scheme 

Notice the main features of such a result. The  first clustering (top row) 
is the "weak" clustering--each object is a cluster, so with six objects we have 
six clusters. This is given the "value" or "rat ing" .00. Next we have a cluster- 
ing with five clusters; the set [3, 5] is one cluster, and the remaining four 
objects are themselves clusters. This is given the value .04. At  level .07 
we have a clustering with four clusters [1], [4], [2], and [3, 5, 6]. At level 
.23 we have the two clusters [1, 3, 5, 6] and [2, 4], and finally at  level .31 
we have the "strong" clustering, with all objects in the same cluster. 

We examine the following relevant features of this model. First, the 
"values" s tar t  at  0 and increase strictly as we read down the table. Second, 
and more important,  the clusterings "increase" also, hierarchically; each 
clustering (except, evidently, the first) is obtained by  the merging of clusters 
at  the previous level. For  example, if level .23 had had clusters [1, 3], [5, 6, 4], 
and [2] we would have not had a hierarchical clustering; the cluster [1, 3] 
cannot be obtained by  merging any of the .07 level clusters. Finally we see 
tha t  the first clustering is the weak clustering and the last is the strong 
clustering. 

We now abstract  from this simple example to the general notion of a 
hierarchical clustering scheme. We assume we have n objects, represented by  
the integers I through n. We have also a sequence of m Jr 1 clusterings, 
Co , C~ , . - -  , C~ , and with each clustering Ci we have a number as , its 
value. We require tha t  Co be the weak clustering of the n objects, with ao = 0, 
and tha t  C~ be the strong clustering. We require also tha t  the numbers as 
increase; a;_~ _< ai , for j = 1, 2, . . .  , m, and the clusters "increase" also, 
where again C;_1 < C~ means tha t  every cluster in Ci is the merging (or 
union) of clusters in C~_~ . This general arrangement will be referred to as a 
hierarchical clustering scheme, or HCS for short. 

This section will demonstrate that  every HCS gives rise to a particular 
kind of distance, or ~netrie, between the objects 1, 2, • • • , n, and, conversely, 
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t ha t  given such a metric we may  recover the HCS from it. This reduces 
the s tudy of HCS ' s  to the s tudy of these metrics. 

First, we shall assume tha t  we are given an HCS, a sequence of cluster- 
ings Co , - - -  , C,, with values ao , . . .  , ~ • For  each pair  x, y of objects, 
we shall define d(x, y), a number,  and prove tha t  d is a metric. 

We define d as follows: given the two objects x and y, we notice t h a t  
in Cm (the strong clustering) x and y are in the  same cluster. Le t  j be  the  
least integer in the  set [0, I ,  . . .  , m] such that ,  in the  clustering Ci , x and 
y are in the  same cluster. We define 

d(x, y) = .~.  

For  example, in Fig. 1 we have  d(d, 5) = .04 (since 3 and 5 are clustered 
a t  level .04 but  not  a t  level .0), d(1, 4) = .31 (since 1 and 4 are clustered 
a t  level .31 but  not a t  level .23), d(1, 6) = .23, d(5, 5) = .00, d(4, 2) = .23, 
and so o n - - t h e  complete distance matr ix  is given in Table  1 

TABLE 1 
Distance Matrix Corresponding to Figure 1 

d 1 2 3 4 5 6 

1 0 .31 .23 .31 .23 .23 
2 .31 0 .31 .23 .31 .31 
3 .23 .31 0 .31 .04 .07 
4 .31~ .23 .31 0 .31 .31 
5 .23 .31 .04 .31 0 .07 
6 .23 .31 .07 .31 .07 0 

A few things are immediate  f rom the definition: for example x and x 
are in the same cluster (evidently!) for all C; ; 0 is the smallest j, so by  defini- 
t ion 

d(x, x) -'- ao --- O. 

Conversely, if d(x, y) = 0 for some x and y, it implies tha t  x and y 
are in the same cluster in Co--but ,  Co being the weak clustering, the  only 
element in the same cluster with x is x i t se l f - - tha t  is, d(x, y) -- 0 implies 
x = y. Thus  d(x, y) = 0 if and only if x = y. 

