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Multidimensional scaling is the problem of representing n objects: 
geometrically by n points, so that the interpoint distances correspond in 
some sense to experimental dissimilarities between objects. In just what 
sense distances and dissimilarities should correspond has been left rather 
vague in most approaches, thus leaving these approaches logically incomplete. 
Our fundamental hypothesis is that dissimilarities and distances are mono- 
tonically related. We define a quantitative, intuitively satisfying measure of 
goodness of fit to this hypothesis. Our technique of multidimensional scaling 
is to compute that confi~xlration of points which optimizes the goodness of fit. 
A practical computer program for doing the calculations is described in a 
compamon paper. 

The problem of multidimensional scaling, broadly stated, is to find n 
points whose interpoint distances match  in some sense the experimental  
dissimilarities of n objects. Ins tead of dissimilarities the experimental  measure- 
ments  m a y  be similarities, confusion probabilities, interaction rates between 
groups, correlation coefficients, or other measures of proximity or dissociation 
of the most  diverse kind. Whether  a large value implies closeness or its 
opposite is a detail and has no essential significance. Wha t  is essential is tha t  
we desire a monotone relationship, either ascending or descending, between 
the experimental measurements  and distances in the configuration. 

We shall refer only to dissimilarities and similarities, but  we explicitly 
include in these terms all the varied kinds of measurement  indicated above. 
We also note tha t  similarities can always be replaced by  dissimilarities (for 
example, replace s ,  by  k - s,). Since our procedure uses only the rank 
ordering of the measurements,  such a replacement does no violence to the  
data.  

According to Torgerson ([17], p. 250), the methods in use up to the t ime 
of his book follow the general two-stage procedure of first using a one-dimen- 
sional scaling technique to convert  the dissimilarities or similarities into 
distances, and then finding points whose interpoint distances have approxi-  
mate ly  these values. The statistical question of goodness of fit is t rea ted  
separately, not as an integral par t  of the procedure. Despite the success these 
methods have had, their rationale is not fully satisfactory. Due to ' the  nature 
of the one-dimensional scaling techniques available, these methods either 
accept the averaged dissimilarities or some fixed t ransformation of them as 
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distances or else use the variability of the data as a critical element in forming 
the distances. 

A quite different approach to multidimensional scaling may be found 
in Coombs [5]. However, its rationale is also subject to certain criticisms. 

A major advance was made by Roger Shepard [15a, b], who introduced 
two major innovations. First, he introduced as the central feature the goal 
of obtaining a monotone relationship between the experimental dissimilarities 
or similarities and the distances in the configuration. He clearly indicates that 
the satisfactoriness of a proposed solution should be judged by the degree to 
which this condition is approached. Monotonicity as a goal was proposed 
earlier [for example, see Shepard ([14], pp.333-334) and Coombs ([5], p. 513)], 
but never so strongly. Second, he showed that simply by requiring a high 
degree of satisfactoriness in this sense and without making use of variability 
in any way, one obtains very tightly constrained solutions and recovers 
simultaneously the form of the assumed but unspecified monotone relation- 
ship. In other words, he showed that the rank order of the dissimilarities is 
itself enough to determine the solution. (In a later section we state a theorem 
which further clarifies this situation.) Thus his technique avoids all the 
strong distributional assumptions which are necessary in variability-depend- 
ent techniques, and also avoids the assumption made by other techniques that 
dissimilarities and distances are related by some fixed formula. In addition, it 
should be pointed out that  Shepard described and used a practical iterative 
procedure for finding his solutions with the aid of an automatic computer. 

However, Shepard's technique still lacks a solid logical foundation. Most 
notably, and in common with most other authors, he does not give a mathe- 
matically explicit definition of what constitutes a solution. He places the 
monotone relationship as the central feature, but points out ([15a], p. 128) 
that a low-dimensional solution cannot be expected to satisfy this criterion 
perfectly. He introduces a measure of departure 5 from this condition [15a, 
pp. 136-137] but gives it only secondary importance as a criterion for deciding 
when to terminate his iterative process. His iterative process itself implies 
still another way of measuring the departure from monotonicity. 

In this paper we present a technique for multidimensional scaling, 
similar to Shepard's, which arose from attempts to improve and perfect his 
ideas. Our technique is at the same statistical level as least-squares regression 
analysis. We view multidimensional scaling as a problem of statistical fit- 
ting--the dissimilarities are given, and we wish to find the configuration 
whose distances fit them best. 

