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NONMETRIC MULTIDIMENSIONAL SCALING: A NUMERICAL 
METHOD 

J. B. KRusKAL 

BELL TELEPHONE LABORATORIES 

We describe the numerical methods required in our approach to multi
dimensional scaling. The rationale of this approach has appeared previously. 

1. Introduction 

We describe a numerical method for multidimensional scaling. In a 
companion paper [7] we describe the rationale for our approach to scaling, 
which is related to that of Shepard [9]. As the numerical methods required 
are largely unfamiliar to psychologists, and even have elements of novelty 
within the field of numerical analysis, it seems worthwhile to describe them. 

In [7] we suppose that there are n objects 1, · · · , n, and that we have 
experimental values 8;; of dissimilarity between them. For a configuration 
of points x1 , • • • , x .. in t:-dimensional space, with interpoint distances d;; , 
we defined the stress of the configuration by 

s = $. = ~22 (!: ~j d,;/, 

where the values of d,; are those numbers which minimize S subject to the 
constraint that the d;; have the same rank order as the o;; • More precisely, 
the constraints are that d;; ~ d,.;• whenever o;; < O;•;• . 

The stress is intendoo to be a measure of how well the configuration 
matches the data. More fully, it is supposed that the "true" dissimilarities 
result from some unknown monotone distortion of the interpoint distances 
of some "true" configuration, and that the observed dissimilarities differ 
from the true dissimilarities only because of random fluctuation. The stress 
is essentially the root-mean-square residual departure from this hypothesis. 

By definition, the best-fitting configuration in t-dimensional space, 
for a fixed value of t, is that configuration which minimizes the stress. The 
primary computational problem is to find that configuration. A secondary 
computational problem, of independent interest, is to find the values of 
d;; from the fixed given values of d;; ; this is the computational problem of 
"monotone regression." This latter computation constitutes one step of the 
main computation. 
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2. Missing Entries 

In some cases not all dissimilarities wilfbe observed. Frequently the 
self-dissimilarities o,, are either meaningless or unobserved. Sometimes there 
is no distinction experimentally between o;; and o;; so that only a half
matrix of dissimilarities is obtained. Sometimes certain individual dis
similarities may simply fail to be observed. If the number n of objects is 
large (say 40 or 50), the experimenter may very wisely decide in advance 
to observe only a fraction of the dissimilarities for reasons of cost. What
ever the reason, we adapt to the situation by a very simple change in the 
definition of the stress: namely, both sums which appear in that definition 
are restricted to run over those pairs (i, j) for which o;; is observed. Thus 
we accommodate missing observations without loss of elegance. Through
out this paper all similar sums will be understood in the same sense unless 
otherwise indicated. 

Of course, if there are not enough dissimilarities observed our method 
will break down. What this means is that there will be a zero-stress con
figuration which has no real relationship to the data. One important case in 
which this occurs is when the objects are split into two groups and the only 
dissimilarities observed are those between objects in different groups. In 
this case there is a simple zero-stress configuration in one dimension, namely 
two distinct points, where each point represents all the objects in one group. 

On the other hand, it is not merely a question of how many 
dissimilarities are observed, but depends on which ones are observed. In 
many cases of practical importance, one-half or one-quarter of the dis
similarities or fewer are quite sufficient if they are properly distributed in 
the matrix of all possible dissimilarities. 

3. N on-Euclidean Distance 

Of major interest is the ordinary case in which the distances are 
Euclidean. If the point x, has ( orthogonal) coordinates xil 1 • • • , x., 1 then 
the Euclidean (or Pythagorean) distance from x, to X; is given by 

d;; = [ t (X;z - Xi1)
2

]
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• 
z~t 

However, the theory is applicable to much more general distance functions. 
The numerical methods and formulas given in this paper cover a class of 
distance functions most often called the Lv or lv metrics1 but occasionally 
known as Minkowski r-metrics (the term we use). The Minkowski r-metric 
distance is given by 

[ 

t ]1/r 
d,; = L: lx;z - x;~l' . 

