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Week 3: Probability Theory—Application Areas

— how subjective probabilities might be related to the four
levels of a “legal burden of proof”: “preponderance of the
evidence”; “clear and convincing evidence”; “clear,
unequivocal, and convincing evidence”; and “proof beyond a
reasonable doubt”

— the distinction between “general causation” and “specific
causation”; the common legal standard for arguing specific
causation as an “attributable proportion of risk” of 50% or
more

— issues of probability, risk, and gambling; spread betting and
point shaving; parimutuel betting; the importance of context
and framing in risky choice and decision-making
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Required Reading:
SGEP (87–118) —
Some Probability Considerations in Discrimination and
Classification
Probability and Litigation
Probability of causation
Probability scales and rulers
The cases of Vincent Gigante and Agent Orange
Betting, Gaming, and Risk
Spread betting
Parimutuel betting
Some psychological considerations in gambling
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Popular Articles —

Better Decisions Through Science, John A. Swets, Robyn M.
Dawes, and John Monahan (Scientific American, October 2000)

Do Fingerprints Lie? Michael Specter (New Yorker, May 27,
2002)

Under Suspicion, Atul Gawande (New Yorker, January 8, 2001)

Suggested Reading:
Suggested Reading on Agent Orange and Judge Weinstein
Appendix: The Redacted Text of Judge Weinstein’s Opinion in
the Fatico Case
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Appendix: Guidelines for Determining the Probability of
Causation and Methods for Radiation Dose Reconstruction
Under the Employees Occupational Illness Compensation
Program Act of 2000
Appendix: District of Columbia Court of Appeals, In Re As. H
(Decided: June 10, 2004)
Suggested Reading on Issues of Risk
Suggested Reading on Issues of Betting and Gaming

Film: The Central Park Five (2 hours)
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Discrimination and Classification

The term discrimination can refer to the task of separating
groups through linear combinations of variables maximizing a
criterion, such as an F -ratio.

The linear combinations themselves are commonly called
Fisher’s linear discriminant functions.

The related term classification refers to the task of allocating
observations to existing groups, typically to minimize the cost
and/or probability of misclassification.

These two topics are intertwined, but here we briefly comment
only on the topic of classification.
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In the simplest situation, we have two populations, π1 and π2;

π1 is assumed to be characterized by a normal distribution with
mean µ1 and variance σ2X (the density is denoted by f1(x));

π2 is characterized by a normal distribution with mean µ2 and
(common) variance σ2X (the density is denoted by f2(x)).

Given an observation, say x0, we wish to decide whether it
should be assigned to π1 or to π2.

Assuming that µ1 ≤ µ2, a criterion point c is chosen; the rule
then becomes: allocate to π1 if x0 ≤ c , and to π2 if > c.
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The probabilities of misclassification are given in the following
chart:

True State
π1 π2

π1 1− α β
Decision

π2 α 1− β

In the terminology of our previous usage of Bayes’ rule to
obtain the positive predictive value of a test, and assuming that
π1 refers to a person having “it,” and π2 to not having “it,”
the sensitivity of the test is 1− α (true positive);

specificity is 1− β, and thus, β refers to a false positive.
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To choose c so that α+ β is smallest, select the point at which
the densities are equal.

A more complicated way of stating this decision rule is to
allocate to π1 if f1(x0)/f2(x0) ≥ 1; if < 1, then allocate to π2.

Suppose now that the prior probabilities of being drawn from
π1 and π2 are p1 and p2, respectively, where p1 + p2 = 1. If c
is chosen so the Total Probability of Misclassification (TPM) is
minimized (that is, p1α + p2β), the rule would be to allocate
to π1 if f1(x0)/f2(x0) ≥ p2/p1; if < p2/p1, then allocate to π2.
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assigning to π1 when actually coming from π2), and c(2|1) (for
assigning to π2 when actually coming from π1),

choose c to minimize the Expected Cost of Misclassification
(ECM), c(2|1)p1α + c(1|2)p1β, by the rule of allocating to π1
if f1(x0)/f2(x0) ≥ (c(1|2)/c(2|1))(p2/p1);

if < (c(1|2)/c(2|1))(p2/p1), then allocate to π2.
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ROC Curves

In the terminology of signal detection theory and the general
problem of yes/no diagnostic decisions, a plot of sensitivity
(true positive probability) on the y -axis against 1− specificity
on the x-axis as c varies, is an ROC curve (for Receiver
Operating Characteristic).

