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Preface to the Second Edition

Since the first edition of the book was published, a great deal of new ma-
terial on principal component analysis (PCA) and related topics has been
published, and the time is now ripe for a new edition. Although the size of
the book has nearly doubled, there are only two additional chapters. All
the chapters in the first edition have been preserved, although two have
been renumbered. All have been updated, some extensively. In this updat-
ing process I have endeavoured to be as comprehensive as possible. This
is reflected in the number of new references, which substantially exceeds
those in the first edition. Given the range of areas in which PCA is used,
it is certain that I have missed some topics, and my coverage of others will
be too brief for the taste of some readers. The choice of which new topics
to emphasize is inevitably a personal one, reflecting my own interests and
biases. In particular, atmospheric science is a rich source of both applica-
tions and methodological developments, but its large contribution to the
new material is partly due to my long-standing links with the area, and not
because of a lack of interesting developments and examples in other fields.
For example, there are large literatures in psychometrics, chemometrics
and computer science that are only partially represented. Due to consid-
erations of space, not everything could be included. The main changes are
now described.

Chapters 1 to 4 describing the basic theory and providing a set of exam-
ples are the least changed. It would have been possible to substitute more
recent examples for those of Chapter 4, but as the present ones give nice
illustrations of the various aspects of PCA, there was no good reason to do
so. One of these examples has been moved to Chapter 1. One extra prop-
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erty (A6) has been added to Chapter 2, with Property A6 in Chapter 3
becoming A7.

Chapter 5 has been extended by further discussion of a number of ordina-
tion and scaling methods linked to PCA, in particular varieties of the biplot.
Chapter 6 has seen a major expansion. There are two parts of Chapter 6
concerned with deciding how many principal components (PCs) to retain
and with using PCA to choose a subset of variables. Both of these topics
have been the subject of considerable research in recent years, although a
regrettably high proportion of this research confuses PCA with factor anal-
ysis, the subject of Chapter 7. Neither Chapter 7 nor 8 have been expanded
as much as Chapter 6 or Chapters 9 and 10.

Chapter 9 in the first edition contained three sections describing the
use of PCA in conjunction with discriminant analysis, cluster analysis and
canonical correlation analysis (CCA). All three sections have been updated,
but the greatest expansion is in the third section, where a number of other
techniques have been included, which, like CCA, deal with relationships be-
tween two groups of variables. As elsewhere in the book, Chapter 9 includes
yet other interesting related methods not discussed in detail. In general,
the line is drawn between inclusion and exclusion once the link with PCA
becomes too tenuous.

Chapter 10 also included three sections in first edition on outlier de-
tection, influence and robustness. All have been the subject of substantial
research interest since the first edition; this is reflected in expanded cover-
age. A fourth section, on other types of stability and sensitivity, has been
added. Some of this material has been moved from Section 12.4 of the first
edition; other material is new.

The next two chapters are also new and reflect my own research interests
more closely than other parts of the book. An important aspect of PCA is
interpretation of the components once they have been obtained. This may
not be easy, and a number of approaches have been suggested for simplifying
PCs to aid interpretation. Chapter 11 discusses these, covering the well-
established idea of rotation as well recently developed techniques. These
techniques either replace PCA by alternative procedures that give simpler
results, or approximate the PCs once they have been obtained. A small
amount of this material comes from Section 12.4 of the first edition, but
the great majority is new. The chapter also includes a section on physical
interpretation of components.

My involvement in the developments described in Chapter 12 is less direct
than in Chapter 11, but a substantial part of the chapter describes method-
ology and applications in atmospheric science and reflects my long-standing
interest in that field. In the first edition, Section 11.2 was concerned with
‘non-independent and time series data.” This section has been expanded
to a full chapter (Chapter 12). There have been major developments in
this area, including functional PCA for time series, and various techniques
appropriate for data involving spatial and temporal variation, such as (mul-
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tichannel) singular spectrum analysis, complex PCA, principal oscillation
pattern analysis, and extended empirical orthogonal functions (EOFs).
Many of these techniques were developed by atmospheric scientists and
are little known in many other disciplines.

The last two chapters of the first edition are greatly expanded and be-
come Chapters 13 and 14 in the new edition. There is some transfer of
material elsewhere, but also new sections. In Chapter 13 there are three
new sections, on size/shape data, on quality control and a final ‘odds-and-
ends’ section, which includes vector, directional and complex data, interval
data, species abundance data and large data sets. All other sections have
been expanded, that on common principal component analysis and related
topics especially so.

The first section of Chapter 14 deals with varieties of non-linear PCA.
This section has grown substantially compared to its counterpart (Sec-
tion 12.2) in the first edition. It includes material on the Gifi system of
multivariate analysis, principal curves, and neural networks. Section 14.2
on weights, metrics and centerings combines, and considerably expands,
the material of the first and third sections of the old Chapter 12. The
content of the old Section 12.4 has been transferred to an earlier part in
the book (Chapter 10), but the remaining old sections survive and are
updated. The section on non-normal data includes independent compo-
nent analysis (ICA), and the section on three-mode analysis also discusses
techniques for three or more groups of variables. The penultimate section
is new and contains material on sweep-out components, extended com-
ponents, subjective components, goodness-of-fit, and further discussion of
neural nets.

The appendix on numerical computation of PCs has been retained
and updated, but, the appendix on PCA in computer packages has
been dropped from this edition mainly because such material becomes
out-of-date very rapidly.

The preface to the first edition noted three general texts on multivariate
analysis. Since 1986 a number of excellent multivariate texts have appeared,
including Everitt and Dunn (2001), Krzanowski (2000), Krzanowski and
Marriott (1994) and Rencher (1995, 1998), to name just a few. Two large
specialist texts on principal component analysis have also been published.
Jackson (1991) gives a good, comprehensive, coverage of principal com-
ponent analysis from a somewhat different perspective than the present
book, although it, too, is aimed at a general audience of statisticians and
users of PCA. The other text, by Preisendorfer and Mobley (1988), con-
centrates on meteorology and oceanography. Because of this, the notation
in Preisendorfer and Mobley differs considerably from that used in main-
stream statistical sources. Nevertheless, as we shall see in later chapters,
especially Chapter 12, atmospheric science is a field where much devel-
opment of PCA and related topics has occurred, and Preisendorfer and
Mobley’s book brings together a great deal of relevant material.
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A much shorter book on PCA (Dunteman, 1989), which is targeted at
social scientists, has also appeared since 1986. Like the slim volume by
Daultrey (1976), written mainly for geographers, it contains little technical
material.

The preface to the first edition noted some variations in terminology.
Likewise, the notation used in the literature on PCA varies quite widely.
Appendix D of Jackson (1991) provides a useful table of notation for some of
the main quantities in PCA collected from 34 references (mainly textbooks
on multivariate analysis). Where possible, the current book uses notation
adopted by a majority of authors where a consensus exists.

To end this Preface, I include a slightly frivolous, but nevertheless in-
teresting, aside on both the increasing popularity of PCA and on its
terminology. It was noted in the preface to the first edition that both
terms ‘principal component analysis’ and ‘principal components analysis’
are widely used. I have always preferred the singular form as it is compati-
ble with ‘factor analysis,” ‘cluster analysis,” ‘canonical correlation analysis’
and so on, but had no clear idea whether the singular or plural form was
more frequently used. A search for references to the two forms in key words
or titles of articles using the Web of Science for the six years 1995-2000, re-
vealed that the number of singular to plural occurrences were, respectively,
1017 to 527 in 1995-1996; 1330 to 620 in 1997-1998; and 1634 to 635 in
1999-2000. Thus, there has been nearly a 50 percent increase in citations
of PCA in one form or another in that period, but most of that increase
has been in the singular form, which now accounts for 72% of occurrences.
Happily, it is not necessary to change the title of this book.

I. T. Jolliffe
April, 2002
Aberdeen, U. K.
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Principal component analysis is probably the oldest and best known of
the techniques of multivariate analysis. It was first introduced by Pear-
son (1901), and developed independently by Hotelling (1933). Like many
multivariate methods, it was not widely used until the advent of elec-
tronic computers, but it is now well entrenched in virtually every statistical
computer package.

The central idea of principal component analysis is to reduce the dimen-
sionality of a data set in which there are a large number of interrelated
variables, while retaining as much as possible of the variation present in
the data set. This reduction is achieved by transforming to a new set of
variables, the principal components, which are uncorrelated, and which are
ordered so that the first few retain most of the variation present in all of
the original variables. Computation of the principal components reduces to
the solution of an eigenvalue-eigenvector problem for a positive-semidefinite
symmetric matrix. Thus, the definition and computation of principal com-
ponents are straightforward but, as will be seen, this apparently simple
technique has a wide variety of different applications, as well as a num-
ber of different derivations. Any feelings that principal component analysis
is a narrow subject should soon be dispelled by the present book; indeed
some quite broad topics which are related to principal component analysis
receive no more than a brief mention in the final two chapters.

Although the term ‘principal component analysis’ is in common usage,
and is adopted in this book, other terminology may be encountered for the
same technique, particularly outside of the statistical literature. For exam-
ple, the phrase ‘empirical orthogonal functions’ is common in meteorology,
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and in other fields the term ‘factor analysis’ may be used when ‘princi-
pal component analysis’ is meant. References to ‘eigenvector analysis ’ or
‘latent vector analysis’ may also camouflage principal component analysis.
Finally, some authors refer to principal components analysis rather than
principal component analysis. To save space, the abbreviations PCA and
PC will be used frequently in the present text.

The book should be useful to readers with a wide variety of backgrounds.
Some knowledge of probability and statistics, and of matrix algebra, is
necessary, but this knowledge need not be extensive for much of the book.
It is expected, however, that most readers will have had some exposure to
multivariate analysis in general before specializing to PCA. Many textbooks
on multivariate analysis have a chapter or appendix on matrix algebra, e.g.
Mardia et al. (1979, Appendix A), Morrison (1976, Chapter 2), Press (1972,
Chapter 2), and knowledge of a similar amount of matrix algebra will be
useful in the present book.

After an introductory chapter which gives a definition and derivation of
PCA, together with a brief historical review, there are three main parts to
the book. The first part, comprising Chapters 2 and 3, is mainly theoretical
and some small parts of it require rather more knowledge of matrix algebra
and vector spaces than is typically given in standard texts on multivariate
analysis. However, it is not necessary to read all of these chapters in order
to understand the second, and largest, part of the book. Readers who are
mainly interested in applications could omit the more theoretical sections,
although Sections 2.3, 2.4, 3.3, 3.4 and 3.8 are likely to be valuable to
most readers; some knowledge of the singular value decomposition which
is discussed in Section 3.5 will also be useful in some of the subsequent
chapters.

This second part of the book is concerned with the various applications
of PCA, and consists of Chapters 4 to 10 inclusive. Several chapters in this
part refer to other statistical techniques, in particular from multivariate
analysis. Familiarity with at least the basic ideas of multivariate analysis
will therefore be useful, although each technique is explained briefly when
it is introduced.

The third part, comprising Chapters 11 and 12, is a mixture of theory and
potential applications. A number of extensions, generalizations and uses of
PCA in special circumstances are outlined. Many of the topics covered in
these chapters are relatively new, or outside the mainstream of statistics
and, for several, their practical usefulness has yet to be fully explored. For
these reasons they are covered much more briefly than the topics in earlier
chapters.

The book is completed by an Appendix which contains two sections.
The first section describes some numerical algorithms for finding PCs,
and the second section describes the current availability of routines
for performing PCA and related analyses in five well-known computer
packages.
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The coverage of individual chapters is now described in a little more
detail. A standard definition and derivation of PCs is given in Chapter 1,
but there are a number of alternative definitions and derivations, both ge-
ometric and algebraic, which also lead to PCs. In particular the PCs are
‘optimal’ linear functions of x with respect to several different criteria, and
these various optimality criteria are described in Chapter 2. Also included
in Chapter 2 are some other mathematical properties of PCs and a discus-
sion of the use of correlation matrices, as opposed to covariance matrices,
to derive PCs.

The derivation in Chapter 1, and all of the material of Chapter 2, is in
terms of the population properties of a random vector x. In practice, a sam-
ple of data is available, from which to estimate PCs, and Chapter 3 discusses
the properties of PCs derived from a sample. Many of these properties cor-
respond to population properties but some, for example those based on
the singular value decomposition, are defined only for samples. A certain
amount of distribution theory for sample PCs has been derived, almost
exclusively asymptotic, and a summary of some of these results, together
with related inference procedures, is also included in Chapter 3. Most of
the technical details are, however, omitted. In PCA, only the first few PCs
are conventionally deemed to be useful. However, some of the properties in
Chapters 2 and 3, and an example in Chapter 3, show the potential useful-
ness of the last few, as well as the first few, PCs. Further uses of the last few
PCs will be encountered in Chapters 6, 8 and 10. A final section of Chapter
3 discusses how PCs can sometimes be (approximately) deduced, without
calculation, from the patterns of the covariance or correlation matrix.

Although the purpose of PCA, namely to reduce the number of variables
from p to m(< p), is simple, the ways in which the PCs can actually be
used are quite varied. At the simplest level, if a few uncorrelated variables
(the first few PCs) reproduce most of the variation in all of the original
variables, and if, further, these variables are interpretable, then the PCs
give an alternative, much simpler, description of the data than the original
variables. Examples of this use are given in Chapter 4, while subsequent
chapters took at more specialized uses of the PCs.

Chapter 5 describes how PCs may be used to look at data graphically,
Other graphical representations based on principal coordinate analysis, bi-
plots and correspondence analysis, each of which have connections with
PCA, are also discussed.

A common question in PCA is how many PCs are needed to account for
‘most’ of the variation in the original variables. A large number of rules
has been proposed to answer this question, and Chapter 6 describes many
of them. When PCA replaces a large set of variables by a much smaller
set, the smaller set are new variables (the PCs) rather than a subset of the
original variables. However, if a subset of the original variables is preferred,
then the PCs can also be used to suggest suitable subsets. How this can be
done is also discussed in Chapter 6.



xii Preface to the First Edition

In many texts on multivariate analysis, especially those written by non-
statisticians, PCA is treated as though it is part of the factor analysis.
Similarly, many computer packages give PCA as one of the options in a
factor analysis subroutine. Chapter 7 explains that, although factor analy-
sis and PCA have similar aims, they are, in fact, quite different techniques.
There are, however, some ways in which PCA can be used in factor analysis
and these are briefly described.

The use of PCA to ‘orthogonalize’ a regression problem, by replacing
a set of highly correlated regressor variables by their PCs, is fairly well
known. This technique, and several other related ways of using PCs in
regression are discussed in Chapter 8.

Principal component analysis is sometimes used as a preliminary to, or
in conjunction with, other statistical techniques, the obvious example being
in regression, as described in Chapter 8. Chapter 9 discusses the possible
uses of PCA in conjunction with three well-known multivariate techniques,
namely discriminant analysis, cluster analysis and canonical correlation
analysis.

It has been suggested that PCs, especially the last few, can be useful in
the detection of outliers in a data set. This idea is discussed in Chapter 10,
together with two different, but related, topics. One of these topics is the
robust estimation of PCs when it is suspected that outliers may be present
in the data, and the other is the evaluation, using influence functions, of
which individual observations have the greatest effect on the PCs.

The last two chapters, 11 and 12, are mostly concerned with modifica-
tions or generalizations of PCA. The implications for PCA of special types
of data are discussed in Chapter 11, with sections on discrete data, non-
independent and time series data, compositional data, data from designed
experiments, data with group structure, missing data and goodness-offit
statistics. Most of these topics are covered rather briefly, as are a number
of possible generalizations and adaptations of PCA which are described in
Chapter 12.

Throughout the monograph various other multivariate techniques are in-
troduced. For example, principal coordinate analysis and correspondence
analysis appear in Chapter 5, factor analysis in Chapter 7, cluster analy-
sis, discriminant analysis and canonical correlation analysis in Chapter 9,
and multivariate analysis of variance in Chapter 11. However, it has not
been the intention to give full coverage of multivariate methods or even to
cover all those methods which reduce to eigenvalue problems. The various
techniques have been introduced only where they are relevant to PCA and
its application, and the relatively large number of techniques which have
been mentioned is a direct result of the widely varied ways in which PCA
can be used.

Throughout the book, a substantial number of examples are given, using
data from a wide variety of areas of applications. However, no exercises have
been included, since most potential exercises would fall into two narrow
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categories. One type would ask for proofs or extensions of the theory given,
in particular, in Chapters 2, 3 and 12, and would be exercises mainly in
algebra rather than statistics. The second type would require PCAs to be
performed and interpreted for various data sets. This is certainly a useful
type of exercise, but many readers will find it most fruitful to analyse their
own data sets. Furthermore, although the numerous examples given in the
book should provide some guidance, there may not be a single ‘correct’
interpretation of a PCA.

I. T. Jolliffe
June, 1986
Kent, U. K.
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1

Introduction

The central idea of principal component analysis (PCA) is to reduce the
dimensionality of a data set consisting of a large number of interrelated
variables, while retaining as much as possible of the variation present in
the data set. This is achieved by transforming to a new set of variables,
the principal components (PCs), which are uncorrelated, and which are
ordered so that the first few retain most of the variation present in all of
the original variables.

The present introductory chapter is in two parts. In the first, PCA is
defined, and what has become the standard derivation of PCs, in terms of
eigenvectors of a covariance matrix, is presented. The second part gives a
brief historical review of the development of PCA.

1.1 Definition and Derivation of
Principal Components

Suppose that x is a vector of p random variables, and that the variances
of the p random variables and the structure of the covariances or corre-
lations between the p variables are of interest. Unless p is small, or the
structure is very simple, it will often not be very helpful to simply look
at the p variances and all of the %p(p — 1) correlations or covariances. An
alternative approach is to look for a few (< p) derived variables that pre-
serve most of the information given by these variances and correlations or
covariances.
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-£-

Figure 1.1. Plot of 50 observations on two variables x1,z2.

Although PCA does not ignore covariances and correlations, it concen-
trates on variances. The first step is to look for a linear function ajx of
the elements of x having maximum variance, where a; is a vector of p
constants a1, 12, ..., 01y, and ' denotes transpose, so that

p
’
QX = Q11T + Q1222 + - - + Q1pTp = E Q15T
Jj=1

Next, look for a linear function abx, uncorrelated with ajx having max-
imum variance, and so on, so that at the kth stage a linear function o,x
is found that has maximum variance subject to being uncorrelated with
aix, ahXx, ..., af_ x. The kth derived variable, o .x is the kth PC. Up to
p PCs could be found, but it is hoped, in general, that most of the vari-
ation in x will be accounted for by m PCs, where m < p. The reduction
in complexity achieved by transforming the original variables to PCs will
be demonstrated in many examples later in the book, but it will be useful
here to consider first the unrealistic, but simple, case where p = 2. The
advantage of p = 2 is, of course, that the data can be plotted exactly in
two dimensions.
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Figure 1.2. Plot of the 50 observations from Figure 1.1 with respect to their PCs
Z1, 22.

Figure 1.1 gives a plot of 50 observations on two highly correlated vari-
ables x1, x2 . There is considerable variation in both variables, though
rather more in the direction of x5 than x;. If we transform to PCs zq, 29,
we obtain the plot given in Figure 1.2.

It is clear that there is greater variation in the direction of z; than in
either of the original variables, but very little variation in the direction of
zo. More generally, if a set of p (> 2) variables has substantial correlations
among them, then the first few PCs will account for most of the variation
in the original variables. Conversely, the last few PCs identify directions
in which there is very little variation; that is, they identify near-constant
linear relationships among the original variables.

As a taster of the many examples to come later in the book, Figure 1.3
provides a plot of the values of the first two principal components in a
7-variable example. The data presented here consist of seven anatomical
measurements on 28 students, 11 women and 17 men. This data set and
similar ones for other groups of students are discussed in more detail in
Sections 4.1 and 5.1. The important thing to note here is that the first two
PCs account for 80 percent of the total variation in the data set, so that the
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Figure 1.3. Student anatomical measurements: plots of 28 students with respect
to their first two PCs. x denotes women; o denotes men.

2-dimensional picture of the data given in Figure 1.3 is a reasonably faith-
ful representation of the positions of the 28 observations in 7-dimensional
space. It is also clear from the figure that the first PC, which, as we shall
see later, can be interpreted as a measure of the overall size of each student,
does a good job of separating the women and men in the sample.

Having defined PCs, we need to know how to find them. Consider, for the
moment, the case where the vector of random variables x has a known co-
variance matrix . This is the matrix whose (7, j)th element is the (known)
covariance between the ith and jth elements of x when 7 # j, and the vari-
ance of the jth element of x when ¢ = j. The more realistic case, where 3
is unknown, follows by replacing X by a sample covariance matrix S (see
Chapter 3). It turns out that for k = 1,2,--- ,p, the kth PC is given by
2, = o, x where o, is an eigenvector of X corresponding to its kth largest
eigenvalue . Furthermore, if oy, is chosen to have unit length (o}, = 1),
then var(zi) = A\, where var(zy) denotes the variance of z.

The following derivation of these results is the standard one given in
many multivariate textbooks; it may be skipped by readers who mainly
are interested in the applications of PCA. Such readers could also skip
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much of Chapters 2 and 3 and concentrate their attention on later chapters,
although Sections 2.3, 2.4, 3.3, 3.4, 3.8, and to a lesser extent 3.5, are likely
to be of interest to most readers.

To derive the form of the PCs, consider first ajx; the vector a; max-
imizes varja)x] = a)¥a;. It is clear that, as it stands, the maximum
will not be achieved for finite a¢; so a normalization constraint must be
imposed. The constraint used in the derivation is @ja; = 1, that is, the
sum of squares of elements of a; equals 1. Other constraints, for example
Max;|o ;| = 1, may more useful in other circumstances, and can easily be
substituted later on. However, the use of constraints other than aja; =
constant in the derivation leads to a more difficult optimization problem,
and it will produce a set of derived variables different from the PCs.

To maximize o} X subject to afja; = 1, the standard approach is to
use the technique of Lagrange multipliers. Maximize

ai oy — Maja; — 1),
where A is a Lagrange multiplier. Differentiation with respect to a; gives
Yoy — Aoy =0,
or
(2 - AM,)a; =0,

where I, is the (p x p) identity matrix. Thus, X is an eigenvalue of 3 and
a is the corresponding eigenvector. To decide which of the p eigenvectors
gives a)jx with maximum variance, note that the quantity to be maximized
is

i Ta; = djha; = Mg = ),

so A must be as large as possible. Thus, a; is the eigenvector corresponding
to the largest eigenvalue of X, and var(ajx) = @)X a; = A;, the largest
eigenvalue.

In general, the kth PC of x is ajx and var(ajx) = A, where X is
the kth largest eigenvalue of 3, and ay is the corresponding eigenvector.
This will now be proved for k = 2; the proof for £ > 3 is slightly more
complicated, but very similar.

The second PC, afx, maximizes ayX o subject to being uncorrelated
with ax, or equivalently subject to cov]ax, abx] = 0, where cov(z, y)
denotes the covariance between the random variables x and y . But

cov [a)x, abx] = ajTay = abSa; = ab\a) = \Miahay = A\ as.
Thus, any of the equations

ajYa; =0, at¥a; =0,
ajas =0, abay; =0
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could be used to specify zero correlation between afx and abx. Choosing
the last of these (an arbitrary choice), and noting that a normalization
constraint is again necessary, the quantity to be maximized is

arSas — Mabas — 1) — pahay,

where A\, ¢ are Lagrange multipliers. Differentiation with respect to aw
gives

2(12 — )\(12 — gf)al =0
and multiplication of this equation on the left by a gives
ajTay — A\ajas — pajag =0,

which, since the first two terms are zero and aja; = 1, reduces to ¢ = 0.
Therefore, Zas — Az = 0, or equivalently (3 — AL,)as = 0, so A is once
more an eigenvalue of 3, and oy the corresponding eigenvector.

Again, A = a4Xas, so X is to be as large as possible. Assuming that
3. does not have repeated eigenvalues, a complication that is discussed in
Section 2.4, A cannot equal \;. If it did, it follows that as = arq, violating
the constraint ajas = 0. Hence ) is the second largest eigenvalue of X,
and s is the corresponding eigenvector.