. z~t 

For r ~ 1.0, this metric is a genuine distance function because it satisfies 
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the triangle inequality. (For proof see ([6], pp. 19-22) or ([4], pp. 30-33).) 
We restrict ourselves to these cases. 

For r = 2.0, this metric becomes Euclidean distance. For r = 1.0, 
this metric becomes the so-called "city-block distance" or ''Manhattan 
metric" 

' 
d;; = L !x" - xHI· 

l-1 

For r = eo, it becomes a familiar metric, 

d;; = max !xi! - x;~!, 
I 

which is sometimes called the l.,-metric but is widely referred to in colloquial 
mathematics as the "sup" metric ("sup" is short for supremum). 

4. The Method of Steepest Descent 

Let us now focus on the computational problem that faces us. We 
restrict our attention to a fixed number of dimensions t and a fixed metric, 
that is, a fixed value of r. The determination of their values is a matter of 
judgment, and in many cases can be properly decided only after making 
analyses with several different values. Thus for the computational question 
we may assume fixed values of t and r. 

An entire configuration can be described as a single vector (or a single 
point-we use the terms interchangeably) in nt-dimensional space, whose 
coordinates X; 1 for i = 1 to n and l = 1 to t are all the coordinates of all the 
points of the configuration. We refer to nt-dimensional space as "configura
tion space" and to t-dimensional space as "model space." We emphasize 
the fact that while a configuration has previously been viewed as n points 
in model space, we may with equal validity consider it as a single point 

(Xu , · • · , Xu , • · • , Xnt , , Xnc) 

in configuration space. 
Suppose now that the values of o,; are given. Then for any point in 

configuration space, that is, for any configuration, there is a definite stress 
valueS. In other words, S is a function 

S = S(xu , · · · 1 Xu 1 • • • 1 Xnt , • • • 1 Xn,) 

defined on the points of configuration space. Our problem is to find that 
point which minimizes S. Thus we are faced with a standard problem of 
numerical analysis: to minimize a function of several variables. 

For a general review of methods used to solve this problem, see Spang 
[10], which includes a good bibliography. 

To solve this problem we adopt a widely used method of numerical 
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analysis. It is called the ·"method of steepest descent" or the "method of 
gradients." We start by picking a more or less arbitrary point in configuration 
space. In other words, we start with an arbitrary configuration. We then 
wish to improve the configuration a bit by moving it around slightly. The 
method of steepest descent calls for this to be done by ascertaining in which 
direction in configuration space S is decreasing most quickly, and moving 
a short step in that direction. This direction is called the (negative) gradient 
and is determined by evaluating the partial derivatives of the function S. 
In fact, 

(-as . . . _as . . . _as) 
axu' ' axlt' ' axn, 

is the (negative) gradient. After arriving at a new, slightly better point in 
configuration space, we again determine the gradient, which is different at 
different points, and move along it. After many repetitions we arrive at a 
point from which no improvement is possible, in other words, at a minimum 
value of S. This is what we are looking for. We can tell when this happens, 
for at a minimum all the partial derivatives are zero, that is, the gradient 
vector is zero. 

5. The Difficulty of Local Minima 

A point in configuration space from which no small movement is an 
improvement is by definition a local minimum. However, a local minimum 
may or may not be an overall minimum. Fig. 1 shows a function of one 

FIGURE 1 

variable with four local minima. Only one of them is the overall minimum. 
If we seek a minimum by the method of steepest descent or by any other 
method of general use, there is nothing to prevent us from landing at a-local 
minimum other than the true overall minimum. This is a widely known 
difficulty-in fact, it could be called a standard difficulty of such problems. 
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In certain important minimization problems the only local minimum 
is the true overall minimum, so this difficulty does not arise. With this 
important exception, there are few minimization problems (in numerical 
analysis) in which the local minimum difficulty can truly be vanquished. 
At best, we can hope for reasonable confidence that we have the true 
minimum. 

