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An analytic criterion for rotation is defined. The scientific advantage 
of analytic criteria over subjective (graphical) rotational procedures is dis- 
cussed. Carroll's criterion and the quartimax criterion are briefly reviewed; 
the varimax criterion is outlined in detail and contrasted both logically and 
numerically with the quartimax criterion. It is shown that the normal varimax 
solution probably coincides closely to the application of the principle of simple 
structure. However, it is proposed that the ultimate criterion of a rotational 
procedure is factorial invariance, not simple structure-although the two 
notions appear to be highly related. The normal varimax criterion is shown 
to be a two-dimensional generalization of the classic Spearman case, i.e., it 
shows perfect factorial invariance for two pure clusters. An example is 
given of the invariance of a normal varimax solution for more than two 
factors. The oblique normal varimax criterion is stated. A computational out- 
line for the orthogonal normal varimax is appended. 

In  factor analysis, an analytic criterion for rotation is defined as one 
that  imposes mathematical conditions beyond the fundamental factor 
theorem, such that  a factor matrix is uniquely determined. Historically, 
the first such criterion was Thurstone's t reatment of the principal axes 
problem [10]: from any arbitrary factor matrix he suggested rotating under 
the criterion that  each factor successively accounts for the maximum variance. 
But  principal axes have seldom been accepted as psychologically very interest- 
ing ([9], p. 139). The rotation problem for psychologically meaningful factors 
is usually handled judgmentally. Scientifically, however, this procedure is 
not  very satisfactory: the ad hoc quality of subjective rotation makes 
uniquely determined factors impossible; only factors tha t  are subject to the 
uncertainties and controversies besetting any a posteriori reasoning can be 
defined. In  contrast, an analytic criterion for rotation would allow factor 
analysis to become a straightforward methodology stripped of its sub- 
]ectivity and a proper tool for scientific inquiry. 

The Quartimax Criterion 

The first analytic criterion for determining psychologically interpretable 
factors was presented in 1953 by Carroll [1]. In  an a t tempt  to provide a 

*Part of the material in this paper is from the writer's Ph.D. thesis. I am indebted 
to my committee, Professors F. T. Tyler, R. C. Tryon, and It. D. Carter, chairman, for 
many helpful suggestions and criticisms. Dr. John Caffrey suggested the name varimax, 
and wrote the original IBM 602A computer program for this criterion. 

I am also indebted to the staff of the University of California Computer Center for 
help in programming the procedures described in the paper for their IBM 701 electronic 
computer. Since their installation is partially supported by a grant from the National 
Science Foundation, the assistance of this agency is acknowledged. 
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mathematical explication of Thurstone's simple structure, tie suggested that  
for a given factor matrix, 

(1) / = ~_, ~_,a~a~ 
• < t  i 

should be a minimum, where j = 1, 2, . . .  , n are tests, s, t = 1, 2, . . .  , r 
are factors, and a~. is the factor loading of the jth test on the sth factor. 
I t  appears that Carroll was motivated in writing (1) primarily by a close 
inspection of Thurstone's five formal rules for simple structure ([12], p. 335), 
particularly the requirement that a large loading for one factor be opposite 
a small loading for another factor. 

In his original paper, Carroll provided two numerical examples of the 
application of his method. Without the restriction of orthogonality, these 
illustrations gave somewhat equivocal results--while the application of (1) 
appears to bring one close to the desired simple structure, the criterion has 
an obvious bias in being too strongly, influenced by factorially complex tests. 

In the light of later developments, Carroll's criterion should probably 
be relegated to the limbo of "near misses"; however, this does not detract 
from the fact that it was the first attempt to break away from an inflexible 
devotion to Thurstone's ambiguous, arbitrary, and mathematically un- 
manageable qualitative rules for his intuitively compelling notion of simple 
structure. 