As stated above, it can be shown that for the third, fourth, ..., pth
PCs, the vectors of coeflicients as, ay, ..., are the eigenvectors of X
corresponding to Az, A4, ..., Ap, the third and fourth largest, ..., and the

smallest eigenvalue, respectively. Furthermore,
varfapx] =\, fork=1,2,...,p.

This derivation of the PC coefficients and variances as eigenvectors and
eigenvalues of a covariance matrix is standard, but Flury (1988, Section 2.2)
and Diamantaras and Kung (1996, Chapter 3) give alternative derivations
that do not involve differentiation.

It should be noted that sometimes the vectors «y are referred to
as ‘principal components.” This usage, though sometimes defended (see
Dawkins (1990), Kuhfeld (1990) for some discussion), is confusing. It is
preferable to reserve the term ‘principal components’ for the derived vari-
ables o} x, and refer to oy, as the vector of coefficients or loadings for the
kth PC. Some authors distinguish between the terms ‘loadings’ and ‘coef-
ficients,” depending on the normalization constraint used, but they will be
used interchangeably in this book.

1.2 A Brief History of Principal Component
Analysis

The origins of statistical techniques are often difficult to trace. Preisendor-
fer and Mobley (1988) note that Beltrami (1873) and Jordan (1874)
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independently derived the singular value decomposition (SVD) (see Sec-
tion 3.5) in a form that underlies PCA. Fisher and Mackenzie (1923) used
the SVD in the context of a two-way analysis of an agricultural trial. How-
ever, it is generally accepted that the earliest descriptions of the technique
now known as PCA were given by Pearson (1901) and Hotelling (1933).
Hotelling’s paper is in two parts. The first, most important, part, together
with Pearson’s paper, is among the collection of papers edited by Bryant
and Atchley (1975).

The two papers adopted different approaches, with the standard alge-
braic derivation given above being close to that introduced by Hotelling
(1933). Pearson (1901), on the other hand, was concerned with finding
lines and planes that best fit a set of points in p-dimensional space, and
the geometric optimization problems he considered also lead to PCs, as will
be explained in Section 3.2

Pearson’s comments regarding computation, given over 50 years before
the widespread availability of computers, are interesting. He states that his
methods ‘can be easily applied to numerical problems,” and although he
says that the calculations become ‘cumbersome’ for four or more variables,
he suggests that they are still quite feasible.

In the 32 years between Pearson’s and Hotelling’s papers, very little
relevant material seems to have been published, although Rao (1964) in-
dicates that Frisch (1929) adopted a similar approach to that of Pearson.
Also, a footnote in Hotelling (1933) suggests that Thurstone (1931) was
working along similar lines to Hotelling, but the cited paper, which is
also in Bryant and Atchley (1975), is concerned with factor analysis (see
Chapter 7), rather than PCA.

Hotelling’s approach, too, starts from the ideas of factor analysis but, as
will be seen in Chapter 7, PCA, which Hotelling defines, is really rather
different in character from factor analysis.

Hotelling’s motivation is that there may be a smaller ‘fundamental set
of independent variables ...which determine the values’ of the original p
variables. He notes that such variables have been called ‘factors’ in the
psychological literature, but introduces the alternative term ‘components’
to avoid confusion with other uses of the word ‘factor’ in mathematics.
Hotelling chooses his ‘components’ so as to maximize their successive con-
tributions to the total of the variances of the original variables, and calls
the components that are derived in this way the ‘principal components.’
The analysis that finds such components is then christened the ‘method of
principal components.’

Hotelling’s derivation of PCs is similar to that given above, using La-
grange multipliers and ending up with an eigenvalue/eigenvector problem,
but it differs in three respects. First, he works with a correlation, rather
than covariance, matrix (see Section 2.3); second, he looks at the original
variables expressed as linear functions of the components rather than com-
ponents expressed in terms of the original variables; and third, he does not
use matrix notation.
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After giving the derivation, Hotelling goes on to show how to find the
components using the power method (see Appendix Al). He also discusses
a different geometric interpretation from that given by Pearson, in terms of
ellipsoids of constant probability for multivariate normal distributions (see
Section 2.2). A fairly large proportion of his paper, especially the second
part, is, however, taken up with material that is not concerned with PCA
in its usual form, but rather with factor analysis (see Chapter 7).

A further paper by Hotelling (1936) gave an accelerated version of the
power method for finding PCs; in the same year, Girshick (1936) provided
some alternative derivations of PCs, and introduced the idea that sample
PCs were maximum likelihood estimates of underlying population PCs.

Girshick (1939) investigated the asymptotic sampling distributions of the
coefficients and variances of PCs, but there appears to have been only a
small amount of work on the development of different applications of PCA
during the 25 years immediately following publication of Hotelling’s paper.
Since then, however, an explosion of new applications and further theoret-
ical developments has occurred. This expansion reflects the general growth
of the statistical literature, but as PCA requires considerable computing
power, the expansion of its use coincided with the widespread introduction
of electronic computers. Despite Pearson’s optimistic comments, it is not re-
ally feasible to do PCA by hand, unless p is about four or less. But it is pre-
cisely for larger values of p that PCA is most useful, so that the full potential
of the technique could not be exploited until after the advent of computers.

Before ending this section, four papers will be mentioned; these appeared
towards the beginning of the expansion of interest in PCA and have become
important references within the subject. The first of these, by Anderson
(1963), is the most theoretical of the four. It discussed the asymptotic
sampling distributions of the coefficients and variances of the sample PCs,
building on the earlier work by Girshick (1939), and has been frequently
cited in subsequent theoretical developments.

Rao’s (1964) paper is remarkable for the large number of new ideas con-
cerning uses, interpretations and extensions of PCA that it introduced, and
which will be cited at numerous points in the book.

Gower (1966) discussed links between PCA and various other statistical
techniques, and also provided a number of important geometric insights.

Finally, Jeffers (1967) gave an impetus to the really practical side of the
subject by discussing two case studies in which the uses of PCA go beyond
that of a simple dimension-reducing tool.

To this list of important papers the book by Preisendorfer and Mobley
(1988) should be added. Although it is relatively unknown outside the
disciplines of meteorology and oceanography and is not an easy read, it
rivals Rao (1964) in its range of novel ideas relating to PCA, some of
which have yet to be fully explored. The bulk of the book was written by
Preisendorfer over a number of years, but following his untimely death the
manuscript was edited and brought to publication by Mobley.
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Despite the apparent simplicity of the technique, much research is still
being done in the general area of PCA, and it is very widely used. This is
clearly illustrated by the fact that the Web of Science identifies over 2000
articles published in the two years 1999-2000 that include the phrases ‘prin-
cipal component analysis’ or ‘principal components analysis’ in their titles,
abstracts or keywords. The references in this book also demonstrate the
wide variety of areas in which PCA has been applied. Books or articles
are cited that include applications in agriculture, biology, chemistry, clima-
tology, demography, ecology, economics, food research, genetics, geology,
meteorology, oceanography, psychology and quality control, and it would
be easy to add further to this list.



2

Mathematical and Statistical
Properties of Population Principal
Components

In this chapter many of the mathematical and statistical properties of PCs
are discussed, based on a known population covariance (or correlation)
matrix ¥. Further properties are included in Chapter 3 but in the context
of sample, rather than population, PCs. As well as being derived from a
statistical viewpoint, PCs can be found using purely mathematical argu-
ments; they are given by an orthogonal linear transformation of a set of
variables optimizing a certain algebraic criterion. In fact, the PCs optimize
several different algebraic criteria and these optimization properties, to-
gether with their statistical implications, are described in the first section
of the chapter.

In addition to the algebraic derivation given in Chapter 1, PCs can also be
looked at from a geometric viewpoint. The derivation given in the original
paper on PCA by Pearson (1901) is geometric but it is relevant to samples,
rather than populations, and will therefore be deferred until Section 3.2.
However, a number of other properties of population PCs are also geometric
in nature and these are discussed in the second section of this chapter.

The first two sections of the chapter concentrate on PCA based on a
covariance matrix but the third section describes how a correlation, rather
than a covariance, matrix may be used in the derivation of PCs. It also
discusses the problems associated with the choice between PCAs based on
covariance versus correlation matrices.

In most of this text it is assumed that none of the variances of the PCs are
equal; nor are they equal to zero. The final section of this chapter explains
briefly what happens in the case where there is equality between some of
the variances, or when some of the variances are zero.
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Most of the properties described in this chapter have sample counter-
parts. Some have greater relevance in the sample context, but it is more
convenient to introduce them here, rather than in Chapter 3.

2.1 Optimal Algebraic Properties of Population
Principal Components and Their Statistical
Implications

Consider again the derivation of PCs given in Chapter 1, and denote by
z the vector whose kth element is zj, the kth PC, £k = 1,2,...,p. (Unless
stated otherwise, the kth PC will be taken to mean the PC with the kth
largest variance, with corresponding interpretations for the ‘kth eigenvalue’
and ‘kth eigenvector.”) Then

z=A'x, (2.1.1)

where A is the orthogonal matrix whose kth column, ay, is the kth
eigenvector of ¥. Thus, the PCs are defined by an orthonormal linear
transformation of x. Furthermore, we have directly from the derivation
in Chapter 1 that

TA = AA, (2.1.2)

where A is the diagonal matrix whose kth diagonal element is A\, the kth
eigenvalue of 3, and A\, = var(aj,x) = var(z). Two alternative ways of
expressing (2.1.2) that follow because A is orthogonal will be useful later,
namely

A'SA=A (2.1.3)
and
> =AAA’. (2.1.4)

The orthonormal linear transformation of x, (2.1.1), which defines z, has a
number of optimal properties, which are now discussed in turn.

Property Al. For any integer q, 1 < q < p, consider the orthonormal
linear transformation

y = B'x, (2.1.5)

wherey is a g-element vector and B’ is a (¢xp) matriz, and let 3, = B'YXB
be the variance-covariance matriz for y. Then the trace of X,, denoted
tr (X,), is mazimized by taking B = A,, where A, consists of the first q
columns of A.
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PrOOF. Let 3, be the kth column of B; as the columns of A form a basis
for p-dimensional space, we have

p
/Gk:chkaj7 k:1723"'7Q7

j=1

where cj, 7 = 1,2,...,p, k = 1,2,...,q, are appropriately defined con-
stants. Thus B = AC, where C is the (p X ¢) matrix with (4, k)th element
¢k, and

B'YB = C'A’SAC = C'AC, using (2.1.3)
p
=D _Ajeic]
j=1
where c; is the jth row of C. Therefore

tI‘(B’ZB) /\j tI‘(CjC;)
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k=1
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Now
C=A'B, so
C'C=BAA'B=BB=1,

because A is orthogonal, and the columns of B are orthonormal. Hence

chﬁk =q, (2.1.7)

and the columns of C are also orthonormal. The matrix C can be thought
of as the first ¢ columns of a (p x p) orthogonal matrix, D, say. But the
rows of D are orthonormal and so satisfy d;dj =1,j=1,...,p. As the
rows of C consist of the first g elements of the rows of D, it follows that
cic; <1, j=1,...,p, that is

d <L (2.1.8)
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Now 7 _, c?k is the coefficient of A; in (2.1.6), the sum of these coefficients
is ¢ from (2.1.7), and none of the coefficients can exceed 1, from (2.1.8).
Because A\; > Ay > -+ > Ay, it is fairly clear that 337_ (32{_, ¢3,)A; will
be maximized if we can find a set of ¢ for which

- 1, j=1,....q

2 9 — Ly Yy
Zcﬂ'k_{o, j=q+1,....p. (2.1.9)
But if B’ = A, then

e — 1, 1<j=k<gq
7= 0, elsewhere,

which satisfies (2.1.9). Thus tr(3,) achieves its maximum value when B’ =
Al ]
a

Property A2. Consider again the orthonormal transformation
y = B'x,

with x, B, A and X defined as before. Then tr(3,) is minimized by taking
B = Aj where A} consists of the last q columns of A.

PrROOF. The derivation of PCs given in Chapter 1 can easily be turned
around for the purpose of looking for, successively, linear functions of x
whose variances are as small as possible, subject to being uncorrelated
with previous linear functions. The solution is again obtained by finding
eigenvectors of 3, but this time in reverse order, starting with the smallest.
The argument that proved Property Al can be similarly adapted to prove
Property A2. o

The statistical implication of Property A2 is that the last few PCs are
not simply unstructured left-overs after removing the important PCs. Be-
cause these last PCs have variances as small as possible they are useful in
their own right. They can help to detect unsuspected near-constant linear
relationships between the elements of x (see Section 3.4), and they may
also be useful in regression (Chapter 8), in selecting a subset of variables
from x (Section 6.3), and in outlier detection (Section 10.1).

Property A3. (the Spectral Decomposition of 3)

Y =Maia] + hasal, + -+ Aoy (2.1.10)

/
”
PROOF.

3 = AAA’ from (2.1.4),

and expanding the right-hand side matrix product shows that 3 equals

P
!
E Ao oy,
k=1

as required (see the derivation of (2.1.6)). O
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This result will prove to be useful later. Looking at diagonal elements,
we see that

p
var(z;) = Z )\kaij.
k=1

However, perhaps the main statistical implication of the result is that not
only can we decompose the combined variances of all the elements of x
into decreasing contributions due to each PC, but we can also decompose
the whole covariance matrix into contributions Ao, from each PC. Al-
though not strictly decreasing, the elements of Aoy, will tend to become
smaller as k increases, as Ay decreases for increasing k, whereas the ele-
ments of o, tend to stay ‘about the same size’ because of the normalization
constraints

ajar=1, k=1,2,...,p.

Property Al emphasizes that the PCs explain, successively, as much as
possible of tr(3), but the current property shows, intuitively, that they
also do a good job of explaining the off-diagonal elements of X. This is
particularly true when the PCs are derived from a correlation matrix, and
is less valid when the covariance matrix is used and the variances of the
elements of x are widely different (see Section 2.3).

It is clear from (2.1.10) that the covariance (or correlation) matrix can
be constructed exactly, given the coefficients and variances of the first r
PCs, where r is the rank of the covariance matrix. Ten Berge and Kiers
(1999) discuss conditions under which the correlation matrix can be exactly
reconstructed from the coefficients and variances of the first ¢ (< r) PCs.

A corollary of the spectral decomposition of 3 concerns the conditional
distribution of x, given the first ¢ PCs, z4, ¢ = 1,2,...,(p — 1). It can
be shown that the linear combination of x that has maximum variance,
conditional on z,, is precisely the (¢ + 1)th PC. To see this, we use the
result that the conditional covariance matrix of x, given z, is

E - E;czz;zlzzaca

where 3., is the covariance matrix for z,, X,. is the (p x ¢) matrix
whose (7, k)th element is the covariance between x; and z;, and X, is
the transpose of ¥, (Mardia et al., 1979, Theorem 3.2.4).

It is seen in Section 2.3 that the kth column of X, is Apa. The matrix
>} is diagonal, with kth diagonal element )\,:1, so it follows that

zz

q
Zngjzm = Z )\kak)\gl)\ka;
k=1

[
[M]=

!
Ao,

=
Il
—
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and, from (2.1.10),

p
Y-3.30 T = Y Aogay,
k=(q+1)

Finding a linear function of x having maximum conditional variance
reduces to finding the eigenvalues and eigenvectors of the conditional co-
variance matrix, and it easy to verify that these are simply (A(g41), @(g+1)),
(A(g+2)s ®(g42))s - - - » (Ap, @p). The eigenvector associated with the largest
of these eigenvalues is a(441), so the required linear function is a’(q %
namely the (¢ + 1)th PC.

Property A4. As in Properties A1, A2, consider the transformation
y = B’x. If det(X,) denotes the determinant of the covariance matriz 'y,
then det (X, ) is mazimized when B = A,.

ProOOF. Consider any integer, k, between 1 and ¢, and let S =
the subspace of p-dimensional vectors orthogonal to a,...,ar_1. Then
dim(Sk) = p — k + 1, where dim(Sy) denotes the dimension of S. The kth
eigenvalue, Ay, of ¥ satisfies

A = Sup {aEa}.

acs, | @'
a#0

Suppose that 1 > po > -+ > g, are the eigenvalues of B’YB and that

Y1 Y257 sV, ave the corresponding eigenvectors. Let Ty, = the subspace
of g-dimensional vectors orthogonal to vy, ,7,, with dim(7}) = k.
Then, for any non-zero vector ~ in T},
~v'B'XB~y
— Y = Uk
Yy

Consider the subspace Sy of p-dimensional vectors of the form By for ~ in
T

dim(Sy) = dim(T}) = k (because B is one-to-one; in fact,
B preserves lengths of vectors).

From a general result concerning dimensions of two vector spaces, we have
dim(S, N Sy) + dim(Sy, + Si) = dim S, + dim Sy

But

dim(Sg + S) <p,  dim(Sy)=p—k+1 and dim(Sy) =k,

SO
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There is therefore a non-zero vector o in Sj, of the form o = B~ for a
~ in T}, and it follows that
'R/ 'R/ /
ng’yBEB'y :'yBZB'y: o'Ya <A
~'y ~B'B~y oo
Thus the kth eigenvalue of B'XB < kth eigenvalue of X for k =1,--- ,q.
This means that

a q
det(X,) = H(kth eigenvalue of B'YB) < H Ak
k=1 k=1
But if B = A, then the eigenvalues of B'YB are
q
AL g, o, A, sothat  det(E,) = [ M
k=1

in this case, and therefore det(3,) is maximized when B = A,. O

The result can be extended to the case where the columns of B are not
necessarily orthonormal, but the diagonal elements of B'B are unity (see
Okamoto (1969)). A stronger, stepwise version of Property A4 is discussed
by O’Hagan (1984), who argues that it provides an alternative derivation of
PCs, and that this derivation can be helpful in motivating the use of PCA.
O’Hagan’s derivation is, in fact, equivalent to (though a stepwise version
of) Property A5, which is discussed next.

Note that Property A1l could also have been proved using similar reason-
ing to that just employed for Property A4, but some of the intermediate
results derived during the earlier proof of Al are useful elsewhere in the
chapter.

The statistical importance of the present result follows because the de-
terminant of a covariance matrix, which is called the generalized variance,
can be used as a single measure of spread for a multivariate random vari-
able (Press, 1972, p. 108). The square root of the generalized variance,
for a multivariate normal distribution is proportional to the ‘volume’ in
p-dimensional space that encloses a fixed proportion of the probability dis-
tribution of x. For multivariate normal x, the first ¢ PCs are, therefore, as
a consequence of Property A4, ¢ linear functions of x whose joint probabil-
ity distribution has contours of fixed probability enclosing the maximum
volume.

Property A5. Suppose that we wish to predict each random variable, x;
m X by a linear function of y, where y = B'x, as before. Ifa? is the residual
variance in predicting x; from 'y, then 2?210? is minimized if B = A,.

The statistical implication of this result is that if we wish to get the best
linear predictor of x in a g-dimensional subspace, in the sense of minimizing
the sum over elements of x of the residual variances, then this optimal
subspace is defined by the first ¢ PCs.
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It follows that although Property A5 is stated as an algebraic property,
it can equally well be viewed geometrically. In fact, it is essentially the
population equivalent of sample Property G3, which is stated and proved
in Section 3.2. No proof of the population result A5 will be given here; Rao
(1973, p. 591) outlines a proof in which y is replaced by an equivalent set
of uncorrelated linear functions of x, and it is interesting to note that the
PCs are the only set of p linear functions of x that are uncorrelated and
have orthogonal vectors of coefficients. This last result is prominent in the
discussion of Chapter 11.

A special case of Property A5 was pointed out in Hotelling’s (1933)
original paper. He notes that the first PC derived from a correlation matrix
is the linear function of x that has greater mean square correlation with
the elements of x than does any other linear function. We return to this
interpretation of the property, and extend it, in Section 2.3.

A modification of Property A5 can be introduced by noting that if x is
predicted by a linear function of y = B’x, then it follows from standard
results from multivariate regression (see, for example, Mardia et al., 1979,
p. 160), that the residual covariance matrix for the best such predictor is

IS S JD J (2.1.11)

where ¥, = X,3, = B’YXB, as defined before, X, is the matrix whose
(j, k)th element is the covariance between the jth element of x and the
kth element of y, and 3, is the transpose of ¥,,. Now %,, = B’Y, and
3y = XB, so (2.1.11) becomes

> - ¥B(B'EB) 'B'%. (2.1.12)

The diagonal elements of (2.1.12) are O'JQ-, j=1,2,...,p, so, from Property
A5, B = A, minimizes

o7 = tr[% - B(B'EB) 'B'Y).
Jj=1

A derivation of this result in the sample case, and further discussion of it,
is provided by Jong and Kotz (1999).

An alternative criterion is || — XB(B'XB)~'B’X||, where || - || denotes
the Euclidean norm of a matrix and equals the square root of the sum of
squares of all the elements in the matrix. It can be shown (Rao, 1964) that
this alternative criterion is also minimized when B = A,.

This section has dealt with PCs derived from covariance matrices. Many
of their properties are also relevant, in modified form, for PCs based on
correlation matrices, as discussed in Section 2.3. That section also contains
a further algebraic property which is specific to correlation matrix-based

PCA.
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2.2  Geometric Properties of Population Principal
Components

It was noted above that Property A5 can be interpreted geometrically, as
well as algebraically, and the discussion following Property A4 shows that
A4, too, has a geometric interpretation. We now look at two further, purely
geometric, properties.

Property G1. Consider the family of p-dimensional ellipsoids
x'27'x = const. (2.2.1)
The PCs define the principal azes of these ellipsoids.

PrOOF. The PCs are defined by the transformation (2.1.1) z = A’x, and
since A is orthogonal, the inverse transformation is x = Az. Substituting
into (2.2.1) gives

(Az)X 7' (Az) = const = 2’ A'S "' Az,

It is well known that the eigenvectors of X! are the same as those of X,

and that the eigenvalues of X' are the reciprocals of those of X, assuming
that they are all strictly positive. It therefore follows, from a corresponding
result to (2.1.3), that AX "' A = A" and hence

7z’ A"z = const.

This last equation can be rewritten
p 22
Z k= const (2.2.2)
Ak
k=1

and (2.2.2) is the equation for an ellipsoid referred to its principal axes.
Equation (2.2.2) also implies that the half-lengths of the principal axes are
proportional to /\1/2, )\é/Q, ceey )\11)/2. O

This result is statistically important if the random vector x has a mul-
tivariate normal distribution. In this case, the ellipsoids given by (2.2.1)
define contours of constant probability for the distribution of x. The first
(largest) principal axis of such ellipsoids will then define the direction in
which statistical variation is greatest, which is another way of expressing
the algebraic definition of the first PC given in Section 1.1. The direction
of the first PC, defining the first principal axis of constant probability el-
lipsoids, is illustrated in Figures 2.1 and 2.2 in Section 2.3. The second
principal axis maximizes statistical variation, subject to being orthogonal
to the first, and so on, again corresponding to the algebraic definition. This
interpretation of PCs, as defining the principal axes of ellipsoids of constant
density, was mentioned by Hotelling (1933) in his original paper.

It would appear that this particular geometric property is only of direct
statistical relevance if the distribution of x is multivariate normal, whereas
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for most other properties of PCs no distributional assumptions are required.
However, the property will be discussed further in connection with Property
G5 in Section 3.2, where we see that it has some relevance even without
the assumption of multivariate normality. Property G5 looks at the sample
version of the ellipsoids x’¥x = const. Because ¥ and X! share the same
eigenvectors, it follows that the principal axes of the ellipsoids x’3x = const
are the same as those of x'X " 'x = const, except that that their order is
reversed.

We digress slightly here to note that some authors imply, or even state
explicitly, as do Qian et al. (1994), that PCA needs multivariate normal-
ity. This text takes a very different view and considers PCA as a mainly
descriptive technique. It will become apparent that many of the properties
and applications of PCA and related techniques described in later chap-
ters, as well as the properties discussed in the present chapter, have no
need for explicit distributional assumptions. It cannot be disputed that
linearity and covariances/correlations, both of which play a central role in
PCA, have especial relevance when distributions are multivariate normal,
but this does not detract from the usefulness of PCA when data have other
forms. Qian et al. (1994) describe what might be considered an additional
property of PCA, based on minimum description length or stochastic com-
plexity (Rissanen and Yu, 2000), but as they use it to define a somewhat
different technique, we defer discussion to Section 14.4.