In our minimization problem the difficulty is quite mild. In most cases 
of interest it need not be a serious concern, for these reasons. 

First, we can easily start the method of steepest descent from a variety 
of different initial configurations. In principle, each initial configuration 
could lead to a different local minimum. While only the smallest of these 
could possibly be the true minimum, we would wonder about other still 
smaller local minima. Usually in our minimization problems, most initial 
configurations lead to the same local minimum, and this local minimum is 
much smaller than the few other local minima we find. It seems needless to 
worry when this is so. 

Second, the local minimum configuration which we suppose to be the 
true overall minimum is not in itself the final end product of the analysis, 
which must be accepted blindly. In most cases this configuration is of interest 
only if it makes sense, only if it can be interpreted or is useful in giving the 
experimenter insight. If a configuration does this, it is unlikely to be seriously 
at fault. 

Third, unless the stress of the supposed true minimum configuration is 
sufficiently small, we will not be interested anyhow. A minimum-stress 
configuration whose stress is above 20% is unlikely to be of interest. Above 
15% we must still be cautious; from 10% to 15% we wish it were better; 
from 5% to 10% is satisfactory; below 5% is impressive. 

Fourth, many checks are possible by detailed comparison of the con
figuration and the data, and by separate analysis of parts of the data. 

6. Numerical Technique 

In principle the iterative technique we use to mimmize the stress is 
not difficult. It requires starting from an arbitrary configuration, computing 
the (negative) gradient, moving along it a suitable distance, and then re
peating the last two steps a sufficient number of times. In this section we 
discuss some computational aspects which are entirely independent of which 
computer and which programming language are used. 

Since the stress is invariant under translation and uniform stretching 
and shrinking, we always normalize a configuration by first placing its 
centroid (center of gravity) at the origin and then by stretching or shrinking 
so that the root-mean-square distance of the points from the origin equals 
one. (In our program we have arbitrarily chosen to use Euclidean distance 
for this purpose, regardless of which Minkowski distance is being used for 
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the interpoint distances.) A configuration which has these properties is 
said to be normalized. 

If ordinary Euclidean distance is used, then the stress is invariant 
under all rotations, so it becomes possible, and for some purposes desirable, 
to normalize the angular attitude of the configuration. A natural way to do 
this is to rotate the configuration so that its so-called principal axes coincide 
with the coordinate axes (in the natural order). On the other hand, using 
Minkowski r-metric distance for r ~ 2, the only rotations which leave stress 
invariant are those which transform coordinate axes into coordinate axes. 
In this case it is possible, and perhaps desirable, to normalize the angular 
attitude by rotating so that the so-called one-dimensional variance decreases 
from one coordinate axis to the next. While these normalizations are not 
difficult, they can easily be left as a separate operation. Therefore we do 
not discuss them further here. 

If a fairly good configuration is conveniently available for use as the 
starting configuration, it may save quite a few iterations. If not, an ar
bitrary starting configuration is quite satisfactory. Only two conditions 
should be met: no two points in the configuration should be the same, and 
the configuration should not lie in a lower-dimensional subspace than has 
been chosen for the analysis. If no configuration is conveniently available, 
an arbitrary configuration must be generated. One satisfactory way to do 
this is to use the first n points from the list 

(1, o, o, 'o, 0), 

(0, 1, 0, '0, 0), 

(0, 0, 0, '0, 1), 

(2, 0, 0, '0, 0), 

(0, 2, 0, , 0, 0), etc. 

Another way would be to generate the points by use of a pseudorandom 
number generator. In either case the resulting configuration should be 
normalized. 