Almost simultaneously with Carroll's development, Neuhaus and 
Wrigley [7], Saunders [8], and Ferguson [2] proposed what is usually called 
the quartimax method for orthogonal simple structure. Neuhaus and Wrigley 
suggest that a most easily interpretable factor matrix, in the simple structure 
sense, may be found when the variance of all nr squared loadings of the 
factor matrix is a maximum, i.e., 

(2) q, = fur ~_, ~ (a~,) 2 -- ( ~ ,  ~ a~,)']/n2r 2 -- maximum. 
i * i . 

Saunders' approach requires that the kurtosis (fourth moment over second 
moment squared) of all loadings and their reflections be a maximum, 

(3) q2 = nr ~_, ~_~ a~./(~_, ~E] a~.) 2 = maximum. 

While Ferguson, basing his rationale on certain parallels with information 
theory, calls simply for 

(4) qa = ~ ~ a~. = maximum. 
i 

All these investigators are concerned with attaining a factor matrix 
with a maximum tendency to have both small and large loadings. While 
less obviously related to Thurstone's rules than Carroll's criterion, the 
emphasis on small loadings coincides with Thurstone's requirements of 
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zero loadings. For orthogonal factors, criteria (2), (3), and (4) are equivalent 
because of tile invariance of the sum of the communalities, ~ ] ~ ] ,  a~ . 
(This term, as well as other constants, disappear when differentiated in the 
calculus problem involved in finding the required critical point.) 

Indeed, it  turns out that  they are also equivalent to Carroll's criterion 
in the orthogonal case. Minimizing (1) is equivalent to maximizing (4) 
since the squared eommunality of a test is 

constant = (~]a~)  2 = ~]a~, + 2 ~a~,a~, 
, s s < t  

and tile sum of squared communalities over all tests is 

constant = + 2 
i s i s<~ 

= q3 + 2L 

Thus, since the quartimax criterion plus twice Carroll's criterion is a con- 
stant, maximizing q3 is equivalent to minimizing f. 

Neuhaus and Wrigley- realized that  none of these criteria can be real- 
istically applied without the aid of an electronic computer-- the calculations 
involved are too extensive for a desk calculator or punched card mechanical 
computers. Consequently, they programmed the quartimax method for the 
Illiac* and provided a rather extensive numerical investigation of the empirical 
properties of the quartimax method. 

Their results were perhaps more encouraging than Carroll's. Under 
the restriction of orthogonality Carroll's criterion (or the equivalent quartimax 
method) does not show nearly so obvious a bias as does Carroll's criterion 
when the restriction of orthogonality is removed. However, as an explication 
of orthogona] simple structure, the quartimax method does have a systematic 
bias which will be more fully examined in the next section. 

The Varimax Criterion 

ti'rom the outset, the above methods consider all nr loadings simul- 
taneously. In every ease, however, these criteria may be applied separately 
to each row of the factor matrix and summed over rows for the final criterion 
because of the invariance of the comlnunalities. For example, Neuhaus and 
Wrigley could have defined the simplicity, say, of tile factorial composition 
of the j th test as the variance of the squared loadings for this test, 

(5) q* = [r ~ ]  (a~,) ~ -- (~ ]  a~,)2l/r 2. 
s 

*The Illiac is the University of Illinois electronic computer. Subsequently, the quar ti- 
max criterion has been programmed for the CRC-102A (Neuhaus), and the IBM 701 
(Kaiser). The varimax criterion described in the next two sections has been programmed 
for SWAC at UCLA (Comrey), the IBM 701 (Kaiser), Illiac (Dickman), and the IBM 
650 (Vandenberg). 
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To obtain the total criterion for the entire factor matrix, (5) could then be 
summed over all tests to give 

(6) q* = ~ {It E (a~.) ~ -  ( ~  a~.)2]/r21 - 
t s s 

Maximizing q* is equivalent to maximizing qa, again because constant terms 
vanish when differentiated. 

Equation (6) perhaps provides some insight into the quartimax 
criterion--its aim is to simplify the description of each row, or test, of the 
factor matrix. I t  is unconcerned with simplifying the columns, or factors, of 
the factor matrix (probably the most fundamental of all requirements for 
simple structure). The implication of this is that the quartimax criterion 
will often give a general factor. Under requirement (5) there is no reason 
why a large loading for each test may not occur on the same factor. In practice, 
this tendency for the quartimax criterion to yield a general factor is most 
pronounced when the unrotated factor matrix has a pronounced general 
factor. 