"To  fit them best" implies both a goal and a way of measuring how close 
we are to that goal. Like Shepard, we adopt a monotone relationship between 
dissimilarity and distance as our central goal. However, we go further and 
give a natural quantitative measure of nonmonotonicity. Briefly, for any 
given configuration we perform a monotone regression of distance upon 
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dissimilarity, and use the residual variance, suitably normalized, as our 
quantitative measure. We call this the stress. (A complete explanation is given 
in the next section.) Thus for any given configuration the stress measures how 
well that configuration matches the data. 

Once the stress has been defined and the definition justified, the rest of 
the theory follows without further difficulty. The solution is defined to be the 
best-fitting configuration of points, that is, the configuration of minimum 
stress. 

There still remains the problem of computing the best-fitting configura- 
tion. However, this is strictly a problem of numerical analysis, with no 
psychological implications. (The literature reflects considerable confusion 
between the main problem of definition and the subsidiary problem of compu- 
tation.) In a companion paper [12] we present a practical method of computa- 
tion, so that our technique should be usable on many automatic computers. 
(A program which should be usable at many large computer installations is 
available on request.) 

In our two papers we extend both theory and the computational tech- 
nique to handle missing data and certain non-Euclidean distances, including 
the city-block metric. It would not be difficult to extend the technique further 
so as to reflect unequal measurement errors. 

We wish to express our gratitude to Roger Shepard for his valuable 
discussions and for the free use of his extensive and valuable collection of data, 
obtained from many sources. All the data used in this paper come from that 
collection. 

The Stress 

In this section we develop the definition of stress. We remark in advance 
that since it will turn out to be a "residual sum of squares," it is positive, and 
the smaller the better. I t  will also turn out to be a dimensionless number, and 
can conveniently be expressed as a percentage. Our experience with experi- 
mental and synthetic data suggests the following verbal evaluation. 

Stress Goodness of fit 
20% poor 
10% fair 
5% good 

2½% excellent 
0% "perfect" 

By "perfect" we mean only that there is a perfect monotone relationship 
between dissimilarities and the distances. 

Let us denote the experimentally obtained dissimilarity between objects 
i and j by ~; . We suppose that the experimental procedure is inherently 
symmetrical, so that 5,  = ~i~ • We also ignore the self-dissimilarities ~, . 
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Thus  with n objects,  there are only n ( n  - 1)/2 numbers ,  namely  ~,~ for  
i < j; i = 1, • .- , n - 1; j -- 2, . .  • , n. We ignore the possibility of ties; t h a t  
is, we assume t h a t  no two of these n ( n  - 1) /2  numbers  are equal. La te r  in the  
paper  we will be able to  abandon  every  one of the  assumpt ions  given above,  
bu t  for the  present t h e y  make  the  discussion m u c h  simpler. Since we assume 
no ties, it is possible to  r ank  the  dissimilarities in s t r ic t ly  ascending order:  

Here M = n(n  - 1) /2 .  

We wish to  represent  the  n objects  by  n points  in t-dimensional space. 
Let  us cM1 these points  x l ,  • • • , x~. We shall suppose for  the  present  t h a t  we 
know w h a t  vMue of l we should use. La te r  we discuss the  quest ion of deter-  
mining the  appropr ia te  value of t. (Formal ly  and  mathemat ica l ly ,  it is possible 
to use any  number  of dimensions. The  appropr ia te  value of t is a m a t t e r  of  
scientific judgment . )  

Let  us suppose we have n points  in t-dimensional space. We call this a 
configuration. Our first problem is to  evaluate  how well this configurat ion 
represents the data .  La te r  on we shM1 w a n t  to  find the  configurat ion which 
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represents the data  best. At tile moment,  however, we are only concerned with 
constructing the criterion by which to judge configurations. To do so, let d ,  
denote the distance from x~ to x ; .  If  x~ is expressed in orthogonal coordinates 
by 

then we have 

x~ = (x~l , " "  , x ,  , " '"  , x , ) ,  

d .  = ( x , .  - -  x i , )  2. 

In  order to see how well the distances match the dissimilarities, large 
with large and small with small, let us make a scatter diagram (Fig. 1). There 
are M stars in the diaga-am. Each star corresponds to a pair of points, as 
shown. Star (i, j) has abscissa d~; and ordinate 5i; • This diagram is funda- 
mental  to our entire discussion. We shall call it simply the scatter diagram. 