This ROC terminology originated in World War II in detecting
enemy planes by radar (group π1) from the noise generated by
random interference (group π2).

The ROC curve is bowed from the origin of (0, 0) at the
lower-left corner to (1.0, 1.0) at the upper right; it indicates
the trade-off between increasing the probability of true
positives and the increase of false positives.

Generally, the adequacy of a particular diagnostic decision
strategy is measured by the area under the ROC curve.
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Probability and Litigation

Jack Weinstein is a sitting federal judge in the Eastern District
of New York (Brooklyn).

He also may be the only federal judge ever to publish an article
in a major statistics journal (Statistical Science, 1988, 3,
286–297, “Litigation and Statistics”).

This last work developed out of Weinstein’s association in the
middle 1980s with the National Academy of Science’s Panel on
Statistical Assessment as Evidence in the Courts.

This panel produced the comprehensive Springer-Verlag
volume. The Evolving Role of Statistical Assessments as
Evidence in the Courts (1988; Stephen E. Fienberg, Editor).
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290th Commandment

The importance that Weinstein gives to the role of probability
and statistics in the judicial process is best expressed by
Weinstein himself (we quote from his Statistical Science
article):

The use of probability and statistics in the legal process is not
unique to our times. Two thousand years ago, Jewish law, as
stated in the Talmud, cautioned about the use of probabilistic
inference. The medieval Jewish commentator Maimonides
summarized this traditional view in favor of certainty when he
noted:
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“The 290th Commandment is a prohibition to carry out
punishment on a high probability, even close to certainty . . .
No punishment [should] be carried out except where . . . the
matter is established in certainty beyond any doubt . . . ”

That view, requiring certainty, is not acceptable to the courts.
We deal not with the truth, but with probabilities, in criminal
as well as civil cases. Probabilities, express and implied,
support every factual decision and inference we make in court.
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is given in its entirety in an appendix.

According to this commandment, an absolute certainty of guilt
is guaranteed by having two witnesses to exactly the same
crime.

Such a probability of guilt being identically one is what is meant
by the contemporary phrase “without any shadow of a doubt.”
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Two points need to be emphasized about this Mitzvah (Jewish
commandment).

One is the explicit unequalness of costs attached to the false
positive and negative errors:

“it is preferable that a thousand guilty people be set free than
to execute one innocent person.”

The second is in dealing with what would now be characterized
as the (un)reliability of eyewitness testimony.

Two eyewitnesses are required, neither is allowed to make just
an inference about what happened but must have observed it
directly, and exactly the same crime must be observed by both
eyewitnesses.
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Fatico Case

Judge Weinstein’s interest in how probabilities could be part of
a judicial process goes back some years before the National
Research Council Panel.

In one relevant opinion from 1978, United States v. Fatico, he
wrestled with how subjective probabilities might be related to
the four levels of a “legal burden of proof”; what level was
required in this particular case; and, finally, was it then met.

The four (ordered) levels are: preponderance of the evidence;
clear and convincing evidence; clear, unequivocal, and
convincing evidence; and proof beyond a reasonable doubt.

The case in point involved proving that Daniel Fatico was a
“made” member of the Gambino organized crime family, and
thus could be given a “Special Offender” status.
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Other Standards

Other common standards used for police searches or arrests
might also be related to an explicit probability scale.

The lowest standard (perhaps a probability of 20%) would be
“reasonable suspicion” to determine whether a brief
investigative stop or search by any governmental agent is
warranted (in the 2010 “Papers, Please” law in Arizona, a
“reasonable suspicion” standard is set for requesting
documentation).

A higher standard would be “probable cause” to assess whether
a search or arrest is warranted, or whether a grand jury should
issue an indictment.