We see also tha t  d(x, y) = d(y,  x) for all objects x and y. To show t h a t  
d is a good metric it  remains only to show the triangle inequality. Le t  x, y,  
and z be any  three objects, and let 

d(x,  y) = ai 

d(y,  z) = ak 
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Thus x and y are in the same cluster in C~, and y and z are in the same 
cluster in C , .  Because the clusterings are hierarchical, one of these clusters 
includes the other; in fact, tha t  cluster corresponding to the larger of j 
and k. Let this integer be ~, then in C~, x, y, and z are all in the same cluster. 
From the definition of d, we see thus tha t  

d ( z ,  y)  < ~ ,  . 

But  l = max [j, k], and the a's increase as their subscripts do, so 

or, finally, 

ac -- max [a~ , ak], 

d(x, z) <_ max [d(x, y), d(y, z)]. 

This is called the ultrametric inequality; we have shown that  d satisfies 
it. I t  is plainly stronger than the triangle inequality, which would merely 
require 

d(x, z) < d(x, y) --k d(y, z), 

for it is evident that  

max [d(x, y), d(y, z)] ~ d(x, y) q- d(y, z), 

SO 

d(x, z) <_ d(x, y) -b d(y, z). 

Thus we have taken a HCS and obtained a metric d on the objects 
which satisfies the ultrametric inequality. We now do the converse--given 
a distance matrix (such as Table 1) representing some metric d which satisfies 
the ultrametric inequality, we will construct a HCS (such as Fig. 7) from it. 
At level 0, we have the weak clustering--six clusters, each with but  one object 
in them. The smallest element of the distance matrix, aside from the O's, 
is the .04 entry tha t  appears between objects 3 and 5. Accordingly, we create 
a clustering with value .04 with 3 and 4 in the same cluster, and the other 
objects constituting clusters by themselves. Now, we notice one very nice 
property of Table 1 :3  and 5 are exactly the same distance from any other 
object- - that  is, if x denotes object 1, 2, 4, or 6- -  then 

d(3, x) = d(5, x), all x. 

Thus, in fact it makes sense to talk about the distance from x to the 
cluster [3, 5]. 

We indicate this distance in Table 2. In  effect we have a new object, 
[3, 5], which replaces 3 and 5 in the matrix. But  now we get our next cluster- 
ing by using the matrix in Table 2 and applying the same process, i.e., taking 
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TABLE 2 
Distance Matrix for Table 1 After First Clustering 

1 2 [3, 5] 4 6 

1 0 .31 .23 .31 .23 
2 .31 0 .31 .23 .31 

[3, ~ .23 .31 0 .31 .07 
4 .31 .23 .31 0 .31 
6 .23 .31 .07 .31 0 

the smallest nonzero entry (.07, between {3, 5} and 6) and clustering these 
together to obtain a clustering, at level .07, containing a cluster [3, 5, 6] 
and individual clusters [1], [2], and [4]. Once again, we define the distance 
from [3, 5, 6] to 1, 2, or 4 in a unique manner, construct another distance 
matrix, and so on. Eventually we end up clustering all obiects together to 
get the strong clustering, and we find that we have completely reconstructed 
Fig. 1. 

The key to the above process is being able to replace two (or more) 
objects by a cluster, and still being able to define the distance between such 
clusters and other objects or clusters. This property in turn depends on two 
essential facts: that d ~utisfies the ultrametric inequality, and that, at each 
stage, we cluster the minimum distances. 

We now generalize this method, to enable us to get a HCS, given n objects 
and a metric d on them which satisfies the ultrametric inequality. 

Step 1. 
Step 2. 

Step 3. 

Clustering Co, with value 0, is the weak clustering. 
Assume we are given the clustering Ci-1 with the distance matrix 
between each cluster or object and every other. Let ai be the smallest 
nonzero entry in the matrix. Merge the pair of points and/or clusters 
with distance a i ,  to create C~, of value a i .  
We may create a new distance matrix, treating the new clusters 
as objects, in an unambiguous manner. 

That is, if x and y are two objects (possibly clusters) at level 
Ct-z,  and if d(x, y) = c~ (so that x and y become clustered in C;), 
and if z is any other object or cluster at level C~_~ , then d(x, z ) =  
d(y, z). The proof of this is easily sketched--if d(x, z) ~ d(y, z) 
one must be larger--say d(x, z) > d(y, z). Then, however, the ultra- 
metric inequality demands 

d(x, z) < max (d(x, y), d(y, z)) 

max (cL~ , d(y, z)) 
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By assumption, 

Thus, 

d(y, z) < d(x, z). 

d(x ,  z)  < _ . ,  . 