Let  us first ask " W h a t  should perfect match mean?" Surely it should 
mean that  whenever one dissimilarity is smaller than another, then the 
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corresponding distances satisfy the same relationship. In  other words, perfect 
match  should mean tha t  if we lay out the distances d ,  in an array 

d i ~ i :  , d ~ : i ,  , d i : i :  , " " " , d i M i M  

corresponding to the array of dissimilarities given above, then the smallest 
distance comes first, and the other distances follow in ascending order. In  
terms of the scatter diagram, this means tha t  as we trace out the stars one by  
one from bot tom to top, we always move to the right, never to the left. This 
fails in Fig. 1, but  holds in Fig. 2. 

To  measure how far a scatter  diagram such as Fig. 1 departs  from the 
ideal of perfect fit, it is natural  to fit an ascending curve to the stars as in Fig. 
3 and then to measure the deviation from the stars to the curve. This  is 
precisely what  we do. However,  the details are of critical importance. 

Should we measure deviations between the curve and stars along the 
distance axis or along the dissimilarity axis? The answer i s "  along the distance 
axis." For  if we measure them along the dissimilarity axis, we shall find 
ourselves doing ari thmetic with dissimilarities. This we mus t  not do, because 
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we are committed to using only the rank ordering of the dissimilarities. 
To say the same thing in a different way, we wish to measure goodness of fit 
in such a way that  monotone distortion of the dissimilarity axis will not 
have any effect. This clearly prevents us from measuring deviations along 
the dissimilarity axis. 

Having decided to measure the deviations along the distance axis, we 
next  see tha t  we do not  actually need the whole curve, but  only M points on 
it, as shown in Fig. 4. The rest of the curve does not enter into the calculation 
of deviations. We may continue to talk of fitting a curve, but  all we mean is 
fitting the points. 

Each point we fit shares the value of ~ with the corresponding star, but  
has its own value of d. If a star is located at  (d~i , ~i) ,  then we denote the 
corresponding point by ( d , ,  ~i) .  Thus fitting the curve means no more than 
fitting the v~lues of d ,  . 

We realize of course that  the numbers d ,  are not distances. There is no 
configuration whose interpoint distances are d , .  The  d ,  are merely a mono- 
tone sequence of numbers, chosen as "near ly  equal" to the d ,  as possible, 
which we use as a reference to measure the nonmonotonicity of the numbers 
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d ,  . To simplify the discussion, we delay the precise definition of d ,  for a 
little while. 

The fitted curve was of course intended to be ascending. Phrased in 
terms of the M points (d ,  , ~ , )  which in effect constitute the curve, this 
means that  as we trace out these points from bot tom to top, we never move 
to the left but  only to the right. Phrased in terms of the numbers d , ,  it means 
t h a t  when they are arranged in the standard order 

d , . , .  , d , . , . ,  d , . , . ,  - . -  , d , , , , , ,  , 

then  each d .  is greater than or equal to the one before it, namely 

d, li ,  < d,.~. < d,.~, < . . .  < d, u i ~  (Mon). 

Whenever  any numbers satisfy these inequalities, we shall say tha t  they  are 
monotonical ly  related to the d ~ .  

Now suppose we have the fitted values d,; , which satisfy (Mon) of 
course. Then the horizontal deviations are d ,  - d,i • How shall we combine 
these many individual deviations into a single overall deviation? Following a 
time-honored tradit ion of statistics, we square each deviation and add the 
results: 

raw stress = S* = ~ (d,i - -  d , )  2. 
i < i  

Except for normalization, this is our measure of goodness of fit. I t  measures 
how well the given configuration represents the data. And very  prosaic 
looking it is too--nothing more than the old familiar "residual sum of 
squares" associated with so many fitting techniques. I t  is special in only two 
ways: first, in the use of distance axis deviations; second, because of the fact  
tha t  the fitted curve is chosen not  from a " p a r a m e t r i c "  family of curves, such 
as polynomials or trigonometric series, but  from a "nonparametr ic"  family 
of curves, namely, all monotone ascending curves. 