A value of, say, 40% might indicate a “probable cause” level
that would put it somewhat below a “preponderance of the
evidence” criterion.
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Probability of Causation

Judge Weinstein is best known for the mass (toxic) tort cases
he has presided over for the last four decades (for example,
asbestos, breast implants, Agent Orange).

In all of these kinds of torts, there is a need to establish, in a
legally acceptable fashion, some notion of causation.

There is first a concept of general causation concerned with
whether an agent can increase the incidence of disease in a
group;

because of individual variation, a toxic agent will not generally
cause disease in every exposed individual.

Specific causation deals with an individual’s disease being
attributable to exposure from an agent.



Probability
Theory:

Application
Areas

Psychology
(Statistics)

484

Cohort Studies

The establishment of general causation (and a necessary
requirement for establishing specific causation) typically relies
on a cohort study.

Disease No Disease Row Sums

Exposed N11 N12 N1+

Not Exposed N21 N22 N2+
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Here, N11, N12, N21, and N22 are the cell frequencies; N1+ and
N2+ are the row frequencies.

Conceptually, these data are considered generated from two
(statistically independent) binomial distributions for the
“Exposed” and “Not Exposed” conditions.

If we let pE and pNE denote the two underlying probabilities of
getting the disease for particular cases within the conditions,
respectively, the ratio pE

pNE
is referred to as the relative risk

(RR), and may be estimated with the data as follows:
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estimated relative risk = R̂R = p̂E
p̂NE

= N11/N1+

N21/N2+
.

A measure commonly referred to in tort litigations is
attributable risk (AR), defined as

AR = pE − pNE
pE

, and estimated by

ÂR = p̂E − p̂NE
p̂E

= 1− 1

R̂R
.
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Attributable Risk

Attributable risk, also known as the “attributable proportion of
risk” or the “etiologic fraction,” represents the amount of
disease among exposed individuals assignable to the exposure.

It measures the maximum proportion of the disease attributable
to exposure from an agent, and consequently, the maximum
proportion of disease that could be potentially prevented by
blocking the exposure’s effect or eliminating the exposure itself.

If the association is causal, AR is the proportion of disease in
an exposed population that might be caused by the agent, and
therefore, that might be prevented by eliminating exposure to
the agent.
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The common legal standard used to argue for both specific and
general causation is an RR of 2.0, or an AR of 50%.

At this level, it is “as likely as not” that exposure “caused” the
disease (or “as likely to be true as not,” or “the balance of the
probabilities”).

Obviously, one can never be absolutely certain that a particular
agent was “the” cause of a disease in any particular individual,
but to allow an idea of “probabilistic causation” or
“attributable risk” to enter into legal arguments provides a
justifiable basis for compensation.

It has now become routine to do this in the courts.
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Probability Scales and Rulers

The topic of relating a legal understanding of burdens of proof
to numerical probability values has been around for a very long
time.

Fienberg (1988) provides a short discussion of Jeremy
Bentham’s (1827) suggestion of a “persuasion thermometer,”
and some contemporary reaction to this idea from Thomas
Starkie (1833):

Jeremy Bentham appears to have been the first jurist to
seriously propose that witnesses and judges numerically
estimate their degrees of persuasion. Bentham envisioned a
kind of moral thermometer:

The scale being understood to be composed of ten degrees—in
the language applied by the French philosophers to
thermometers, a decigrade scale—a man says, My persuasion is
at 10 or 9, etc. affirmative, or at least 10, etc. negative . . .
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Several particularly knotty problems and (mis)interpretations
when it comes to assigning numbers to the possibility of guilt
arise most markedly in eyewitness identification.

Because cases involving eyewitness testimony are typically
criminal cases, they demand burdens of proof “beyond a
reasonable doubt”;

thus, the (un)reliability of eyewitness identification becomes
problematic when it is the primary (or only) evidence presented
to meet this standard.
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As discussed extensively in the judgment and decision-making
literature, there is a distinction between making a subjective
estimate of some quantity, and one’s confidence in that
estimate once made.

For example, suppose someone picks a suspect out of a lineup,
and is then asked the (Bentham) question,

“on a scale of from one to ten, characterize your level of
‘certainty’.”