Suppose we have arrived at the configuration x, consisting of the n 
points x, , · · · , xn in t dimensions. Let the coordinates of X; be X;, , • • • , X;t • 

We shall call all the numbers X;, , with i = 1, · · · , nand s = 1, · · · , t, the 
coordinates of the configuration x. Suppose the (negative) gradient of stress 
at x is given by g, whose coordinates are g;, . Then we form the next con
figuration by starting from x and moving along g a distance which we call 
the step-size a. In symbols, the new configuration x' is given by 

x:. = X;, + mag (g) g;, 
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for all i and s. Here mag (g) means the relative magnitude of g and is given by 

mag (g) = ~/V 2: x~ • . 
'.. i ... 

If we assume that x is normalized, then a simpler formula is valid: 

mag (g) = ~! 2: g~ • . 
n "·' 

We give the formulas for g in another section. Of course, x' should be normal
. ized before further use. 

The step-size a is varied from one iteration to the next. The step sizes 
used do not affect the solution ultimately obtained. However, they pro.,. 
foundly affect the number of iterations required to reach the solution, and 
are an important computational consideration. 

The step-size procedure given here is the result of considerable numerical 
experimentation. No claim is made that it is optimal in any sense. How
ever, it seems to be reasonably fast, it is robust, and it avoids many pitfalls 
which we discovered in earlier procedures. It provides large steps during 
the early stages of calculation and small steps at the end. It is capable of 
providing a very exact solution when desired. 

The initial value of a with an arbitrary starting configuration should 
be about 0.2. For a configuration that already has low stress, a smaller value 
should be used. (A poorly chosen value results only in extra iterations.) 
Thereafter the step size is determined by the following formula. 

apreaent = avrevious ·(angle factor)· (relaxation factor)· (good luck factor), 

where 

angle factor= 4.o<•••Bl•··, 

(} = angle between the present gradient and the previous gradient, 

relaxation factor = 1.3 , 
1 + (5-step-ratio) 5

"
0 

5 t t . . [ 1 ( present stress )] -s ep-ra 10 = mm 
' stress 5 iterations ago ' 

d 1 k f t . [ 1 (present stress)] goo uc ac or = m1n , . . 
preVIous stress 

If five iterations have not yet been calculated, the "stress five iterations 
ago" may be taken as the first stress computed. Similar artifices may be 
used in connection with "previous stress" and 6 on the very first iteration. 
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If g is the present gradient and g" the previous gradient, cos 8 may be calcu
lated by 

cos 8 = --=--·=· ·==· =---=~== 
4 ~ 2 - /~ 112 y--"'-- g,, V £..J g,. 

'·' i.• 

As the computation proceeds, successively smaller values of stress are 
achieved. (Occasionally, an iteration may increase the stress rather than 
decrease it.) Eventually the stress "levels off," and further iterations cause 
little or no improvement. When is it time to stop and consider the configura
tion then obtained as sufficiently accurate? There is no really good answer 
to this question. However, the following rough guide, sensibly used, provides 
a practical answer. 

As the computation proceeds, the relative magnitude mag (g) of the 
successive gradients decreases. At a configuration which is precisely a mini
mum, the gradient and its magnitude are zero. Subject to the following qualifi
cations, we suggest that when the magnitude mag (g) reaches a value of 
approximately 2 per cent of its value for a typical arbitrary configuration, 
then the iteration may be terminated. This value of mag (g) at which we 
stop will be called the local minimum cr:iterion. For data with large statistical 
variations, larger values are appropriate, and conversely. For large values 
of n and t (say n = 40, t = 2 or n = 15, t = 5), a larger local minimum 
criterion is appropri.ate, and for small values of n and t (say n = 9, t = 2 or 
n = 15, t = 1), a smaller value is appropriate. A larger value of the criterion 
could mean 5 per cent or conceivably as high as 10 per cent. A smaller value 
could mean 0.5 per cent or anything down to 0 per cent. If it appears possible 
and desirable to achieve a stress of zero, then of course the computation 
should continue until the gradient is zero. 