The raw stress still lacks certain desirable properties. Most notably, 
while it is clearly invariant under rigid motions of the configuration (rotation, 
translations, and reflections), it is not invariant under uniform stretching and 
shrinking of the configuration. In  other words, if we stretch the configura- 
tion x, , - - .  , x.  by  the factor k to the configuration kx l ,  • • • , / cx . ,  tha t  is, 
replace each point (x,l , . . -  , x , )  by ( k x ~  , . . .  , k x , ) ,  then the raw stress 
changes. In fact, it changes from S* to k2S  * because the numbers d ,  also 
change by the factor k. Surely sheer enlargement of a configuration should 
not change how well it fits the data, for the relationships between the dis- 
tances do not change. An obvious way to cure this defect in the raw stress is 
to divide it by a scaling factor, tha t  is, a quant i ty  which has the same quad- 
ratic dependence on the scale of the configuration tha t  raw stress does. Such a 
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scaling factor is easily found. We use 

T* -- ~ d~ . 

Thus 

S* ~ ( d ,  - -  (~,~)2 

T* ~ d~, 
i < i  

is a measure of goodness of fit which has all the desirable properties of S*, 
and in addition is invariant under change of scale, that  is, uniform stretching 
or shrinking. This is the normalization. (Another plausible sealing factor is 
the variance of the numbers d ,  . We plan to compare these scaling factors 
elsewhere.) 

Finally, it is desirable to use the square root of this expression, which is 
analogous to choosing the standard deviation in place of the variance. Thus 
our definition of the normalized stress is 

~ (~. - d . )  ~ 

stress = S = = %]~<; ~ d ~  

Again we emphasize tha t  this measures how well the given configuration 
represents the data. Smaller stress means better fit. Zero stress means "per- 
fect" fit in our special sense. 

Now it is easy to define the d ~ .  They are the numbers which minimize S 
(or equivalently, S*) subject to the constraint (Mon). Thus we may condense 
our entire definition of stress into the following formula. 

S(x l  , . . .  , x . )  = stress of the fixed configuration xl , --- , x. 

= min 
numbe ra ~ i  i ~ - -  ~ 

satisfying (Mon) 

We point out that this minimization is accomplished not by varying a trim 
set of values for the d~;, but rather by a rapid, efficient algorithm which is 
described in detail in the companion paper [12]. 

Now that we have defined the stress, we have a quantitative way of 
evaluating any configuration. Clearly the configuration we want is the con- 
figuration whose stress is a minimum, for this is the configuration which 
best fits the data. Thus we define 

stress in t dimensions = min S(xl  , . .  • , x.) ,  
a l l  t ~ d i m e n s i o n a l  

configurations 

and we define the best-fitting configuration to be the one which achieves this 
minimum stress. 
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How do we find the minimum-stress configuration? We may answer this 
question at  three levels. At the intuitive level, we may  describe the procedure 
as one of successive approximation. We start with an arbitrary configuration, 
move all the points a little so as to improve it a bit, and then repeat this 
procedure until we reach the configuration from which no improvement is 
possible. Typically, anywhere from 15 to 100 such steps are necessary to reach 
the final configuration. Roughly speaking, we move points x~ and x~. closer 
together if d ,  < d , ,  and apart in the opposite case, so as to make d ,  more 
like d ,  . Of course, each point x~ is subject to many such motions at  once, 
and usually these will be in partial conflict. 

At the theoretical level, we see that  our problem is to minimize a function 
of many variables, namely S ( x l ,  • • • , x . ) .  Actually the stress S is a function 
of n t  variables, as each vector x~ has t coordinates. The problem of minimizing 
a function of many variables is a standard problem in numerical analysis, 
and to solve it we adopt a widely used iterative technique known as the 
"method of gradients" or the "method of steepest descent." 

Finally, at  the practical level, we give in a companion paper [12] all the 
important details necessary to perform this iterative technique successfully. 