Does an answer of “seven or eight” translate into a probability
of innocence of two or three out of ten?
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Exactly such confusing situations, however, arise.

We give a fairly extensive redaction in an appendix of an
opinion from the District of Columbia Court of Appeals in a
case named “In re As.H” (2004).

It combines extremely well both the issues of eyewitness
(un)reliability and the attempt to quantify that which may be
better left in words;

the dissenting Associate Judge Farrel noted pointedly:

“I believe that the entire effort to quantify the standard of
proof beyond a reasonable doubt is a search for fool’s gold.”
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Betting, Gaming, and Risk

Antoine Gombaud, better known as the Chevalier de Méré, was
a French writer and amateur mathematician from the early
17th century.

He is important to the development of probability theory
because of one specific thing; he asked a mathematician, Blaise
Pascal, about a gambling problem dating from the Middle
Ages, named “the problem of points.”

The question was one of fairly dividing the stakes among
individuals who had agreed to play a certain number of games,
but for whatever reason had to stop before they were finished.

Pascal in a series of letters with Pierre de Fermat, solved this
equitable division task, and in the process laid out the
foundations for a modern theory of probability.
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Pascal and Fermat also provided the Chevalier with a solution
to a vexing problem he was having in his own personal
gambling.

Apparently, the Chevalier had been very successful in making
even money bets that a six would be rolled at least once in four
throws of a single die.

But when he tried a similar bet based on tossing two dice 24
times and looking for a double-six to occur, he was singularly
unsuccessful in making any money.

The reason for this difference between the Chevalier’s two
wagers was clarified by the formalization developed by Pascal
and Fermat for such games of chance.
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Some Useful Concepts

A simple experiment is some process that we engage in that
leads to one single outcome from a set of possible outcomes
that could occur.

For example, a simple experiment could consist of rolling a
single die once, where the set of possible outcomes is
{1, 2, 3, 4, 5, 6} (note that curly braces will be used consistently
to denote a set).

Or, two dice could be tossed and the number of spots
occurring on each die noted; here, the possible outcomes are
integer number pairs: {(a, b) | 1 ≤ a ≤ 6; 1 ≤ b ≤ 6}.
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with “H” for “heads” and “T ” for “tails”;

picking a card from a normal deck could give a set of outcomes
containing 52 objects, or if we were only interested in the
particular suit for a card chosen, the possible outcomes could
be {H,D,C ,S}, corresponding to heart, diamond, club, and
spade, respectively.
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The set of possible outcomes for a simple experiment is the
sample space (which we denote by the script letter S).

An object in a sample space is a sample point.

An event is defined as a subset of the sample space, and an
event containing just a single sample point is an elementary
event.

A particular event is said to occur when the outcome of the
simple experiment is a sample point belonging to the defining
subset for that event.
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= {1, 2, 3, 4, 5, 6}.
The event of obtaining an even number is the subset {2, 4, 6};
the event of obtaining an odd number is {1, 3, 5};
the (elementary) event of tossing a 5 is a subset with a single
sample point, {5}, and so on.
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For a sample space containing K sample points, there are 2K

possible events (that is, there are 2K possible subsets of the
sample space).

This includes the “impossible event” (usually denoted by ∅),
characterized as that subset of S containing no sample points
and which therefore can never occur;

and the “sure event,” defined as that subset of S containing all
sample points (that is, S itself), which therefore must always
occur.

In our single die example, there are 2
6

= 64 possible events,
including ∅ and S.
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The motivation for introducing the idea of a simple experiment
and sundry concepts is to use this structure as an intuitively
reasonable mechanism for assigning probabilities to the
occurrence of events.

These probabilities are usually assigned through an assumption
that sample points are equally likely to occur, assuming we
have characterized appropriately what is to be in S.

Generally, only the probabilities are needed for the K
elementary events containing single sample points.

The probability for any other event is merely the sum of the
probabilities for all those elementary events defined by the
sample points making up that particular event.
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introduced at the beginning of the last chapter.