But  a; was chosen to be the least nonzero distance in the matrix; thus 

d(x ,  z)  = at  • 

This then in turn requires tha t  

d(y, z) < d(x, z) = a, , 

a contradiction, since no nonzero distance can be strictly smaller 
than ai • Thus the hypothesis tha t  d(x, z) ~ d(y, z) leads to a con- 
tradiction; the two distances must be equal, and we can construct 
our reduced matrix. 

Step 4. We now repeat Steps 2 and 3 until we finally obtain the strong 
clustering--we are then finished. 

This procedure evidently produces a hierarchical clustering scheme, 
since each clustering is a merging of clusters from the previous clustering 
and the ai increase. There is thus a complete correspondence between HCS's 
on the one hand, and metrics satisfying the ultrametric inequality on the 
other. 

II .  The Two Methods 

In the first section we developed a natural  way of going from a metric d, 
satisfying the ultrametric inequality, to an HCS. In  general, however, (if 
only because of noisy data) the similarity matrix does not satisfy the ultra- 
metric inequali ty--we will thus t ry  to modify our method to give us reasonable 
clusterings in this case. 

When we went from a metric to an tICS in Sect. I, we required the 
ultrametric inequality only in Step 3; we assumed that  we have clusters and /or  
objects x and y from C~-1 which clustered in C~ (i.e., d(x, y) = ai). We then 
took any third cluster or object z and a t tempted to define d([x, y], z). The 
ultrametric inequality told us that  d(x, z) = d(y, z), and thus led to a natural 
definition: 

d([x, y], z) = d(z,  z) -- d(y, z). 

In  general we may  not  expect d(x, z) = d(y, z), but  we stiff may formally 
define d([x, y], z) as some function )¢ of d(x, z) and d(y, z), 

d([x, y], z) = l(d(x, z), d(y, z)), 
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and then proceed as :in Sect. I, above. I t  would be natural to require that if 
d(x, z) = d(y, z), then 

f(d(x, z), d(y, z)) = d(x, z) -- d(y, z). 

Then if d satisfies the ultrametric inequality, the process will give the same 
HCS as the "natural" one described in Sect. I. This still leaves us with a 
large number of choices for/--geometric means, various weighted averages, 
and so on. We evidently need stronger conditions on the function f. 

This work was strongly influenced by the work of Shepard [1962a & b 
and Kruskal [1964] on multidimensional scaling, in which the results are 
invariant under montone transformations of the similarity matrix. Since 
much data of psychological interest is of this type, it seemed worthwhile 
to try to develop a clustering program with this feature. Immediately we 
ruled out most of the common functions for 1, since the operations of addi- 
tion, multiplication, square root, and so on are not monotone invariant. 
The functions max and rain, however, give rise to monotone invariant 
clustering methods; the corresponding methods may be summarized as 
follows: 

M i n i m u m  Method: Given a similarity function d on n objects, we build 
an HCS as follows: 

Step 1. 
Step 2. 

Step 3. 

Clustering Co, with value 0, is the weak clustering. 
Assume we are given the clustering C;-1 with the similarity func- 
tion d, defined for all objects or clusters in Ci-1. Let at be a minimal 
nonzero entry in the matrix. Merge the pair of objects and/or 
clusters with distance a; to create Ca, of value ai • 
We create a new similarity function for Ci in the following manner: 
if x and y are clustered in Ca and not in Ci_l (i.e., d(x, y) = at) 
we define the distance from the cluster Ix, y] to any third object 
or cluster, z, by 

d([x, y], z) = min [d(x, z), d(y, z)]. 

If x and y are objects and/or clusters in Ci-1 not clustered in Ci , 
d(x, y) remains the same. We obtain a new similarity function d for 
C4 in this way. 

Step 4. We now repeat Steps 2 and 3 until we finally obtain the strong 
clustering--we are then finished. 

M a x i m u m  Method. Same as the Minimum Method, except in Step 3, where 
we define 

d([x, y], z) -= max [d(x, z), d(y, z)] 
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when x and y are two objects and/or clusters of Ci-~ which cluster in Ci , 
and z is any third object or cluster of C~. 
NOTE: It  is tacitly assumed in the discussion of the methods that the dis- 
tances in the original matrix are all distinct except for 0. This is not important 
in the Minimum Method, but difficulties do arise when applying the Maxi- 
mum Method to matrices with large numbers of identical entries. In practice 
this restriction rarely produces an ambiguous result. 