Any iterative minimization procedure is in danger of converging to a 
local minimum which is not the overall minimum, that is, a solution from 
which no small change is an improvement and yet which is not the best 
solution. In our situation, experience shows that this is not a serious difficulty 
because a solution which appears satisfactory is unlikely to be merely a 
local minimum. The following simple technique may be used to inY~sti
gate the situation. 

After reaching a solution which we fear is only a local minimum, \Ye 
apply a violent motion to create a new arbitrnry configuration, and ":e start 
all OYer again. vYe do this repeatedly, and obtain sew~ral solutions. v"Ve may 
take the best of these to be the true best solution. A handy way to apply 
a violent motion is simply to use a Yery large value of a. It is also reason
able to use the present g (after normalization) as the new x. (In effect this 
makes a infinite.) If we intend to compute several solutions as described, 
it is appropriate to relax the local minimum criterion to a fairly large value, 
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and later to continue iterative convergence with a more stringent criterion 
starting from the best solution. 

7. Programming Technique 

Since the procedure described in this paper is entirely impractical 
without the aid of an automatic computer, it seems desirable to describe 
the procedure in sufficient detail that an experienced programmer can easily 
program it. 

TWO- DIMENSIONAL AARAYS 

X t( 1 • L) CONFIGURATION 

X 2 (!. L) GRADIENT 

X 3 (1, L ) OLD GRADIENT 

SIZE: nmax xtm1x 

ONE- DIMENSIONAL ARRAYS 

OISSIM( M) DISSIMILARITIES 6'Lj 
IJlMI lAND j 
DIST I M I DISTANCES dLJ 
DHAT (M I FITTED VALUES alj 

00THER(M) 

SIZE: n,\ax OR nm,!Ul Cnm,u -1 }/2 

FIGURE 2 

A block diagram of the procedure appears in Fig. 2. We start by creating 
or reading in a configuration. After normalizing the configuration, we calcu
late the distances d;; • Then we fit the numbers d;; . (The rank order of the 
dissimilarities is used only at this stage of the iteration.) From d;; and d;; , 
we calculate the stress and the gradient of the present configuration. Then 
we decide whether we have found a (local) minimum of the stress yet, or 
whether the normal iterative process should be continued. (It is also desir
able to have other termination rules, notably a limit on the number of itera
tions.) If a local minimum has been reached, then the configuration, the 
stress, and other useful information should be printed. The configuration 
should be punched out or saved in some way. Also, printing a history of 
the more important variables is desirable. If the calculation is to continue, 
then the step size is determined, and the new configuration is calculated. 
This starts a new step of the iteration. 

Let nmax be the greatest number of objects and tmax the greatest number 
of dimensions which the program is meant to handle. The major blocks of 
storage needed are two-dimensional arrays Xl, X2, X3 and one-dimensional 
arrays DISSIM, IJ 1 DIST, DRAT (d-hat), and D!Z)THER (d-other) as 
shown in Fig. 2. At the start of an iteration, Xl holds the configuration and 
X3 holds the old gradient which was used to find it. (Thus Xl (I, L) holds 
the value xil , and X3 (I, L) holds the previous value of gil. ) The gradient 
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at the present configuration is put into X2. Next cos (} is calculated, where 
(} is the angle between the two gradients. The new configuration is calcu
lated and placed in XI. Then everything is ready for the next step of the 
iteration. 

DISSIM contains the original dissimilarities (or similarities) O;; , as 
shown in Fig. 3. Each cell of IJ contains (packed together in one cell) the 

' ' 
DISSlM Ji,j,: • • • i 

! I 

' ' ' ' 1.- • • i6l.t,.dM 

' 

' ' ' ' ' ' ' ' ' 
!61.ndm!• • • i 
: : : 

JJ 
' L,,j,i • • • 

' ' ' ' i • • • iLM,jM 
: ! 