A n  E x a m p l e  

To illustrate these ideas, we use synthetic data based on a 15-point 
configuration in the plane. Our configuration is shown by the + signs in 
Fig. 11. I t  was used by Shepard ([15b], p. 221) and taken by him from Coombs 
and Kao ([6], p. 222). To create the 105 dissimilarities we applied a monotone 
distortion to the interpoint distances, and then added independent random 
normal deviates to the distorted distances. Specifically, 

6 .  = --(0.9) exp [-- (1.8)dl;] -- 0.1 + n,~ , 

where hi; is normal with mean 0 and standard deviation 0.01. 
We analyze these synthetic data  in two dimensions (t = 2). The arbi- 

t rary starting configuration is shown by numbered circles in Fig. 5. (This 
and many later figures were created automatically by the computer with the 
aid of the General Dynamics Electronics Model SC-4020 Highspeed Micro- 
film Printer.) The lines show the motion of the first iteration to the next, 
slightly better configuration. The stress of the first configuration is 47.3%. 
After one iteration it is down to 44.3%. After ten iterations the configuration 
has become that  in Fig. 6, with stress 2.92%. (For most practical purposes 
the calculation could stop here, as the configuration hardly changes after 
this.) After fifty iterations the mininmm-stress configuration shown in Fig. 7 
is reached; its stress is 2.48%. The scatter diagrams of these three configura- 
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:FIGURE 9 

Scatter Diagram After 10 Iterations (Coombs and Kao Data) 

tions are shown in Figs. 8, 9, and 10. The monotone distorting function has 
been accurately recovered, and is displayed in the last of these scatter dia- 
grams. 

To show how accurately the original configuration has been recovered, 
we display in Fig. 11 the recovered configuration together with the original 
configuration of Coombs and I(ao. The recovered configuration has been 
reflected and rotated by eye into best apparent agreement with the original 
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FIGURE 10 

Scatter Diagram After 50 Iterations (Coombs and Kao Data) 

configuration for this purpose. Since the angular position of the recovered 
configuration is quite arbitrary, this is entirely legitimate. 

Another obvious way of measuring how nearly alike the two configura- 
tions are is to compare the distances d~ ) within one configuration with the 
distanccs d(,~ ) witlfin the other. Corresponding distances differ typically by 
3.16(7o. More precisely, the expression 
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How Many Dimensions? 
So far we have assumed that the number of dimensions to be used is 

fixed and known. In practice, this is seldom the case. The final determination 
of how many coordinates to recover from the data rests ultimately with the 
scientific judgment of the experimenter. However, we can suggest certain 
aids. 
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The analysis should be done in several dimensions, and a graph plotted 
to show the dependence of minimum stress on dimension. Of course, as t 
increases, minimum stress decreases. For t > n - 1, the minimum stress is 
always 0. (Perfect match can always be managed with n points in n -- 1 
dimensions.) I t  is reasonable to choose a value of t which makes the stress 
acceptably small, and for which further increase in t does not significantly 
reduce stress. Good data  sometimes exhibit a noticeable elbow in the curve, 
thus pointing to the appropriate value of t. 

A second criterion lies in the interpretability of the coordinates. If the 
t-dimensional solution provides a satisfying interpretation, but  the (t -b 1)- 
dimensional solution reveals no further structure, it may  be well to use only 
the t-dimensional solution. A third criterion can be used if there is an independ- 
ent estimate of the statistical error of the data. The  more accurate the data, 
the more dimensions one is entitled to extract. 

To study the question of dimensionality, we first use synthetic data. 
Separate sets of ten, fifteen, and twenty random points in six dimensions were 
chosen. The actual distances were used as dissimilarities ~i  - Fig. 12 shows 
how stress varies with dimension for these three sets of data. A perfect match 
is obtained in six dimensions. The ten-point curve displays a distinct elbow, 
which strongly suggests the use of three dimensions. Of course, with error- 
free synthetic data, fur ther  coordinates may be successfully extracted, bu t  
even with excellent experimental da ta  this curve would make the use of more 
than three dimensions quite dubious. (Examination of the original configura- 
tion of ten points shows that  by chance it lies very nearly in a three-dimen- 
sional subspace.) The fifteen- and twenty-point  curves are much less clear. 
If we obtained curves similar to these but  without perfect fit in six dimensions 
from real data, then three dimensions would seem advisable, four would also 
seem reasonable, and five might be iustified by other considerations, such as 
good interpretability or independent indications of very low variability in 
the data. 