From the simple structure viewpoint, an immediate modification of the 
quartimax criterion is apparent. Let us define the simplicity of a factor as 
the variance of its squared loadings, 

(7) v* = [n ~ ,  (a~) 2 -- ( ~_, a~,) 2]/n 2. 
i i 

And for the criterion for all factors, define the maximum simplicity of a 
factor matrix as the maximization of 

(S) v'* = ~v* ,  = ~ {In ~--~. (a~,) 2 -- (~ ,a~ , )2] /n=} ,  

t.he variance of squared loadings by columns rather than by rows. 
Since a factor is a vector of correlation coefficients, the most interpret- 

able factor is one based upon correlation coefficients which are maximally 
interpretable. Those correlations which satisfy this condition are patently 
obvious: correlations of 4- 1, which indicate a functional relationship, and 
correlations of zero, which indicate no linear relationship. On the other hand, 
middle-sized correlations are the most difficult to understand. Thus, it is 
seen why v* in (7) could be maximized for the maximum interpretability or 
simplicity of a factor, and more generally, why the interpretability of an 
entire factor matrix could be considered best when (8) is a maximum. 

Criterion (8) is the original raw varimax criterion [4]. In the original 
proposal of this criterion, it was shown to be mathematically equivalent, 
in the orthogonal case, to minimizing 

(9) c* ~ ,  { In ~_, 2 a ~ _ ( ~ ,  a~,) ( ~.,  a~ ,) ] /n 2 } = a ; ,  ; ,  
• < t  i i i 

i.e., minimizing the covariance of pairs of columns of squared loadings and 
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summing over all possible pairs of columns for the criterion. Criterion (9) 
then bears the analogous relationship to Carroll's criterion (1) that the 
varimax criterion (8) does to the quartimax criterion (6). 

Some distinctions between quartimax and varimax orthogonal solutions 
can be illustrated numerically. In Table 1 solutions for Thurstone's eleven- 
variable box problem ([12], pp. 373-375) are given. It  will be noted that the 
quartimax solution [7] could hardly be called a simple structure. There is 
a large general factor, and the second factor seems only vaguely concerned 

Table I 

Thurstonels ll-Variable ~ox Froblem a 

Subjective quartimax Raw Varimax 
(oblique) 

Test " X Y Z X Y Z X Y Z 

x 9o o5 oo 68 65 05 91 19 16 

y 04 85 O1 83 -47 O0 05 93 25 

z 03 05 79 42 -08 79 ii 17 88 

xy 62 63 -06 99 ii -OL 6h 74 2O 

yz -o5 5h 57 71 -ho 56 o2 65 75 

x2y 82 37 -01 92 41 03 8h 51 22 

xy 2 35 76 02 96 -18 03 37 86 28 

2x + 2y 53 71 -09 i00 O0 -07 5h 82 18 

(x 2 * 22) ~ 52 71 -08 99 -O1 -07 53 81 18 

(x 2 * z2) ½ 52 -07 65 59 38 68 60 09 77 

xyz 42 h3 L3 88 Oh L5 L8 58 65 

aDecimal points omitted. 

with dimensions of boxes. On the other hand, the raw varimax solution 
closely parallels Thurstone's original subjective solution, given the restric- 
tion of orthogonality. 

In Table 2 are solutions for Holzinger and Harman's 24 psychological 
tests ([3], pp. 229-233). Both the quartimax [7] and the raw varimax methods 
seem to duplicate the subjectively rotated simple structure patterns. But 
the respective variance contributions of the factors are perhaps more interest- 
ing. It is seen that the dispersion of the ~i a~ for the subjective solution 
is less than the corresponding figures for the two analytic methods. In other 
words, Holzinger and Harman have made the factors a little more level or 
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Test 

