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One of the ten most-cited Psychometrika articles is by Stephen Johnson,
who was a young computer scientist working at Bell Labs at the time the
article was written. Interesting, this piece is Johnson’s sole published work
in the area of statistics and/or psychometrics. It was obviously influenced
heavily by other Bell Labs personnel at the time, including several future
Psychometric Society presidents. The introductory footnote to the article
reads: “I am indebted to R. N. Shepard and J. D. Carroll for many stimulating
discussions about this work, and for aid in preparing this paper.”

From the late 1960s onward, Johnson was heavily involved with the Bell
Labs development of the UNIX operating system and the C programming
language, most notably developing the Portable C Compiler and other UNIX
tools (for example, spell, lint, yacc). In the early 2000s, Johnson joined the
Mathworks to contribute to the MATLAB programming language; he wrote,
for example, the initial MATLAB compiler for turning a routine written in
the MATLAB language into stand-alone and executable C code.

The Johnson paper in Psychometrika is nicely written and accessible, and
provides for the first time in the literature the key concept of an ultrametric
for characterizing all hierarchical clustering schemes. Johnson’s inspiration
for developing the correspondence between ultrametrics and hierarchical clus-
tering schemes was from the work of Joe Ward, a personnel research psychol-
ogist working in the 1950s and 60s on occupational analyses for the United
States Air Force. To quote Johnson (p. 242):

The notion of a hierarchical clustering scheme, the central idea of this paper, was ab-
stracted from examples given by Ward [1963]. We first consider such schemes, and develop
a correspondence between hierarchical clustering schemes and a certain type of metric.

This important idea of an ultrametric will be reviewed below along with
several other observations Johnson made over the course of his paper. We
conclude with some discussion of the historical importance of the concept of
an ultrametric, introduced some fifty years ago, and how it has guided the
field of cluster analysis and various extensions up to the present.1

1Another 1967 paper by Jardine, Jardine, and Sibson also introduced the concept of an ultrametric.
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To characterize more formally the basic problem posed by hierarchical
clustering, suppose S is a set of n objects, {O1, . . . , On}, and between each
pair of objects, Oi and Oj, a symmetric proximity measure, pij, is available
(that might possibly be constructed from a more basic object by variable
data matrix). It is assumed that the proximity measure has a dissimilarity
interpretation so larger proximity values correspond to more dissimilar ob-
jects. These proximity values are collected into an n × n proximity matrix,
P = {pij}n×n. Any hierarchical clustering strategy produces (using Johnson’s
terminology) a hierarchical clustering scheme; the latter is a sequence or hi-
erarchy of partitions of S, denoted P0,P1, . . . ,Pn−1, from the information
present in P. In particular, the (disjoint) partition, P0, contains all objects
in separate classes (Johnson’s “weak” clustering); Pn−1 (the conjoint parti-
tion) consists of one all-inclusive object class (Johnson’s “strong” clustering);
and Pk+1 is defined from Pk by uniting a single pair of subsets in Pk.

Generally, the two subsets chosen to unite in defining Pk+1 from Pk are
those that are “closest,” with the characterization of this latter term speci-
fying the particular hierarchical clustering method being used. We mention
three of the most common options for this notion of closeness:

(a) complete-link: the maximum proximity value attained for pairs of
objects within the union of two sets (thus, the maximum link [or the subset
“diameter”] is minimized);

(b) single-link: the minimum proximity value attained for pairs of objects
where the two objects from the pair belong to the separate classes (thus, we
minimize the minimum link);

(c) average-link: the average proximity over pairs of objects defined across
the separate classes (thus, the average link is minimized).

From the time of Johnson’s 1967 paper (which mainly emphasized the
single-link and complete-link criteria), it has been generally accepted that
the complete-link criterion should be the default selection for the task of
hierarchical clustering when done in the traditional agglomerative way that

But in contrast to Johnson (1967), Jardine, et al. (1967) is neither nicely written nor accessible. The
intuitively pleasing correspondence between a hierarchical clustering scheme and an ultrametric, so apparent
in Johnson’s paper, is lost in Jardine, et al. by being buried under of lot of unnecessary topology and
superfluous mathematical notation.
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starts from P0 and proceeds step-by-step to Pn−1. A reliance on the single-
link criterion tends to produce “straggly” clusters that are not very internally
homogenous or substantively interpretable. To quote Johnson (p. 252):

. . . the results of the Maximum Method [that is, complete-link] have appeared to be
the more meaningful or interpretable. That is, the search for compact clusters (of small
over-all “diameter”) have proved more useful than the search for internally “connected” but
potentially long chain-like clusters.