Property G2. Suppose that X1, X2 are independent random vectors, both
having the same probability distribution, and that X1, X2, are both subjected
to the same linear transformation

yi = BIXi, 1= 1,2

If B is a (p X q) matriz with orthonormal columns chosen to maximize
E[(y1 —y2) (y1 — y2)], then B = A, using the same notation as before.

Proor. This result could be viewed as a purely algebraic property, and,
indeed, the proof below is algebraic. The property is, however, included
in the present section because it has a geometric interpretation. This is
that the expected squared Euclidean distance, in a g-dimensional subspace,
between two vectors of p random variables with the same distribution, is
made as large as possible if the subspace is defined by the first ¢ PCs.

To prove Property G2, first note that x;, x5 have the same mean g and
covariance matrix X. Hence y1, y2 also have the same mean and covariance
matrix, B'u, B’XB respectively.

El(y1 —y2) (y1 —y2)] = E{[(y1 — B'p) — (y2 — (B'w)]'[(y1 — B'n)
— (ya—B'n)]}
= E[(y1 —B'p)'(y1 — B'n)]
+ E[(y2 — B'p) (y2 — B'p)].
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The cross-product terms disappear because of the independence of x1, X,
and hence of yq, ys.
Now, for i = 1,2, we have

El(y: —B'n)(yi — B'p)] = E{tr[(y: — B'p)' (yi — B'p)]}
= E{tr[(y; — B'n)(y: — B'n)']}
=tr{E[(y: — B'u)(y: — B'n)']}
= tr(B'SB).

But tr(B’YXB) is maximized when B = A, from Property Al, and the
present criterion has been shown above to be 2 tr(B’YB). Hence Property
G2 is proved. O

There is a closely related property whose geometric interpretation is more
tenuous, namely that with the same definitions as in Property G2,

det{E[(y1 — y2)(y1 — y2)']}

is maximized when B = A, (see McCabe (1984)). This property says that
B = A, makes the generalized variance of (y1 — y2) as large as possible.
Generalized variance may be viewed as an alternative measure of distance
apart of y; and y» in ¢g-dimensional space, though a less intuitively obvious
measure than expected squared Euclidean distance.

Finally, Property G2 can be reversed in the sense that if E[(y1—y2) (y1—
v2)] or det{E[(y1 — y2)(y1 — y2)'|} is to be minimized, then this can be
achieved by taking B = A7.

The properties given in this section and in the previous one show that
covariance matrix PCs satisfy several different optimality criteria, but the
list of criteria covered is by no means exhaustive; for example, Devijver
and Kittler (1982, Chapter 9) show that the first few PCs minimize rep-
resentation entropy and the last few PCs minimize population entropy.
Diamantaras and Kung (1996, Section 3.4) discuss PCA in terms of max-
imizing mutual information between x and y. Further optimality criteria
are given by Hudlet and Johnson (1982), McCabe (1984) and Okamoto
(1969). The geometry of PCs is discussed at length by Treasure (1986).

The property of self-consistency is useful in a non-linear extension of
PCA (see Section 14.1.2). For two p-variate random vectors x, y, the vector
y is self-consistent for x if E(x|y) = y. Flury (1997, Section 8.4) shows that
if x is a p-variate random vector with a multivariate normal or elliptical
distribution, and y is the orthogonal projection of x onto the g-dimensional
subspace spanned by the first ¢ PCs for x, then y is self-consistent for x.
Tarpey (1999) uses self-consistency of principal components after linear
transformation of the variables to characterize elliptical distributions.
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2.3 Principal Components Using a Correlation
Matrix

The derivation and properties of PCs considered above are based on the
eigenvectors and eigenvalues of the covariance matrix. In practice, as will
be seen in much of the remainder of this text, it is more common to define
principal components as

z = A'x", (2.3.1)

where A now has columns consisting of the eigenvectors of the correlation
matrix, and x* consists of standardized variables. The goal in adopting
such an approach is to find the principal components of a standardized
version x* of x, where x* has jth element xj/ajl-f, j=12,...,p, x; is
the jth element of x, and o;; is the variance of x;. Then the covariance
matrix for x* is the correlation matrix of x, and the PCs of x* are given
by (2.3.1).

A third possibility, instead of using covariance or correlation matrices,
is to use covariances of x;/w;, where the weights w; are chosen to reflect

some a priori idea of the relative importance of the variables. The special

case w; = o'/? leads to x*, and to PCs based on the correlation matrix,

i
but various authors have argued that the choice of w; = le»]/ ? is somewhat

arbitrary, and that different values of w; might be better in some applica-
tions (see Section 14.2.1). In practice, however, it is relatively unusual that
a uniquely appropriate set of w; suggests itself.

All the properties of the previous two sections are still valid for corre-
lation matrices, or indeed for covariances based on other sets of weights,
except that we are now considering PCs of x* (or some other transformation
of x), instead of x.

It might seem that the PCs for a correlation matrix could be obtained
fairly easily from those for the corresponding covariance matrix, since x*
is related to x by a very simple transformation. However, this is not the
case; the eigenvalues and eigenvectors of the correlation matrix have no
simple relationship with those of the corresponding covariance matrix. In
particular, if the PCs found from the correlation matrix are expressed in
terms of x by transforming back from x* to x, then these PCs are not
the same as the PCs found from 3, except in very special circumstances
(Chatfield and Collins, 1989, Section 4.4). One way of explaining this is
that PCs are invariant under orthogonal transformations of x but not, in
general, under other transformations (von Storch and Zwiers, 1999, Section
13.1.10). The transformation from x to x* is not orthogonal. The PCs
for correlation and covariance matrices do not, therefore, give equivalent
information, nor can they be derived directly from each other. We now
discuss the relative merits of the two types of PC.
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A major argument for using correlation—rather than covariance—
matrices to define PCs is that the results of analyses for different sets
of random variables are more directly comparable than for analyses based
on covariance matrices. The big drawback of PCA based on covariance ma-
trices is the sensitivity of the PCs to the units of measurement used for
each element of x. If there are large differences between the variances of the
elements of x, then those variables whose variances are largest will tend
to dominate the first few PCs (see, for example, Section 3.3). This may
be entirely appropriate if all the elements of x are measured in the same
units, for example, if all elements of x are anatomical measurements on a
particular species of animal, all recorded in centimetres, say. Even in such
examples, arguments can be presented for the use of correlation matrices
(see Section 4.1). In practice, it often occurs that different elements of x are
completely different types of measurement. Some might be lengths, some
weights, some temperatures, some arbitrary scores on a five-point scale,
and so on. In such a case, the structure of the PCs will depend on the
choice of units of measurement, as is illustrated by the following artificial
example.

Suppose that we have just two variables, x1, x2, and that x; is a length
variable which can equally well be measured in centimetres or in mil-
limetres. The variable x5 is not a length measurement—it might be a
weight, in grams, for example. The covariance matrices in the two cases
are, respectively,

80 44 8000 440
2= (44 80) and Y, = (440 80)'

The first PC is 0.707z; + 0.707z2 for 3; and 0.998z; + 0.055z5 for 3o,
so a relatively minor change in one variable has the effect of changing a
PC that gives equal weight to z; and x5 to a PC that is almost entirely
dominated by x1. Furthermore, the first PC accounts for 77.5 percent of
the total variation for 31, but 99.3 percent for 3.

Figures 2.1 and 2.2 provide another way of looking at the differences be-
tween PCs for the two scales of measurement in x;. The plots give contours
of constant probability, assuming multivariate normality for x for 3; and
3o, respectively. It is clear from these figures that, whereas with X; both
variables have the same degree of variation, for 35 most of the variation is
in the direction of x;. This is reflected in the first PC, which, from Property
G1, is defined by the major axis of the ellipses of constant probability.

This example demonstrates the general behaviour of PCs for a covariance
matrix when the variances of the individual variables are widely different;
the same type of behaviour is illustrated again for samples in Section 3.3.
The first PC is dominated by the variable with the largest variance, the
second PC is dominated by the variable with the second largest variance,
and so on, with a substantial proportion of the total variation accounted
for by just two or three PCs. In other words, the PCs differ little from
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the original variables rearranged in decreasing order of the size of their
variances. Also, the first few PCs account for little of the off-diagonal ele-
ments of X in this case (see Property A3) above. In most circumstances,
such a transformation to PCs is of little value, and it will not occur if the
correlation, rather than covariance, matrix is used.

The example has shown that it is unwise to use PCs on a covariance
matrix when x consists of measurements of different types, unless there is a
strong conviction that the units of measurements chosen for each element of
x are the only ones that make sense. Even when this condition holds, using
the covariance matrix will not provide very informative PCs if the variables
have widely differing variances. Furthermore, with covariance matrices and
non-commensurable variables the PC scores are difficult to interpret—what
does it mean to add a temperature to a weight? For correlation matrices, the
standardized variates are all dimensionless and can be happily combined
to give PC scores (Legendre and Legendre, 1983, p. 129).

Another problem with the use of covariance matrices is that it is more
difficult than with correlation matrices to compare informally the results
from different analyses. Sizes of variances of PCs have the same implications
for different correlation matrices of the same dimension, but not for different
covariance matrices. Also, patterns of coefficients in PCs can be readily
compared for different correlation matrices to see if the two correlation
matrices are giving similar PCs, whereas informal comparisons are often
much trickier for covariance matrices. Formal methods for comparing PCs
from different covariance matrices are, however, available (see Section 13.5).

The use of covariance matrices does have one general advantage over
correlation matrices, and a particular advantage seen in a special case. The
general advantage is that statistical inference regarding population PCs
based on sample PCs is easier for covariance matrices than for correlation
matrices, as will be discussed in Section 3.7. This is relevant when PCA
is used in a context where statistical inference is important. However, in
practice, it is more common to use PCA as a descriptive, rather than an
inferential, tool, and then the potential advantage of covariance matrix
PCA is irrelevant.

The second advantage of covariance matrices holds in the special case
when all elements of x are measured in the same units. It can then be
argued that standardizing the elements of x to give correlations is equiv-
alent to making an arbitrary choice of measurement units. This argument
of arbitrariness can also be applied more generally to the use of correlation
matrices, but when the elements of x are measurements of different types,
the choice of measurement units leading to a covariance matrix is even
more arbitrary, so that the correlation matrix is again preferred.

Standardizing the variables may be thought of as an attempt to remove
the problem of scale dependence from PCA. Another way of doing this is
to compute PCs of the logarithms of the original data (Flury, 1997, Section
8.4), though this is only feasible and sensible for restricted types of data,
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as in allometry (Section 13.2) and for compositional data (Section 13.3).

We conclude this section by looking at three interesting properties which
hold for PCs derived from the correlation matrix. The first is that the
PCs depend not on the absolute values of correlations, but only on their
ratios. This follows because multiplication of all off-diagonal elements of
a correlation matrix by the same constant leaves the eigenvectors of the
matrix unchanged (Chatfield and Collins, 1989, p. 67).

The second property, which was noted by Hotelling (1933) in his original
paper, is that if, instead of the normalization ey = 1, we use

dzdk = )\k, k= 1,2,...,p, (232)

then, &y; the jth element of &y, is the correlation between the jth stan-
dardized variable x;‘ and the kth PC. To see this note that for k =
1,2,...,p,

- 1/2
ay = )\k/ ayp, var(zg) = Ak,

and the p-element vector Xy, has as its jth element the covariance between
x}* and zx. But Yo, = Apay, so the covariance between x;‘ and zj is Apag;.

Also var(z}) = 1, and the correlation between z7 and zj is therefore
AkQjk 1/2
=\ (677
* 1/2 k J
[var(z7%) var(z;)]Y/
= &kjv

as required.

Because of this property the normalization (2.3.2) is quite often used, in
particular in computer packages, but it has the disadvantage that it is less
easy to informally interpret and compare a set of PCs when each PC has a
different normalization on its coefficients. This remark is, of course, relevant
to sample, rather than population, PCs, but, as with some other parts of
the chapter, it is included here to avoid a possibly disjointed presentation.

Both of these properties that hold for correlation matrices can be
modified for covariance matrices, but the results are, in each case, less
straightforward.

The third property is sufficiently substantial to deserve a label. It is
included in this section because, at first sight, it is specific to correlation
matrix PCA although, as we will see, its implications are much wider.
Proofs of the result are available in the references cited below and will not
be reproduced here.

Property A6. For any integer q, 1 < q < p, consider the orthonormal
linear transformation

y = B'x, (2.3.3)

as defined in Property Al. Let R?:q be the squared multiple correlation be-
tween x; and the q variables y1,y2,...,Yq, defined by the elements of y.
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The criterion
p
> R
j=1

is mazimized when yi,ya2,...,Yq are the first q correlation matriz PCs.
The maximized value of the criterion is equal to the sum of the q largest
etgenvalues of the correlation matrix.

Because the principal components are uncorrelated, the criterion in
Property A6 reduces to

P q
2D
j=1k=1

where r?k is the squared correlation between the jth variable and the
kth PC. The criterion will be maximized by any matrix B that gives
y spanning the same g¢-dimensional space as the first ¢ PCs. How-
ever, the correlation matrix PCs are special, in that they successively
maximize the criterion for ¢ = 1,2,...,p. As noted following Prop-
erty A5, this result was given by Hotelling (1933) alongside his original
derivation of PCA, but it has subsequently been largely ignored. It is
closely related to Property A5. Meredith and Millsap (1985) derived
Property A6 independently and noted that optimizing the multiple cor-
relation criterion gives a scale invariant method (as does Property A5;
Cadima, 2000). One implication of this scale invariance is that it gives
added importance to correlation matrix PCA. The latter is not simply
a variance-maximizing technique for standardized variables; its derived
variables are also the result of optimizing a criterion which is scale
invariant, and hence is relevant whether or not the variables are stan-
dardized. Cadima (2000) discusses Property A6 in greater detail and
argues that optimization of its multiple correlation criterion is actually
a new technique, which happens to give the same results as correla-
tion matrix PCA, but is broader in its scope. He suggests that the
derived variables be called Most Correlated Components. Looked at from
another viewpoint, this broader relevance of correlation matrix PCA
gives another reason to prefer it over covariance matrix PCA in most
circumstances.

To conclude this discussion, we note that Property A6 can be easily
modified to give a new property for covariance matrix PCA. The first ¢
covariance marix PCs maximize, amongst all orthonormal linear transfor-
mations of x, the sum of squared covariances between z1,2,...,x, and
the derived variables y1,¥2, ..., yq. Covariances, unlike correlations, are not
scale invariant, and hence neither is covariance matrix PCA.
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2.4 Principal Components with Equal and/or Zero
Variances

The final, short, section of this chapter discusses two problems that may
arise in theory, but are relatively uncommon in practice. In most of this
chapter it has been assumed, implicitly or explicitly, that the eigenvalues
of the covariance or correlation matrix are all different, and that none of
them is zero.

Equality of eigenvalues, and hence equality of variances of PCs, will occur
for certain patterned matrices. The effect of this occurrence is that for a
group of q equal eigenvalues, the corresponding q eigenvectors span a certain
unique ¢-dimensional space, but, within this space, they are, apart from
being orthogonal to one another, arbitrary. Geometrically (see Property
G1), what happens for ¢ = 2 or 3 is that the principal axes of a circle or
sphere cannot be uniquely defined; a similar problem arises for hyperspheres
when g > 3. Thus individual PCs corresponding to eigenvalues in a group of
equal eigenvalues are not uniquely defined. A further problem with equal-
variance PCs is that statistical inference becomes more complicated (see
Section 3.7).

The other complication, variances equal to zero, occurs rather more fre-
quently, but is still fairly unusual. If ¢ eigenvalues are zero, then the rank
of ¥ is (p — ¢) rather than p, and this outcome necessitates modifications
to the proofs of some properties given in Section 2.1 above. Any PC with
zero variance defines an exactly constant linear relationship between the
elements of x. If such relationships exist, then they imply that one variable
is redundant for each relationship, as its value can be determined exactly
from the values of the other variables appearing in the relationship. We
could therefore reduce the number of variables from p to (p — ¢) without
losing any information. Ideally, exact linear relationships should be spotted
before doing a PCA, and the number of variables reduced accordingly. Al-
ternatively, any exact or near-exact linear relationships uncovered by the
last few PCs can be used to select a subset of variables that contain most
of the information available in all of the original variables. This and related
ideas are more relevant to samples than to populations and are discussed
further in Sections 3.4 and 6.3.

There will always be the same number of zero eigenvalues for a cor-
relation matrix as for the corresponding covariance matrix, since an exact
linear relationship between the elements of x clearly implies an exact linear
relationship between the standardized variables, and vice versa. There is
not the same equivalence, however, when it comes to considering equal vari-
ance PCs. Equality of some of the eigenvalues in a covariance (correlation)
matrix need not imply that any of the eigenvalues of the corresponding
correlation (covariance) matrix are equal. A simple example is when the p
variables all have equal correlations but unequal variances. If p > 2, then
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the last (p—1) eigenvalues of the correlation matrix are equal (see Morrison,
1976, Section 8.6), but this relationship will not hold, in general, for the
covariance matrix. Further discussion of patterns in covariance or correla-
tion matrices, and their implications for the structure of the corresponding
PCs, is given in Section 3.8.



3

Mathematical and Statistical
Properties of Sample Principal
Components

The first part of this chapter is similar in structure to Chapter 2, except
that it deals with properties of PCs obtained from a sample covariance
(or correlation) matrix, rather than from a population covariance (or cor-
relation) matrix. The first two sections of the chapter, as in Chapter 2,
describe, respectively, many of the algebraic and geometric properties of
PCs. Most of the properties discussed in Chapter 2 are almost the same for
samples as for populations. They will be mentioned again, but only briefly.
There are, in addition, some properties that are relevant only to sample
PCs, and these will be discussed more fully.

The third and fourth sections of the chapter again mirror those of Chap-
ter 2. The third section discusses, with an example, the choice between
correlation and covariance matrices, while the fourth section looks at the
implications of equal and/or zero variances among the PCs, and illustrates
the potential usefulness of the last few PCs in detecting near-constant
relationships between the variables.

The last five sections of the chapter cover material having no counterpart
in Chapter 2. Section 3.5 discusses the singular value decomposition, which
could have been included in Section 3.1 as an additional algebraic property.
However, the topic is sufficiently important to warrant its own section, as
it provides a useful alternative approach to some of the theory surrounding
PCs, and also gives an efficient practical method for actually computing
PCs.

The sixth section looks at the probability distributions of the coefficients
and variances of a set of sample PCs, in other words, the probability distri-
butions of the eigenvectors and eigenvalues of a sample covariance matrix.
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The seventh section then goes on to show how these distributions may be
used to make statistical inferences about the population PCs, based on
sample PCs.

Section 3.8 demonstrates how the approximate structure and variances
of PCs can sometimes be deduced from patterns in the covariance or cor-
relation matrix. Finally, in Section 3.9 we discuss models that have been
proposed for PCA. The material could equally well have been included in
Chapter 2, but because the idea of maximum likelihood estimation arises
in some of the models we include it in the present chapter.

3.1 Optimal Algebraic Properties of Sample
Principal Components

Before looking at the properties themselves, we need to establish some
notation. Suppose that we have n independent observations on the p-
element random vector x; denote these n observations by xi,Xa,...,X,.
Let z;; = ajx;, i = 1,2,...,n, and choose the vector of coefficients a] to
maximize the sample variance

subject to the normalization constraint aja; = 1. Next let Z;» = abx;, i =
1,2,...,n, and choose a) to maximize the sample variance of the Z;5 subject
to the normalization constraint afas = 1, and subject also to the Z;5 being
uncorrelated with the Z;; in the sample. Continuing this process in an
obvious manner, we have a sample version of the definition of PCs given in
Section 1.1. Thus aj x is defined as the kth sample PC, k =1,2,...,p, and
Zir 1s the score for the ith observation on the kth PC. If the derivation in
Section 1.1 is followed through, but with sample variances and covariances
replacing population quantities, then it turns out that the sample variance
of the PC scores for the kth sample PC is I, the kth largest eigenvalue of the
sample covariance matrix S for x1,Xs,...,X,, and aj is the corresponding
eigenvector for k =1,2,...,p.

Define the (n x p) matrices X and Z to have (i, k)th elements equal to
the value of the kth element Z;; of x;, and to Z;, respectively. Then Z and
X are related by Z = XA, where A is the (p x p) orthogonal matrix whose
kth column is ay,.

If the mean of each element of x is known to be zero, then S = %X’X
It is far more usual for the mean of x to be unknown, and in this case the
(4, k)th element of S is

— l‘] xlk — i‘k),
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where
1 n
ij:ﬁz;jij’ j=12,...,p.
1=

The matrix S can therefore be written as

1 !

§= —X'X, (3.1.1)
where X is an (n x p) matrix with (¢, j)th element (%;; — Z;); the repre-
sentation (3.1.1) will be very useful in this and subsequent chapters. The
notation x;; will be used to denote the (4, j)th element of X, so that x;; is
the value of the jth variable measured about its mean z; for the ith obser-
vation. A final notational point is that it will be convenient to define the
matrix of PC scores as

Z = XA, (3.1.2)

rather than as it was in the earlier definition. These PC scores will have
exactly the same variances and covariances as those given by Z, but will
have zero means, rather than means zx, k=1,2,...,p.

Another point to note is that the eigenvectors of ——X’X and X'X are

n—1

identical, and the eigenvalues of ﬁX’ X are simply ﬁ(the eigenvalues
of X'X). Because of these relationships it will be convenient in some places
below to work in terms of eigenvalues and eigenvectors of X'X, rather than
directly with those of S.

Turning to the algebraic properties A1-Ab5 listed in Section 2.1, define

yi = B'x; fori=1,2,...,n, (3.1.3)

where B, as in Properties A1, A2, A4, A5, is a (px ¢) matrix whose columns
are orthonormal. Then Properties A1, A2, A4, A5, still hold, but with the
sample covariance matrix of the observations y;, ¢ = 1,2,...,n, replacing
¥y, and with the matrix A now defined as having kth column aj, with
A, A7, respectively, representing its first and last ¢ columns. Proofs in
all cases are similar to those for populations, after making appropriate
substitutions of sample quantities in place of population quantities, and
will not be repeated. Property A5 reappears as Property G3 in the next
section and a proof will be given there.

The spectral decomposition, Property A3, also holds for samples in the
form

S = lhaja) + lasa, + - + [,a,a (3.1.4)

!
”
The statistical implications of this expression, and the other algebraic prop-
erties, Al, A2, A4, A5, are virtually the same as for the corresponding
population properties in Section 2.1, except that they must now be viewed
in a sample context.
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In the case of sample correlation matrices, one further reason can be put
forward for interest in the last few PCs, as found by Property A2. Raveh
(1985) argues that the inverse R™! of a correlation matrix is of greater
interest in some situations than R. It may then be more important to
approximate R™' than R in a few dimensions. If this is done using the
spectral decomposition (Property A3) of R™!, then the first few terms will
correspond to the last few PCs, since eigenvectors of R and R~! are the
same, except that their order is reversed. The role of the last few PCs will
be discussed further in Sections 3.4 and 3.7, and again in Sections 6.3, 8.4,
8.6 and 10.1.

One further property, which is concerned with the use of principal com-
ponents in regression, will now be discussed. Standard terminology from
regression is used and will not be explained in detail (see, for example,
Draper and Smith (1998)). An extensive discussion of the use of principal
components in regression is given in Chapter 8.