The above two methods are clearly related to the method described 
in Sect. I. In particular, if d satisfies the ultrametric inequality, the two 
methods reduce to the method of Sect. I, as promised. 

III. Nature o] the Solutions 

Monotone Invariance 

One of the requirements that we have set for our methods is that the 
solutions be invariant under monotone transformations of the original data. 
Monotone invariant processes are those which are dependent only on the 
rank order of the data. In our methods, we use the matrix elements twice; 
first, we find the smallest nonzero matrix element, and second, we form the 
maximum or minimum of two matrix elements. Both these processes may 
be carried out knowing nothing of the data except the rank order. Thus the 
clusterings are unaffected by monotone transformations of the similarity 
matrix. The values assigned to the clusterings also are determined merely 
by rank order--thus a monotone transformation of the similarity matrix 
transforms the values of the clus~erings, but leaves the clusterings invariant. 

What the Clusterings Mean 

Both methods depict basic attributes of the original similarity matrix. 
In particular, the values assigned to the clusterings have simple meanings 
in the two methods. 

If we are given a clustering obtained by the Maximum Method, we may 
represent the value of the clustering as follows: for each cluster in the cluster- 
ing, compute the diameter of the cluster (the largest intra-cluster distance). 
For a given Maximum Method clustering, the value of the clustering is 
the maximum diameter o] the clusters in the clustering. At any stage, the 
distance from object/cluster x to object/cluster y is exactly the diameter 
of the set x union y. This gives us a simple means of visualizing the cluster- 
ings--the Maximum Method attempts at each stage to minimize the diameter 
of the clusters. 

The analysis for the Minimum Method is slightly more involved, but 
equally basic. A chain from object x to object y is any sequence of objects 
zo, z~, • • • , z, with zo -- x and ze -- y. The size of a chain is the largest link 
distance: 
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size = max [d(zi-, , zi)]. 
i ~ l , . . . , ~  

Given a clustering, we say that the chain distance d' from x to y is the minimal 
chain size of all chains from x to y; 

d'(x, y) = min [size of chain.] 
al I ehatna 
f r o m  z t o  

I t  turns out that d' satisfies the ultrametric inequality and is indeed associated 
with the HCS we obtain from the Minimum Method. The chain distance 
intuitively measures a kind of connectedness of x and y through intermediate 
points. We may thus describe the value of a Minimum Method clustering by 

Value of Clustering = max [d'(x, y)]. 
z and 

in same cluster 

The above statements may be proved easily by induction; the proofs 
are omitted here as not being central to the argument. 

IV. Illustrative Application 

In the course of exploring some alternative methods for analyzing exist- 
ing data on the confusability of various speech sounds under different condi- 
tions of filtering and noise, R. N. Shepard recently applied the two methods 
described here to the data of Miller and Nicely [1955] on confusions among 
sixteen English consonants. As an illustration of the kind of meaningful 
results that can be obtained in this way we present the HCS's that were 
obtained for one of Miller and Nicely's sets of data; viz., their Table VII 
(based on the condition in which only the low audio frequencies from 200 
to 300 cps were passed). 

For the purpose of applying the present methods, a symmetric matrix 
was constructed givhlg, for each of the n(n -- 1)/2 pairs of consonants x 
and y, a measure of their similarity, s(x, y), defined by 

l(z, ~ + f(y, x.) 
s(x, y) = ](x, x) ](y, y) ' 

where ](x, y), for example, is the frequency with which the consonant x 
was heard as the consonant y according to Miller and Nicely's Table VII. 
In the analysis, then, the similarity estimate, s(x, y), is treated as an approxi- 
mately monotonically decreasing function of an assumed underlying dis- 
tance d(x, y). 

The representations obtained by the Maximum and Minimum Methods 
are shown in Figs. 2 and 3, respectively. Across the top, in each table, are 
indicated the phonetic symbols for the sixteen consonants studied by Miller 
and Nicely. (In both cases, it turned out that  the diagram for the HCS 
could be constructed with these consonants in the same order and, indeed, 
in exactly the order in which they originally were listed by Miller and Nicely.) 
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The  number s  down  the  l e f t -hand  side of each tab le  are the  s imilar i ty  va lues  
associated wi th  each cluster ing in  the  hierarchical  representa t ion .  (Notice  
t h a t  since s(x, y) is inversely re la ted  to  dis tance,  these numbe r s  beg in  a t  
for the  weak cluster ing and  decrease. 