Let  us illustrate these ideas with data  from Indow and Uchizono [9]. 
(The dissimilarities themselves did not appear in the paper. We thank Pro- 
fessor Indow for providing them.) They obtained direct iudged dissimilarities 
between 21 colors of constant brightness, using an ingenious technique. I t  
may  seem obvious that  the analysis should be done in two dimensions. 
t towever,  there is the possibility tha t  colors of constant brightness may  be 
best described as lying on a curved two-dimensional surface. If this should be 
the case, we would want t = 3. In  any case, it is instructive to see what  hap- 
pens. Fig. 13 shows the dependence of stress on dimension. The elbow in the 
curve at dimension 2 confirms our natural expectation that  two dimensions 
are appropriate, but  does not completely rule out the possibility tha t  three 
dimensions might become appropriate with more comprehensive data  of the 
same sort. Figs. 14 and 15 show the configuration and the scatter diagram 
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when the dimension is two. The configuration, which resembles the one given 
by Indow and Uchizono, corresponds roughly to the Munsell diagram for the 
21 colors, but with considerable stretching and shrinking in various places. 
The scatter diagram, with a stress of 7.27%, would be classified as fair-to-good. 

A very similar experiment by Indow and Kanazawa [10] supplies a 
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FIGURE 16 
Scatter Diagram for 24 Colors of Varying Brightness (Indow and Kanazawa Data) 
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second illustration. In this experiment 24 colors of differing brightness were 
used. Fig. 13 fits well with our expectation that  three dimensions are appro- 
priate. The reason that  the stress is fairly small in two dimensions is tha t  
after rotation to principal axes the third recovered coordinate varies over 
only half the range of the first two coordinates. This third coordinate corre- 
sponds approximately to brightness. The scatter diagram in three dimensions 
(Fig. 16) has a stress of 3.67%, and would be classified as fair-to-excellent. 
Our configuration in three dimensions resembles tha t  obtained by Indow and 
Kanazawa. 

Our third illustration is based on the confusions between 36 Morse Code 
symbols from E. Rothkopf [13]. An analysis of these and other data, using our 
technique and our computer program, appears in Shepard I16]. We have 
calculated the stress of the best-fitting configuration in one, two, three, four, 
and five dimensions (Fig. 17). The figure does not clearly show the number of 
dimensions needed, but suggests that two is the minimum and four the maxi- 
mum. However, Shepard [16] found a very lucid and convincing interpreta- 
tion for the two-dimensional solution, while he could extract no further 
structure from the three-dimensional solution. Thus he successfully extracted 
two coordinates, but  expressed some doubt  about  the value of extracting a 
third. 

Missing Data, Nonsymmetry, and Ties 

Suppose some of the dissimilarities are missing, either by error or by  
design. (When n is large, say n -- 50 or 60, there are a great many dissimilari- 
ties. I t  may  be adequate and economical to obtain data  covering only some 
of them.) How shall we measure stress? I t  seems natural  to generalize the 
definition given before by  simply omitting, both in the numerator S* and 
the denominator T*, the terms which correspond to the missing dissimilarities. 
We accept this generalization, and incorporate it throughout the rest of 
the paper. 

This idea may be considered simply as a special case of weights being 
a t tached to the various dissimilarities to reflect varying uncertainties of 
measurement. However, we shall not in this paper further pursue this notion 
of weights, nor certain still more general weighting schemes which come 
easily to mind. 

Suppose that  the measurement procedure is not inherently symmetrical, 
so tha t  5;; ~ ~i~ • If  we are willing to assume that  ~,  and ~;~ are measure- 
ments of the same underlying quantity,  and differ only because of statistical 
fluctuation, then two natural procedures are opei1 to us. One is to form 
symmetrical measurements by averaging ~; and ~;~ . A more interesting 
procedure is to generalize the definition of stress by letting the summations 
for S* and T* extend over all i ~ j (rather than i < j). Also in some situations 
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the self-dissimilarities ~,  may be meaningful, and one may wish to let the 
summations include the cases i = j. 

Suppose there are ties, tha t  is, dissimiIarities which by chance are pre- 
cisely equal to one another. The reader will recall tha t  the numbers d , ,  used 
in our formula for the stress, were defined as those numbers which minimize 
S* subject to the constraint that  they are monotonely related to the dissimi- 
larities ~ , .  How shall we interpret this constraint in the presence of ties? 

There are two approaches. One, which we call the primary approach 
because it seems preferable, is to say that  when ~,  = ~,z we do not care which 
of d ,  and dk~ is larger nor whether they are equal or not. Consequently we 
do not  wish to downgrade the configuration if d,~ ~ dkz , and hence do not 
wish the stress to reflect the inequality. The way we accomplish this is by  
not constraining d ,  and d**. Consequently the terms (d,i - d , )  2 and (d~z - 
dkz) 2 are permitted to be zero, except as prevented by other constraints. Thus 
in case of the primary approach our only constraints on the d ,  are these, 
which are equivalent to (Mon). 

