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Maximum likelihood factor analysis provides an effective method for 
estimation of factor matrices and a useful test statistic in the likelihood ratio 
for rejection of overly simple factor models. A reliability coefficient is proposed 
to indicate quality of representation of interrelations among attributes in a 
battery by a maximum likelihood factor analysis. Usually, for a large sample 
of individuals or objects, the likelihood ratio statistic could indicate that an 
otherwise acceptable factor model does not exactly represent the interrelations 
among the attributes for a population. The reliability coefficient could indicate 
a very close representation in this case and be a better indication as to whether 
to accept or reject the factor solution. 

Max imum likelihood factor  analysis offers effective procedures for 
statist ical  est imation of factor  matrices and for statistical tests as to whether  
a factor  analysis model represents the interrelations of at t r ibutes  in a ba t t e ry  
for a population of objects or individuals. In  practical use of these methods,  
however,  there is a problem in judging the  quali ty of a factor  analytic study. 
While the  factor  analytic approach m a y  be quite profitable in establishing 
la tent  t ra i ts  which account  for essential interrelations among observations 
in a domain of phenomena,  the  factor  analytic model involving a limited 
number  of common factors a lmost  surely will not  represent  exactly the  
phenomena for a populat ion of objects. This  proposit ion raises questions 
as to the  use of the  likelihood ratio tes t  associated with max imum likelihood 
factor  analysis. When  a s tudy  is conducted with a ve ry  large sample of 
individuals the statistical tes t  m a y  indicate t ha t  the  factor  analytic model 
wi th  a scientifically desirable number  of common factors would not represent  
da ta  for  a population of objects. I n  these cases a measure of goodness of fit 
of the  model to the phenomena is needed. 

Lawtey's  [1940] initial solution of m ax i mum likelihood factor  analysis 
appeared to offer an  elegant procedure for est imation of factor  matr ices 
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and the associated likelihood ratio statistic seemed to promise a solution 
for the long standing number of factors problem. Due to the extensive cal- 
culations involved these procedures were little used but  were discussed 
in the theoretic literature. Rao [1955] derived canonical factor analysis 
and demonstrated the equivalence to maximum likelihood factor analysis. 
Lord [1956] provided the first application of maximum likelihood factor 
analysis to a large battery of measures using the Whirlwind computer at 
the Massachusetts Institute of Technology. With the further developments 
of high speed digital computers and of effective computer programs by 
JSreskog [1967] maximum likelihood factor analysis has become quite feasible 
for application. Experience with maximum likelihood factor analysis has 
been developing with these applications. This experience indicates a dilemma 
in the application of the likelihood ratio statistic to decisions concerning 
the factor analyses. 

The problem with the use of the likelihood ratio statistic, or any other 
similar statistic, involves the form of the decision procedure. The statistical 
hypothesis is that the factor analytic model with a specified number of 
common factors applies strictly for a population of objects. Rejection of 
this hypothesis most surely will occur for a very large sample of objects 
at any usual level of significance. This rejects the scientific hypothesis. 
A reversal as to role of the statistical hypothesis and alternative hypothesis 
has occurred from the common use of decision procedures in scientific in- 
vestigations for which the scientific hypothesis is the alternative hypothesis 
and is to be accepted when the statistical hypothesis has been rejected. 

Consider a case involving a well developed battery of attribute measures 
such that with an extremely large sample of objects there would be common 
agreement that r important common factors are involved and that any 
further factors are trivial and uninteresting. Tucker, Koopman, and Linn 
[1969] proposed a system for producing correlation matrices based on the 
conception of a major factor domain and a minor factor domain to simulate 
observed correlation matrices. Browne [1969] pointed out that any correlation 
matrix may be perfectly reproduced from a factor matrix when a large enough 
number of factors was permitted and that the different methods of factoring 
differed in the definition of a limited number of factors accepted and in the 
factors not accepted. The failure of the factor analytic model with a limited 
number of common factors to reproduce the matrix of correlations or co- 
variances can be transformed to the existence of additional common factors 
which axe to be rejected. In the case being considered there is common 
agreement as to the number of major factors in the common factor space 
and that the remaining common factors derive from a minor factor space 
and are to be discarded. The likelihood ratio and usual decision process 
would be quite appropriate in rejecting fewer than r factors. The problem 
is that this statistic and decision procedure probably would reject also r 
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common factors. This would occur with a large enough sample of objects 
even for very trivial and meaningless minor factors. For example, Harman 
[1967, see page 229] states in reference to the maximum likelihood solutions 
for his 8 physical variables example: 

This example illustrates the general principle that  one tends to under- 
estimate the number of factors that  are statistically significant. For twenty 
years, two factors had been considered adequate, but  statistically two factors 
do not adequately account for the observed correlations based on a random 
sample of 305 girls. However, the third factor (whose total contribution to 
the variance ranges from 2 per cent to 5 per cent for the different solutions) 
has little "practical significance," and certainly a fourth factor would have no 
practical value. 