Table 2 

Holzinger and Harman's Twenty-four Psychological Tests a 

Subjective Quartimax Raw Varimax 

A B C D A B C D A B C D A B C D 

Normal Varimax 

i i0 32 62 20 37 19 60 07 2~ 20 65 13 lh 19 67 17 
2 07 15 41 13 24 07 38 04 17 07 42 08 IO 07 43 IO 
3 iO 12 53 13 31 el 48 el 22 02 52 06 15 02 5h 08 
4 15 18 53 12 36 07 h6 -oi 27 08 52 Oh 20 09 ~h 07 
5 75 15 26 15 81 14 -02 -04 78 21 12 06 75 21 22 13 
6 72 05 28 25 81 03 OO 06 78 i0 13 lh 75 IO 23 21 
7 81 08 27 Ii 85 07 -Oh -IO 8h 15 IO O0 82 16 21 08 
8 54 26 38 14 66 20 20 -04 60 25 31 05 54 26 38 12 
9 76 -04 29 30 86 -06 -02 io 84 el 12 19 80 el 22 25 

IO 28 66 -19 I~ 23 70 -12 Ii 17 71 -08 17 15 70 -06 24 
II 27 61 -Oh 29 31 62 el 23 22 63 06 29 17 60 08 36 
12 13 72 09 03 16 69 19 -oi 06 70 23 Oh 02 69 23 ii 
13 2h 63 31 02 35 57 32 -08 2h 59 39 -01 18 59 41 06 
14 23 19 -02 48 32 19 -03 42 26 20 el h6 22 16 04 50 
15 ii l~ 08 50 25 ii I0 h5 17 ii 13 48 12 07 lh 50 
16 05 22 34 h5 29 13 37 37 17 13 41 41 08 I0 41 43 
17 15 24 -03 62 28 24 02 57 20 23 05 61 14 18 06 64 
18 el 39 20 52 22 32 30 h7 08 31 32 51 09 26 32 5h 
19 12 22 18 39 28 18 19 32 19 18 22 36 13 15 2h 39 
20 31 18 46 29 52 09 35 14 42 12 43 21 35 Ii h7 25 
21 17 46 33 2h 35 38 35 14 23 he 40 20 15 38 42 26 
22 31 12 40 40 53 04 30 26 hh 06 37 32 36 oh 41 36 
23 31 29 54 25 55 19 4h 09 43 21 52 16 35 21 57 22 
2h 39 46 14 31 49 43 io 20 40 h6 18 27 34 h4 22 34 

~a~ 343 292 268 236 559 242 196 142 431 260 26~ 186 350 244 308 236 
j -js 

aDecimal points o~itted. 

even in their contribution to variance than the analytic criteria. Of the 
two analytic criteria., the raw varimax solution has given a solution which is 
closer in this respect to Holzinger and Harman's. I t  is also noteworthy that 
as a result of these differences the large loadings of the factors with the larger 
variance contributions for the analytic methods are larger than the large 
loadings for the smaller factors, and similarly, the small loadings for the 
larger factors are larger than the small loadings for the smaller factors. 
Holzinger and Harman's subjective solution does not show this svstematie 
bias; their solution gives a more equitable patterning of factor loadings. 

How this bias may be removed is indicated in the next section. This 
leads to a revision of the varimax criterion, which appears to have more 
important characteristics than merely satisfying the rules of simple structure. 

Factorial Invariance: Normal Varimax 

It  seems reasonable to attribute the systematic bias seen in both the 
quartimax and varimax solutions of the Holzinger-Harman data and other 
examples [4] to the divergent weights which implicitly are attached to the 
tests by their communalities. When one deals with fourth-power functions 
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of factor loadings, a test with comnmnality 0.6, for example, would tend to 
influence the rotations four times as much as a test whose eommunality was 
0.3. Thus, while the most obvious weights have been applied to the tests, 
namely the square roots of their communalities, after the fact it seems that 
there is probably a better set of weights--weights which would tend to 
equalize to a greater extent the relative influence of each test during rotation. 