(I) Whenever ~,,- < ~ ,  then d,i ~ dkz • 

The secondary approach is to say tha t  8,~ -- ~kz is evidence tha t  d ,  ought to 
equal d,z , and to downgrade a configuration if this is not so. Consequently 
the stress ought to reflect this inequality. The way we accomplish this is by  
imposing the constraint d ,  = dk~ . Then if d ,  ~ dkz , the terms (d ,  - d , )  ~ 
and (dkz -- dk,) 2 cannot be zero and reflect our displeasure at the inequality 
of d~; and dk~. Thus in the secondary approach to ties, the constraints on the 
d ,  are as follows. 

JWhenever ~f,; < /fk~, then d,~ <= d~z. 
(II) | 

lV(henever ~i  = ~k,, then di~ = d,~. 

The place in which the difference between these two approaches actually takes 
effect is deep inside the algorithm for finding the d , .  Details are given in the 
companion paper [12]. We remark that  it is very simple to build optional use 
of both approaches into a computer program, and we have done this. 

Non-Euclidean Distance 

We plan to discuss elsewhere the full degree to which our procedure may 
be generalized. In principle, there appears to be no reason why the definition 
of stress could not be used with almost any kind of distance function at  all. 
However, computing the minimum-stress configuration with more general 
distance functions may offer difficulties. 

For a certain class of non-Euclidean distance functions our procedure is 
quite practical, and has been fully implemented in our computer program. 
The numerical techniques we describe below fully cover this generalization. 
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We refer to distance functions generally known in mathematics as the 
L~-norms or/T-norms, but occasionally referred to as Minkowski r-metrics. 
For any r > 1, define the r-distance between points x = (xl , . . .  , x , )  and 
y = (yl, " "  ,yt)  tobe  

d , (x ,  y) = I x .  - -  y ,  I v . 

This is just like the ordinary Euclidean formula except that rth power and 
rth root replace squaring and square root. Then d, is a genuine distance. In 
particular, it satisfies the triangle inequality, namely 

dr(x, z) < dr(x, y) + d/y ,  z). 

[For proof of this fact, see for example Kolmogorov and Fomin ([11], pp. 
19-22) or Hardy, Littlewood, and Polya ([8], pp. 30-33).] If r = 2, then d~ is 
ordinary Euclidean distance. If r = 1, then dr is the so-called "city block" or 
" M a n h a t t a n  metric" distance. 

The Minkowski r-metrics share several properties with ordinary 
Euclidean distance. In particular, if we displace two points x and y by the 
same vector z, then the distance between them does not change. In symbols, 

dr(x ,  y) = d~(z + z,  y + z).  

If we stretch vectors z and y by a scalar factor k, then the distance stretches 
by a factor k. In symbols, 

dr(kz, ky) = kdT(x, y). 

However, the Minkowski r-metrics differ sharply from Euclidean distance 
when rotations are involved. Any rigid rotation leaves Euclidean distances 
unchanged. The only rigid rotations which leave dr unchanged in general are 
those rotations which transform coordinate axes into coordinate axes. 

The numerical significance of these properties is brought out in another 
section. However, we point out here that while a configuration may be freely 
rotated when Euclidean distances are being used, it may not be when more 
general distances are used. We do not need to worry explicitly about finding 
the preferred angular orientation of the configuration, since the iterative 
minimization process automatically does this for us. However, we must be 
aware that the coordinate axes have a significance for d, that they do not have 
for Euclidean distance. 

As an illustration we use experimental data by Ekman [7]. He obtained 
direct judged similarities of 14 pure spectral colors. We have analyzed his 
data for several values of r. In every case we obtain the familiar color circle, 
very similar to the configuration obtained by Shepard [15a], though the 
precise shape, spacing, and angular orientation varies with r. Fig. 18 shows 
the stress of the best-fitting configuration as a function of r. We see that a 
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value of 2.5 for r gives the best fit. We do not feel tha t  this demonstrates any 
significant fact about color vision, though there is the hint that  subjective 
distance between colors may be slightly non-Euclidean. However, it  illustrates 
an  approach to non-Euclidean distance tha t  could be of significance in 
various situations. 