Property A7. Suppose now that X, defined as above, consists of n ob-
servations on p predictor variables x measured about their sample means,
and that the corresponding regression equation is

y = X8+, (3.1.5)

where y is the vector of n observations on the dependent variable, again
measured about the sample mean. (The notation y for the dependent vari-
able has no connection with the usage of y elsewhere in the chapter, but
is standard in regression.) Suppose that X is transformed by the equation
Z = XB, where B is a (p X p) orthogonal matriz. The regression equation
can then be rewritten as

y =2y +e,

where v = B7!B. The usual least squares estimator for ~ is 4 =
(Z'Z)~'Z'y. Then the elements of 4 have, successively, the smallest possi-
ble variances if B = A, the matriz whose kth column is the kth eigenvector
of X'X, and hence the kth eigenvector of S. Thus Z consists of values of
the sample principal components for x.

ProOF. From standard results in regression (Draper and Smith, 1998,
Section 5.2) the covariance matrix of the least squares estimator 4 is
proportional to

(Z'Z)"' = (B'X'XB)!
— Bfl(Xlx)fl(B/)fl
=B (X'X)"'B,
as B is orthogonal. We require tr(B}(X'X)"'By), ¢ = 1,2,...,p be min-

imized, where B, consists of the first ¢ columns of B. But, replacing %,
by (X'X)~! in Property A2 of Section 2.1 shows that B, must consist of
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the last ¢ columns of a matrix whose kth column is the kth eigenvector
of (X’X)~!. Furthermore, (X'X)~! has the same eigenvectors as X'X, ex-
cept that their order is reversed, so that B, must have columns equal to
the first g eigenvectors of X’X. As this holds for ¢ = 1,2, ..., p, Property
A7 is proved. O

This property seems to imply that replacing the predictor variables in a
regression analysis by their first few PCs is an attractive idea, as those PCs
omitted have coefficients that are estimated with little precision. The flaw in
this argument is that nothing in Property A7 takes account of the strength
of the relationship between the dependent variable y and the elements of
x, or between y and the PCs. A large variance for 4y, the kth element of
~, and hence an imprecise estimate of the degree of relationship between y
and the kth PC, zx, does not preclude a strong relationship between y and
21 (see Section 8.2). Further discussion of Property A7 is given by Fomby
et al. (1978).

There are a number of other properties of PCs specific to the sample
situation; most have geometric interpretations and are therefore dealt with
in the next section.

3.2 Geometric Properties of Sample Principal
Components

As with the algebraic properties, the geometric properties of Chapter 2
are also relevant for sample PCs, although with slight modifications to the
statistical implications. In addition to these properties, the present section
includes a proof of a sample version of Property Ab, viewed geometrically,
and introduces two extra properties which are relevant to sample, but not
population, PCs.

Property G1 is still valid for samples if 3 is replaced by S. The ellipsoids
x’S7!x = const no longer have the interpretation of being contours of
constant probability, though they will provide estimates of such contours
if x1,X2,...,Xx, are drawn from a multivariate normal distribution. Re-
introducing a non-zero mean, the ellipsoids

(x —%)'S7!(x — x) = const

give contours of equal Mahalanobis distance from the sample mean X.
Flury and Riedwyl (1988, Section 10.6) interpret PCA as successively find-
ing orthogonal directions for which the Mahalanobis distance from the
data set to a hypersphere enclosing all the data is minimized (see Sec-
tions 5.3, 9.1 and 10.1 for discussion of Mahalanobis distance in a variety
of forms).
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Property G2 may also be carried over from populations to samples as
follows. Suppose that the observations x1,xs, . ..x, are transformed by

! .
= B'x;, 1=1,2,...,n

where B is a (p x ¢) matrix with orthonormal columns, so that
Y1,¥2,---,¥n, are projections of xj,Xs,...,X, onto a ¢g-dimensional
subspace. Then

n n
SN vn—vi) (vu—yi)

h=11i=1

is maximized when B = A,. Conversely, the same criterion is minimized
when B = A7.

This property means that if the n observations are projected onto a
g-dimensional subspace, then the sum of squared Euclidean distances be-
tween all pairs of observations in the subspace is maximized when the
subspace is defined by the first ¢ PCs, and minimized when it is defined
by the last ¢ PCs. The proof that this property holds is again rather sim-
ilar to that for the corresponding population property and will not be
repeated.

The next property to be considered is equivalent to Property Ab5.

Both are concerned, one algebraically and one geometrically, with least
squares linear regression of each variable ; on the g variables contained
iny.
Property G3. As before, suppose that the observations x1,Xs,..., Xy
are transformed by y; = B'x;, i = 1,2,...,n, where B is a (p X q¢) ma-
trix with orthonormal columns, so that y1,ya,...,yn are projections of
X1,X2,-..,X, onto a q-dimensional subspace. A measure of ‘goodness-of-
fit” of this q-dimensional subspace to x1,Xa,...,X, can be defined as the
sum of squared perpendicular distances of X1,Xa,...,Xy, from the subspace.
This measure is minimized when B = A,.

PrROOF. The vector y; is an orthogonal projection of x; onto a g¢-
dimensional subspace defined by the matrix B. Let m; denote the position
of y; in terms of the original coordinates, and r; = x; — m;. (See Fig-
ure 3.1 for the special case where p = 2, ¢ = 1; in this case y; is a scalar,
whose value is the length of m;.) Because m; is an orthogonal projection
of x; onto a g-dimensional subspace, r; is orthogonal to the subspace, so
rim; = 0. Furthermore, rir; is the squared perpendicular distance of x;
from the subspace so that the sum of squared perpendicular distances of
X1,X2, . ..,Xy, from the subspace is

n

§ : /
r,r;.

i=1
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Figure 3.1. Orthogonal projection of a two-dimensional vector onto a one-dimen-
sional subspace.

Now
/ !/
x;x; = (m; +r;) (m; +r;)
/ / /
=m;m; + r;r; + 2r;m;
! /
=m;m; + r;r;.
Thus

!/
m,;imy;,
1

/ /
r,r; = E X X; —

n n n
=1 i=1 =

7

so that, for a given set of observations, minimization of the sum of squared
. . . . . . . n / .
perpendicular distances is equivalent to maximization of ) " ; m/m;. Dis-
tances are preserved under orthogonal transformations, so the squared
distance m/m; of y; from the origin is the same in y coordinates as in
x coordinates. Therefore, the quantity to be maximized is .., yly;. But

n n
Z Viyi = Z x;BB'x;
i=1 i=1
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=tr Z(xéBB'xi)

=1

n
= Z tr(x;BB'x;)

i=1
B’ <Z xixg) B
i=1
— tr[B'X'XB]
= (n—1)tr(B'SB).

Finally, from Property Al, tr(B’SB) is maximized when B = A,. a

Instead of treating this property (G3) as just another property of sample
PCs, it can also be viewed as an alternative derivation of the PCs. Rather
than adapting for samples the algebraic definition of population PCs given
in Chapter 1, there is an alternative geometric definition of sample PCs.

They are defined as the linear functions (projections) of x1,Xa, ..., X, that
successively define subspaces of dimension 1,2,...,¢,...,(p — 1) for which
the sum of squared perpendicular distances of x1, X2, ...,x, from the sub-

space is minimized. This definition provides another way in which PCs can
be interpreted as accounting for as much as possible of the total variation
in the data, within a lower-dimensional space. In fact, this is essentially
the approach adopted by Pearson (1901), although he concentrated on the
two special cases, where ¢ = 1 and ¢ = (p — 1). Given a set of points in p-
dimensional space, Pearson found the ‘best-fitting line,” and the ‘best-fitting
hyperplane,’” in the sense of minimizing the sum of squared deviations of
the points from the line or hyperplane. The best-fitting line determines the
first principal component, although Pearson did not use this terminology,
and the direction of the last PC is orthogonal to the best-fitting hyper-
plane. The scores for the last PC are simply the perpendicular distances of
the observations from this best-fitting hyperplane.

Property G4. Let X be the (n x p) matriz whose (i,j)th element is
Zi; — Zj, and consider the matriz XX'. The ith diagonal element of XX’
18 2]21 T;j — &;)?, which is the squared Euclidean distance of x; from the

centre of gravity X of the points X1,Xsa,...,X,, where X = % S x;. Also,
the (h,i)th element of XX' is 330_| (Znj — ;)(Zij — Z;), which measures
the cosine of the angle between the lines joining X, and x; to X, multiplied
by the distances of x; and x; from X. Thus XX’ contains information
about the configuration of X1,Xa,...,X, relative to X. Now suppose that
X1,X9,...,X, are projected onto a q-dimensional subspace with the usual

orthogonal transformation y; = B'x;, ¢ = 1,2,...,n. Then the transfor-
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mation for which B = A, minimizes the distortion in the configuration as
measured by ||[YY' — XX'||, where || - || denotes Euclidean norm and Y is
a matriz with (i, j)th element §;; — ;.

Proor. Y = XB, so
YY' =XBB'X and |[YY' -XX'|=|XBB'X —XX|.

A matrix result given by Rao (1973, p. 63) states that if F is a symmetric
matrix of rank p with spectral decomposition

F = f1p,@) + f2205 + - + [0, ),

and G is a matrix of rank ¢ < p chosen to minimize ||F — G|, then

G = fid1 &) + fotpodhy + -+ fab, bl

Assume that X has rank p, so that x; — X, ¢ = 1,2,...,n, span p-
dimensional space, and are not contained in any proper subspace. Then
XX’ also has rank p, and Rao’s result can be used with F = XX', and
G=YY'

Now, if I, a; denote the kth eigenvalue and eigenvector, respectively, of
X’X, then the kth eigenvalue and eigenvector of XX’ are [}, and l,;l/ 2Xak,
respectively, k = 1,2,...,p. The remaining (n — p) eigenvalues of XX’ are
Zero.

Using Rao’s result above, ||[YY’ — XX/|| is minimized when

G = XBB'X' = ;i Xaa| X' + 15 'hXapah X' + -+ + 1 ', Xaga, X/,
or
XBB'X' = Xa;a) X’ + Xagay X' + - -+ + Xaga; X'
Multiplying both sides of this equation on the left by (X’X)~!X’ and on
the right by X(X'X)~!, gives
BB’ = aja) +asa; +--- +a,ay,

from which it follows that the columns of B and the first ¢ eigenvectors
of X'X, or equivalently of S, span the same g¢-dimensional subspace. In

other words, the transformation B = A, provides the required optimal
subspace. O

Note that the result given by Rao (1973, p. 63) which was used in
the above proof implies that the sum of the first ¢ terms in the spec-
tral decomposition of the sample covariance (or correlation) matrix S
provides the rank ¢ matrix ,S that minimizes ||;S — S||. Furthermore,

IS — S| = Z:q+1 Ik, where I now denotes the kth eigenvalue of S,
rather than that of X’X. The result follows because
p
48 =Sl =1 > haaj

k=q+1
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P

/
= > lllarall]
k=q+1
- 1/2
p p p
= 2 b |22 (aniany)”
k=g+1 |i=1j=1
- 1/2
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asajar =1, k=1,2,...,p

Property G4 is very similar to another optimality property of PCs, dis-
cussed in terms of the so-called RV-coefficient by Robert and Escoufier
(1976). The RV-coefficient was introduced as a measure of the similarity
between two configurations of n data points, as described by XX’ and
YY'. The distance between the two configurations is defined by Robert
and Escoufier (1976) as

XX’ YY'
{tr(XX’)2}1/2 {tr(YY/)2}1/2
where the divisors of XX’, YY’ are introduced simply to standardize the
representation of each configuration in the sense that
XX’ B YY'
{er(XXN2H72 || || {tr(YY')2}1/2
It can then be shown that (3.2.1) equals [2(1 — RV(X,Y))]*/2, where the
RV-coefficient is defined as

(3.2.1)

=1

tr(XY'YX')
{tr(XX7)2 tr(YY?)2}1/2°

Thus, minimizing the distance measure (3.2.1) which, apart from stan-
dardizations, is the same as the criterion of Property G4, is equivalent to
maximization of RV(X,Y). Robert and Escoufier (1976) show that several
multivariate techniques can be expressed in terms of maximizing RV(X,Y)
for some definition of X and Y. In particular, if Y is restricted to be of
the form Y = XB, where B is a (p X ¢) matrix such that the columns of
Y are uncorrelated, then maximization of RV(X, Y) leads to B = A, that
is Y consists of scores on the first ¢ PCs. We will meet the RV-coefficient
again in Chapter 6 in the context of variable selection.

RV(X,Y) = (3.2.2)

Property G5. The algebraic derivation of sample PCs reduces to find-
ing, successwely, vectors ay, k = 1,2,...,p, that mazimize ajSay, subject
to aja, = 1, and subject to aja; = 0 for | < k. This statement of the
problem can be viewed geometrically as follows (Stuart, 1982).
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Consider the first PC; this mazimizes a’Sa subject to a’a = 1. But
a’Sa = const defines a family of ellipsoids and a’a = 1 defines a hyper-
sphere in p-dimensional space, both centred at the origin. The hypersphere
a’a = 1 will intersect more than one of the ellipsoids in the family a’Sa
(unless S is the identity matrix), and the points at which the hypersphere
intersects the ‘biggest’ such ellipsoid (so that a’Sa is mazimized) lie on
the shortest principal axis of the ellipsoid. A simple diagram, as given by
Stuart (1982), readily verifies this result when p = 2. The argument can be
extended to show that the first q sample PCs are defined by the q shortest
principal azes of the family of ellipsoids a’Sa = const. Although Stuart
(1982) introduced this interpretation in terms of sample PCs, it is equally
valid for population PCs.

The earlier geometric property G1 was also concerned with ellipsoids but
in the context of multivariate normality, where the ellipsoids x'E " 'x =
const define contours of constant probability and where the first (longest)
q principal axes of such ellipsoids define the first ¢ population PCs. In light
of Property G5, it is clear that the validity of the Property G1 does not
really depend on the assumption of multivariate normality. Maximization of
a’Sa is equivalent to minimization of a’S~'a, and looking for the ‘smallest’
ellipsoids in the family a’S~'a = const that intersect the hypersphere a’a =
1 will lead to the largest principal axis of the family a’S~'a. Thus the PCs
define, successively, the principal axes of the ellipsoids a’S~'a = const.
Similar considerations hold for the population ellipsoids a’¥ 'a = const,
regardless of any assumption of multivariate normality. However, without
multivariate normality the ellipsoids lose their interpretation as contours
of equal probability, or as estimates of such contours in the sample case.

Further discussion of the geometry of sample PCs, together with con-
nections with other techniques such as principal coordinate analysis (see
Section 5.2) and special cases such as compositional data (Section 13.3), is
given by Gower (1967).

As with population properties, our discussion of sample properties of
PCA is not exhaustive. For example, Qian et al. (1994) consider the con-
cept of stochastic complexity or minimum description length, as described
by Rissanen and Yu (2000). They minimize the expected difference in com-
plexity between a p-dimensional data set and the projection of the data onto
a ¢g-dimensional subspace. Qian et al. show that, if multivariate normality
is assumed, the subset spanned by the first ¢ PCs is obtained.

3.3 Covariance and Correlation Matrices: An
Example

The arguments for and against using sample correlation matrices as op-
posed to covariance matrices are virtually identical to those given for
populations in Section 2.3. Furthermore, it is still the case that there is no
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Table 3.1. Correlations and standard deviations for eight blood chemistry
variables.

Correlation matrix (n = 72)

RBLOOD PLATE WBLOOD NEUT LYMPH BILIR SODIUM POTASS

RBLOOD 1.000

PLATE 0.290 1.000

WBLOOD 0.202 0.415 1.000

NEUT —0.055 0.285 0.419 1.000

LYMPH —0.105 —0.376 —0.521 —0.877 1.000
BILIR —0.252 —0.349 —0.441 —-0.076 0.206 1.000

SODIUM —-0.229 —-0.164 —-0.145 0.023 0.034 0.192 1.000
POTASS 0.058 —0.129 —-0.076 —0.131 0.151 0.077 0.423 1.000

Standard 0.371 41.253 1.935 0.077 0.071 4.037 2.732  0.297
deviations

straightforward relationship between the PCs obtained from a correlation
matrix and those based on the corresponding covariance matrix. The main
purpose of the present section is to give an example illustrating some of the
properties of PCs based on sample covariance and correlation matrices.

The data for this example consist of measurements on 8 blood chemistry
variables for 72 patients in a clinical trial. The correlation matrix for these
data, together with the standard deviations of each of the eight variables,
is given in Table 3.1. Two main points emerge from Table 3.1. First, there
are considerable differences in the standard deviations, caused mainly by
differences in scale for the eight variables, and, second, none of the correla-
tions is particularly large in absolute value, apart from the value of —0.877
for NEUT and LYMPH.

The large differences in standard deviations give a warning that there
may be considerable differences between the PCs for the correlation and
covariance matrices. That this is indeed true can be seen in Tables 3.2
and 3.3, which give coefficients for the first four components, based on the
correlation and covariance matrices respectively. For ease of comparison,
the coefficients are rounded to the nearest 0.2. The effect of such severe
rounding is investigated for this example in Section 10.3.

Each of the first four PCs for the correlation matrix has moderate-sized
coefficients for several of the variables, whereas the first four PCs for the
covariance matrix are each dominated by a single variable. The first com-
ponent is a slight perturbation of the single variable PLATE, which has the
largest variance; the second component is almost the same as the variable
BILIR with the second highest variance; and so on. In fact, this pattern
continues for the fifth and sixth components, which are not shown in Ta-
ble 3.3. Also, the relative percentages of total variation accounted for by
each component closely mirror the variances of the corresponding variables.
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Table 3.2. Principal components based on the correlation matrix for eight blood
chemistry variables.

Component number 1 2 3 4
Coefficients

RBLOOD 0.2 -04 0.4 0.6
PLATE 04 -0.2 0.2 0.0
WBLOOD 0.4 0.0 0.2 -0.2
NEUT 0.4 04 -0.2 0.2
LYMPH -04 -04 0.0 -0.2
BILIR —-04 04 -0.2 0.6
SODIUM —-0.2 0.6 04 -0.2
POTASS —0.2 0.2 0.8 0.0

Percentage of total variation explained 34.9 19.1 15.6 9.7

Table 3.3. Principal components based on the covariance matrix for eight blood
chemistry variables.

Component number 1 2 3 4
Coefficients
RBLOOD 0.0 0.0 0.0 0.0
PLATE 1.0 0.0 0.0 0.0
WBLOOD 0.0 -0.2 0.0 1.0
NEUT 0.0 0.0 0.0 0.0
LYMPH 0.0 0.0 0.0 0.0
BILIR 0.0 1.0 -0.2 0.2
SODIUM 0.0 0.2 1.0 0.0
POTASS 0.0 0.0 0.0 0.0

Percentage of total variation explained 98.6 0.9 04 0.2
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Because variable PLATE has a variance 100 times larger than any other
variable, the first PC accounts for over 98 percent of the total variation.
Thus the first six components for the covariance matrix tell us almost noth-
ing apart from the order of sizes of variances of the original variables. By
contrast, the first few PCs for the correlation matrix show that certain
non-trivial linear functions of the (standardized) original variables account
for substantial, though not enormous, proportions of the total variation in
the standardized variables. In particular, a weighted contrast between the
first four and the last four variables is the linear function with the largest
variance.

This example illustrates the dangers in using a covariance matrix to find
PCs when the variables have widely differing variances; the first few PCs
will usually contain little information apart from the relative sizes of vari-
ances, information which is available without a PCA. There are, however,
circumstances in which it has been argued that using the covariance matrix
has some advantages; see, for example, Naik and Khattree (1996), although
these authors transform their data (track record times for Olympic events
are transformed to speeds) in order to avoid highly disparate variances.

Apart from the fact already mentioned in Section 2.3, namely, that it
is more difficult to base statistical inference regarding PCs on correlation
matrices, one other disadvantage of correlation matrix PCs is that they
give coefficients for standardized variables and are therefore less easy to in-
terpret directly. To interpret the PCs in terms of the original variables each
coefficient must be divided by the standard deviation of the corresponding
variable. An example which illustrates this is given in the next section.
It must not be forgotten, however, that correlation matrix PCs, when re-
expressed in terms of the original variables, are still linear functions of x
that maximize variance with respect to the standardized variables and not
with respect to the original variables.

An alternative to finding PCs for either covariance or correlation matrices
is to calculate the eigenvectors of X’X rather than X’X, that is, measure
variables about zero, rather than about their sample means, when comput-
ing ‘covariances’ and ‘correlations.” This idea was noted by Reyment and
Joreskog (1993, Section 5.4) and will be discussed further in Section 14.2.3.
‘Principal component analysis’ based on measures of association of this
form, but for observations rather than variables, has been found useful for
certain types of geological data (Reyment and Joreskog, 1993). Another
variant, in a way the opposite of that just mentioned, has been used by
Buckland and Anderson (1985), among others. Their idea, which is also
discussed further in Section 14.2.3, and which again is appropriate for a
particular type of data, is to ‘correct for the mean’ in both the rows and
columns of X. Further possibilities, such as the use of weights or metrics,
are described in Section 14.2.
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3.4 Principal Components with Equal and/or Zero
Variances

The problems that arise when some of the eigenvalues of a population
covariance matrix are zero and/or equal were discussed in Section 2.4;
similar considerations hold when dealing with a sample.

In practice, exactly equal non-zero eigenvalues are extremely rare. Even
if the underlying population covariance or correlation matrix has a pattern
that gives equal eigenvalues, sampling variation will almost always ensure
that the sample eigenvalues are unequal. It should be noted, however, that
nearly equal eigenvalues need careful attention. The subspace spanned by a
set of nearly equal eigenvalues that are well-separated from all other eigen-
values is well-defined and stable, but individual PC directions within that
subspace are unstable (see Section 10.3). This has implications for deciding
how many components to retain (Section 6.1), for assessing which observa-
tions are influential (Section 10.2) and for deciding which components to
rotate (Section 11.1).

With carefully selected variables, PCs with zero variances are a relatively
rare occurrence. When ¢ zero eigenvalues do occur for a sample covariance
or correlation matrix, the implication is that the points xi,Xs,...,x, lie
in a (p — q)-dimensional subspace of p-dimensional space. This means that
there are g separate linear functions of the p original variables having con-
stant values for each of the observations x1,Xs,...,X,. Ideally, constant
relationships between the variables should be detected before doing a PCA,
and the number of variables reduced so as to avoid them. However, prior
detection will not always be possible, and the zero-variance PCs will enable
any unsuspected constant relationships to be detected. Similarly, PCs with
very small, but non-zero, variances will define near-constant linear rela-
tionships. Finding such near-constant relationships may be of considerable
interest. In addition, low-variance PCs have a number of more specific po-
tential uses, as will be discussed at the end of Section 3.7 and in Sections 6.3,
8.4, 8.6 and 10.1.

3.4.1 Example

Here we consider a second set of blood chemistry data, this time consisting
of 16 variables measured on 36 patients. In fact, these observations and
those discussed in the previous section are both subsets of the same larger
data set. In the present subset, four of the variables, 1, x2, x3, x4, sum to
1.00 for 35 patients and to 0.99 for the remaining patient, so that z; +
X2 + T3 + x4 is nearly constant. The last (sixteenth) PC for the correlation
matrix has variance less than 0.001, much smaller than the fifteenth, and
is (rounding coefficients to the nearest 0.1) 0.7z 4+ 0.3z + 0.7z5 + 0.1z,
with all of the other 12 variables having negligible coefficients. Thus, the
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near-constant relationship has certainly been identified by the last PC, but
not in an easily interpretable form. However, a simple interpretation can be
restored if the standardized variables are replaced by the original variables
by setting 25 = z;/ SL/ ?, where S;J/ ? is the sample standard deviation of z;.
When this is done, the last PC becomes (rounding coeflicients to the nearest
integer) 11zq + 11zg + 112zs + 1124. The correct near-constant relationship
has therefore been discovered exactly, to the degree of rounding used, by

the last PC.

3.5 The Singular Value Decomposition

This section describes a result from matrix theory, namely the singular
value decomposition (SVD), which is relevant to PCA in several respects.
Given an arbitrary matrix X of dimension (n x p), which for our purposes
will invariably be a matrix of n observations on p variables measured about
their means, X can be written

X = ULA’, (3.5.1)
where

(i) U, A are (n x ), (p x r) matrices, respectively, each of which has
orthonormal columns so that U'U =1, A’A =1,;

(ii) L is an (r x r) diagonal matrix;
(iii) r is the rank of X.