As shown in Table 1 both the 2 factor and 3 factor models would be rejected 
at high levels of significance, p less than .001 and .01, respectively. 

This situation is quite analogous to that of paired comparison scaling 
for which Mosteller [1951] provided a statistical test concerned with whether 
the model might or might not be rejected. Gulliksen and Tukey [1958] 
provided a reliability type coefficient for measuring goodness of fit of the 
model to data. They contrasted two examples: Mosteller's baseball data, 
for which the significance test did not reject the model while the reliability 
was low, with quality of handwriting data, for which the significance test 
indicated a decision to reject the model while the reliability was high. This 
contrast was due in part to quite different numbers of cases on which each 
proportion used was based: 22 for the baseball data versus 200 for the total 
sample for the handwriting data. An analogous reliability type coefficient 
is needed for factor analysis. 

In developing a reliability coefficient for maximum likelihood factor 
analysis an asymptotic identity developed by Lawley [1940] for large N 
and several analogies are used. (AT is the number of objects in a sample.) 
JSreskog [1967] utilizes a derived function, F~ for m common factors, which 
is minimized to maximize the likelihood function. He indicates that (N -- 1)F~ 
i s  (--2) times the logarithm of the likelihood ratio and that niF,~ is ap- 

TABLE i 

Maximum Likelihood Factoring Reliability 
.Harman's 8 Physical Measures Example 

N = 305, n = 8 

Number of Ml/2 
Factors F df p M P 

0 6.941 28 *** .2479 .498 --- 
I 2.039 20 *** .I020 .319 .597 
2 .253 13 *** .0195 .140 .934 
3 .076 8 ** .0095 .097 .975 
4 .015 3 ........ 23 .0048 .069 ........ .994 
p < .0i 

*** p < .001 
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proximately a x ~ variable, where 

n" = N -  1 -  ~ ( 2 n d - 5 ) - -  ~m. 

Let C be the observed covariance matrix for a battery of n attributes, ~ ,  
be the estimated factor matrix for m common factors, 0~ be the estimated 
unique factor loadings for an m common factor model, and G~ be an n X n, 
symmetric matrix defined by 

In the maximum likelihood solution 

(2) ~ = Diag (C - ~ ' ) .  

Consequently 

(3) Diag (Gin) = I. 

The matrix G~ may be considered to contain the partial intercorrelations 
of the attributes partialling out the estimated common factors. Lawley's 
identity may be combined with Jbreskog's function F~ to yield 

(4) F ~ - ~  ' g,~ii '  
i-1 i ' -~+1 

where gm~i" are the entries in Gm• Thus, F~ may be considered as approxi- 
mately the sum of squares of the partial correlations on one side of the 
diagonal in G~. 

The preceding suggests an analogy with components of variation in 
analysis of variance. In this interpretation let M ,  be a mean square cor- 
responding to F~ .  

(5) Mm = F~,/df,~ 

where dl~ is the degrees of freedom associated with F~ in the maximum 
likelihood solution. For variance components let a~ be a variance associated 
with a model having m common factors, ~ be a variance representing the 
deviation of the model from actuality, and e~ be a variance associated with 
sampling. For this component of variance model consider 

(6) S(Mo) = a~ + ~ + e~, 

(7) 8(M~) = ~ + ~ . ,  

where Mo is the mean square for a model having zero common factors. A 
value for e~ may be obtained for the case when ~ is zero, that is when the 
model fits exactly for a population of objects. Then n~F,~ is approximately 
a x ~ random variable with d]~ degrees of freedom and has an expected value 
of df,~. From this and (5) the expected value of n'M,~ is unity and the ex- 
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pected value of M~ is 1/n~. Using this result as a value for e~ (6) and (7) 
become 

1 
(8) 8(Me) = am + ~ + - 7 ,  

n ~  

1 
(9) a ( M . )  = + - 7 .  

nm 

A reliability coefficient may be defined by 

Otm 
(10) - a~ + ~"  

This is analogous to an intraclass correlation. I t  represents a ratio of the 
amount of variance associated with the model to total variance. An estimate 
may be obtained by substitution of observed values of Me and Mm for the 
expected values in (8) and (9). Then 

Me -- M~ 
(11)  - : 

This reliability coefficient may be interpreted as indicating how well a factor 
model with m common factors represents the covariances among the at- 
tributes for a population of objects. Lack of fit would indicate that the re- 
lations among the attributes are more complex than can be represented by m 
common factors. 

