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One of the ten most-cited Psychometrika articles is by Stephen Johnson,
who was a young computer scientist working at Bell Labs at the time the
article was written. Interestingly, this piece is Johnson’s sole published work
in the area of statistics and/or psychometrics. It was obviously influenced
heavily by other Bell Labs personnel at the time, including several future
Psychometric Society presidents. The introductory footnote to the article
reads: “I am indebted to R. N. Shepard and J. D. Carroll for many stimulating
discussions about this work, and for aid in preparing this paper.”

The Johnson paper in Psychometrika is nicely written and accessible, and
provides for the first time in the literature the key concept of an ultrametric
for characterizing all hierarchical clustering schemes. Johnson’s inspiration
for developing the correspondence between ultrametrics and hierarchical clus-
tering schemes was from the work of Joe Ward, a personnel research psychol-
ogist working in the 1950s and 60s on occupational analyses for the United
States Air Force. To quote Johnson (p. 242):

The notion of a hierarchical clustering scheme, the central idea of this paper, was ab-
stracted from examples given by Ward [1963]. We first consider such schemes, and develop
a correspondence between hierarchical clustering schemes and a certain type of metric.

To characterize more formally the basic problem posed by hierarchical
clustering, suppose S is a set of n objects, {O1, . . . , On}, and between each
pair of objects, Oi and Oj, a symmetric proximity measure, pij, is available
(that might possibly be constructed from a more basic object by variable
data matrix). It is assumed that the proximity measure has a dissimilarity
interpretation so larger proximity values correspond to more dissimilar ob-
jects. These proximity values are collected into an n × n proximity matrix,
P = {pij}n×n. Any hierarchical clustering strategy produces (using Johnson’s
terminology) a hierarchical clustering scheme; the latter is a sequence or hi-
erarchy of partitions of S, denoted P0,P1, . . . ,Pn−1, from the information
present in P. In particular, the (disjoint) partition, P0, contains all objects
in separate classes (Johnson’s “weak” clustering); Pn−1 (the conjoint parti-
tion) consists of one all-inclusive object class (Johnson’s “strong” clustering);
and Pk+1 is defined from Pk by uniting a single pair of subsets in Pk.
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Generally, the two subsets chosen to unite in defining Pk+1 from Pk are
those that are “closest,” with the characterization of this latter term speci-
fying the particular hierarchical clustering method being used. We mention
three of the most common options for this notion of closeness:

(a) complete-link: the maximum proximity value attained for pairs of
objects within the union of two sets (thus, the maximum link [or the subset
“diameter”] is minimized);

(b) single-link: the minimum proximity value attained for pairs of objects
where the two objects from the pair belong to the separate classes (thus, we
minimize the minimum link);

(c) average-link: the average proximity over pairs of objects defined across
the separate classes (thus, the average link is minimized).

From the time of Johnson’s 1967 paper (which mainly emphasized the
single-link and complete-link criteria), it has been generally accepted that
the complete-link criterion should be the default selection for the task of
hierarchical clustering when done in the traditional agglomerative way that
starts from P0 and proceeds step-by-step to Pn−1. A reliance on the single-
link criterion tends to produce “straggly” clusters that are not very internally
homogenous or substantively interpretable. To quote Johnson (p. 252):

. . . the results of the Maximum Method [that is, complete-link] have appeared to be
the more meaningful or interpretable. That is, the search for compact clusters (of small
over-all “diameter”) have proved more useful than the search for internally “connected” but
potentially long chain-like clusters.