To prove this result, consider the spectral decomposition of X’X. The last
(p —r) terms in (3.1.4) and in the corresponding expression for X'X are
zero, since the last (p — r) eigenvalues are zero if X, and hence X'X, has
rank r. Thus

(n—1)S =X'X = lhaja) + lrazal + -+ + l,.a,al.

[Note that in this section it is convenient to denote the eigenvalues of X'X,
rather than those of S, as Iy, k = 1,2,...,p.] Define A to be the (p x r)
matrix with kth column ag, define U as the (n x r) matrix whose kth
column is

uk:llzl/QXa;€7 k=1,2,...,r7,

and define L to be the (r x r) diagonal matrix with kth diagonal element
l,lf/Q. Then U, L, A satisfy conditions (i) and (ii) above, and we shall now
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show that X = ULA’.

l}/2a’1
ULA'=U l;ﬂaé

1/2
lr/ al

T

Z 1;1/2Xakl,1€/2a§€ = Z Xayay,
1 k=1

~
Il

[
M’E

/
Xagay,.

~
Il

1

This last step follows because a, k = (r+1), (r+2),...,p, are eigenvectors
of X’X corresponding to zero eigenvalues. The vector Xay is a vector of
scores on the kth PC; the column-centering of X and the zero variance of
the last (p—r) PCs together imply that Xa, =0, k= (r+1),(r+2),...,p.
Thus

p
ULA' =X Z ajal, = X,
k=1

as required, because the (p x p) matrix whose kth column is ay, is
orthogonal, and so has orthonormal rows.

The importance of the SVD for PCA is twofold. First, it provides a
computationally efficient method of actually finding PCs (see Appendix
A1). Tt is clear that if we can find U, L, A satisfying (3.5.1), then A and
L will give us the eigenvectors and the square roots of the eigenvalues of
X’X, and hence the coefficients and standard deviations of the principal
components for the sample covariance matrix S. As a bonus we also get in
U scaled versions of PC scores. To see this multiply (3.5.1) on the right
by A to give XA = ULA’A = UL, as A’A =1,. But XA is an (n x r)
matrix whose kth column consists of the PC scores for the kth PC (see
(3.1.2) for the case where r = p). The PC scores z;;, are therefore given by

12 .
e =uly, ", i=12,....,n, k=12,...,r

or, in matrix form, Z = UL, or U = ZL~'. The variance of the scores
for the kth PC is (an’“l), k =1,2,...,p. [Recall that I here denotes the

kth eigenvalue of X’X, so that the kth eigenvalue of S is ﬁ] Therefore

the scores given by U are simply those given by Z, but scaled to have

variance (n—il) Note also that the columns of U are the eigenvectors of

XX’ corresponding to non-zero eigenvalues, and these eigenvectors are of
potential interest if the roles of ‘variables’ and ‘observations’ are reversed.

A second virtue of the SVD is that it provides additional insight into
what a PCA actually does, and it gives useful means, both graphical and
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algebraic, of representing the results of a PCA. This has been recognized
in different contexts by Mandel (1972), Gabriel (1978), Rasmusson et al.
(1981) and Eastment and Krzanowski (1982), and will be discussed fur-
ther in connection with relevant applications in Sections 5.3, 6.1.5, 9.3,
13.4, 13.5 and 13.6. Furthermore, the SVD is useful in terms of both
computation and interpretation in PC regression (see Section 8.1 and Man-
del (1982)) and in examining the links between PCA and correspondence
analysis (Sections 13.1 and 14.2).

In the meantime, note that (3.5.1) can be written element by element as

Tij = Zuikl}c/gajk, (3.5.2)
k=1

where w;, ;i are the (4, k)th, (j, k)th elements of U, A, respectively, and

l,lc/ % is the kth diagonal element of L. Thus z;; can be split into parts

1/2
wiply “aj, k=1,2,...,m,

corresponding to each of the first r PCs. If only the first m PCs are retained,
then

mTij = Zuiklimaﬂg (3.5.3)
k=1

provides an approximation to z;;. In fact, it can be shown (Gabriel, 1978;
Householder and Young, 1938) that ,,&;; gives the best possible rank m
approximation to z;;, in the sense of minimizing

DD (mai; = i), (3.5.4)

i=1 j=1

where ,,x;; is any rank m approximation to z;;. Another way of express-
ing this result is that the (n x p) matrix whose (¢, j)th element is ,,Z;;
minimizes ||,, X — X|| over all (n x p) matrices ,,X with rank m. Thus the
SVD provides a sequence of approximations to X of rank 1,2, ..., r, which
minimize the Euclidean norm of the difference between X and the approx-
imation ,,X. This result provides an interesting parallel to the result given
earlier (see the proof of Property G4 in Section 3.2): that the spectral de-
composition of X’X provides a similar optimal sequence of approximations
of rank 1,2, ..., 7 to the matrix X'X. Good (1969), in a paper extolling the
virtues of the SVD, remarks that Whittle (1952) presented PCA in terms
of minimizing (3.5.4).

Finally in this section we note that there is a useful generalization of the
SVD, which will be discussed in Chapter 14.
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3.6 Probability Distributions for Sample Principal
Components

A considerable amount of mathematical effort has been expended on deriv-
ing probability distributions, mostly asymptotic, for the coefficients in the
sample PCs and for the variances of sample PCs or, equivalently, finding
distributions for the eigenvectors and eigenvalues of a sample covariance
matrix. For example, the first issue of Journal of Multivariate Analysis in
1982 contained three papers, totalling 83 pages, on the topic. In recent
years there has probably been less theoretical work on probability distri-
butions directly connected to PCA; this may simply reflect the fact that
there is little remaining still to do. The distributional results that have
been derived suffer from three drawbacks:

(i) they usually involve complicated mathematics;
(ii) they are mostly asymptotic;

(iii) they are often based on the assumption that the original set of variables
has a multivariate normal distribution.

Despite these drawbacks, the distributional results are useful in some cir-
cumstances, and a selection of the main circumstances is given in this
section. Their use in inference about the population PCs, given sample
PCs, is discussed in the next section.

Assume that x ~ N(u, X), that is, x has a p-variate normal distribution
with mean p and covariance matrix X. Although p need not be given, X
is assumed known. Then

(n—18S ~Wp(2,n—1),

that is (n — 1)S has the so-called Wishart distribution with parameters
3, (n—1) (see, for example, Mardia et al. (1979, Section 3.4)). Therefore, in-
vestigation of the sampling properties of the coefficients and variances of the
sample PCs is equivalent to looking at sampling properties of eigenvectors
and eigenvalues of Wishart random variables.

The density function of a matrix V that has the W,(%, n—1) distribution
is

1
e[ V|(P=2)/2 oxp {—5 tr(E_lV)} ,

where

P .
—1 _ gp(n=1)/21p(1-p) /4|32 (n-D)/2 T ( "=
c | | H 2 )

j=1

and various properties of Wishart random variables have been thoroughly
investigated (see, for example, Srivastava and Khatri, 1979, Chapter 3).
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Let g, ag, for k = 1,2,...,p be the eigenvalues and eigenvectors of S,
respectively, and let A\g, ay, for K = 1,2,...,p, be the eigenvalues and
eigenvectors of 3, respectively. Also, let 1, X be the p-element vectors con-
sisting of the [ and Ak, respectively and let the jth elements of ax, ay be
akj, (uj, respectively. [The notation a;; was used for the jth element of ay,
in the previous section, but it seems more natural to use ax; in this and the
next, section. We also revert to using i to denote the kth eigenvalue of S
rather than that of X’X.] The best known and simplest results concerning
the distribution of the [ and the aj assume, usually quite realistically, that
A1 > Ag > -+ > Ay > 0; in other words all the population eigenvalues are
positive and distinct. Then the following results hold asymptotically:

(i) all of the I are independent of all of the ag;
(ii) 1 and the aj are jointly normally distributed;

(iii)

E(l)=A, FElag)=ar, k=1,2,...,p; (3.6.1)
(iv)
2)7 ,
cov(ly, i) =< n—1 k=F, (3.6.2)
0 k #£K,
/\k P )\laljalj/
k=K,
(n — 1) ; (>\l — )\k)2
cov(ag;, ap ;1) = 1k (3.6.3)

Ao ag iy
(n =1 (Ak — Aw)?

An extension of the above results to the case where some of the A\ may
be equal to each other, though still positive, is given by Anderson (1963),
and an alternative proof to that of Anderson can be found in Srivastava
and Khatri (1979, Section 9.4.1).

It should be stressed that the above results are asymptotic and there-
fore only approximate for finite samples. Exact results are available, but
only for a few special cases, such as when ¥ = I (Srivastava and Khatri,
1979, p. 86) and more generally for lq, I,, the largest and smallest eigen-
values (Srivastava and Khatri, 1979, p. 205). In addition, better but more
complicated approximations can be found to the distributions of 1 and the
ay, in the general case (see Srivastava and Khatri, 1979, Section 9.4; Jack-
son, 1991, Sections 4.2, 4.5; and the references cited in these sources). One
specific point regarding the better approximations is that E(l1) > A; and
E(l,) < Ap. In general the larger eigenvalues tend to be overestimated and
the smaller ones underestimated. By expanding the bias of 1 as an esti-
mator of X in terms of powers of n™!, ‘corrected’ estimates of A\, can be
constructed (Jackson, 1991, Section 4.2.2).
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If a distribution other than the multivariate normal is assumed, distribu-
tional results for PCs will typically become less tractable. Jackson (1991,
Section 4.8) gives a number of references that examine the non-normal case.
In addition, for non-normal distributions a number of alternatives to PCs
can reasonably be suggested (see Sections 13.1, 13.3 and 14.4).

Another deviation from the assumptions underlying most of the distri-
butional results arises when the n observations are not independent. The
classic examples of this are when the observations correspond to adjacent
points in time (a time series) or in space. Another situation where non-
independence occurs is found in sample surveys, where survey designs are
often more complex than simple random sampling, and induce dependence
between observations (see Skinner et al. (1986)). PCA for non-independent
data, especially time series, is discussed in detail in Chapter 12.

As a complete contrast to the strict assumptions made in most work
on the distributions of PCs, Efron and Tibshirani (1993, Section 7.2) look
at the use of the ‘bootstrap’ in this context. The idea is, for a particular
sample of n observations x1, Xso,..., X,, to take repeated random samples
of size n from the distribution that has P[x = x;] = 1, i =1,2,...,n,
calculate the PCs for each sample, and build up empirical distributions for
PC coefficients and variances. These distributions rely only on the structure
of the sample, and not on any predetermined assumptions. Care needs to
be taken in comparing PCs from different bootstrap samples because of
possible reordering and/or sign switching in the PCs from different samples.
Failure to account for these phenomena is likely to give misleadingly wide
distributions for PC coefficients, and distributions for PC variances that
may be too narrow.

3.7 Inference Based on Sample Principal
Components

The distributional results outlined in the previous section may be used
to make inferences about population PCs, given the sample PCs, provided
that the necessary assumptions are valid. The major assumption that x has
a multivariate normal distribution is often not satisfied and the practical
value of the results is therefore limited. It can be argued that PCA should
only ever be done for data that are, at least approximately, multivariate
normal, for it is only then that ‘proper’ inferences can be made regarding
the underlying population PCs. As already noted in Section 2.2, this is
a rather narrow view of what PCA can do, as it is a much more widely
applicable tool whose main use is descriptive rather than inferential. It
can provide valuable descriptive information for a wide variety of data,
whether the variables are continuous and normally distributed or not. The
majority of applications of PCA successfully treat the technique as a purely
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descriptive tool, although Mandel (1972) argued that retaining m PCs in
an analysis implicitly assumes a model for the data, based on (3.5.3). There
has recently been an upsurge of interest in models related to PCA; this is
discussed further in Section 3.9.

Although the purely inferential side of PCA is a very small part of the
overall picture, the ideas of inference can sometimes be useful and are
discussed briefly in the next three subsections.

3.7.1 Point Estimation

The maximum likelihood estimator (MLE) for X, the covariance matrix of

a multivariate normal distribution, is not S, but @S (see, for example,
Press (1972, Section 7.1) for a derivation). This result is hardly surprising,
given the corresponding result for the univariate normal. If A, 1, ax, a; and
related quantities are defined as in the previous section, then the MLEs of
Aand o, k=1,2,...,p, can be derived from the MLE of ¥ and are equal
to X = (";1)1, and & = ag, k=1,2,...,p, assuming that the elements of
A are all positive and distinct. The MLEs are the same in this case as the
estimators derived by the method of moments. The MLE for \; is biased
but asymptotically unbiased, as is the MLE for X. As noted in the previous
section, 1 itself, as well as 5\, is a biased estimator for A, but ‘corrections’
can be made to reduce the bias.

In the case where some of the A\ are equal, the MLE for their common
value is simply the average of the corresponding lj, multiplied by (n—1)/n.
The MLEs of the ay, corresponding to equal A are not unique; the (p x q)
matrix whose columns are MLEs of ay, corresponding to equal A\; can be
multiplied by any (¢ x ¢) orthogonal matrix, where ¢ is the multiplicity of
the eigenvalues, to get another set of MLEs.

Most often, point estimates of A, a; are simply given by 1, ax, and they
are rarely accompanied by standard errors. An exception is Flury (1997,
Section 8.6). Jackson (1991, Sections 5.3, 7.5) goes further and gives ex-
amples that not only include estimated standard errors, but also estimates
of the correlations between elements of 1 and between elements of a; and
ay/. The practical implications of these (sometimes large) correlations are
discussed in Jackson’s examples. Flury (1988, Sections 2.5, 2.6) gives a
thorough discussion of asymptotic inference for functions of the variances
and coeflicients of covariance-based PCs.

If multivariate normality cannot be assumed, and if there is no obvious
alternative distributional assumption, then it may be desirable to use a
‘robust’ approach to the estimation of the PCs: this topic is discussed in
Section 10.4.
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3.7.2 Interval Estimation

The asymptotic marginal distributions of I, and ay; given in the previous
section can be used to construct approximate confidence intervals for Ay
and ag;, respectively. For lj, the marginal distribution is, from (3.6.1) and
(3.6.2), approximately

N2
Ip ~ N(\ k 7.1
B~ N, ) (3.7.1)
SO
I — A
P~ N(0,1),

A[2/(n = 1JV/2

which leads to a confidence interval, with confidence coefficient (1 — «) for
Ak, of the form

Uk Iy

—_— <A < 3.7.2
[+ T2p/2) /2 k ( )

[1—72q0)1/%
where 72 = 2/(n — 1), and z,/o is the upper (100)c/2 percentile of the
standard normal distribution N(0,1). In deriving this confidence interval
it is assumed that n is large enough so that 7z, < 1. As the distribu-
tional result is asymptotic, this is a realistic assumption. An alternative
approximate confidence interval is obtained by looking at the distribution
of In(l). Given (3.7.1) it follows that

2
In(ly) ~ N(In(Ag), m) approximately,

thus removing the dependence of the variance on the unknown parameter
Ak. An approximate confidence interval for In(\g), with confidence coeffi-
cient (1 — ), is then In(lx) & 72,2, and transforming back to Ay gives an
approximate confidence interval of the form

lpe” T7e/2 < N\ < [peTPer2, (373)

The [, are asymptotically independent, and joint confidence regions for
several of the )\ are therefore obtained by simply combining intervals of the
form (3.7.2) or (3.7.3), choosing individual confidence coefficients so as to
achieve an overall desired confidence level. Approximate confidence inter-
vals for individual c; can be obtained from the marginal distributions of
the aj; whose means and variances are given in (3.6.1) and (3.6.3). The in-
tervals are constructed in a similar manner to those for the A, although the
expressions involved are somewhat more complicated. Expressions become
still more complicated when looking at joint confidence regions for several
oy, partly because of the non-independence of separate ay;. Consider ay:
From (3.6.1), (3.6.3) it follows that, approximately,

ag ~ N(ak7 Tk)a
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where

T )\k Zp: /\l /
k = Q.
(n — 1) P ()\l — )\k)2 !
I#£k
The matrix Ty has rank (p — 1) as it has a single zero eigenvalue corre-
sponding to the eigenvector ;. This causes further complications, but it
can be shown (Mardia et al., 1979, p. 233) that, approximately,

(n — 1)(ak — ak)/(lk871 + l;ls — 2Ip)(ak - ak.) ~ X%p—l)' (374)

Because aj is an eigenvector of S with eigenvalue [, it follows that
Z,ZISak = l,;llkak =a;, [;S7la, = lkllzlak = ag, and

(lk;S_l + l;ls — 2Ip)ak =ai +ar —2a; =0,
so that the result (3.7.4) reduces to
(n— 1o, (ST +1;'S — 2L, ) o ~ x{_1)- (3.7.5)

From (3.7.5) an approximate confidence region for ay, with confidence
co'efﬁcie'znt (1—'04)7 has the'z form (n—1)ad (LS~ +1; 'S —21, )y < x%pfl)
with fairly obvious notation.

Moving away from assumptions of multivariate normality, the non-
parametric bootstrap of Efron and Tibshirani (1993), noted in Section 3.6,
can be used to find confidence intervals for various parameters. In their
Section 7.2, Efron and Tibshirani (1993) use bootstrap samples to esti-
mate standard errors of estimates for ay;, and for the proportion of total
variance accounted for by an individual PC. Assuming approximate nor-
mality and unbiasedness of the estimates, the standard errors can then be
used to find confidence intervals for the parameters of interest. Alterna-
tively, the ideas of Chapter 13 of Efron and Tibshirani (1993) can be used
to construct an interval for Ay with confidence coefficient (1 — «), for ex-
ample, consisting of a proportion (1—«) of the values of [}, arising from the
replicated bootstrap samples. Intervals for elements of a;, can be found in
a similar manner. Milan and Whittaker (1995) describe a related but differ-
ent idea, the parametric bootstrap. Here, residuals from a model based on
the SVD, rather than the observations themselves, are bootstrapped. An
example of bivariate confidence intervals for (aq;, ae;) is given by Milan
and Whittaker.

Some theory underlying non-parametric bootstrap confidence intervals
for eigenvalues and eigenvectors of covariance matrices is given by Beran
and Srivastava (1985), while Romanazzi (1993) discusses estimation and
confidence intervals for eigenvalues of both covariance and correlation ma-
trices using another computationally intensive distribution-free procedure,
the jackknife. Romanazzi (1993) shows that standard errors of eigenvalue
estimators based on the jackknife can have substantial bias and are sen-
sitive to outlying observations. Bootstrapping and the jackknife have also

He?
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been used to assess the stability of subspaces defined by a subset of the
PCs, and hence to choose how many PCs to retain. In these circumstances
there is more than one plausible way in which to conduct the bootstrap
(see Section 6.1.5).

3.7.3 Hypothesis Testing

The same results, obtained from (3.6.1)—(3.6.3), which were used above
to derive confidence intervals for individual I, and ay;, are also useful for
constructing tests of hypotheses. For example, if it is required to test Hy :
Ak = Apo against Hy @ Ap # Ao, then a suitable test statistic is

Ik — Ao
T)\k()

which has, approximately, an N(0,1) distribution under Hy, so that Hj
would be rejected at significance level « if

Ik — Ako

> .
TALO = Fa/2
Similarly, the result (3.7.5) can be used to test Hy : ap = ayo vs. Hy :
o £ ago. A test of Hy against Hy will reject Hy at significance level « if

(n— 1oty (kS™" +1,'S = 21,) ko > X{p 1.0

This is, of course, an approximate test, although modifications can be made
to the test statistic to improve the x? approximation (Schott, 1987). Other
tests, some exact, assuming multivariate normality of x, are also available
(Srivastava and Khatri, 1979, Section 9.7; Jackson, 1991, Section 4.6). De-
tails will not be given here, partly because it is relatively unusual that a
particular pattern can be postulated for the coefficients of an individual
population PC, so that such tests are of limited practical use. An excep-
tion is the isometry hypothesis in the analysis of size and shape (Jolicoeur
(1984)). Size and shape data are discussed briefly in Section 4.1, and in
more detail in Section 13.2.

There are a number of tests concerning other types of patterns in X and
its eigenvalues and eigenvectors. The best known of these is the test of
Hyg : Ag+1 = A\g42 = -+ - = Ap, that is, the case where the last (p —q) eigen-
values are equal, against the alternative Hy,, the case where at least two
of the last (p — q) eigenvalues are different. In his original paper, Hotelling
(1933) looked at the problem of testing the equality of two consecutive
eigenvalues, and tests of Hy, have since been considered by a number of
authors, including Bartlett (1950), whose name is sometimes given to such
tests. The justification for wishing to test Hoq is that the first ¢ PCs may
each be measuring some substantial component of variation in x, but the
last (p — ¢) PCs are of equal variation and essentially just measure ‘noise.’
Geometrically, this means that the distribution of the last (p — ¢) PCs has
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spherical contours of equal probability, assuming multivariate normality,
and the last (p — ¢) PCs are therefore not individually uniquely defined.
By testing Hy, for various values of ¢ it can be decided how many PCs are
distinguishable from ‘noise’ and are therefore worth retaining. This idea
for deciding how many components to retain will be discussed critically in
Section 6.1.4. It is particularly relevant if a model similar to those described
in Section 3.9 is assumed for the data.

A test statistic for Hy, against a general alternative H;, can be found by
assuming multivariate normality and constructing a likelihood ratio (LR)
test. The test statistic takes the form

p—aqy /2

0= sz/ S /-0

k=q+1 k=q+1

The exact distribution of @ is complicated, but we can use the well-known
general result from statistical inference concerning LR tests, namely that
—21In(Q) has, approximately, a x? distribution with degrees of freedom
equal to the difference between the number of independently varying pa-
rameters under Ho,UH4 and under Hy,. Calculating the number of degrees
of freedom is non-trivial (Mardia et al., 1979, p. 235), but it turns out to
be v = %(p —q+2)(p—gq—1), so that approximately, under Hy,,

p

n|(p—g@) - Y )| ~xi (3.7.6)
k—q+1

where

DL
l= .
Ml A’
In fact, the approximation can be improved if n is replaced by n’ = n —
(2p +11)/6, so Hy, is rejected at significance level « if

p
n (p—g) @) — Y )| > xia-
k=q+1

Another, more complicated, improvement to the approximation is given by
Srivastava and Khatri (1979, p. 294). The test is easily adapted so that
the null hypothesis defines equality of any subset of (p — ¢) consecutive
eigenvalues, not necessarily the smallest (Flury, 1997, Section 8.6). Another
modification is to test whether the last (p — q) eigenvalues follow a linear
trend (Bentler and Yuan, 1998). The relevance of this null hypothesis will
be discussed in Section 6.1.4.

A special case of the test of the null hypothesis Hy, occurs when ¢ = 0,
in which case Hy, is equivalent to all the variables being independent and
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having equal variances, a very restrictive assumption. The test with ¢ =0
reduces to a test that all variables are independent, with no requirement
of equal variances, if we are dealing with a correlation matrix. However, it
should be noted that all the results in this and the previous section are for
covariance, not correlation, matrices, which restricts their usefulness still
further.

In general, inference concerning PCs of correlation matrices is more
complicated than for covariance matrices (Anderson, 1963; Jackson, 1991,
Section 4.7), as the off-diagonal elements of a correlation matrix are non-
trivial functions of the random variables which make up the elements of
a covariance matrix. For example, the asymptotic distribution of the test
statistic (3.7.6) is no longer x? for the correlation matrix, although Lawley
(1963) provides an alternative statistic, for a special case, which does have
a limiting %2 distribution.

Another special case of the test based on (3.7.6) occurs when it is
necessary to test

Hy:¥ =02 Pl

against a general alternative. The null hypothesis H states that all vari-
ables have the same variance 2, and all pairs of variables have the same
correlation p, in which case

All+(p-Dpl =M >dA=X3=-=X,=0%(1—p)

(Morrison, 1976, Section 8.6), so that the last (p—1) eigenvalues are equal.
If p, 0% are unknown, then the earlier test is appropriate with ¢ = 1, but if
p, o2 are specified then a different test can be constructed, again based on
the LR criterion.