Several examples are given in the tables for application of the reliability 
coefficient to correlation matrices taken from the literature. Table 1 presents 
results for ttarman's [1967] 8 physical measures example. These measures 
were selected from a battery of 17 measures used by Mullen [1939] and the 
correlations based on an N of 305 were taken from her study. As indicated 
previously, a two common factor model is rejected by the likelihood ratio 
statistic at a significance level of .001. The reliability, p, was .934 for the 
two factor solution which has been accepted for years. A three common 
factor model may be rejected according to the likelihood statistic for which 
the p was less than .01. The reliability had risen to .975. This three common 
factor structure has two very highly correlated factors after rotation; one 
for height and length of lower leg, and one for arm span and length of fore- 
arm. These four measures loaded on a single rotated factor in the two factor 
solution; thus, the three factor solution is providing a differentiation between 
length of leg bones and length of arm bones which may be of scientific interest. 
The two and three factor solutions had similar factors for the last four measures 
involving weight and girths. A four common factor model cannot be rejected 
by the likelihood ratio statistic and the reliability has risen to .994. However, 
the four factor solution does not add a meaningful factor in our judgmen~ 
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to the rotated solution for the three factor solution. We suggest that  the 
three factor solution should be accepted in that the reliability is high and 
in that the four factor solution does not add a meaningful factor beyond 
the three in the three factor solution. This suggestion disregards the likeli- 
hood ratio result which indicates that the three factor solution would not 
be exact for a population of girls. 

The square roots of the M's for the various numbers of factors are listed 
also in Table 1. These values may be interpreted as root mean squares of 
the partial correlations among the attributes after the given number of 
factors have been extracted. One point to remember is that  the approximate 
sum of squares, F, has been divided by the number of degrees of freedom 
remaining rather than by the number of partial correlations. Thus, even 
though F dropped from .076 for 3 factors to .015 for 4 factors, M dropped 
only from .0095 to .0048 since the degrees of freedom decreased markedly 
from 8 to 3. The corresponding decrease in the root mean square was only 
from .097 to .069. With consideration of this point, the values of M I/2 may 
be considered as measures of the sizes of the partial correlations. Both .097 
and .069 are quite small. 

A second example is presented in Table 2. This is the nine test combined 
battery selected by Tucker [1958] from the larger battery studied by Thur- 
stone and Thurstone [1941]. Tucker used this battery to illustrate his inter- 
battery factor analytic method and selected it to have two common factors. 
The two factor solution may be rejected at a high level of significance, 
p < .001; however, the two factor solution has a reliability of .982 indicating 
a very good fit of the model to the interrelations among the scores on these 
eleven tests. The three factor solution, which may not be rejected and for 
which the reliability is 1.000, does not add a third meaningful factor. Loadings 
on the third dimension are moderately small. In consequence, the two factor 
solution which does not fit the data by the likelihood ratio test appears 
justified to represent the relations among the scores on these nine tests. 

Results for Harman's 24 psychological test example, which he obtained 

TABLE 2 

Maximum Likelihood Factoring Rellabillty 
Selected Battery from Thurstone & Thurstone 

N = 710 ~ n = 9 

Number of 
, Factors , ,  F 

0 4 . 4 9 0  

1 1.308 
2 .071 
3 . 0 ! 7  

* * *  p < .001 

df p M I,~..Z p 
36 *** .1247 .353 --- 

27 *** .0484 .220 .619 
19 ~ *  .0037 .061 .982 
12 .46 .0014 .037 1.000 
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TABLE 3 

Maximum Likelihood Factoring Reliability 
Harman's 24 Psychological Tests Example 

N = 145 ~ n = 24 

Number o f  Ml/2 
Factors ................... F d f  , p M ,,, P 

0 11.437 276 *** .0414 .204 --- 
1 4.631 252 *** o0184 .136 .678 
2 3.140 229 *** .0137 .I17 .816 
3 2.220 207 *** .0107 .104 .905 
4 1.711 186 .02 .0092 .096 .951 
5 1.417 166 .13 .0085 .092 .973 

*** p < .001 

from a study by Holzinger and Swineford [1939], are shown in Table 3. 
Four factor solutions have been used in past analyses. This size model may 
be rejected by the likelihood ratio test at a value of p = .02. Reliability 
of the four factor model is relatively high at .951. Rotation of axes for the 
five factor solution presents some problems whereas the four factor solution 
has four rather nice rotated factors. Consequently, the four factor solution 
appears to be appropriate. 

The number of individuals in the 24 psychological test example is less 
than the numbers of individuals in the preceding two examples. A conjecture 
may be made that if the study were repeated on a larger sample, the four 
factor model could be rejected by the likelihood ratio statistic at a higher 
level of significance. If our development of the reliability coefficient is justified, 
it should not change in a systematic fashion. 