! .. ! i 
1Lm.Jml• • ., 
I i ~ 

D!ST dt,j,: ••• 
' ' ' ' 
! • • • !dL,,dM 
' ' ' ' ' ' 

DHAT 
' ' ' ' d ' ' L.J,i • • • \ 

' ' ' ' ' o" I 1 

idlrnJmi• • ·: 

FIGURE 3 

values of i and j for the dissimilarity in the corresponding cell of DISSIM. 
When the dissimihrities are first. read, they are placed in DISSE\1 >Yit.hout 
any gaps (that is, the cells of DISSIM are filled one by one in order, with no 
intermediate cells remaining empty). If the dissimilarities are inherently 
symmetric, or have previously been made symmetric by a separate calcula
tion, then only the entries from one-half the matrix are put into DISSIM. 
If a dissimilarity is missing {presumably this fact is signalled by a very 
special artificial value of O;;), then no entry is made in DISSIM nor is any 
space reserved. 

At the same time that each entry is placed in DISSIM, the correspond
ing values of i and j are packed together in the corresponding cell of IJ. 
Thus, although the dissimilarities are put into DISSIM in a manner which 
ignores their subscripts, this essential information is still present in IJ. 
Let the number of entries actually placed in DISSIM be M. 

After DISSIM and IJ have been filled, then the M entries in DISSIM 
are sorted in order of increasing algebraic value. (An efficient sorting pro
cedure should be used, such as the radix-exchange method of Hildebrandt 
and Isbitz [5].) However, if the measurements in DISSil\1 are similarities 
instead of dissimilarities, decreasing order is used. (This is the only way in 
which similarities and dissimilarities are treated differently.) During the 
sorting procedure the lVI entries in IJ are simultaneously rearranged so as 
to preserve the correspondence between cells in corresponding positions 
of DISSIM and I.J. After the sorting is complete, the values in DISSIM 
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are no longer strictly needed, as their rank order is now available in IJ. 
However, it is convenient for several reasons to retain the original data. 

In cases of ties (equal dissimilarities), the order in which they occur 
does not matter. However, the IJ cell corresponding to the first dissimilarity 
of a tie-block (that is, a block of equal dissimilarities) should contain the 
number of dissimilarities in that tie-block. (This number must be packed 
in together with i and j.) Also, these cells must be distinguished from other 
cells, so that the presence of the tie-block can be noted later. 

The first stage of each iteration is to find the distances d;; . For Min
kowski r-metric distance, use the formula 

[ 

t ]1/r 
d;; = L lx,, - X;,ir 

•-1 
In the case of ordinary Euclidean distances, r = 2 and 

d;; = ~ :t (x,, - X;,)2
• 

aa1 

In the case of city-block metric, r = 1 and 

' 
d;; = .E lx,. - x;.l· 

•-1 

One very important point concerns the order in which the distances are 
computed. They should not be computed using a double loop on i and j. 
Instead they should be computed using a single loop in which m runs from 
1 to M, corresponding to the entries in IJ. Thus at the mth pass through 
the loop, the mth entry in IJ is consulted, its values of i and j are used, and 
the resulting value of d;; is placed in the mth position of DIST. 

The next stage of each iteration is to fit the numbers J;; . We describe 
how to do this 'in another section. After fitting, we calculate the stress. It is 
convenient to set 

S* L (d;; - d;;)2
' 

T* L d~; , 

s = v'S*/T*. 
It is best to calculate S* and T* by a single loop on m from 1 to M. On the 
mth pass through the loop we use i and j from the mth entry of IJ. We add 
to the partially accumulated values of S* and T* the quantities (d;; - J,;? 
and d~; . At the end of the loop, S is calculated from S* and T*. 