Further tests regarding A and the aj can be constructed, such as the
test discussed by Mardia et al. (1979, Section 8.4.2) that the first ¢ PCs
account for a given proportion of the total variation. However, as stated at
the beginning of this section, these tests are of relatively limited value in
practice. Not only are most of the tests asymptotic and/or approximate, but
they also rely on the assumption of multivariate normality. Furthermore, it
is arguable whether it is often possible to formulate a particular hypothesis
whose test is of interest. More usually, PCA is used to explore the data,
rather than to verify predetermined hypotheses.

To conclude this section on inference, we note that little has been done
with respect to PCA from a Bayesian viewpoint. Bishop (1999) is an ex-
ception. He introduces prior distributions for the parameters of a model
for PCA (see Section 3.9). His main motivation appears to be to provide
a means of deciding the dimensionality of the model (see Section 6.1.5).
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Lanterman (2000) and Wang and Staib (2000) each use principal com-
ponents in quantifying prior information in (different) image processing
contexts.

Another possible use of PCA when a Bayesian approach to inference is
adopted is as follows. Suppose that @ is a vector of parameters, and that
the posterior distribution for € has covariance matrix . If we find PCs
for 0, then the last few PCs provide information on which linear functions
of the elements of € can be estimated with high precision (low variance).
Conversely, the first few PCs are linear functions of the elements of 8 that
can only be estimated with low precision. In this context, then, it would
seem that the last few PCs may be more useful than the first few.

3.8 Principal Components for Patterned
Correlation or Covariance Matrices

At the end of Chapter 2, and in Section 3.7.3, the structure of the PCs
and their variances was discussed briefly in the case of a correlation matrix
with equal correlations between all variables. Other theoretical patterns in
correlation and covariance matrices can also be investigated; for example,
Jolliffe (1970) considered correlation matrices with elements p;; for which

P15 = P J=23....,p,

and
pij=p°, 2<i<j<p,

and Brillinger (1981, p. 108) discussed PCs for Toplitz matrices, which
occur for time series data (see Chapter 12), and in which the p;; depend
only on |i — j|.

Such exact patterns will not, in general, occur in sample covariance or
correlation matrices, but it is sometimes possible to deduce the approxi-
mate form of some of the PCs by recognizing a particular type of structure
in a sample covariance or correlation matrix. One such pattern, which was
discussed in Section 3.3, occurs when one or more of the variances in a
covariance matrix are of very different sizes from all the rest. In this case,
as illustrated in the example of Section 3.3, there will often be a PC as-
sociated with each such variable which is almost indistinguishable from
that variable. Similar behaviour, that is, the existence of a PC very simi-
lar to one of the original variables, can occur for correlation matrices, but
in rather different circumstances. Here the requirement for such a PC is
that the corresponding variable is nearly uncorrelated with all of the other
variables.

The other main type of pattern detected in many correlation matrices is
one where there are one or more groups of variables within which all cor-
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relations are positive and not close to zero. Sometimes a variable in such a
group will initially have entirely negative correlations with the other mem-
bers of the group, but the sign of a variable is often arbitrary, and switching
the sign will give a group of the required structure. If correlations between
the ¢ members of the group and variables outside the group are close to
zero, then there will be ¢ PCs ‘associated with the group’ whose coeffi-
cients for variables outside the group are small. One of these PCs will have
a large variance, approximately 1 + (¢ — 1)7, where 7 is the average corre-
lation within the group, and will have positive coefficients for all variables
in the group. The remaining (¢ — 1) PCs will have much smaller variances
(of order 1 —7), and will have some positive and some negative coefficients.
Thus the ‘large variance PC’ for the group measures, roughly, the average
size of variables in the group, whereas the ‘small variance PCs’ give ‘con-
trasts’ between some or all of the variables in the group. There may be
several such groups of variables in a data set, in which case each group will
have one ‘large variance PC’ and several ‘small variance PCs.” Conversely,
as happens not infrequently, especially in biological applications when all
variables are measurements on individuals of some species, we may find
that all p variables are positively correlated. In such cases, the first PC
is often interpreted as a measure of size of the individuals, whereas sub-
sequent PCs measure aspects of shape (see Sections 4.1, 13.2 for further
discussion).

The discussion above implies that the approximate structure and vari-
ances of the first few PCs can be deduced from a correlation matrix,
provided that well-defined groups of variables are detected, including pos-
sibly single-variable groups, whose within-group correlations are high, and
whose between-group correlations are low. The ideas can be taken further;
upper and lower bounds on the variance of the first PC can be calculated,
based on sums and averages of correlations (Friedman and Weisberg, 1981;
Jackson, 1991, Section 4.2.3). However, it should be stressed that although
data sets for which there is some group structure among variables are not
uncommon, there are many others for which no such pattern is apparent.
In such cases the structure of the PCs cannot usually be found without
actually performing the PCA.

3.8.1 Example

In many of the examples discussed in later chapters, it will be seen that the
structure of some of the PCs can be partially deduced from the correlation
matrix, using the ideas just discussed. Here we describe an example in which
all the PCs have a fairly clear pattern. The data consist of measurements of
reflexes at 10 sites of the body, measured for 143 individuals. As with the
examples discussed in Sections 3.3 and 3.4, the data were kindly supplied
by Richard Hews of Pfizer Central Research.
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Table 3.4. Correlation matrix for ten variables measuring reflexes.

Vi V2 V3 V4 V5 V6 V7 V8 V9 VI0

vVl 1.00

V2 098 1.00

V3 060 0.62 1.00

V4 071 0.73 0.88 1.00

V5 055 0.57 0.61 0.68 1.00

V6 055 0.57 0.56 0.68 0.97 1.00

V7 038 040 048 0.53 033 0.33 1.00

V8 025 0.28 042 0.47 027 0.27 090 1.00

V9 022 021 019 023 016 0.19 040 041 1.00
vVio 020 0.19 0.18 021 013 0.16 0.39 040 094 1.00

The correlation matrix for these data is given in Table 3.4, and the
coefficients of, and the variation accounted for by, the corresponding PCs
are presented in Table 3.5. It should first be noted that the ten variables
fall into five pairs. Thus, V1, V2, respectively, denote strength of reflexes
for right and left triceps, with {V3, V4}, {V5, V6}, {V7, V8}, {V9, V10}
similarly defined for right and left biceps, right and left wrists, right and left
knees, and right and left ankles. The correlations between variables within
each pair are large, so that the differences between variables in each pair
have small variances. This is reflected in the last five PCs, which are mainly
within-pair contrasts, with the more highly correlated pairs corresponding
to the later components.

Turning to the first two PCs, there is a suggestion in the correlation
matrix that, although all correlations are positive, the variables can be
divided into two groups {V1-V6}, {V7-V10}. These correspond to sites in
the arms and legs, respectively. Reflecting this group structure, the first and
second PCs have their largest coefficients on the first and second groups of
variables, respectively. Because the group structure is not clear-cut, these
two PCs also have contributions from the less dominant group, and the
first PC is a weighted average of variables from both groups, whereas the
second PC is a weighted contrast between the groups.

The third, fourth and fifth PCs reinforce the idea of the two groups. The
third PC is a contrast between the two pairs of variables in the second
(smaller) group and the fourth and fifth PCs both give contrasts between
the three pairs of variables in the first group.

It is relatively rare for examples with as many as ten variables to have
such a nicely defined structure as in the present case for all their PCs.
However, as will be seen in the examples of subsequent chapters, it is not
unusual to be able to deduce the structure of at least a few PCs in this
manner.
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Table 3.5. Principal components based on the correlation matrix of Table 3.4

Component 1 2 3 4 5 6 7 8 9 10
number
Coefficients
Vi1 0.3 —-0.2 02 -05 03 01 —-0.1 —-0.0 —0.6 0.2
V2 04 —-0.2 02 -05 03 00 —-01 -0.0 0.7 -0.3
V3 04 -01 -01 -0.0 -0.7 05 —-02 00 0.1 0.1
V4 04 -01 -01 -0.0 -04 -0.7 03 —-0.0 —-0.1 —-0.1
V5 0.3 —-0.2 0.1 05 02 02 -0.0 —-0.1 -0.2 —0.6
V6 0.3 -0.2 0.2 0.5 02 -01 -0.0 01 02 0.6
A\ 0.3 03 —-05 —-00 02 03 07 00 —00 0.0
V8 0.3 0.3 —-0.5 0.1 0.2 -02 —-0.7 —0.0 —0.0 —0.0
V9 0.2 0.5 0.4 0.0 -0.1 0.0 -0.0 0.7 —0.0 —-0.1
V10 0.2 0.5 0.4 0.0 -0.1 0.0 0.0 —-0.7 00 0.0

Percentage of 52.3 20.4 11.0 &85 50 1.0 09 06 02 02
total variation explained

3.9 Models for Principal Component Analysis

There is a variety of interpretations of what is meant by a model in the
context of PCA. Mandel (1972) considers the retention of m PCs, based
on the SVD (3.5.3), as implicitly using a model. Caussinus (1986) discusses
three types of ‘model.” The first is a ‘descriptive algebraic model,” which in
its simplest form reduces to the SVD. It can also be generalized to include
a choice of metric, rather than simply using a least squares approach. Such
generalizations are discussed further in Section 14.2.2. This model has no
random element, so there is no idea of expectation or variance. Hence it
corresponds to Pearson’s geometric view of PCA, rather than to Hotelling’s
variance-based approach.

Caussinus’s (1986) second type of model introduces probability distri-
butions and corresponds to Hotelling’s definition. Once again, the ‘model’
can be generalized by allowing a choice of metric.

The third type of model described by Caussinus is the so-called fized
effects model (see also Esposito (1998)). In this model we assume that
the rows x1,Xs,...,X, of X are independent random variables, such that
E(x;) = z;, where z; lies in a g-dimensional subspace, F,. Furthermore,
if e; = x; — 2;, then E(e;) = 0 and var(e;) = Z}—jl", where T' is a positive
definite symmetric matrix and the w; are positive scalars whose sum is 1.
Both T' and the w; are assumed to be known, but o2, the z; and the
subspace Fy all need to be estimated. This is done by minimizing

2
> willxi — zilly » (3.9.1)
=1
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where M denotes a metric (see Section 14.2.2) and may be related to T.
This statement of the model generalizes the usual form of PCA, for which
w; = %,i =1,2,...,n and M = I, to allow different weights on the ob-
servations and a choice of metric. When M = I' !, and the distribution of
the x; is multivariate normal, the estimates obtained by minimizing (3.9.1)
are maximum likelihood estimates (Besse, 1994b). An interesting aspect of
the fixed effects model is that it moves away from the idea of a sample of
identically distributed observations whose covariance or correlation struc-
ture is to be explored, to a formulation in which the variation among the
means of the observations is the feature of interest.

Tipping and Bishop (1999a) describe a model in which column-centred
observations x; are independent normally distributed random variables
with zero means and covariance matrix BB’ + 01,,, where B is a (p x q)
matrix. We shall see in Chapter 7 that this is a special case of a factor
analysis model. The fixed effects model also has links to factor analysis
and, indeed, de Leeuw (1986) suggests in discussion of Caussinus (1986)
that the model is closer to factor analysis than to PCA. Similar models
date back to Young (1941).

Tipping and Bishop (1999a) show that, apart from a renormalization of
columns, and the possibility of rotation, the maximum likelihood estimate
of B is the matrix A, of PC coefficients defined earlier (see also de Leeuw
(1986)). The MLE for ¢ is the average of the smallest (p — q) eigenval-
ues of the sample covariance matrix S. Tipping and Bishop (1999a) fit
their model using the EM algorithm (Dempster et al. (1977)), treating the
unknown underlying components as ‘missing values.” Clearly, the compli-
cation of the EM algorithm is not necessary once we realise that we are
dealing with PCA, but it has advantages when the model is extended to
cope with genuinely missing data or to mixtures of distributions (see Sec-
tions 13.6, 9.2.3). Bishop (1999) describes a Bayesian treatment of Tipping
and Bishop’s (1999a) model. The main objective in introducing a prior dis-
tribution for B appears to be as a means of deciding on its dimension ¢
(see Section 6.1.5).

Roweis (1997) also uses the EM algorithm to fit a model for PCA. His
model is more general than Tipping and Bishop’s, with the error covariance
matrix allowed to take any form, rather than being restricted to o2I,. In
this respect it is more similar to the fixed effects model with equal weights,
but differs from it by not specifying different means for different observa-
tions. Roweis (1997) notes that a full PCA, with all p PCs, is obtained
from his model in the special case where the covariance matrix is oI, and
0% — 0. He refers to the analysis based on Tipping and Bishop’s (1999a)
model with 02 > 0 as sensible principal component analysis.

Martin (1988) considers another type of probability-based PCA, in which
each of the n observations has a probability distribution in p-dimensional
space centred on it, rather than being represented by a single point. In
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the one non-trivial example considered by Martin (1988), the distributions
are identical for each observation and spherical, so that the underlying
covariance matrix has the form ¥ + ¢%I,. Lynn and McCulloch (2000) use
PCA to estimate latent fixed effects in a generalized linear model, and de
Falguerolles (2000) notes that PCA can be viewed as a special case of the
large family of generalized bilinear models.

Although PCA is a largely descriptive tool, it can be argued that build-
ing a model gives a better understanding of what the technique does, helps
to define circumstances in which it would be inadvisable to use it, and
suggests generalizations that explore the structure of a data set in a more
sophisticated way. We will see how either the fixed effects model or Tip-
ping and Bishop’s (1999a) model can be used in deciding how many PCs
to retain (Section 6.1.5); in examining mixtures of probability distributions
(Section 9.2.3); in a robust version of PCA (Section 10.4); in analysing func-
tional data (Section 12.3.4); in handling missing data (Section 13.6); and in
generalizations of PCA (Section 14.1, 14.2). One application that belongs
in the present chapter is described by Ferré (1995a). Here fi, fio, ..., [ty
are estimates, derived from k samples of sizes nq,no, ..., ng of vectors of p
parameters fiq, by, . . ., pby,- Ferré (1995a) proposes estimates that minimize
an expression equivalent to (3.9.1) in which w; = % where n = Zle ng;
x;,2; are replaced by pw,, ft, where f1;, is a projection onto an optimal g-
dimensional space; and M is chosen to be S~ where S is an estimate of
the common covariance matrix for the data from which gy, o, ..., @ are
estimated. The properties of such estimators are investigated in detail by
Ferré (1995a)
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4

Principal Components as a Small
Number of Interpretable Variables:
Some Examples

The original purpose of PCA was to reduce a large number (p) of variables
to a much smaller number (m) of PCs whilst retaining as much as possible
of the variation in the p original variables. The technique is especially useful
if m < p and if the m PCs can be readily interpreted.

Although we shall see in subsequent chapters that there are many other
ways of applying PCA, the original usage as a descriptive, dimension-
reducing technique is probably still the most prevalent single application.
This chapter simply introduces a number of examples from several different
fields of application where PCA not only reduces the dimensionality of the
problem substantially, but has PCs which are easily interpreted. Graphical
representations of a set of observations with respect to the m retained PCs
and discussion of how to choose an appropriate value of m are deferred
until Chapters 5 and 6, respectively.

Of course, if m is very much smaller than p, then the reduction of dimen-
sionality alone may justify the use of PCA, even if the PCs have no clear
meaning, but the results of a PCA are much more satisfying if intuitively
reasonable interpretations can be given to some or all of the m retained
PCs.

Each section of this chapter describes one example in detail, but other
examples in related areas are also mentioned in most sections. Some of the
examples introduced in this chapter are discussed further in subsequent
chapters; conversely, when new examples are introduced later in the book,
an attempt will be made to interpret the first few PCs where appropriate.
The examples are drawn from a variety of fields of application, demon-
strating the fact that PCA has been found useful in a very large number
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of subject areas, of which those illustrated in this book form only a subset.

It must be emphasized that although in many examples the PCs can be
readily interpreted, this is by no means universally true. There is no rea-
son, a priori, why a mathematically derived linear function of the original
variables (which is what the PCs are) should have a simple interpreta-
tion. It is remarkable how often it seems to be possible to interpret the
first few PCs, though it is probable that some interpretations owe a lot
to the analyst’s ingenuity and imagination. Careful thought should go into
any interpretation and, at an earlier stage, into the choice of variables and
whether to transform them. In some circumstances, transformation of vari-
ables before analysis may improve the chances of a simple interpretation
(see Sections 13.2, 13.3, 14.1 and 14.2). Conversely, the arbitrary inclusion
of logarithms, powers, ratios, etc., of the original variables can make it un-
likely that any simple interpretation will be found. Further discussion of
the difficulties of interpretation, and of some alternative approaches, will
be given in Chapter 11.

Many interesting applications have appeared since the first edition of this
book, and some will be discussed in detail later in this edition. However,
in the current chapter the original selection of examples, which illustrates
a nice range of applications, has been kept. Extra references are given, but
no new examples are discussed in detail. Texts such as Jackson (1991), Krz-
anowski (1988), Krzanowski and Marriott (1994) and Rencher (1995) are
useful sources for additional examples. A non-exhaustive list of disciplines
in which PCA has been applied was given at the end of Chapter 1.

4.1 Anatomical Measurements

One type of application where PCA has been found useful is identification
of the most important sources of variation in anatomical measurements for
various species. Typically, a large number of measurements are made on
individuals of a species, and a PCA is done. The first PC almost always
has positive coefficients for all variables and simply reflects overall ‘size’ of
the individuals. Later PCs usually contrast some of the measurements with
others, and can often be interpreted as defining certain aspects of ‘shape’
that are important for the species. Blackith and Reyment (1971, Chap-
ter 12) mention applications to squirrels, turtles, ammonites, foraminifera
(marine microorganisms) and various types of insects. The analysis of size
and shape is a large topic in its own right, and will discussed in greater
detail in Section 13.2. Here a small data set is examined in which seven
measurements were taken for a class of 28 students (15 women, 13 men).
The seven measurements are circumferences of chest, waist, wrist and head,
lengths of hand and forearm, and overall height. A similar data set for a
different group of students was introduced in Chapter 1.
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Table 4.1. First three PCs: student anatomical measurements.

Component number 1 2 3
‘Women
Hand 0.33 0.56 0.03
Wrist 0.26 0.62 0.11
Height 0.40 —-0.44 -0.00
Forearm ( Coefficients 0.41 —-0.05 —0.55
Head 0.27 -0.19 0.80
Chest 0.45 —-0.26 —0.12
Waist 0.47 0.03 —0.03
Eigenvalue 3.72 1.37 0.97
Cumulative percentage
of total variation 53.2 72.7 86.5
Men
Hand 0.23 0.62 0.64
Wrist 0.29 0.53 —0.42
Height 0.43 —0.20 0.04
Forearm  Coefficients 0.33 —0.53 0.38
Head 0.41 -—-0.09 -0.51
Chest 0.44 0.08 —-0.01
Waist 0.46 —0.07 0.09
Eigenvalue 4.17 1.26 0.66

Cumulative percentage
of total variation 59.6 77.6 87.0

The PCA was done on the correlation matrix, even though it could be
argued that, since all measurements are made in the same units, the co-
variance matrix might be more appropriate (see Sections 2.3 and 3.3). The
correlation matrix was preferred because it was desired to treat all variables
on an equal footing: the covariance matrix gives greater weight to larger,
and hence more variable, measurements, such as height and chest girth, and
less weight to smaller measurements such as wrist girth and hand length.

Some of the results of the PC analyses, done separately for women and
men, are given in Tables 4.1 and 4.2.

It can be seen that the form of the first two PCs is similar for the two
sexes, with some similarity, too, for the third PC. Bearing in mind the small
sample sizes, and the consequent large sampling variation in PC coefficients,
it seems that the major sources of variation in the measurements, as given
by the first three PCs, are similar for each sex. A combined PCA using all 28
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Table 4.2. Simplified version of the coefficients in Table 4.1.

Component number 1 2 3
Women

Hand + 4+
Wrist +  +
Height + -
Forearm + —
Head + (=) +
Chest + (-)
Waist +

Men
Hand + +  +
Wrist + + —
Height + (-)
Forearm + — +
Head + -
Chest +
Waist +

observations therefore seems appropriate, in order to get better estimates
of the first three PCs. It is, of course, possible that later PCs are different
for the two sexes, and that combining all 28 observations will obscure such
differences. However, if we are interested solely in interpreting the first few,
high variance, PCs, then this potential problem is likely to be relatively
unimportant.

Before we attempt to interpret the PCs, some explanation of Table 4.2
is necessary. Typically, computer packages that produce PCs give the co-
efficients to several decimal places. When we interpret PCs, as with other
types of tabular data, it is usually only the general pattern of the coeffi-
cients that is really of interest, not values to several decimal places, which
may give a false impression of precision. Table 4.1 gives only two decimal
places and Table 4.2 simplifies still further. A + or — in Table 4.2 indicates
a coefficient whose absolute value is greater than half the maximum coeffi-
cient (again in absolute value) for the relevant PC; the sign of the coefficient
is also indicated. Similarly, a (4) or (—) indicates a coefficient whose ab-
solute value is between a quarter and a half of the largest absolute value
for the PC of interest. There are, of course, many ways of constructing a
simplified version of the PC coefficients in Table 4.1. For example, another
possibility is to rescale the coefficients in each PC so that the maximum
value is +1, and tabulate only the values of the coefficients, rounded to
one decimal place whose absolute values are above a certain cut-off, say 0.5
or 0.7. Values of coeflicients below the cut-off are omitted, leaving blank
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spaces, as in Table 4.2. Some such simple representation is often helpful
in interpreting PCs, particularly if a PCA is done on a large number of
variables.

Sometimes a simplification such as that given in Table 4.2 may be rather
too extreme, and it is therefore advisable to present the coefficients rounded
to one or two decimal places as well. Principal components with rounded
coefficients will no longer be optimal, so that the variances of the first few
will tend to be reduced, and exact orthogonality will be lost. However, it
has been shown (Bibby, 1980; Green, 1977) that fairly drastic rounding
of coefficients makes little difference to the variances of the PCs (see Sec-
tion 10.3). Thus, presentation of rounded coefficients will still give linear
functions of x with variances very nearly as large as those of the PCs, while
at the same time easing interpretations.

It must be stressed that interpretation of PCs is often more subtle than
is generally realised. Simplistic interpretation can be misleading. As well as
truncation or rounding of PC coefficients, a number of other ideas are avail-
able to aid interpretation. Some of these involve manipulation of the PC
coefficients themselves, whilst others are based on alternative, but similar,
techniques to PCA. In this chapter we concentrate on simple interpreta-
tion. Its dangers, and various alternative ways of tackling interpretation,
are discussed in Chapter 11.

Turning now to the interpretation of the PCs in the present example,
the first PC clearly measures overall ‘size’ for both sexes, as would be ex-
pected (see Section 3.8), as all the correlations between the seven variables
are positive. It accounts for 53% (women) or 60% (men) of the total varia-
tion. The second PC for both sexes contrasts hand and wrist measurements
with height, implying that, after overall size has been accounted for, the
main source of variation is between individuals with large hand and wrist
measurements relative to their heights, and individuals with the converse
relationship. For women, head and chest measurements also have some con-
tribution to this component, and for men the forearm measurement, which
is closely related to height, partially replaces height in the component.
This second PC accounts for slightly less than 20% of the total variation,
for both sexes.

It should be noted that the sign of any PC is completely arbitrary. If
every coefficient in a PC, z;, = a} x, has its sign reversed, the variance of z
is unchanged, and so is the orthogonality of a; with all other eigenvectors.
For example, the second PC for men as recorded in Tables 4.1 and 4.2 has
large positive values for students with large hand and wrist measurements
relative to their height. If the sign of as, and hence zs, is reversed, the
large positive values now occur for students with small hand and wrist
measurements relative to height. The interpretation of the PC remains the
same, even though the roles of ‘large’ and ‘small’ are reversed.

The third PCs differ more between the sexes but nevertheless retain
some similarity. For women it is almost entirely a contrast between head
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and forearm measurements; for men these two measurements are also im-
portant, but, in addition, hand and wrist measurements appear with the
same signs as forearm and head, respectively. This component contributes
9%-14% of total variation.