In the specific instance in which the sample points are equally
likely to occur, the probability assigned to any event is merely
the number of sample points defining the event divided by K .

As special cases, we obtain a probability of 0 for the impossible
event, and 1 for the sure event.
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The Chevalier Games

One particularly helpful use of the sample space/event concepts
is when a simple experiment is carried out multiple times (for,
say, N replications), and the outcomes defining the sample
space are the ordered N-tuples formed from the results
obtained for the individual simple experiments.

The Chevalier who rolls a single die four times, generates the
sample space

{(D1,D2,D3,D4) | 1 ≤ Di ≤ 6, 1 ≤ i ≤ 4} ,
that is, all 4-tuples containing the integers from 1 to 6.

Generally, in a replicated simple experiment with K possible
outcomes on each trial, the number of different N-tuples is KN

(using a well-known arithmetic multiplication rule).

Thus, for the Chevalier example, there are 64 = 1296 possible
4-tuples, and each such 4-tuple should be equally likely to
occur (given the “fairness” of the die being used).
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To define the event of “no sixes rolled in four replications,” we
would use the subset (event)

{(D1,D2,D3,D4) | 1 ≤ Di ≤ 5, 1 ≤ i ≤ 4} ,

containing 54 = 625 sample points.

Thus, the probability of “no sixes rolled in four replications” is
625/1296 = .4822.

As we will see formally below, the fact that this latter
probability is strictly less than 1/2 gives the Chevalier a distinct
advantage in playing an even money game defined by his being
able to roll at least one six in four tosses of a die.
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The other game that was not as successful for the Chevalier,
was tossing two dice 24 times and betting on obtaining a
double-six somewhere in the sequence.

The sample space here is
{(P1,P2, . . . ,P24)}, where
Pi = {(ai , bi ) | 1 ≤ ai ≤ 6; 1 ≤ bi ≤ 6},
and has 3624 possible sample points.

The event of “not obtaining a double-six somewhere in the
sequence” would look like the sample space just defined except
that the (6, 6) pair would be excluded from each Pi .
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Thus, there are 3524 members in this event.

The probability of “not obtaining a double-six somewhere in
the sequence” is

3524

3624
= (

35

36
)24 = .5086 .

Because this latter value is greater than 1/2 (in contrast to the
previous gamble), the Chevalier would now be at a
disadvantage making an even money bet.
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Random Variables to Evaluate Bets

The best way to evaluate the perils or benefits present in a
wager is through the device of a discrete random variable.

Suppose X denotes the outcome of some bet; and let
a1, . . . , aT represent the T possible payoffs from one wager,
where positive values reflect gain and negative values reflect
loss.

In addition, we know the probability distribution for X ; that is,
P(X = at) for 1 ≤ t ≤ T .

What one expects to realize from one observation on X (or
from one play of the game) is its expected value,

E (X ) =
T∑
t=1

atP(X = at).



Probability
Theory:

Application
Areas

Psychology
(Statistics)

484 If E (X ) is negative, we would expect to lose this much on each
bet; if positive, this is the expected gain on each bet.

When E (X ) is 0, the term “fair game” is applied to the
gamble, implying that one neither expects to win or lose
anything on each trial; one expects to “break even.”

When E (X ) 6= 0, the game is “unfair” but it could be unfair in
your favor (E (X ) > 0), or unfair against you (E (X ) < 0).
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To evaluate the Chevalier’s two games, suppose X takes on the
values of +1 and −1 (the winning or losing of one dollar, say).

For the single die rolled four times,
E (X ) = (+1)(.5178) + (−1)(.4822) = .0356 ≈ .04.

Thus, the game is unfair in the Chevalier’s favor because he
expects to win a little less than four cents on each wager.

For the 24 tosses of two dice,
E (X ) = (+1)(.4914) + (−1)(.5086) = −.0172 ≈ −.02.

Here, the Chevalier is at a disadvantage.

The game is unfair against him, and he expects to lose about
two cents on each play of the game.
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Spread Betting

The type of wagering that occurs in roulette or craps is often
referred to as fixed-odds betting; you know your chances of
winning when you place your bet.