There seems no rational basis for choosing among different weighting 
schemes. Let us then make the agnostic confession of ignorance which pervades 
any form of correlational analysis. For the purposes of rotation, weight 
the tests equally, in the sense that the lengths of the common parts of the 
test vectors have equal length. (The author is indebted to Dr. D. R. Saunders 
for this suggestion.) The varimax criterion could then be rewritten as 

(10) v = ~ {In ~ (a~Jh~) 2 - [~_~ (a~8/h~)]2]jn2}, 
, i 

where h~ is the communality of the jth test. In contrast to (7) and (8), where 
the variance of the squared correlations of the tests with a factor is maximized, 
the variance of the squared correlations of the common parts of the tests 
(the reflections of the tests onto the common-factor space) with a factor is 
now being maximized. [Note from (10) that we are not advocating a permanent 
weightia~g of the tests by a weight inversely as the square root of their com- 
munalities. During rotation this weighting extends the common part of 
each test vector to unit length, but after rotation each of these vectors is 
shortened to its proper length by reweighting directly as the square root of 
the test's communality.] 

As will be seen in Table 2, under this modification the varimax criterio~ 
(the normal varimax, since rotation is with respect to normalized common 
parts of tests) has effectively removed the small but disturbing bias in the 
raw varimax solution of Holzinger and Harman's example. I t  also has been 
shown in a number of other examples [61 that the normal varimax does not 
seem to deviate systematically from what may be considered the best 
orthogonal simple structure.* 

Thus far, however, merely a numerical-intuitive basis for a weighting 
procedure which leads to "prettier" results has been provided. Such a basis 
is quite unsatisfactory theoretically. Indeed, this sort of ad hoc thinking 
could conceivably lead to a different set of judgmentally determined weights 
for any particular example--a situation as scientifically reprehensible as 
the subjective graphical methods. 

There is a more fundamental rationale for attempting to establish the 
normal varimax criterion (10) as a mathematical definition for the rotation 

*Professor Andrew Comrey has apparently reached the same conclusion in an exten- 
sive application of the normal varimax criterion to interitem correlation matrices of the 
MMPI (personal communication). A further example, available from the writer, is the 
normal varimax solution of Thurstone's classic PMA study[ll] (dittoed). 
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problem. Consider the situation illustrated in Fig. 1. There are two clusters 
of tests, each of which is pure in the sense tha t  the reflections of the test  
vectors of the cluster onto the two-dimensional, common-factor  space are 
eollinear. (While these clusters are drawn less than  90 ° apart ,  the following 
a rgument  is perfectly general.) 

"n" 

='n- 

Fzocm~ 1 
Case for which a normal varimax solution is invariant under changes in the composition 

of the test battery. 

I t  is shown below tha t  the angle of rotat ion in a plane which maximizes 
(10) is 

~b = ~ arctan + ' ' 
E (u~ - :~) - [ ( E  u,):  - ( E ~;):]  ' 

i i i 

(11) 

where 

and 
u+ = ( a i l / h + )  ~ - (a~2/h+) 2, 

v i  = 2 ( a ~ l / h i ) ( a i J h i ) .  

Let  nA (n~ > 1) be the number  of tests in the first cluster and nB ( n B >  1) 
be the number  of tests in the second cluster (n = nA =k nB). I t  is readily 
apparen t  tha t  all tests of the first cluster have the same values for u, and v~ . 
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Let these values be UA and v , .  Similarly let the values for the second cluster 
bc uB and v, . In this case (11) reduces to 

2nAns(u,VA + u~v8 -- naY, -- u,va) 
2 2 2 * (12) ¢ -- ~ arc tannAn, (u2  + us  -- vA -- vB -- 2uau,  + 2vAv,) 

A most important result is shown in (12). The nAn,  term may be 
cancelled, indicating that the angle of rotation does not depend on the 
number of tests in each cluster, i.e., Jot the case illustrated in  Fig. 1, the normal 
varimax solution is invariant under changes in  the composition of the test battery. 