Overall, the first three PCs account for a substantial proportion of to-
tal variation, 86.5% and 87.0% for women and men respectively. Although
discussion of rules for deciding how many PCs to retain is deferred un-
til Chapter 6, intuition strongly suggests that these percentages are large
enough for three PCs to give an adequate representation of the data.

A similar but much larger study, using seven measurements on 3000 crim-
inals, was reported by Macdonell (1902) and is quoted by Maxwell (1977).
The first PC again measures overall size, the second contrasts head and
limb measurements, and the third can be readily interpreted as measuring
the shape (roundness versus thinness) of the head. The percentages of total
variation accounted for by each of the first three PCs are 54.3%, 21.4% and
9.3%, respectively, very similar to the proportions given in Table 4.1.

The sample size (28) is rather small in our example compared to that of
Macdonnell’s (1902), especially when the sexes are analysed separately, so
caution is needed in making any inference about the PCs in the population
of students from which the sample is drawn. However, the same variables
have been measured for other classes of students, and similar PCs have
been found (see Sections 5.1 and 13.5). In any case, a description of the
sample, rather than inference about the underlying population, is often
what is required, and the PCs describe the major directions of variation
within a sample, regardless of the sample size.

4.2 The Elderly at Home

Hunt (1978) described a survey of the ‘Elderly at Home’ in which values
of a large number of variables were collected for a sample of 2622 elderly
individuals living in private households in the UK in 1976. The variables
collected included standard demographic information of the type found in
the decennial censuses, as well as information on dependency, social contact,
mobility and income. As part of a project carried out for the Departments
of the Environment and Health and Social Security, a PCA was done on a
subset of 20 variables from Hunt’s (1978) data. These variables are listed
briefly in Table 4.3. Full details of the variables, and also of the project as
a whole, are given by Jolliffe et al. (1982a), while shorter accounts of the
main aspects of the project are available in Jolliffe et al. (1980, 1982b). It
should be noted that many of the variables listed in Table 4.3 are discrete,
or even dichotomous.

Some authors suggest that PCA should only be done on continuous
variables, preferably with normal distributions. However, provided that
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Table 4.3. Variables used in the PCA for the elderly at home.

1. Age 11. Separate kitchen
2. Sex 12. Hot water
3. Marital status 13. Car or van ownership
4. Employed 14. Number of elderly in household
5. Birthplace 15. Owner occupier
6. Father’s birthplace 16. Council tenant
7. Length of residence in 17. Private tenant
present household 18. Lives alone
8. Density: persons per room 19. Lives with spouse or sibling
9. Lavatory 20. Lives with younger generation

10. Bathroom

inferential techniques that depend on assumptions such as multivariate
normality (see Section 3.7) are not invoked, there is no real necessity for
the variables to have any particular distribution. Admittedly, correlations
or covariances, on which PCs are based, have particular relevance for nor-
mal random variables, but they are still valid for discrete variables provided
that the possible values of the discrete variables have a genuine interpreta-
tion. Variables should not be defined with more than two possible values,
unless the values have a valid meaning relative to each other. If 0, 1, 3 are
possible values for a variable, then the values 1 and 3 must really be twice
as far apart as the values 0 and 1. Further discussion of PCA and related
techniques for discrete variables is given in Section 13.1.

It is widely accepted that old people who have only just passed retirement
age are different from the ‘very old,” so that it might be misleading to deal
with all 2622 individuals together. Hunt (1978), too, recognized possible
differences between age groups by taking a larger proportion of elderly
whose age was 75 or over in her sample—compared to those between 65
and 74—than is present in the population as a whole. It was therefore
decided to analyse the two age groups 65-74 and 75+ separately, and part
of each analysis consisted of a PCA on the correlation matrices for the
20 variables listed in Table 4.3. It would certainly not be appropriate to
use the covariance matrix here, where the variables are of several different
types.

It turned out that for both age groups as many as 11 PCs could be
reasonably well interpreted, in the sense that not too many coefficients
were far from zero. Because there are relatively few strong correlations
among the 20 variables, the effective dimensionality of the 20 variables
is around 10 or 11, a much less substantial reduction than occurs when
there are large correlations between most of the variables (see Sections 4.3
and 6.4, for example). Eleven PCs accounted for 85.0% and 86.6% of the
total variation for the 65-74 and 75+ age groups, respectively.
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Table 4.4. Interpretations for the first 11 PCs for the ‘elderly at home.’

65-74

75+

Component 1 (16.0%; 17.8%)*

Contrasts single elderly living alone with
others.

Contrasts single elderly, particularly fe-
male, living alone with others.

Component 2 (13.0%; 12.9%)

Contrasts those lacking basic ameni-
ties (lavatory, bathroom, hot water)
in private rented accommodation with
others.

Contrasts those lacking basic amenities
(lavatory, bathroom, hot water), who
also mainly lack a car and are in private,
rented accommodation, not living with
the next generation with others.

Component 3 (9.5%; 10.1%)

Contrasts council tenants, living in
crowded conditions with others.

Contrasts those who have a car, do not
live in council housing (and tend to live
in own accommodation) and tend to live
with the next generation with others.

Component 4 (9.2%; 9.2%)

Contrasts immigrants living with next
generation with others. There are ele-
ments here of overcrowding and posses-
sion of a car.

Contrasts council tenants, mainly immi-
grant, living in crowded conditions with
others.

Component 5 (7.3%; 8.3%)

Contrasts immigrants not living with
next generation, with others. They tend
to be older, fewer employed, fewer with
a car, than in component 4.

Contrasts immigrants with others.

Component 6 (6.7%; 5.6%)

Contrasts the younger employed peo-
ple (tendency to be male), in fairly
crowded conditions, often living with
next generation with others.

Contrasts younger (to a certain extent,
male) employed with others.

Component 7 (5.6%; 5.1%)

Contrasts long-stay people with a kitch-
en with others.

Contrasts those lacking kitchen facilities
with others. (NB: 1243 out of 1268 have
kitchen facilities)

Component 8 (5.0%; 4.9%)

Contrasts women living
accommodation with others.

in private

Contrasts private tenants with others.

Component 9 (4.6%; 4.5%)

Contrasts old with others.

Contrasts long-stay, mainly unemployed,
individuals with others.

Component 10 (4.4%; 4.4%)

Contrasts long-stay individuals, without
a kitchen, with others.

Contrasts very old with others.

Component 11 (3.7%; 3.8,%)

Contrasts
with others.

employed (mainly female)

Contrasts men with women.

* The two percentages are the percentages of variation accounted for by the relevant PC
for the 65-74 and 75+ age groups, respectively.
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Interpretations of the first 11 PCs for the two age groups are given in
Table 4.4, together with the percentage of total variation accounted for by
each PC. The variances of corresponding PCs for the two age groups differ
very little, and there are similar interpretations for several pairs of PCs, for
example the first, second, sixth and eighth. In other cases there are groups
of PCs involving the same variables, but in different combinations for the
two age groups, for example the third, fourth and fifth PCs. Similarly, the
ninth and tenth PCs involve the same variables for the two age groups, but
the order of the PCs is reversed.

Principal component analysis has also been found useful in other de-
mographic studies, one of the earliest being that described by Moser and
Scott (1961). In this study, there were 57 demographic variables measured
for 157 British towns. A PCA of these data showed that, unlike the elderly
data, dimensionality could be vastly reduced; there are 57 variables, but
as few as four PCs account for 63% of the total variation. These PCs also
have ready interpretations as measures of social class, population growth
from 1931 to 1951, population growth after 1951, and overcrowding.

Similar studies have been done on local authority areas in the UK by
Imber (1977) and Webber and Craig (1978) (see also Jolliffe et al. (1986)).
In each of these studies, as well as Moser and Scott (1961) and the ‘elderly at
home’ project, the main objective was to classify the local authorities, towns
or elderly individuals, and the PCA was done as a prelude to, or as part
of, cluster analysis. The use of PCA in cluster analysis is discussed further
in Section 9.2, but the PCA in each study mentioned here provided useful
information, separate from the results of the cluster analysis, For example,
Webber and Craig (1978) used 40 variables, and they were able to interpret
the first four PCs as measuring social dependence, family structure, age
structure and industrial employment opportunity. These four components
accounted for 29.5%, 22.7%, 12.0% and 7.4% of total variation, respectively,
so that 71.6% of the total variation is accounted for in four interpretable
dimensions.

4.3 Spatial and Temporal Variation in
Atmospheric Science

Principal component analysis provides a widely used method of describing
patterns of pressure, temperature, or other meteorological variables over a
large spatial area. For example, Richman (1983) stated that, over the pre-
vious 3 years, more than 60 applications of PCA, or similar techniques, had
appeared in meteorological/climatological journals. More recently, 53 out
of 215 articles in the 1999 and 2000 volumes of the International Journal of
Climatology used PCA in some form. No other statistical technique came
close to this 25% rate of usage. The example considered in detail in this
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section is taken from Maryon (1979) and is concerned with sea level atmo-
spheric pressure fields, averaged over half-month periods, for most of the
Northern Hemisphere. There were 1440 half-months, corresponding to 60
years between 1900 and 1974, excluding the years 191621, 1940-48 when
data were inadequate. The pressure fields are summarized by estimating
average pressure at p = 221 grid points covering the Northern Hemisphere
so that the data set consists of 1440 observations on 221 variables. Data
sets of this size, or larger, are commonplace in atmospheric science, and
a standard procedure is to replace the variables by a few large-variance
PCs. The eigenvectors that define the PCs are often known as empirical
orthogonal functions (EOFs) in the meteorological or climatological liter-
ature, and the values of the PCs (the PC scores) are sometimes referred
to as amplitude time series (Rasmusson et al., 1981) or, confusingly, as
coefficients (Maryon, 1979) or EOF coefficients (von Storch and Zwiers,
1999, Chapter 13). Richman (1986) distinguishes between EOF analysis
and PCA, with the former having unit-length eigenvectors and the latter
having eigenvectors renormalized, as in (2.3.2), to have lengths propor-
tional to their respective eigenvalues. Other authors, such as von Storch
and Zwiers (1999) treat PCA and EOF analysis as synonymous.

For each PC, there is a coefficient (in the usual sense of the word), or
loading, for each variable, and because variables are gridpoints (geograph-
ical locations) it is possible to plot each loading (coefficient) on a map at
its corresponding gridpoint, and then draw contours through geographical
locations having the same coefficient values. The map representation can
greatly aid interpretation, as is illustrated in Figure 4.1.

This figure, which comes from Maryon (1979), gives the map of coeffi-
cients, arbitrarily renormalized to give ‘round numbers’ on the contours,
for the second PC from the pressure data set described above, and is much
easier to interpret than would be the corresponding table of 221 coefficients.
Half-months having large positive scores for this PC will tend to have high
values of the variables, that is high pressure values, where coefficients on the
map are positive, and low values of the variables (low pressure values) at
gridpoints where coefficients are negative. In Figure 4.1 this corresponds to
low pressure in the polar regions and high pressure in the subtropics, lead-
ing to situations where there is a strong westerly flow in high latitudes at
most longitudes. This is known as strong zonal flow, a reasonably frequent
meteorological phenomenon, and the second PC therefore contrasts half-
months with strong zonal flow with those of opposite character. Similarly,
the first PC (not shown) has one of its extremes identified as corresponding
to an intense high pressure area over Asia and such situations are again a
fairly frequent occurrence, although only in winter.

Several other PCs in Maryon’s (1979) study can also be interpreted as
corresponding to recognizable meteorological situations, especially when
coefficients are plotted in map form. The use of PCs to summarize pres-
sure fields and other meteorological or climatological fields has been found
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Figure 4.1. Graphical representation of the coefficients in the second PC for sea
level atmospheric pressure data.

to be so valuable that it is almost routine. For example, Craddock and
Flood (1969) find PCs with ready interpretations for Northern Hemispheric
500 mb geopotential surfaces, Craddock and Flintoff (1970) do the same for
1000 mb surfaces and 1000-500 mb thickness, Overland and Preisendorfer
(1982) interpret the first three PCs for data on spatial distributions of cy-
clone frequencies in the Bering Sea, Wigley et al. (1984) discuss PCs for
European precipitation data, and Folland et al. (1985) find interpretable
patterns in PCs of worldwide sea surface temperature anomalies. Some
patterns recur in different data sets. For example, Figure 4.1 could be
interpreted as the North Atlantic Oscillation (NAO), which reflects the
strength of the zonal flow in the North Atlantic and neighbouring areas, as
measured by the pressure difference between the Azores and Iceland. This
pattern, and a small number of others, notably ENSO (El Nino-Southern
Oscillation), have been identified as major modes of climate variability in
different parts of the world. They have been studied extensively (see, for
example, Ambaum et al. (2001) for a discussion of the NAO).
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It is not always the case that interpretation is straightforward. In atmo-
spheric science the PCs or EOFS are often rotated in an attempt to find
more clearly interpretable patterns. We return to this topic in Chapter 11.

Not only are the first few PCs readily interpreted in many meteoro-
logical and climatological examples, possibly after rotation, but they also
frequently enable a considerable reduction to be made in the dimensions of
the data set. In Maryon’s (1979) study, for example, there are initially 221
variables, but 16 PCs account for over 90% of the total variation. Nor is
this due to any disparity between variances causing a few dominant PCs;
size of variance is fairly similar for all 221 variables.

Maryon’s (1979) analysis was for a covariance matrix, which is reasonable
since all variables are measured in the same units (see Sections 2.3 and 3.3).
However, some atmospheric scientists advocate using correlation, rather
than covariance, matrices so that patterns of spatial correlation can be
detected without possible domination by the stations and gridpoints with
the largest variances (see Wigley et al. (1984)).

It should be clear from this section that meteorologists and climatolo-
gists have played a leading role in applying PCA. In addition, they have
developed many related methods to deal with the peculiarities of their
data, which often have correlation structure in both time and space. A
substantial part of Chapter 12 is devoted to these developments.

4.4 Properties of Chemical Compounds

The main example given in this section is based on a subset of data given
by Hansch et al. (1973); the PCA was described by Morgan (1981). Seven
properties (variables) were measured for each of 15 chemical substituents;
the properties and substituents are listed in Table 4.5. Some of the results of
a PCA based on the correlation matrix for these data are given in Table 4.6.

The aim of the work of Hansch et al. (1973), and of much subsequent re-
search in quantitative structure—activity relationships (QSAR), is to relate
aspects of the structure of chemicals to their physical properties or activi-
ties so that ‘new’ chemicals can be manufactured whose activities may be
predicted in advance. Although PCA is less evident recently in the exten-
sive QSAR literature, it appeared in a number of early papers on QSAR.
For example, it was used in conjunction with regression (see Chapter 8
and Mager (1980a)), and as a discriminant technique (see Section 9.1 and
Mager (1980b)). Here we look only at the reduction of dimensionality and
interpretations obtained by Morgan (1981) in this analysis of Hansch et
al.’s (1973) data. The first two PCs in Table 4.6 account for 79% of the
total variation; the coefficients for each have a moderately simple structure.
The first PC is essentially an average of all properties except = and MR,
whereas the most important contribution to the second PC is an average of
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Table 4.5. Variables and substituents considered by Hansch et al. (1973).
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(a) Variables

. Hansch’s measure of lipophylicity

1

2. F

3. R

4. MR molar refraction
5. 0m

6. op

7. MW  molecular weight
(b) Substituents

1. Br 2. Cl 3.F

6. CHs 7. C2Hs 8. C3Hr
11. NH 12. CH,OH 13. SO.CH3

further measures of electronic effect

4.1

9. C4H>
14. SOCH3

5. CF3
10. OH
15. SO2(NH3)

Table 4.6. First four PCs of chemical data from Hansch et al. (1973).

Component number 1 2 3 4

™ 0.15 0.49 0.70 —0.45
F —-0.42 -0.36 0.34 0.13
R —-0.37 0.30 —-044 —-0.54
MR 3 Coeflicients —0.16 0.62 —0.23 0.49
Om —-048 —-0.24 0.19 -0.03
op —0.50 0.01 -0.11 -0.30
MW —0.40 0.30 0.31 0.40
Eigenvalue 3.79 1.73 0.74 0.59
Cumulative percentage

of total variation 54.1 78.8 89.4 97.8

measures of electronic effect: F denotes ‘field’; R denotes resonance
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7w and MR. Morgan (1981) also reports PCAs for a number of other similar
data sets, in several of which the PCs provide useful interpretations.

4.5 Stock Market Prices

The data in this example are the only set in this chapter that previously
appeared in a textbook (Press, 1972, Section 9.5.2). Both the data, and
the PCs have interesting structures. The data, which were originally anal-
ysed by Feeney and Hester (1967), consist of 50 quarterly measurements
between 1951 and 1963 of US stock market prices for the 30 industrial
stocks making up the Dow-Jones index at the end of 1961. Table 4.7 gives,
in the simplified form described for Table 4.2, the coefficients of the first
two PCs, together with the percentage of variation accounted for by each
PC, for both covariance and correlation matrices.

Looking at the PCs for the correlation matrix, the first is a ‘size’ com-
ponent, similar to those discussed in Section 4.1. It reflects the fact that
all stock prices rose fairly steadily during the period 1951-63, with the ex-
ception of Chrysler. It accounts for roughly two-thirds of the variation in
the 30 variables. The second PC can be interpreted as a contrast between
‘consumer’ and ‘producer’ stocks. ‘Consumer’ companies are those that
mainly supply goods or services directly to the consumer, such as AT&T,
American Tobacco, General Foods, Proctor and Gamble, Sears, and Wool-
worth, whereas ‘producer’ companies sell their goods or services mainly to
other companies, and include Alcoa, American Can, Anaconda, Bethlehem,
Union Carbide, and United Aircraft.

The PCs for the covariance matrix can be similarly interpreted, albeit
with a change of sign for the second component, but the interpretation
is slightly confounded, especially for the first PC, by the different-sized
variances for each variable.

Feeney and Hester (1967) also performed a number of other PCAs using
these and related data. In one analysis, they removed a linear trend from the
stock prices before calculating PCs, and found that they had eliminated the
size (trend) PC, and that the first PC was now very similar in form to the
second PC in the original analyses. They also calculated PCs based on ‘rate-
of-return’ rather than price, for each stock, and again found interpretable
PCs. Finally, PCs were calculated for subperiods of 12 years of data in
order to investigate the stability of the PCs, a topic that is discussed more
generally in Section 10.3.

To conclude this example, note that it is of a special type, as each variable
is a time series, in which consecutive observations are not independent.
Further discussion of PCA for time series data is given in Chapter 12. A
possible technique for finding PCs that are free of the trend in a vector of
time series, which is more general than the technique noted above for the
present example, is described in Section 14.3.



Table 4.7. Simplified coefficients for the first two PCs: stock market prices.
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Component number

Correlation matrix

1

1 2

Covariance matrix

Allied Chemical
Alcoa

American Can
AT&T

American Tobacco
Anaconda
Bethlehem
Chrysler

Dupont

Eastman Kodak
Esso

General Electric
General Foods
General Motors
Goodyear
International Harvester
International Nickel
International Paper
Johns—Manville
Owens—Illinois
Proctor and Gamble
Sears

Standard Oil (Cal.)
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Union Carbide
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Graphical Representation of Data
Using Principal Components

The main objective of a PCA is to reduce the dimensionality of a set of
data. This is particularly advantageous if a set of data with many variables
lies, in reality, close to a two-dimensional subspace (plane). In this case the
data can be plotted with respect to these two dimensions, thus giving a
straightforward visual representation of what the data look like, instead of
appearing as a large mass of numbers to be digested. If the data fall close
to a three-dimensional subspace it is still possible to gain a good visual
impression of the data using interactive computer graphics. Even with a
few more dimensions it is possible, with some degree of ingenuity, to get
a ‘picture’ of the data (see, for example, Chapters 10-12 (by Tukey and
Tukey) in Barnett (1981)) although we shall concentrate almost entirely
on two-dimensional representations in the present chapter.

If a good representation of the data exists in a small number of dimen-
sions then PCA will find it, since the first ¢ PCs give the ‘best-fitting’
g-dimensional subspace in the sense defined by Property G3 of Section 3.2.
Thus, if we plot the values for each observation of the first two PCs, we
get the best possible two-dimensional plot of the data (similarly for three
or more dimensions). The first section of this chapter simply gives exam-
ples illustrating this procedure. We largely defer until the next chapter the
problem of whether or not two PCs are adequate to represent most of the
variation in the data, or whether we need more than two.

There are numerous other methods for representing high-dimensional
data in two or three dimensions and, indeed, the book by Everitt (1978)
is almost entirely on the subject, as are the conference proceedings edited
by Wang (1978) and by Barnett (1981) (see also Chapter 5 of the book
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by Chambers et al. (1983)). A more recent thorough review of graphics
for multivariate data is given by Carr (1998). A major advance has been
the development of dynamic multivariate graphics, which Carr (1998) de-
scribes as part of ‘the visual revolution in computer science.” The techniques
discussed in the present chapter are almost exclusively static, although
some could be adapted to be viewed dynamically. Only those graph-
ics that have links with, or can be used in conjunction with, PCA are
included.

Section 5.2 discusses principal coordinate analysis, which constructs low-
dimensional plots of a set of data from information about similarities or
dissimilarities between pairs of observations. It turns out that the plots
given by this analysis are equivalent to plots with respect to PCs in certain
special cases.

The biplot, described in Section 5.3, is also closely related to PCA. There
are a number of variants of the biplot idea, but all give a simultaneous
display of n observations and p variables on the same two-dimensional
diagram. In one of the variants, the plot of observations is identical to
a plot with respect to the first two PCs, but the biplot simultaneously
gives graphical information about the relationships between variables. The
relative positions of variables and observations, which are plotted on the
same diagram, can also be interpreted.

Correspondence analysis, which is discussed in Section 5.4, again gives
two-dimensional plots, but only for data of a special form. Whereas PCA
and the biplot operate on a matrix of n observations on p variables,
and principal coordinate analysis and other types of scaling or ordination
techniques use data in the form of a similarity or dissimilarity matrix, cor-
respondence analysis is used on contingency tables, that is, data classified
according to two categorical variables. The link with PCA is less straight-
forward than for principal coordinate analysis or the biplot, but the ideas
of PCA and correspondence analysis have some definite connections. There
are many other ordination and scaling methods that give graphical displays
of multivariate data, and which have increasingly tenuous links to PCA.
Some of these techniques are noted in Sections 5.2 and 5.4, and in Sec-
tion 5.5 some comparisons are made, briefly, between PCA and the other
techniques introduced in this chapter.

Another family of techniques, projection pursuit, is designed to find low-
dimensional representations of a multivariate data set that best display
certain types of structure such as clusters or outliers. Discussion of projec-
tion pursuit will be deferred until Chapters 9 and 10, which include sections
on cluster analysis and outliers, respectively.

The final section of this chapter describes some methods which have been
used for representing multivariate data in two dimensions when more than
two or three PCs are needed to give an adequate representation of the data.
The first ¢ PCs can still be helpful in reducing the dimensionality in such
cases, even when ¢ is much larger than 2 or 3.
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Finally, we note that as well as the graphical representations described
in the present chapter, we have already seen, in Section 4.3, one other type
of plot that uses PCs. This type of plot is rather specialized, but is used
extensively in atmospheric science. Related plots are discussed further in
Chapter 12.

5.1 Plotting Data with Respect to the First Two
(or Three) Principal Components

The idea here is simple: if a data set {x1,xX2,...,X,} has p variables, then
the observations can be plotted as points in p-dimensional space. If we wish
to plot the data in a ‘best-fitting’ g-dimensional subspace (¢ < p), where
‘best-fitting’ is defined, as in Property G3 of Section 3.2, as minimizing the
sum of squared perpendicular distances of x1,Xs, ..., X, from the subspace,
then the appropriate subspace is defined by the first ¢ PCs.