As noted by many users over the years, the average-link choice seems to
produce results that are the same as or very similar to the complete-link crite-
rion but relies on more information from the given proximities; the complete-
link criterion (or for that matter, the single-link criterion) depends only on
the rank order of the proximities. Given the Bell Labs context in which the
Johnson paper was produced (with Kruskal and Shepard as senior colleagues
to Johnson and the recent development of nonmetric multidimensional scal-
ing) it shouldn’t be surprising that Johnson emphasized only single-link and
complete-link clustering. To quote (p. 253):

Sokal and Sneath [1963, p. 190] have pointed out that, in methods like our Minimum or
Maximum Methods [that is, single- or complete-link], the merging of two clusters depends
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upon a single similarity value (viz., the least or greatest in the appropriate set). They suggest
that, for greater robustness of the solution, it may sometimes be desirable to use some sort of
average value instead. As we have already noted, to base such a procedure upon averages of
the more obvious types is to lose the invariance, sought here, under monotone transformation
of the similarity values. [emphasis added]

Johnson notes that the fortran program he wrote to carry out both single-
link and complete-link clustering (called hiclust.f, and still available at
www.netlib.org) could be easily modified to include other clustering criteria
such as average-link. Again, we give a relevant quote (p. 254):

Nevertheless, when this seems desirable, the methods described here can be (and, indeed,
have been) modified to yield solutions intermediate between those obtained by these two
extreme methods. J. D. Carroll (personal communication) has suggested an average method
based upon medians which, of course, do have the desired property of monotone invariance.

As noted earlier, the seminal contribution of Johnson’s paper and the
reason for its continued popularity is the characterization of a hierarchical
clustering scheme in terms of what is called an ultrametric. We now turn to
a more formal definition.

Given the partition hierarchies from any of the three criteria mentioned
(complete-, single-, or average-link), suppose the values determined when
the new subsets were formed (that is, the maximum, minimum, or average
proximity between the united subsets) are placed into an n×n matrix, U. In
general, there are n−1 distinct nonzero values that define the levels at which
the n − 1 new subsets are formed in the hierarchy; thus, there are typically
n − 1 distinct nonzero values present in an appropriately row and column
reordered matrix U that characterizes the identical blocks of matrix entries
between subsets united in forming the hierarchy.

Based on a matrix such as U, the partition hierarchy can be retrieved
immediately along with the levels at which the new subsets were formed. In
fact, any (strictly) monotone (that is, order preserving) transformation of
the n − 1 distinct values in such a matrix U would serve the same retrieval
purposes. Thus, as one illustration, the n − 1 distinct values in U could be
replaced by the simple integers, (1, 2, 3, . . . , n− 1), and the partitions of the
hierarchy could still be reconstructed easily. Generally, a matrix U that can
be used to retrieve a partition hierarchy in this way is called an ultrametric
(matrix):
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A matrix U is called an ultrametric (matrix) if for every triple of sub-
scripts, i, j, and k, uij ≤ max(uik, ukj); or equivalently (and much more un-
derstandably), among the three terms, uij, uik, and ukj, the largest two values
are equal.

The last paragraph of Johnson’s paper is very prescient about where his
introduction of the ultrametric concept will lead. This last paragraph begins
(p. 254):

Finally, a different kind of possible extension will be briefly indicated here, in the form
of a presently unsolved problem. In Section I we saw that the construction of an HCS is
equivalent to finding a metric which satisfies the ultrametric inequality. Given a similarity
measure d, we would in general like to find the closest metric D which satisfies the ultrametric
inequality — various measures of closeness could be used. ... To the author’s knowledge,
this problem is unsolved.1

So, as Johnson foreshadowed, it is now common in the literature to reformu-
late this hierarchical clustering task as that of locating a best-fitting ultra-
metric matrix, say, U∗ = {u∗ij}, to the given proximity matrix, P, such that
the least squares criterion ∑

i<j

(pij − u∗ij)
2 ,

is minimized. Nevertheless, Johnson’s paper is a true classic, as is evidenced
by the fact that about one-fifth of its citations were received in the most
recent four years since its appearance almost fifty years ago.
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1This comment about being “unsolved” is somewhat of an understatement. The task of finding the
“closest” ultrametric falls within the class of optimization problems now known as NP-hard, which includes
all the old combinatorial chestnuts, such as the traveling salesman problem. Although Johnson was a
computer scientist, he cannot be faulted for not proving or knowing this in 1967. The notion of a problem
being NP-hard was not even introduced into the computer science literature until the early 1970s.
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