This invariance property would seem to be of greater significance than 
the numerical tendencies of the normal varimax solution to define math- 
ematically the doctrine of simple structure. Although factor analysis seems 
to have many purposes, fundamentally it is addressed to the following 
problem. Given an (infinite) domain of psychological content, infer the 
internal structure of this domain on the basis of a sample of n tests drawn 
from the domain. The possibility of success in such inferences is obviously 
dependent upon the extent which a factor derived from a particular battery 
or sample of tests approximates the corresponding unobservable factor in 
the infinite domain. If a factor is invariant under changing samples of tests, 
i.e., shows factorial invariance ([12], pp. 360-361), there is evidence that 
inferences regarding domain factors are correct. 

The normal varimax solution, according to the above result, allows such 
inferences; regardless of the sampling of tests, for the problem shown in Fig. 
1 it is possible to infer precisely the domain normal varimax factors. This is 
not true for either the quartimax or raw varimax solutions since the angle of 
rotation is a function of nA and ne . 

Note that domain normal varimax factors are not said to be more 
meaningJul than domain factors according to some different criterion; it is 
suggested that observed normal varimax factors will have a greater likelihood 
of portraying the corresponding domain factors. 

Although one often gets the impression that simple structure is the 
ultimate criterion of a rotational procedure, it is suggested here that the 
ultimate criterion is factorial invariance. The normal varimax solution was 
originally devised solely for the purpose of satisfying the simple structure 
criteria. But the fact that it shows mathematically this sort of invariance 
suggests that Thurstone's reasoning was basically directed toward factorial 
invariance. The principle of simple structure may probably be considered 
incidental to the more fundamental concept of factorial i::variance. This 
viewpoint renders meaningless the arguments concerning "psychological  
reality" of general factors, bipolar factors, simple structure factors, etc. 

Admittedly, the result (12) is for a special case. The correlations among 
the variables within each of the two pure clusters must form a perfect 
Spearman matrix, and the reduced correlation matrix as a whole must be 
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of rank two. Normal wu'imax does however give invariant results for two 
such Spearman clusters simultaneously, and consequently the normal varimax 
criterion is a two-dimensional generalization of the classic Spearman case. 
Obviously, the next step would be a generalization along the same lines to 
the r-dimensional ease; thus far, however, work on this problem suggests 
virtually insuperable mathematical difficulties. 

To investigate numerically the tendency of the criterion to give factoriatIy 
invariant solutions for r larger than two, again consider Holzinger and 
Harman's empirical data. Taking their centroid loadings, the first five tests 
were rotated then the first six, etc., systematically until the analysis of 
all 24 tests was reached, as in Table 2. The results of this application of the 
normal varimax criterion are given in Table 3. There, the normal varimax 
loadings for the four factors as a function of the changing number of tests 
are given. 

Note that factors A and C are essentially invariant from the outset; 
the loading changes, while somewhat systematic, are negligible--24 appears 
to be essentially infinite. On the other hand, factors B and D show more 
movement before they become stable. The reason for this is readily apparent. 
For both B and D, this movement occurs only while they are underdetermined, 
i.e., only while they contain no appreciable Ioadings. However, once they 
pick up a test or two with high loadings, their ambiguous definition abruptly 
stops, and they settle down to exhibit a degree of invnriance similar to the 

Table 3A 

Normal Varimax Loading Changes for Holzinger and Harman's Factor A (n = 5, 6, ..., 24) a 

n 

Test 5 6 7 8 9 I0 ii 12 13 lh 15 16 17 18 19 20 21 22 

i 19 19 18 19 18 16 16 16 16 16 15 16 15 16 16 15 15 15 
2 12 12 12 13 12 12 12 12 12 ii ii Ii Ii 12 ii Ii II Ii 
3 15 16 15 16 16 17 17 17 17 16 16 16 16 17 17 16 16 16 
4 21 21 21 22 21 21 21 21 21 21 21 21 21 21 21 20 20 20 
5 79 78 78 79 78 76 75 76 76 76 75 75 75 76 76 75 75 75 
6 78 77 77 78 77 76 77 77 76 75 75 75 75 75 75 75 75 
7 83 8h 83 82 82 82 82 82 82 82 82 83 82 82 82 82 
8 59 58 55 55 55 55 55 55 55 55 55 55 55 55 55 
9 82 83 82 83 83 81 80 80 80 80 80 80 80 80 