Similarity 
Value 

2.635 
2.234: 
2.230 
2.185 
2.123 
2.108 
1.870 
1.683 
1.604 
1.577 
1.567 
1.065 
1.009 
0.425 
O. 279 

The HCS 

Consonants 

p t k  f o  , S  

XXX 
XXX XXX 
XXX XXXXX 
XXX XXXXX 
XXXXX XXXXX 
XXXXX XXXXX 
XXXXX XXXXXXX 
XXXXX XXXXXXX 
XXXXX X X X ~ X X  
XXXXX XXXXXXX 
XXXXXXXXXXXXX 

b d # 

kx:  
XXX 
XXX 
XXX 
XXX 
XXX 

XXXXX 
XXXXX 
XXXXX 
XXXXX 
XXXXX 
XXXXX 

v ~ z  5 m  n 

xxx 
XXX 
XXX 
XXX 
XXX 

XXXXX 
~XXXXXX 

XXXXXXX 

KXX 
.~XX 

XXX 
XXX 
XXX XXXXXXXXXXXXX XXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXX XXX 
X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X  

FIGuRv. 2 
Obtained on the basis of Miller and Nicely's Table VII 

by the Minimum Method 

Similarity 
Value 

c o  

2.635 
2.234 
2.230 
2.123 
1.855 
1.683 
1.604 
1.525 
1.186 
1.119 
0.939 
0.422 
0.302 
0.019 
0.000 

The HCS 

Consonants 

p t k  / e  s S 

xxx 
XXX . XXX 
XXX . XXX 
XXXXX XXX 
XXXXX XXXXX 
XXXXX XXXXX 
XXXXX XXXXX 
XXXXX XXXXX 
XXXXX XXXXX 
XXXXX XXXXXXX 
X X X X X X X X X X X X X  
XXXXXXXXXXXXX 
XXXXXXXXXXXXX 

b d g 

x x x  
X X X  
XXX 
XXX 
XXX 
XXX 
XXX 
XXX 
XXX 

XXXXX 
XXXXX 
XXXXX 

, ~ z  5 m  n 

XXX 
XXX 
XXX X X X  

XXXXX XXX 
X X X X X X X X X X  
XXXXXXX XXX 
X X X X X X X X X X  
XXXXXXX XXX 

XXXXXXXXXXXXX XXX 
XXXXXXXXXXXXXXXXX 

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX 

FIGURE 3 
obtained on the basis of Miller and Nieely's Table VII 

by the Maximum Method 
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For these data the Maximum and Minimum Methods yield very similar 
results. The princip~d difference between the two representations is confined 
to the order in which the last three clusters [p, t, k, f, o, s, S], [b, d, g, v, ~, z, 3], 
and [m, n] combine into two clusters. For the Maximum Method the last 
two of these combine with each other before joining the first, whereas for 
the Minimum Method the first two combine with each other before joining 
the last. Otherwise, although the precise numerical values associated with 
the clusterings differ somewhat between the two methods, the topological 
structures of the two representations are alike. That is, above the level of 
three clusters, we find that exactly the same subclusters appear in both 
representations and (consequently) that each such subcluster divides into 
exactly the same sub-subclusters. This close agreement suggests that these 
data do not seriously violate the assumed ultrametric structure. 

Moreover, both of the obtained HCS's are meaningfully related to the 
distinctive features presumed [e.g., by Miller and Nicely, 1955] to govern 
the discrimination of consonant phonemes. At the level of five clusters, for 
example, the sixteen phonemes divide into the unvoiced stops [p, t, k], the 
corresponding voiced stops [b, d, g], the unvoiced fricatives [], o, s, S], 
the corresponding voiced fricatives [v, ~, z, 5], and the (voiced) nasals 
[m, n]. Then, at the level of three clusters, the stops and fricatives coalesce 
for the voiced and unvoiced phonemes, separately, to yield just the nasals, 
the remaining voiced, and the corresponding unvoiced consonants. 