As noted by many users over the years, the average-link choice seems to
produce results that are the same as or very similar to the complete-link crite-
rion but relies on more information from the given proximities; the complete-
link criterion (or for that matter, the single-link criterion) depend only on
the rank order of the proximities. Given the Bell Labs context in which the
Johnson paper was produced (with Kruskal and Shepard as senior colleagues
to Johnson and the recent development of nonmetric multidimensional scal-
ing) it shouldn’t be surprising that Johnson emphasized only single-link and
complete-link clustering.2 To quote (p. 253):

Sokal and Sneath [1963, p. 190] have pointed out that, in methods like our Minimum or
Maximum Methods [that is, single- or complete-link], the merging of two clusters depends
upon a single similarity value (viz., the least or greatest in the appropriate set). They suggest
that, for greater robustness of the solution, it may sometimes be desirable to use some sort of
average value instead. As we have already noted, to base such a procedure upon averages of
the more obvious types is to lose the invariance, sought here, under monotone transformation
of the similarity values. [emphasis added]

Johnson notes that the fortran program he wrote to carry out both single-
link and complete-link clustering (called hiclust.f, and still available at
www.netlib.org) could be easily modified to include other clustering criteria
such as average-link. Again, we give a relevant quote (p. 254):

Nevertheless, when this seems desirable, the methods described here can be (and, indeed,
have been) modified to yield solutions intermediate between those obtained by these two
extreme methods. J. D. Carroll (personal communication) has suggested an average method
based upon medians which, of course, do have the desired property of monotone invariance.
The main problem, in the case of medians, is the choice of an appropriate procedure for
dealing with the ambiguities that tend to arise when two or more of the initial similarity
estimates are tied.

2As we anticipate from a later discussion, the average-link criterion has some connections with rephrasing
hierarchical clustering as a least-squares optimization task in which an ultrametric is fit to the given proximity
values. The average proximities between the subsets united to form the hierarchy are the values fitted to
the given proximities.
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The raising of the problem of ties in the case of a median criterion (which
also applies to the use of a complete-link criterion), and the ambiguities it
might engender in the construction of a partition hierarchy as to what groups
are formed depending on how ties are resolved, has a somewhat unfortunate
history in the cluster analysis literature (at least to the present author’s
mind). First, in practice there seems to be no problem with tied proximities
except in some very pathological and artificially made-up examples. But the
small possibility of such an ambiguity has led some authors to conclude that
the complete-link criterion is “inadmissible”; moreover, the only commonly
“admissible” method is single-link because it satisfies a continuity condition in
how a proximity measure is transformed into an ultrametric (see, for example,
Jardine, Jardine, and Sibson, 1967). This is pure mathematical tyranny to
recommend a generally less substantively interpretable procedure, such as
single-link, over one that is typically much better, such as complete-link.
Asserting an arbitrary continuity condition is no justification for the use of
an inferior method.

As noted earlier, the seminal contribution of Johnson’s paper and the
reason for its continued popularity is the characterization of a hierarchical
clustering scheme in terms of what is called an ultrametric. We now turn to
a more formal definition.

Given the partition hierarchies from any of the three criteria mentioned
(complete-, single-, or average-link), suppose the values for when the new
subsets were formed (that is, the maximum, minimum, or average proximity
between the united subsets) are placed into an n× n matrix, U. In general,
there are n−1 distinct nonzero values that define the levels at which the n−1
new subsets are formed in the hierarchy; thus, there are typically n−1 distinct
nonzero values present in an appropriately row and column reordered matrix
U that characterizes the identical blocks of matrix entries between subsets
united in forming the hierarchy.3

3More explicitly, there exists an ordering (not unique) of the rows and simultaneously the columns of U
that will give the reordered matrix, say U

′
, the following properties:

1. U
′

can be partitioned as  U
′

11 U
′

12

U
′

21 U
′

22

 ,
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Based on a matrix such as U, the partition hierarchy can be retrieved
immediately along with the levels at which the new subsets were formed. In
fact, any (strictly) monotone (that is, order preserving) transformation of
the n − 1 distinct values in such a matrix U would serve the same retrieval
purposes. Thus, as one illustration, the n − 1 distinct values in U could be
replaced by the simple integers, (1, 2, 3, . . . , n− 1), and the partitions of the
hierarchy could still be reconstructed easily. Generally, a matrix U that can
be used to retrieve a partition hierarchy in this way is called an ultrametric
(matrix):

A matrix U is called an ultrametric (matrix) if for every triple of sub-
scripts, i, j, and k, uij ≤ max(uik, ukj); or equivalently (and much more un-
derstandably), among the three terms, uij, uik, and ukj, the largest two values
are equal.

The last paragraph of Johnson’s paper is very prescient about where his
introduction of the ultrametric concept will lead. This last paragraph begins
(p. 254):

Finally, a different kind of possible extension will be briefly indicated here, in the form
of a presently unsolved problem. In Section I we saw that the construction of an HCS is
equivalent to finding a metric which satisfies the ultrametric inequality. Given a similarity
measure d, we would in general like to find the closest metric D which satisfies the ultrametric
inequality — various measures of closeness could be used. ... To the author’s knowledge,
this problem is unsolved.4

So, as Johnson foreshadowed, it is now common in the literature to re-
formulate this hierarchical clustering task as that of locating a best-fitting
ultrametric matrix, say, U∗ = {u∗ij}, to the given proximity matrix, P, such

where all the elements of U
′

12 and U
′

21 are equal to the single largest element of U.
2. The submatrices U

′

11 and U
′

22 are partitionable as in 1.
3. The partitioning process can be repeated until all the resulting submatrices are of order 1.

