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The now familiar psychometric topic of nonmetric multidimensional scal-
ing (NMDS) was introduced into the quantitative psychology literature by
the publication of two highly-cited companion papers from Roger Shepard:

Shepard, R. N. (1962). The analysis of proximities: Multidimensional
scaling with an unknown distance function. I. II. Psychometrika, 27, 125–
140; 219—246. (2309 citations in Google Scholar as of 4/1/2016)

These two papers discuss the task of embedding a set of n objects, say,
{O1, . . . , On}, into a Euclidean space of K dimensions, based on a given
numerical proximity measure, pij, defined for each object pair, Oi and Oj.
It will be assumed for convenience that these proximities are keyed as dis-
similarities so that larger values for pij reflect more dissimilar objects. The
embedding was to be done in such a way that: (1) the rank-ordering of the
proximities would reflect as closely as possible the rank-ordering of the in-
duced (Euclidean) distances in the K-dimensional space, and (2), the number
of dimensions used (that is, the value of K), would be as small as possible.
The term “nonmetric” arises from a reliance on only the rank-ordering of the
proximities and not on their actual (“metric”) numerical values.

To implement his ideas for nonmetric multidimensional scaling, Shepard
developed a FORTRAN program to carry out an iterative process of embed-
ding n objects into a space of minimum dimensionality that would have a
satisfactory rank-order correspondence between the proximities and the in-
duced Euclidean distances. In Shepard’s hands, some dramatic data analysis
examples were given in the Psychometrika paper labeled as II (for exam-
ple, the famous two-dimensional color circle illustration based on data from
Ekman). What was less clear from these two Shepard papers was whether a
naive practitioner could get the same type of results using Shepard’s program,
which apparently was guided by some trial-and-error adjustments during the
iterative process. This is the point where Roger Shepard’s colleague from Bell
Labs, Joe Kruskal, enters the picture, and which led to the two highly-cited

1



Psychometrika papers that are the main purpose of this current note. In
comments that Shepard made on the occasion of his two Psychometika pa-
pers being named “Citation Classics” (May 31, 1979), Kruskal’s crucial role
is emphasized in making nonmetric multidimensional scaling a widely-used
and viable technique:

After a period of trial-and-error adjustment of the parameters of the iterative process,
success came with dramatic suddenness on March 17, 1961. According to the computer
log, it was at precisely 2:33 p.m. EST on that day that the iterative process first converged
to a stationary configuration, revealing a remarkably exact recovery of an underlying test
configuration. The excitement of that moment was rivaled only by the birth of my daughter
on the very next day. Since then my daughter has developed into a fine young woman;
and, thanks in part to the subsequent contributions of my mathematical colleague Joseph
Kruskal, nonmetric multidimensional scaling is now finding wide application throughout the
cognitive, behavioral, and biomedical sciences.

The genius of the two Kruskal papers is that they took Shepard’s intu-
itive ideas and turned them into a reliable means of carrying out a nonmetric
multidimensional scaling. Kruskal began by defining an explicit loss function
to minimize, called stress; he then proposed a numerical strategy for its opti-
mization through the “method of steepest descent.” To effect a sole reliance
on the rank-order of the proximities, a number of “monotone regression”
steps, based on a separately important “pool adjacent violators algorithm”
(PAVA), were interspersed within the steepest descent mechanism.

To define the stress of a given fixed configuration, suppose the n objects are
embedded in a K-dimensional space with an interpoint distance, dij, between
objects Oi and Oj. Stress, S, is then given by

S =

√√√√√∑
i<j(dij − d̂ij)2∑

i<j d2ij
;

here, the d̂ij are called disparities and are those numbers that minimize S
subject to the constraint that the d̂ij have the same rank-order as the pij:
d̂ij ≤ d̂i′j′ whenever pij < pi′j′. This later minimization of S is the monotone
regression step carried out using PAVA. At this point, the iterative method of
steepest descent is used to improve S, which then leads to another monotone
regression step, and so on until convergence (that is, until S can no longer
be improved).
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A prime contribution of the Kruskal papers is that they came with a
practical way of carrying out a nonmetric multidimensional scaling through
an available FORTRAN program, mdscal.f. This specific program as well
as its various Bell Labs successors, such as KYST2a, are still available on
various netlib.org web sites. An additional advantage of using one of these
routines was the availability of various built-in graphics and plots, such as
what has become known as the “Shepard diagram.” The latter is a scatterplot
of final interpoint distances on the y-axis and dissimilarities on the x-axis.
The disparities, d̂ij, are plotted as “predicted values” from the monotone
regression, tracing out the monotone regression line that either stays at the
same horizontal level or increases when moving toward that more positive
dissimilarity values along the x-axis. The degree to which the values cluster
compactly around the monotone regression line, gives an indication of how
well the multidimensional scaling reflects the original dissimilarities.

As we have noted, the main contribution of the two highly-cited Kruskal
papers (second only in Psychometrika to the massively cited coefficient alpha
paper of Cronbach (1951) and the heavily miscited paper of Kaiser (1974)),
was to make NMDS viable by proposing an explicit loss function plus a means
for its optimization that included an interweaving of the monotone regression
steps. This Kruskal codification of NMDS is well-noted by Shepard in his
1974 Psychometric Society Presidential Address published in Psychometrika:
“Representation of structure in similarity data: Problems and prospects” (39,
p. 376):

Although my original method generally yielded spatial configurations that appeared in-
distinguishable from those furnished by subsequent methods, my mathematical colleague
Joseph Kruskal soon noted that the precise measure of departure from monotonicity that
was being minimized by the method was neither explicitly defined nor even known to exist
in an explicitly definable form. Thus, despite the intuitive plausibility and practical success
of the method, it lacked the conceptual advantage of a strict mathematical specification of
exactly what problem was being solved. Moreover, in the absence of an explicitly defined
loss function, general techniques for the minimization of such functions (notably, gradient
methods) were not apparently applicable. The iterative method that was used consequently
appeared somewhat ad hoc.

In closing, we might raise a few side issues with the two seminal Kruskal
papers, some of which have been addressed subsequently in the literature:
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1) Kruskal proposed a verbal scale for evaluating the numerical value of
stress that should not be used to assess how good or bad a particular scaling
might be. For example, .20 was labeled as “poor,” .10 was labeled “fair,”
and so on. What is most relevant for studying the adequacy of a spatial
representation, is substantive interpretability, and that is never reducible to
a single number.

2) The local minimum issue for the method of steepest descent is addressed
by Kruskal but not in the sufficient depth the problem deserves. For one di-
mension, in particular (that is, for K = 1), and for the city-block distance
function more generally, local minima are such a major problem that alterna-
tive combinatorial optimization strategies may be the preferred approaches.

3) Degenerate solutions in NMDS are not that uncommon, where stress is
reduced to zero but the resulting configurations are confined to just several
points. These noninformative solutions occur whenever monotone regression
is used and there is a group structure in the dissimilarity data; that is, when
all within group dissimilarities are smaller than those between groups. Pro-
vision should be made to use some alternative to monotone regression, such
as monotone regression splines or convex/concave regression.

4) In choosing the number of dimensions for a spatial representation (that
is, in choosing K), Kruskal suggests the use of a “scree plot” based on stress
and looking for the proverbial “elbow.” This rarely works in any context
where one is forced to identify an “elbow.” A better strategy may be to
restrict K to be less than or equal to three, thus allowing only the types of
realizable spatial representations that the method was designed to provide.
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