Analyses of other of Miller and Nicely's matrices (which were obtained 
under different conditions of filtering) led to clusterings that, although highly 
consistent (across independent sets of data), departed systematically from 
the HCS's presented here for their Table VII. These divergent results will 
be covered in a forthcoming report by Shepard; their detailed discussion here 
would require too extensive a detour into the substantive problems of psycho- 
acoustics. One further observation should perhaps be made here, though, 
regarding these further analyses. In this particular kind of application anyway, 
it has generally appeared that, to the extent that there is an appreciable 
departure between the HCS's obtained by the Maximum and Minimum 
Methods, the results of the Maximum Method have appeared to be the more 
meaningful or interpretable. That is, the search for compact clusters (of 
small over-all "diameter") has proved more useful than the search for in- 
ternally "connected" but potentially long chain-like clusters. The reverse 
may of course prove to be true in other types of applications. 

V. Discussion 

Relation to Other, Similar Methods 

Although the methods described here were developed independently, 
they were subsequently found to be closely related to some methods that 
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had been developed earlier for applications to biological taxonomy. In par- 
ticular, what are here called the Minimum Method and the Maximum 
Method appear to be essentially like the earlier methods of Sneath [1957] 
and of SCrensen [1948], respectively, (which methods Sokal and Sheath 
[1963, pp. 180-181] have, in turn, called "clustering by single linkage" and 
"clustering by complete linkage," respectively). A more recent method of 
this same general type is that of "hierarchical linkage analysis" proposed by 
McQuitty [1960]. In view of the general upsurge of interest in clustering 
methods that is currently taking place in a number of different fields, it is 
likely that similar methods have been proposed by others as well. 

Apart from what function it may serve to bring such methods to the 
attention of psychologists, the present report has the advantage of providing, 
for the first time, a unifying conceptual formulation; specifically, a formula- 
tion based upon the notion of the ultrametrie. This ultrametric conceptualiza- 
tion, moreover, leads directly to readily mechanizable computing algorithms 
for both the Minimum and Maximum Methods, as well as certain inter- 
mediate methods (which are briefly mentioned below). More importantly, 
it allows one to specify--as had not previously been done--precisely what 
type of underlying structure is being assumed and, hence, precisely what 
problem is being solved. 

A Computer Program 

Another step that has been taken here is the construction of a computer 
program that will carry out both the Maximum and Minimum Methods on 
an arbitrary matrix of similarities or "proximities." (The program is written 
in FORTRAN and is suitable for IBM machines of the 709-7090 class.) 
The solutions displayed in the present Tables 11 and 12 were in fact computed 
and printed out (in the form shown) by this program. When necessary the 
program also determines an appropriate reordering of the "objects" so 
that  such a table can be constructed. On an IBM 7094, the analysis is com- 
pleted quite rapidly; in another application with 64 objects, solution~s were 
obtained for both the Minimum and Maximum Methods in just 10.1 seconds. 

Possible Extensions 

Sokal and Sneath [1963, p. 190] have pointed out that, in methods like 
our Minimum or Maximum Methods, the merging of two clusters depends 
upon a single similarity value (viz., the least or greatest in the appropriate 
set). They suggest that, for greater robustness of the solution, it may some- 
times be desirable to use some sort of average value instead. As we have 
already noted, to base such a procedure upon averages of the more obvious 
types is to lose the invariance, sought here, under monotone transformations 
of the similarity values. More importantly, the solutions would no longer 
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have the clear-cut meaning of the "connected" or "compact"  solutions 
obtained by  the conceptually simpler Min. and Max. Methods. 

Nevertheless, when this seems desirable, the methods described here 
can be (and, indeed, have been) modified to yield solutions intermediate 
between those obtained by  these two extreme methods. J. D. Carroll (personal 
communication) has suggested an average method based upon medians which, 
of course, do have the desired property of monotone invariance. The  main 
problem, in the case of medians, is the choice of an appropriate procedure for 
dealing with the ambiguities tha t  tend to arise when two or more of the 
initial similarity estimates are tied. Moreover, as in the case of other sorts 
of averages, the solution no longer lends itself to a simple characterization 
(e.g., in terms of "compactness" or "connectedness").  

Finally, a different kind of possible extension will be briefly indicated 
here, in the form of a presently unsolved problem. In  Section I we saw tha t  the 
construction of an HCS is equivalent to finding a metric which satisfies 
the ultrametric inequality. Given a similarity measure d, we would in general 
like to find the closest metric D which satisfies the ultrametric inequal i ty--  
various measures of closeness could be used. For  example, we could use a 
rank-order correlation between d(x, y) and D(x, y) over all objects x and y. 
To the author 's  knowledge, this problem is unsolved. 
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