iO 18 15 17 17 16 16 16 15 16 16 16 16 15 
II 19 21 21 19 18 18 18 18 18 18 18 18 
12 03 02 03 03 03 03 03 03 03 03 03 
13 I~ 19 19 20 20 20 20 19 19 19 
14 23 21 22 21 22 22 22 22 22 
15 ii 12 ii 12 12 12 12 12 
16 09 09 iO 09 09 09 09 
17 13 14 lh 14 lh lh 
18 Ol Ol OO OO oo 
19 13 13 13 13 
20 35 35 35 
21 16 16 
22 36 

23 
2h 

23 2}~ 

14 lh 
i0 i0 
15 15 
20 20 
75 75 
75 75 
82 82 
54 5h 
80 80 
16 15 
18 17 
O2 O2 
18 18 
22 22 
12 12 
O9 O8 
lh 14 
OO OO 
13 13 
35 35 
16 15 
36 36 
35 35 

34 
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Test 

1 
2 
3 

5 
6 
7 
8 
9 

I0 
L1 
12 
13 

15 
16 
17 
18 
19 
2O 
21 
22 
23 
2~ 

Table 3D 

Nodal Varimm.x Loading Changes for Holzinger and Ha~man's Factor 

;q 

5 6 7 8 9 i0 ii i2 13 

Ol -00 O0 Ol -07 Ol Ol Ol 02 
Ol Ol 02 Ol O0 02 02 02 Ol 
-00 Ol Ol ~OO 05 -00 Ol -00 -01 
-03 -03 -03 -Oh -01 -04 -03 -oh -Oh Ol 
-00 -06 -0] -02 -09 -06 i06 -05 -05 07 

06 09 09 05 05 o6 06 05 17 
-06 -06 -06 -i0 -I0 -09 -i0 03 

-04 -lh -07 -08 -07 -07 05 
15 II 12 12 Ii 22 

-00 -07 O0 02 15 
07 12 15 27 

-lh -ii -00 
-17 -05 

L,7 

D (n = 5, 6 . . . . .  2L) a 

lh 15 16 17 18 19 20 -~! 22 23 24 

08 13 i4 15 17 19 18 i~ i? 17 17 
05 08 09 09 l0 ii ii i0 lO i0 iO 
02 06 07 07 08 09 09 O~ 08 08 08 

05 06 06 o7 09 08 o~ 08 o? o7 
12 12 lh lh 15 lh 1k ih lh 13 
21 21 22 21 22 22 22 22 22 21 
07 O? O9 08 09 O9 O9 08 08 O8 
iO iO 12 12 i4 13 13 i3 12 i2 
26 26 27 25 26 26 26 26 25 25 
19 19 23 24 25 25 25 2L 2h 2J, 
31 32 35 36 37 37 37 J? 37 36 
05 05 09 ii 13 12 i2 I_1 I_I ii 
oo oi o4 07 08 08 07 07 07 o6 
~9 h9 50 50 50 50 50 50 50 50 
L9 49 50 50 50 50 50 50 50 50 

)~2 L2 L~ &5 L~4 L~ ~L /45 ~3 
6h 65 6h 6£ 65 6h 6L 65 

5L 55 55 5b 51~ ~ 94 
ho &o }40 39 39 39 

26 26 26 25 25 
27 26 26 26 

36 36 36 
22 22 

3~ 

aDeci~al points omitted. 

other two factors, which had high loadings from the beginning. For n = 24, 
there appear to be good approximations to the domain normal varimax 
factors. 