To calculate the (negative) gradient we use the following formulas. 
For Minkowski r-metric, component gk1 , which is to be placed in X2 (K, L), 
is given by 

= ~ ki - ki [d;; - a;; - <b.i] lxil - xjllr-
1 

• -
Ukl S f1 (o o ) S* T* d~{~ signum (xi! x0 ). 
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Here ok' and okj denote the Kronecker symbols (ok' = 1 if k = i, oki = 0 
if k =;t. i) and must not be confused with dissimilarities o;; • Signum is + 1 
for a positive number, -1 for a negative number, and 0 for 0. In case of 
Euclidean distance r = 2 and this becomes 

g = S "" (oki _ 0k;)[d;; - d;; _ d;;J (X;z - X;z) • 
kl £....- S* '1'* d .. • t1 ., 

In the case of city-block distance, r = 1 and it becomes 

S "" c~k· ~k;)[d;; - a;; d,;J . < gk, = £....- u - u S* - 'f* signum x 01 ... - X;z). 

To calculate the gradient use a single iterative loop on m from 1 to M. On 
the mth pass through this loop, use i and j from the mth cell of IJ. If i = j, 
then oki - oki = 0 for all k, so the corresponding term in the formula vanishes, 
and we may skip to the next value of m. If i =;t. j, then for l = 1 to t, add the 
following term into g, 1 (that is, X2 (I, L)) and subtract it from g0 (that is, 
X2 (J, L)): 

[%* (d;; - d,;) - 'J~* d;; J d~jl jxil - X;zlr-I signum (X;z - X;z). 

At the end of the loop, the gradient g has been accumulated in X2. 
Once the gradient has been calculated, it is time to decide whether or 

not a local minimum has been reached. If it has, suitable output is created, 
and either the calculation terminates, or else it continues after applying a 
violent motion to create a new arbitrary configuration. If a local minimum 
has not been reached, the new step size is calculated, the new configuration 
is calculated and normalized, and the iteration is ready to start over again. 

8. Algorithm for Fitting 

\Ve describe our algorithm for calculating the numbers d;; . We first 
describe it supposing that there are '10 ties (equal dissimilarities). After
'mrds we describe the simple modification needed in case ties are present. 

Algorithms for essentially the same purpose, though more general 
because weights are permitted, may be found in Miles ([8], pp. 319-320), 
Barton and :\!allows ([1], pp. 42()-427), and Bartholomew ([2], pp. 37-38) 
and ([3], pp. 2-12-2-!-1:). Algorithms and useful facts for the very much more 
general situation in which the dissimilarities are only partially ordered, not 
linearly ordered, and for 'which the function being minimized is much more 
general then a sum of squares may be found in van Eeden ([11], pp. 134-13G) 
and ([!2], pp. 508~;)12). Our algorithm is essentially the same as algorithm 
et, of l\Iilcs ([8], p. 539). However, we feel for several reasons that it is 'vorth
while to describe our algorithm. First, Miles' algorithm involves many ar
bitrary choices, and how t.hese are made affects the efficiency of the corn-
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putation. Our algorithm is fully explicit; in effect, we make these arbitrary 
choices in an intelligent manner. Second, none of these algorithms are de
scribed in sufficient detail or in simple enough notation to make easy their 
use on an automatic computer. Third, the efficiency of these algorithms 
varies very widely. We believe ours to be as efficient as any of those mentioned. 

Imagine the dissimilarities a,mim arranged from smallest to largest in 
DISSIM, as in Fig. 3. The subscript pairs (im, jm) are arranged in the same 
order in IJ. The correct values d1; can be described in this way. There is 
a partition of the dissimilarities into consecutive blocks b1 , • • • , bp such that 
within each block b the value of d1 ; is constant, and this common value db 
is the average of the d1 ; values in the block. As this is true, it is only necessary 
to find the correct partition in order to calculate the numbers d;; . 

Our algorithm starts with the finest possible partitions into blocks, and 
joins the blocks together step by step until the correct partition is found. 
The finest possible partition consists naturally of M blocks, each containing 
only a single dissimilarity. 