In the graph theory literature, a matrix with properties 1 to 3 is said to be principally partitionable (see,
for example, Shein and Frisch, 1969).

4This comment about being “unsolved” is somewhat of an understatement. The task of finding the
“closest” ultrametric falls within the class of optimization problems known as NP-hard, which includes all
the old combinatorial chestnuts, such as the traveling salesman problem. This was shown explicitly by
Kr̆ivánek and Morávek in 1986. Although Johnson was a computer scientist, he cannot be faulted for not
proving or knowing this in 1967. The notion of a problem being NP-hard was not even introduced into the
computer science literature until the early 1970s.
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that the least squares criterion

∑
i<j

(pij − u∗ij)
2 ,

is minimized. The approach can either be confirmatory (in which we look for
the best-fitting ultrametric defined by some monotone transformation of the
n− 1 values making up a fixed and given ultrametric), or exploratory (where
we merely look for the best-fitting ultrametric without any prior constraint
as to form). In both cases, a convenient normalized loss measure is given by
the variance-accounted-for (VAF):

1−
∑

i<j(pij − u∗ij)
2∑

i<j(pij − p̄)2
,

where p̄ is the average off-diagonal proximity value in P. Because of the
NP hardness of locating a best-fitting ultrametric, the various computational
methods to be mentioned below are all heuristic; there is no guarantee of
identifying the closest ultrametric, even with the use of many random starts.

The R package ‘clue’ has a routine called ls_fit_ultrametric for finding
an ultrametric for a given proximity matrix using a least-squares criterion.
Three different methods are included:

(a) method “SUMT” implements the Sequential Unconstrained Minimiza-
tion Technique of de Soete (1986);

(b) method “IP” implements the Iterative Projection approach of Hubert
and Arabie (1995);

(c) method “IR” implements the Iterative Reduction approach suggested
by Roux (1988).

Two MATLAB M-files (ultrafit.m and ultrafnd.m) discussed in the mono-
graph by Hubert, Arabie, and Meulman (2005), can be used to carry out
either a confirmatory or an exploratory fitting of an ultrametric to a given
proximity matrix. These two M-files are available from

cda.psych.uiuc.edu/srpm_mfiles

A currently popular alternative to the use of a simple ultrametric in classi-
fication, and what can be considered an extension or generalization (and thus
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part of the legacy of Johnson’s original paper), is that of an additive tree.5

Relaxing the earlier characterization of an ultrametric (which could be called
a three-point condition), an n× n matrix, D, can be called an additive-tree
metric (matrix) if the three-point ultrametric inequality condition is replaced
by the four-point condition:6

dij + dkl ≤ max(dik + djl, dil + djk) for 1 ≤ i, j, k, l ≤ n (the additive-tree
metric inequality). Or equivalently (and again, much more understandably),
for any object quadruple Oi, Oj, Ok, and Ol, the largest two values among
the sums dij + dkl, dik + djl, and dil + djk are equal.

The four-point condition for an additive-tree metric was introduced into
the psychometric literature by Sattah and Tversky (1977) (a fairly well-cited
Psychometrika article, by the way), using earlier work by Buneman (1974).
The R package ‘clue’ includes a routine ls_fit_addtree that implements the
same least-squares optimization options as in ls_fit_ultrametric (that is,
SUMT, IP, and IR), but now in the service of the least-squares fitting of an
additive tree to a set of given proximities. Two MATLAB M-files that carry
out a confirmatory or an exploratory fitting of additive trees (atreefit.m
and atreefnd.m) are available at the web site listed previously.7

5We note that an ultrametric is a special case of an additive tree in which there is a spot (the “root”) on
the tree that is equidistant from all the terminal nodes.

6Biologists who work with phylogenetic trees (our additive trees) are fond of calling the four-point condi-
tion the “quartet inequality.” From an embarrassing personal experience, however, I would advise not trying
to be humorous when talking about ultrametrics before such a somber audience, and using an opening
statement such as “to keep the musical motif going, I will talk about the trio inequality.”

7The present author started to work in the area of cluster analysis with Frank Baker in the early 1970s.
As part of this collaboration, Frank wrote a fortran program to carry out single-link and complete-link
hierarchical clustering based on a computational algorithm of my design that relied on a preliminary ordering
of the object pairs from most to least similar. The algorithm proceeded systematically through the ordering,
checking and rechecking until all necessary links were present between two specific subsets that could then
be united to form the next new subset (and thus, the next partition) in the hierarchy. This particular
computational approach had proven to be a nice instructional demonstration when done “by hand”; but
when computer-implemented with Frank’s program, it seemed a bit slow for the complete-link criterion given
all the exhaustive checking and rechecking that was necessary. Problems involving, say, twenty objects took
several hours on a mainframe UNIVAC 1108 machine then installed at the Madison Academic Computing
Center. Our strategy was quietly abandoned when we belatedly and with great embarrassment reread the
following sentence in Johnson’s paper (p. 253):

On an IBM 7094, the analysis is completed quite rapidly; in another application with 64 objects, solutions
were obtained for both the Minimum and Maximum Methods in just 10.1 seconds.
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