The Oblique Case 

If the restriction of orthogonality is relaxed, it is impossible to apply 
directly the quartimax criterion (4) or the normal varimax criterion (t0). 
This is because interfactor relationships are not considered when the criteria 
are in this form, and when applied all factors will collapse into the same 
factor--that one factor which best meets the criterion. However, Carroll's 
version of the quartimax criterion explicitly considers interfaetor relation- 
ships and an oblique solution is attainable. As suggested by (9), if 

(13) c = E {In E (a~,/h~)(a~/h~) - ( E  a~/h~)(E a~tlh~)]/n~}, 
• < t  i i i 

it may be shown that in the orthogonal ease v = - 2c. This alternative form 
of the normal varimax may then be used to obtain oblique factors. The 
mathematical problem of minimizing (13) is exactly analogous to Kaiser's 
[5] treatment for Carroll's criterion. Comput~tionally, the (iterative) solution 
involves finding the latent vector associated with the smallest latent root of 
a constantly changing symmetric matrix of order r. 
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Computational Appendix 

To compute an orthogonal normal varimax solution, the following 
procedure is suggested. The first step is to normalize the rows of the arbitrary 
reference factor matrix (e.g., principal axes or centroids) by dividing each 
element by h; .  Rotation to the direction of the normal varimax factors may 
then be carried out with respect to these normalized loadings. 

The criterion (10) will be applied to two factors at a time. For this purpose, 
the following notation for an orthogonal rotation is convenient. 

where x; and y~, the present normalized loadings, are constants, and X; 
and Yi , the desired normalized loadings, are functions of ¢, the angle of 
rotation. 

I t  is immediately seen that 

X~ = x; cos¢ -b y~ sin ¢, 

Y; = - x t  sin ¢ -{- yj cos ¢. 

(14) 

(15) 

Thus, 

(16) 

(17) 

d X J d ¢  = Y~, 

d Y~/d¢ = - X i .  

According to (10), in this plane, 

(18) n 2 v~ -- n ~ (X2) 2 --  ( ~  X2) 2 -~ n ~ (y2)2 _ ( ~  y~)2 

should be a maximum. Differentiating (18) with respect to ¢, using (16) and 
(17), and setting the derivative equal to zero, 

(19) n ~ X Y ( X  2 -  y2) _ ~ . . X y  ~ (X  ~ - Y~) = O. 

To solve (19) for ¢ in terms of xi and y~, substitute the values of X; and 
Y~ from (14) and (I5), consult a table of trigonometric identities, and, after 
a good deal of algebraic manipulation, 

(20) ¢ = ¼ arctan 

,, ~ 2 2 - -  - -  2[~ E (x ~ y ) ( x y )  E (x ~ y~) E (2xy)] 
~{ E [(2 _ y~)2 _ (2xy)~]} _ { [ E  ( ~  - y~)]~ - [ E  (2~y)]~}" 

,2 2 If ui = xi -- Yi and vi = 2xiy~, (20) reduces to the form (i1) above. 
Of course, (11)or (20) is only a necessary condition for a maximum. 

By taking the second derivative of (18) sufficient conditions for a maximum 
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m a y  be found. These are summarized  below. 

sign of numerator 
-}- 

0 ° to 0 ° to 

sign of "~22½° --22½° 

denominator +22½ ° -22½ ° 

to ~-45 ° to --45 ° 

The  sign of numera to r  and  denomina to r  refer to  the  r igh t -hand  m e m b e r  
of  (20); the  values in the  cells refer to  ¢. 

These single-plane ro ta t ions  are made  on factors  1 with 2, i wi th 3, • • • ,  1 
wi th  r, 2 with 3, • .- , 2 with r, • • • , (r --  1) wi th  r, 1 wi th  2, - . .  i te ra t ively  
until  r(r - 1)/2 successive rota t ions  of ¢ = 0 are obtained,  i.e., unti l  the  
process converges. ( I t  was shown [6] t h a t  v in (10) canno t  be greater  t han  
(r - 1)/r ,  and  since each successive appl icat ion of (20) can result  0nly in 
a non-decrease of v, this i terat ive procedure  m u s t  converge.) Af te r  con- 
vergence, each normalized test  vec tor  is restored to  its proper  length b y  
mul t ip ly ing  by  ha . 

Since this article was accepted for publicat ion,  the  a u t h o r  has prepared  
,~ detailed outline for coding an  electronic compute r  p rog ram for tlle v a r i n ~ x  
criterion. This (di t toed) paper  is available f rom the  writer.  
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