Suppose we have any partition into consecutive blocks. We shall use 
db to denote the average of the d;; in block b. If b_ , b, b+ are three adjacent 
blocks in ascending order, then we call b up-satisfied if db < db+ and down
satisfied if db- < d• . We also call b up-satisfied if it is the highest block, 
and down-satisfied if it is the lowest block. 

At each stage of the algorithm we have a partition into blocks. Further
more, one of these blocks is active. The active block may be up-active or 
down-active. At the beginning, the lowest block, consisting of d1,;, , is up
active. The algorithm proceeds as follows. If the active block is up-active, 
check to see whether it is up-satisfied. If it is, the partition remains un
changed but the active block becomes down-active; if not, the active block 
is joined with "the next higher block, thus changing the partition, and the 
new larger block becomes down-active. On the other hand, if the active 
block is down-active, do the same thing but upside-down. In other words, 
check to see whether the down-active block is down-satisfied. If it is, the 
partition remains unchanged but the active block becomes up-active; if not, 
the active block is joined with the next lower block into a new block which 
becomes up-active. Eventually this alternation between up-active and down
active results in an active block which is simultaneously up-satisfied and 
down-satisfied. When this happens, no further joinip.gs can occur by this 
procedure, and we transfer activity up to the next higher block, which be
comes up-active. The alternation is again performed until a block results 
which is simultaneously up-satisfied and down-satisfied. Activity is then 
again transferred to the next higher block, and so forth until the highest 
block is up-satisfied and down-satisfied. Then the algorithm is finished and 
the correct partition has been obtained. 

After the final partition has been found, then for every block b the 
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value db is placed in every DRAT cell of b. This completes the fitting compu
tation. 

In case there are ties among the dissimilarities, the algorithm for fitting 
only needs to be modified by preprocessing. If we adopt the primary ap
proach to ties described in [7], that is, if the only constraints on the d;; 
are those in Section 1, then this preprocessing simply consists of arranging 
the dissimilarities within each tie-block in such a way that the distances 
d;; within that block form an increasing sequence. After this preprocessing, 
the algorithm is carried out as before. 

In case we adopt the secondary approach to ties, that is, if we further 
constrain the d;; to be equal when the corresponding o;; are equal, the pre
processing is still simpler. Instead of starting the algorithm with the finest 
possible partition, we start it with the partition into tie-blocks. More specifi
cally, the block containing o;; consists of all dissimilarities which equal o;; . 
(In case no other dissimilarities happen to be tied with o;; , the block con
tains only one dissimilarity.) 

In programming the above algorithm, it is convenient to keep track of 
the blocks of the partition in the following way. If a block b starts with the 
mth dissimilarity and contains v dissimilarities, with v ;?; 2, then the first 
D0TRER cell should contain v and the last D0TRER cell should contain 
m; also, the first DRAT cell should contain db and the second DHAT cell 
should contain L d,; , where the sum is over all d,; in the block. (Of course, 

so we are storing redundant information.) If a block contains only one 
dissimilarity, then the D0TRER cell should be recognizably blank, and 
the DRAT cell should contain db = d;; = L d,; . 

This structure makes it easy to check whether b is up-satisfied or down
satisfied and makes it easy to join two adjacent blocks together. When 
joining takes place, the joined L: d;; should be formed by adding the two 
separate sums, and the new db formed by dividing by v. This minimizes 
round-off error. 

If the primary approach to ties is adopted, the sorting of the d1 ; in 
each tie-block (during preprocessing) must of course be accompanied by a 
simultaneous identical rearrangement of the corresponding cells in IJ. If 
large tie-blocks are anticipated, then the sorting should be done by an efficient 
procedure such as the radix-exchange technique of Rildebrandt and Isbitz [5]. 

9. Summary 

We have described the numerical methods necessary to use our ap
proach to multidimensional scaling. We have included sufficient detail so 
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that an experienced programmer should not have difficulty in creating a 
program to perform these computations. 
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