Miscellaneous Remarks 

The idea of recovering metric information from nonmetric information is 
not new. A quite different application of this idea, as well as a theoretical 
discussion, can be found in two papers by Aumann and Kruskal [2, 3]. (See 
particularly pp. 118-120 in tile earlier paper.) Though the situation is not 
presented there as a psychological one, it does not differ from psychological 
situations in any essential way. T h e "  subjects," called there "The  Board" and 
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consisting of Naval officers, are assumed to make certain comparisons, e.g., 
which of two simple logistic allocations is superior, as a result of some hypo- 
thetical quantitative process of which they are not aware. By using a fairly 
small number of such comparisons, the experimenter determines with limited 
uncertainty the numerical values which enter into this quantitative process. 

Another very interesting discussion of converting nonmetric information 
into metric information may be found in Abetson and Tukey [1]. 

In this paper we assume that there is a true underlying configuration of 
points in Euclidean t-dimensional space, that  we can ascertain only the linear 
ordering of the interpoint distances, and that  we wish from this nonmetric 
information to recover the configuration. Of course, perfect recovery can at 
best mean construction of a configuration which differs from the original by 
rigid motions and uniform expansions, for such transformations leave the 
linear ordering of distances unchanged. Such transformations are called 
"similarities," and by a known geometrical theorem any transformation in 
which every distance is multiplied by a fixed constant is a similarity. Thus 
perfect recovery means construction of a configuration which is geometrically 
similar to the original. 

If the configuration has only a finite number of points, then of course 
perfect reconstruction is not possible. However, if the number of points is 
large compared to the number of dimensions, then usually the reconstructed 
configuration must closely resemble the original. (We note that  Shepard was 
the first to give a practical demonstration that in several dimensions a reason- 
able number of points are usually tightly constrained.) If the configuration is 
infinite, perfect recovery may very well be possible. In particular it is possible 
to prove that if A and B are subsets of Euclidean t-dimensional space (that is, 
configurations), and if ] is a l-to-1 mapping from A to B which preserves both 
strict inequality and equality of distances, then ] must be a similarity if only 
A is big enough. A is big enough if it is all of t-space, or if it is a truly t-dimen- 
sional convex subset, or even if it is merely a dense subset of the latter. 

It  is interesting to compare our technique with Shepard's. His iterative 
procedure closely resembles ours. Indeed, this whole paper is the outcome of 
the author's attempt to rationalize Shepard's successful iterative procedure. 
It is possible to describe his procedure in our terms thus. If d~ is the mth 
largest distance, define $,  to be the mth largest dissimilarity; instead of 
making the influence of xi on x~ proportional to d ,  - ~ ,  as we do, he makes it 
proportional to ~; -- $,.. I t  does not appear possible to describe his procedure 
as one which minimizes some particular measurement of nonmonotonicity. 

As far as results go, both procedures yield very similar configurations. 
Shepard's technique yields smoother-looking curves for dissimilarity versus 
distance. As actually programmed our procedure is substantially faster than 
Shepard's, but this probably reflects programming improvements rather 
than anything more fundamental. 
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I t  is interesting to read Bartholomew [4], who is concerned with testing 
whether parameters  are equal, subject to the assumption tha t  they are 
linearly ordered. (See especially p. 37.) His maximum-likelihood est imate of 
these parameters  bears essentially the same relationship to the observations 
tha t  our d ,  bear  to d ,  . Furthermore,  his expression Us , which plays an 
important  role in his paper  and in the likelihood ratio, is essentially the same 
as our raw stress S*. In  fact it might  be possible to interpret  our minimum- 
stress configuration as being a maximum-likelihood est imate in some natural  
sense. 

S u m m a r y  

To give multidimensional scaling a firm theoretical foundation, we have 
defined a natural  goodness of fit measurement  which we call the stress. The  
stress measures how well any  given configuration fits the data.  The  desired 
configuration is the one with smallest stress, which we find by methods of 
numerical analysis. The stress of this best-fitting configuration is a measure 
of goodness of fit. 

Shepard first brought  out  clearly tha t  what  we should be looking for in 
multidimensional scaling is a monotone relation between the experimental  
data  and the distances in the configuration. The stress is no more than  a 
quant i ta t ive  measurement  of how well this holds. 
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