A different type of wager is spread betting, invented by a
mathematics teacher from Connecticut, Charles McNeil, who
became a Chicago bookmaker in the 1940s.

Here, a payoff is based on the wager’s accuracy; it is no longer
a simple “win or lose” situation.

Generally, a spread is a range of outcomes, and the bet itself is
on whether the outcome will be above or below the spread.
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In common sports betting (for example, NCAA college
basketball), a “point spread” for some contest is typically
advertised by a bookmaker.

If the gambler chooses to bet on the “underdog,” he is said to
“take the points” and will win if the underdog’s score plus the
point spread is greater than that of the favored team;

conversely, if the gambler bets on the favorite, he “gives the
points” and wins only if the favorite’s score minus the point
spread is greater than the underdog’s score.

In general, the announcement of a point spread is an attempt
to even out the market for the bookmaker, and to generate an
equal amount of money bet on each side.

The commission that a bookmaker charges will ensure a
livelihood, and thus, the bookmaker can be unconcerned about
the actual outcome.
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Parimutuel Betting

The term parimutuel betting (based on the French for “mutual
betting”) characterizes the type of wagering system used in
horse racing, dog tracks, jai alai, and similar contests where the
participants end up in a rank order.

It was devised in 1867 by Joseph Oller, a Catalan impresario
(he was also a bookmaker and founder of the Paris Moulin
Rouge in 1889).

Very simply, all bets of a particular type are first pooled
together;

the house then takes its commission and the taxes it has to pay
from this aggregate;

finally, the payoff odds are calculated by sharing the residual
pool among the winning bets.
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To explain using some notation, suppose there are T
contestants and bets are made of W1,W2, . . . ,WT on an
outright “win.”

The total pool is Tpool =
∑T

t=1 Wt .

If the commission and tax rate is a proportion, R, the residual
pool, Rpool , to be allocated among the winning bettors is
Rpool = Tpool(1− R).

If the winner is denoted by t∗, and the money bet on the winner
is Wt∗, the payoff per dollar for a successful bet is Rpool/Wt∗.

We refer to the odds on outcome t∗ as

(
Rpool

Wt∗
− 1) to 1 .

For example, if
Rpool

Wt∗
had a value of 9.0, the odds would be 8 to

1: you get 8 dollars back for every dollar bet plus the original
dollar.
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In comparison with casino gambling, parimutuel betting pits
one gambler against other gamblers, and not against the house.

Also, the odds are not fixed but calculated only after the
betting pools have closed (thus, odds cannot be turned into
real probabilities legitimately; they are empirically generated
based on the amounts of money bet).

A skilled horse player (or “handicapper”) can make a steady
income, particularly in the newer Internet “rebate” shops that
return to the bettor some percentage of every bet made.

Because of lower overhead, these latter Internet gaming
concerns can reduce their “take” considerably (from, say, 15%
to 2%), making a good handicapper an even better living than
before.
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Psychological Considerations in Gambling

As shown in the work of Tversky and Kahneman, the
psychology of choice is dictated to a great extent by the
framing of a decision problem;

that is, the context into which a particular decision problem is
placed.

The power of framing in how decision situations are assessed,
can be illustrated well though an example and the associated
discussion provided by Tversky and Kahneman (1981, p. 453)
and given in the text.
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The Value of Information

The most relevant aspect of any decision-making proposition
involving risky alternatives is the information one has, both on
the probabilities that might be associated with the gambles and
what the payoffs might be.

In the 1987 movie, Wall Street, the character playing Gordon
Gekko states:

“The most valuable commodity I know of is information.”
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Dirty Harry

I know what you’re thinkin’. “Did he fire six shots or only
five?” Well, to tell you the truth, in all this excitement I kind
of lost track myself.
— Harry Callahan (Dirty Harry)

The movie quotation just given from Dirty Harry illustrates the
crucial importance of who has information and who doesn’t.

At the end of Callahan’s statement to the bank robber as to
whether he felt lucky, the bank robber says:

“I gots to know!”

Harry puts the .44 Magnum to the robber’s head and pulls the
trigger; Harry knew that he had fired six shots and not five.