Table 4 presents results for the eighteen special tests in Lord's [1956] 
study of speed factors. Six tests were constructed in each of three ability 
factors. Two of the tests for each factor were power tests, one test was mod- 
erately speeded, and three were speed tests. A three factor model may be 
rejected at a very extreme level of significance but this model has a mod- 
erately high reliability of .958 and the three rotated factors represent the 
three ability factors. Some psychologists might wish to accept this repre- 
sentation of the relations among the scores on these tests. A four factor 
solution may also be rejected at an extreme level of significance but it has 
a quite high reliability of .988. This solution adds a small general speed 
factor to the three ability factors. Again, some psychologists might wish 
to accept this solution. Rejection of a five factor model on the basis of the 
likelihood ratio is problematic. By this number of factors the reliability has 
become extremely high. However, the five factor solution adds only an 
indication of some differentiation among the types of speeded tests. Otherwise 
the results appear very similar to the four factor solution. 

The preceding examples utilized data from studies involving measures 
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TABLE 4 

HaximumLikelihood Factoring Reliability. 
Example From Lord's Speed Fac to r  Study 

Nu~ = 649 I n = 18 

~ e r  of .112 
Factors F df p M 0 

0 14.133 153 *** .0924 .304 --- 
I 7.576 135 *** .0561 .237 .399 
2 2.248 118 *** .0191 .138 .807 
3 .548 102 *** .0054 .073 .958 
4 .234 87 *** .0027 .052 .988 
5 .143 73 .08 .0020 .044 .996 
6 .100 61 .39 .0016 .040 .999 

*** p < .O01 

and performances of real people. To gain further experience with the reliability 
coefficient, maximum likelihood solutions were obtained for twelve of the 
correlation matrices in the study by Tucker, Koopman, and Lima [1969] 
on simulated correlation matrices. These matrices were constructed for 
20 attributes and for populations of individuals. A domain of major common 
factors was combined with minor common factors and unique factors. The 
minor common factors numbered 180 and had random factor loadings in 
decreasing magnitude with progression of factors. These twelve correlation 
matrices differ on three experimental design variables: number of factors 
in the major domain, 3 or 7; proportion of variance in the measures deriving 
from the major domain (range of B), high (.6 to .8) or low (.2 to .4); and 
form of derivation model: "formal" involving only major domain common 
factors and unique factors, "middle" involving all three types of factors; 
and "simulation" involving only major domain and minor domain common 
factors. A point to be considered is that maximum likelihood factor solutions 
are quite feasible for these matrices but that the likelihood ratio statistics 
are not appropriate. There is no sampling of individuals problem. Differences 
between the matrices represent differences in how well the theoretic factor 
model with a limited number of common factors represents the interrelations 
of the attributes. 

Results for these twelve matrices are given in Table 5 which presents 
the reliabilities for factor models having numbers of factors equal to the 
number of factors in the major domain. In all four cases the fit was exact 
for the formal model and the reliabilities were unity. Results for the middlo 
model were higher than for the simulation model. Reliabilities, except for 
the formal model were higher for three factors in the major domain than for 
seven factors in the major domain. The combination of high range of B and 
middle model yielded quite acceptable reliabilities in the middle nineties 
while combinations of low range of B and simulation model yielded quite 
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TABLE5 
Maximum Likelihood Factoring Reliability 

Simulated Correlation Matrices 
N = ~ n = 2 0  .............. 

1. Three factors in major domain, 
reliabilities for three common factor models 

Range Derivation Modal 
of B ~ormal ........ Middle Simulation 
High 1.000 .961 .831 
Low 1.000 .851 .548 

2. Seven factors in major domain, 
rellabilities for seven common factor models 

Range Derivation Model 
of B Formal ......... Middle Simulation 
High 1.000 o941 .712 
Low 1,000 .739 .481 

unacceptable reliabilities around .5. These results indicate the relation of 
the reliability coefficient to the quality of the data entered into a factor 
analysis. For high reliability, the minor common factors should be held to 
a low level of influence. Higher reliabilities are obtained when higher pro- 
portions of the variances of measures on attributes are derived from the 
major factor domains. I t  is better to have a higher ratio of number of at- 
tributes to number of factors in the major domain. 

The proposed reliability coefficient for maximum likelihood factoring 
appears to summarize the quality of representation of the interrelation of 
attributes in a battery by a factor analytic model having a limited number 
of common factors. I t  does not appear to provide a criterion as to how many 
common factors to accept. However, as pointed out previously, the likeli- 
hood ratio test also does not provide such a criterion. The number of factors 
to accept appears to depend on size of loadings and meaningfulness of factor- 
ing results. In conducting a factor analytic study, a large enough sample 
of individuals or objects should be used to yield stable results. The likelihood 
ratio statistic should indicate that  all models with fewer common factors 
than acceptable on other grounds should be rejected at an extreme level of 
confidence. This statistic might indicate that  the accepted model would 
be rejected as not exactly representing the interrelations for a population. 
Any accepted solution should have a high coefficient of reliability. 
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