Two-dimensional plots are particularly useful for detecting patterns in
the data, and three-dimensional plots or models, though generally less easy
to interpret quickly, can sometimes give additional insights. If the data do
not lie close to a two- (or three-) dimensional subspace, then no two- (or
three-) dimensional plot of the data will provide an adequate represen-
tation, although Section 5.6 discusses briefly the use of indirect ways for
presenting the data in two dimensions in such cases. Conversely, if the data
are close to a g-dimensional subspace, then most of the variation in the
data will be accounted for by the first ¢ PCs and a plot of the observations
with respect to these PCs will give a realistic picture of what the data
look like, unless important aspects of the data structure are concentrated
in the direction of low variance PCs. Plotting data sets with respect to
the first two PCs is now illustrated by two examples, with further illustra-
tions given, in conjunction with other examples, later in this chapter and
in subsequent chapters.

It should be noted that the range of structures that may be revealed by
plotting PCs is limited by the fact that the PCs are uncorrelated. Hence
some types of group structure or outlier patterns or non-linear relationships
between PCs, may be visible, but linear relationships between PCs are
impossible.

5.1.1 Examples

Two examples are given here that illustrate the sort of interpretation which
may be given to plots of observations with respect to their first two PCs.
These two examples do not reveal any strong, but previously unknown,
structure such as clusters; examples illustrating clusters will be presented
in Section 9.2. Nevertheless, useful information can still be gleaned from
the plots.
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Anatomical Measurements

The data presented here consist of the same seven anatomical measure-
ments as in the data set of Section 4.1, but for a different set of students,
this time comprising 11 women and 17 men. A PCA was done on the cor-
relation matrix for all 28 observations and, as in the analyses of Section 4.1
for each sex separately, the first PC is an overall measurement of size. The
second PC is a contrast between the head measurement and the other six
variables, and is therefore not particularly similar to any of the first three
PCs for the separate sexes found in Section 4.1, though it is closest to the
third component for the women. The difference between the second PC and
those from the earlier analyses may be partially due to the fact that the
sexes have been combined, but it is also likely to reflect some instability
in all but the first PC due to relatively small sample sizes. The first two
PCs for the present data account for 69% and 11% of the total variation,
respectively, so that a two-dimensional plot with respect to these PCs, re-
presenting 80% of the variation, gives a reasonably good approximation to
the relative positions of the observations in seven-dimensional space.

A plot of these data with respect to the first two PCs was given in
Figure 1.3, and it was noted that the first PC is successful in separating
the women from the men. It can also be seen in Figure 1.3 that there is one
clear outlier with respect to the second PC, seen at the bottom of the plot.
A second observation, at the left of the plot, is rather extreme on the first
PC. These two observations and other potential outliers will be discussed
further in Section 10.1. The observation at the bottom of the diagram has
such an extreme value for the second PC, roughly twice as large in absolute
terms as any other observation, that it could be mainly responsible for the
second PC taking the form that it does. This possibility will be discussed
further in Section 10.2.

Figures 5.1(a) and (b) are the same as Figure 1.3 except that super-
imposed on them are convex hulls for the two groups, men and women
(Figure 5.1(a)), and the minimum spanning tree (Figure 5.1(b)). Convex
hulls are useful in indicating the areas of a two-dimensional plot covered
by various subsets of observations. Here they confirm that, although the
areas covered by men and women overlap slightly, the two sexes largely
occupy different areas of the diagrams. The separation is mainly in terms
of the first PC (overall size) with very little differentiation between sexes
on the second PC. The plot therefore displays the unsurprising result that
the two groups of observations corresponding to the two sexes differ mainly
in terms of overall size.

It was noted above that the two-dimensional plot represents 80% of the
total variation of the 28 observations in seven-dimensional space. Percent-
age of total variation is an obvious measure of how good two-dimensional
representation is, but many of the other criteria that are discussed in Sec-
tion 6.1 could be used instead. Alternatively, an informal way of judging
the goodness-of-fit in two dimensions is to superimpose a minimum span-
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Figure 5.1. (a). Student anatomical measurements: plot of the first two PC for
28 students with convex hulls for men and women superimposed.

ning tree (MST) on the diagram, as in Figure 5.1(b). The MST is a set of
lines drawn between pairs of points such that

(i) each point is connected to every other point by a sequence of lines;
(ii) there are no closed loops;
(iii) the sum of ‘lengths’ of lines is minimized.

If the ‘lengths’ of the lines are defined as distances in seven-dimensional
space, then the corresponding MST will give an indication of the closeness-
of-fit of the two-dimensional representation. For example, it is seen that
observations 5 and 14, which are very close in two dimensions, are joined
via observation 17, and so must both be closer to observation 17 in seven-
dimensional space than to each other. There is therefore some distortion
in the two-dimensional representation in the vicinity of observations 5 and
14. Similar remarks apply to observations 12 and 23, and to the group of
observations 19, 22, 25, 27, 28. However, there appears to be little distortion
for the better-separated observations.
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Figure 5.1. (b). Student anatomical measurements: plot of the first two PCs for
28 students with minimum spanning tree superimposed.

Artistic Qualities of Painters

The second data set described in this section was analysed by Davenport
and Studdert-Kennedy (1972). It consists of a set of subjective mea-
surements of the artistic qualities ‘composition,” ‘drawing,” ‘colour’ and
‘expression’ for 54 painters. The measurements, on a scale from 0 to 20,
were compiled in France in 1708 by Roger de Piles for painters ‘of estab-
lished reputation.” Davenport and Studdert-Kennedy (1972) give data for
56 painters, but for two painters one measurement is missing, so these
painters are omitted from the analysis.

Table 5.1 gives the variances and coefficients for the first two PCs based
on the correlation matrix for the 54 painters with complete data. The com-
ponents, and their contributions to the total variation, are very similar to
those found by Davenport and Studdert-Kennedy (1972) for the covari-
ance matrix. This strong similarity between the PCs for correlation and
covariance matrices is relatively unusual (see Section 3.3) and is due to the
near-equality of the variances for the four variables. The first component
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Table 5.1. First two PCs: artistic qualities of painters.

Component 1 Component 2

Composition 0.50 -0.49
Drawing . 0.56 0.27
Colour Cocfficients ~0.35 —0.77
Expression 0.56 —0.31
Eigenvalue 2.27 1.04
Cumulative percentage of total variation 56.8 82.8

is interpreted by the researchers as an index of de Piles’ overall assessment
of the painters, although the negative coefficient for colour needs some ad-
ditional explanation. The form of this first PC could be predicted from the
correlation matrix. If the sign of the variable ‘colour’ is changed, then all
correlations in the matrix are positive, so that we would expect the first PC
to have positive coeflicients for all variables after this redefinition of ‘colour’
(see Section 3.8). The second PC has its largest coefficient for colour, but
the other coefficients are also non-negligible.

A plot of the 54 painters with respect to the first two components is
given in Figure 5.2, and this two-dimensional display represents 82.8% of
the total variation. The main feature of Figure 5.2 is that painters of the
same school are mostly fairly close to each other. For example, the set of
the ten ‘Venetians’ {Bassano, Bellini, Veronese, Giorgione, Murillo, Palma
Vecchio, Palma Giovane, Pordenone, Tintoretto, Titian} are indicated on
the figure, and are all in a relatively small area at the bottom left of the
plot. Davenport and Studdert-Kennedy (1972) perform a cluster analysis
on the data, and display the clusters on a plot of the first two PCs. The
clusters dissect the data in a sensible looking manner, and none of them
has a convoluted shape on the PC plot. However, there is little evidence of
a strong cluster structure in Figure 5.2. Possible exceptions are a group of
three isolated painters near the bottom of the plot, and four painters at the
extreme left. The first group are all members of the ‘Seventeenth Century
School,” namely Rembrandt, Rubens, and Van Dyck, and the second group
consists of three ‘Venetians,” Bassano, Bellini, Palma Vecchio, together with
the ‘Lombardian’ Caravaggio. This data set will be discussed again in Sec-
tions 5.3 and 10.2, and the numbered observations on Figure 5.2 will be
referred to there. Further examples of the use of PCA in conjunction with
cluster analysis are given in Section 9.2.

Throughout this section there has been the suggestion that plots of the
first two PCs may reveal interesting structure in the data. This contradicts
the implicit assumption that the n observations are identically distributed
with a common mean and covariance matrix. Most ‘structures’ in the data
indicate that different observations have different means, and that PCA
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Figure 5.2. Artistic qualities of painters: plot of 54 painters with respect to their
first two PCs. The symbol X denotes member of the ‘Venetian’ school.

is looking for major directions of variation between means rather than
major directions of variation in a common distribution (de Falguerolles,
personal communication). This view is in line with the fixed effect model
of Section 3.9, and is discussed further in Section 5.3.

A variation of the simple plot of PC scores for the first two PCs is
proposed by Tarpey (2000). Lines are added to the plot, corresponding
to the directions of the first PC for two subsets of the data, derived by
dividing the full data set according to the sign of the first PC for the whole
data set. The idea is to indicate possible non-linearity in the data (see
Section 14.1.3).

5.2 Principal Coordinate Analysis

Principal coordinate analysis is a scaling or ordination method, sometimes
known as classical scaling. It was popularized by Gower (1966). Torgerson
(1952, 1958) discussed similar ideas, but did not point out the links be-
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tween principal coordinate analysis and PCA that were noted by Gower.
Like the more widely known non-metric multidimensional scaling (Kruskal,
1964a,b), the technique starts with a matrix of similarities or dissimilari-
ties between a set of observations, and aims to produce a low-dimensional
graphical plot of the data in such a way that distances between points in
the plot are close to the original dissimilarities. There are numerous scaling
techniques; Cox and Cox (2001) provide a good overview of many of them.

The starting point (an (n x n) matrix of (dis)similarities) of principal
coordinate analysis is different from that of PCA, which usually begins
with the (n x p) data matrix. However, in special cases discussed below the
two techniques give precisely the same low-dimensional representation. Fur-
thermore, PCA may be used to find starting configurations for the iterative
algorithms associated with non-metric multidimensional scaling (Davison,
1983, Chapters 5, 6). Before showing the equivalences between PCA and
principal coordinate analysis, we need first to describe principal coordinate
analysis in some detail.

Suppose that T is an (n X n) positive-semidefinite symmetric matrix of
similarities among a set of n observations. (Note that it is fairly standard
notation to use A, rather than T, here. However, we have avoided the
use of A in this context, as it is consistently taken to be the matrix of
PC coefficients in the current text.) From the spectral decomposition of T
(Property A3 of Sections 2.1 and 3.1 gives the spectral decomposition of
a covariance matrix, but the same idea is valid for any symmetric matrix)
we have

where 7y > 15 > -+ > 7, are the eigenvalues of T and by, bs,--- b, are
the corresponding eigenvectors. Alternatively, this may be written

T = cic] +cach+ -+ + cpely, (5.2.2)

where

(3j:7'j1/2bj7 j:LQ,...,’I’L.
Now consider the n observations as points in n-dimensional space with
the jth coordinate for the ith observation equal to c;;, the ith element of
c;. With this geometric interpretation of the n observations, the Euclidean

distance between the hth and ith observations is

A7 = (ens — cij)?

j=1
h] +ZCZJ 220}”0”

HM:
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But from (5.2.2), the (h,)th element of T can be written

n
thi = E ChjCij, h,i:1,2,...,n,
Jj=1

SO
A2 =ty +ti — 2.

Principal coordinate analysis then attempts to find the ‘best-fitting’ ¢-
dimensional (¢ < n) approximation to the n-dimensional representation
defined above. ‘Best-fitting’ is defined here in the same way as in the ge-
ometric definition of PCA (Property G3 of Section 3.2), so that ‘principal
components’ are now found for the n ‘observations’ defined in n dimensions
by the coordinates c;;. A g-dimensional principal coordinate representation
is then given by plotting the coordinates of the observations with respect
to the first ¢ ‘PCs’. Principal coordinate analysis therefore consists of two
stages, both of which involve finding eigenvalues and eigenvectors of (n xn)
matrices:

(i) Find the eigenvectors cq,cs,...,c, of T, normalized to have lengths
equal to their respective eigenvalues, and represent the n observa-
tions as points in n-dimensional space with coordinate c;; for the ith
observation in the jth dimension.

(ii) Find the PCs for the ‘data set’ in n dimensions defined in (i), and
calculate coordinates of the n observations with respect to the first ¢
PCs.

If the vectors c; defined in the first stage have > ", ¢;; = 0 then the
covariance matrix that is calculated in stage (ii) will be proportional to

C’'C where C is the (n x n) matrix with jth column cj, j = 1,2,...,n.
But
’ o Tj ] =k
K { 0 jAk
as the eigenvectors in the spectral decomposition (5.2.1) have the property
1 j=k
b’ by, { 0 j£k
and
Cj:Tjij, j=1,2,...,n.

The matrix C'C is therefore diagonal with diagonal elements 7, j =
1,2,...,n, so that the first ¢ principal coordinates of the n observations
are simply the values of ¢;; for i =1,2,...,n; j =1,2,...,¢q. Thus when
i cij =0, stage (ii) is unnecessary.

In general, although a similarity matrix T need not lead to Z?:l cij =
0, this property can be readily achieved by replacing T by an adjusted
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similarity matrix. In this adjustment, t5; is replaced by t,; — t, — t; +t
where ), denotes the mean of the elements in the hth row (or column,
since T is symmetric) of T, and ¢ is the mean of all elements in T. This
adjusted similarity matrix has Y1 ; ¢;; = 0, and gives the same value
of A, for each pair of observations as does T (Gower, 1966). Thus we
can replace the second stage of principal coordinate analysis by an initial
adjustment of T, for any similarity matrix T.

Principal coordinate analysis is equivalent to a plot with respect to the
first ¢ PCs when the measure of similarity between two points is propor-
tional to —d2,, where d3, is the Euclidean squared distance between the
hth and ith observations, calculated from the usual (n X p) data matrix.
Assume tp; = —7yd3,, where v is a positive constant; then if stage (i) of a
principal coordinate analysis is carried out, the ‘distance’ between a pair
of points in the constructed n-dimensional space is

A}, = (thn + tii — 2thi)
= (—dj), — d; + 2d3,)

as Euclidean distance from a point to itself is zero. Thus, apart from a
possible rescaling if  is taken to be a value other than %, the first stage of
principal coordinate analysis correctly reproduces the relative positions of
the n observations, which lie in a p-dimensional subspace of n-dimensional
space, so that the subsequent PCA in stage (ii) gives the same result as a
PCA on the original data.

Two related special cases are of interest. First, consider the situation
where all variables are binary. A commonly used measure of similarity be-
tween individuals h and 7 is the proportion of the p variables for which A
and ¢ take the same value, and it can be easily demonstrated (Gower, 1966)
that this measure is equivalent to Euclidean distance. Thus, although PCA
of discrete—and in particular—binary data has its critics, it is equivalent
to principal coordinate analysis with a very plausible measure of similar-
ity. Principal component analysis for discrete data is discussed further in
Section 13.1.

The second special case occurs when the elements of the similarity matrix
T are defined as ‘covariances’ between observations, so that T is propor-
tional to XX', where X, as before, is the column-centred (n X p) matrix
whose (7, j)th element is the value of the jth variable, measured about its
mean Z;, for the ith observation. In this case the (h,¢)th similarity is, apart
from a constant,

p
thi = E ThjiTij
=1

and the distances between the points in the n-dimensional space con-
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structed in the first stage of the principal coordinate analysis are

A}, = tpn + ti — 2tn

P P P

_ 2 2 iy

= E Ty, + E Ty — 2 E Th;Tij
j=1 j=1 j=1

[
M=

(zhy — 245)°

Il
S
>Nl
=

1)

the Euclidean distance between the observations using the original p vari-
ables. As before, the PCA in the second stage of principal coordinate
analysis gives the same results as a PCA on the original data. Note, how-
ever, that XX’ is not a very obvious similarity matrix. For a ‘covariance
matrix’ between observations it is more natural to use a row-centred, rather
than column-centred, version of X.

Even in cases where PCA and principal coordinate analysis give equiv-
alent two-dimensional plots, there is a difference, namely that in principal
coordinate analysis there are no vectors of coefficients defining the axes
in terms of the original variables. This means that, unlike PCA, the
axes in principal coordinate analysis cannot be interpreted, unless the
corresponding PCA is also done.

The equivalence between PCA and principal coordinate analysis in the
circumstances described above is termed a duality between the two tech-
niques by Gower (1966). The techniques are dual in the sense that PCA
operates on a matrix of similarities between variables, whereas principal co-
ordinate analysis operates on a matrix of similarities between observations
(individuals), but both can lead to equivalent results.

To summarize, principal coordinate analysis gives a low-dimensional rep-
resentation of data when the data are given in the form of a similarity or
dissimilarity matrix. As it can be used with any form of similarity or dissim-
ilarity matrix, it is, in one sense, ‘more powerful than,” and ‘extends,” PCA
(Gower, 1967). However, as will be seen in subsequent chapters, PCA has
many uses other than representing data graphically, which is the overriding
purpose of principal coordinate analysis.

Except in the special cases discussed above, principal coordinate analysis
has no direct relationship with PCA, so no examples will be given of the
general application of the technique. In the case where principal coordinate
analysis gives an equivalent representation to that of PCA, nothing new
would be demonstrated by giving additional examples. The examples given
in Section 5.1 (and elsewhere) which are presented as plots with respect
to the first two PCs are, in fact, equivalent to two-dimensional princi-
pal coordinate plots if the ‘dissimilarity’ between observations h and 7 is
proportional to the Euclidean squared distance between the hth and ith
observations in p dimensions.
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In most cases, if the data are available in the form of an (n x p) matrix
of p variables measured for each of n observations, there is no advantage
in doing a principal coordinate analysis instead of a PCA, unless for some
reason a dissimilarity measure other than Euclidean distance is deemed
to be appropriate. However, an exception occurs when n < p, especially if
n < p as happens for some types of chemical, meteorological and biological
data. As principal coordinate analysis and PCA find eigenvectors of an
(n x n) matrix and a (p X p) matrix respectively, the dual analysis based
on principal coordinates will have computational advantages in such cases.

5.3 Biplots

The two previous sections describe plots of the n observations, usually
in two dimensions. Biplots similarly provide plots of the n observations,
but simultaneously they give plots of the relative positions of the p vari-
ables in two dimensions. Furthermore, superimposing the two types of plots
provides additional information about relationships between variables and
observations not available in either individual plot.

Since the publication of the first edition, there have been substantial
developments in biplots. In particular, the monograph by Gower and Hand
(1996) considerably extends the definition of biplots. As these authors note
themselves, their approach to biplots is unconventional, but it is likely
to become increasingly influential. The material on biplots which follows is
mostly concerned with what Gower and Hand (1996) call ‘classical biplots,’
although correspondence analysis, which is discussed in Section 5.4, also
falls under Gower and Hand’s (1996) biplot umbrella. A number of other
variations of biplots are discussed briefly at the end of the present section
and in later chapters. As with other parts of this book, the choice of how
far to stray from PCA in following interesting diversions such as these is
inevitably a personal one. Some readers may prefer to go further down
the biplot road; reference to Gower and Hand (1996) should satisfy their
curiosity.

Classical biplots, which might also be called ‘principal component bi-
plots,” were principally developed and popularized by Gabriel (1971, and
several subsequent papers), although Jolicoeur and Mosimann (1960) had
earlier given an example of similar diagrams and they are periodically redis-
coverd in other disciplines (see, for example, Berry et al. (1995), who refer
to the same idea as ‘latent semantic indexing’). The plots are based on the
singular value decomposition (SVD), which was described in Section 3.5.
This states that the (n x p) matrix X of n observations on p variables
measured about their sample means can be written

X = ULA/, (5.3.1)

where U, A are (nxr), (pxr) matrices respectively, each with orthonormal
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columns, L is an (r x r) diagonal matrix with elements 11/2 > l1/2 >
l}a/2 and r is the rank of X. Now define L%, for 0 < a < 1, as the dlagonal

matrix whose elements are la/2 ZO‘/Q, . ,lra/2
L'=2 and let G = ULY, H' = Ll’O‘A’. Then

with a similar definition for

GH' = UL“L!"@A’ = ULA’ = X,
and the (7, j)th element of X can be written
zij = gihy, (5.3.2)

where g;, i =1,2,...,n and h}, j =1,2,...,p are the rows of G and H,
respectively. Both the g; and h; have r elements, and if X has rank 2, all
could be plotted as points in two-dimensional space. In the more general
case, where r > 2, it was noted in Section 3.5 that (5.3.1) can be written

Tij = Zuiklllg/Qajk (5.3.3)
which is often well approximated by
wi =Y uinly%am,  with m <7, (5.3.4)

But (5.3.4) can be written

m
mEij =Y gikhix
k=1
71 %

where g, h} contain the first m elements of g; and h;, respectively. In the
case where (5.3.4) with m = 2 provides a good approximation to (5.3.3),
g/, 1=12...,n;hi j=12 .. ptogether give a good two-dimensional
representation of both the n observations and the p variables. This type
of approximation can, of course, be used for values of m > 2, but the
graphical representation is then less clear. Gabriel (1981) referred to the
extension to m > 3 as a bimodel, reserving the term ‘biplot’ for the case
where m = 2. However, nine years later Gabriel adopted the more common
usage of ‘biplot’ for any value of m (see Gabriel and Odoroff (1990), which
gives several examples of biplots including one with m = 3). Bartkowiak
and Szustalewicz (1996) discuss how to display biplots in three dimensions.

In the description of biplots above there is an element of non-uniqueness,
as the scalar oo which occurs in the definition of G and H can take any value
between zero and one and still lead to a factorization of the form (5.3.2).
Two particular values of «, namely a = 0 and o = 1, provide especially
useful interpretations for the biplot.
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If a =0, then G = U and H = LA’ or H = AL. This means that
X'X = (GH')(GH)
= HG'GH’
= HU'UH'
= HH',

because the columns of U are orthonormal. The product h;.h;C is there-
fore equal to (n — 1) multiplied by the covariance s;; between the jth
and kth variables, and h;'f/hz, where h?, j = 1,2,---,p are as defined
above, provides an approximation to (n — 1)s;;. The lengths h;-hj of the
vectors h;, ¢ = 1,2,--- ,p are proportional to the variances of the vari-
ables 1,2, -, zp, and the cosines of the angles between the h; represent
correlations between variables. Plots of the h} therefore provide a two-
dimensional picture (usually an approximation, but often a good one) of
the elements of the covariance matrix S, and such plots are advocated
by Corsten and Gabriel (1976) as a means of comparing the variance-
covariance structures of several different data sets. An earlier paper by
Gittins (1969), which is reproduced in Bryant and Atchley (1975), also
gives plots of the h}, although it does not discuss their formal properties.

Not only do the h; have a ready graphical interpretation when o = 0, but
the g; also have the satisfying property that the Euclidean distance between
g and g; in the biplot is proportional to the Mahalanobis distance between
the hth and ith observations in the complete data set. The Mahalanobis
distance between two observations xj, X;, assuming that X has rank p so
that S™! exists, is defined as

Sy = (xn —x:)'S™ (xn — x4), (5.3.5)
and is often used as an alternative to the Euclidean distance
d%i = (xp, — x3) (xp — X).

Whereas Euclidean distance treats all variables on an equal footing, which
essentially assumes that all variables have equal variances and are uncor-
related, Mahalanobis distance gives relatively less weight to variables with
large variances and to groups of highly correlated variables.

To prove this Mahalanobis distance interpretation, rewrite (5.3.2) as

x,=gH, i=1,2,...,n,
and substitute in (5.3.5) to give
0 = (gn — &) H'S™ ' H(gy — &)
= (n—1)(gn — 8:) LA/ (X'X)"'AL(g), — gi), (5.3.6)
as H =LA’ and S™! = (n — 1)(X’X) "L
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But
X'X = (ULA')(ULA')
= AL(U'U)LA’
= AL%A/,
and

(X'X)"' = AL2A’.
Substituting in (5.3.6) gives
8 = (n —1)(gn — &:)'L(A’A)L™*(A'A)L(gn — &)
= (n—1)(gn — g)'LL°L(gn — &)
(as the columns of A are orthonormal),
=(n—1)(gn —gi)'(gn —gi), asrequired.

An adaptation to the straightforward factorization given above for « = 0
improves the interpretation of the plot still further. If we multiply the g;
by (n — 1)'/2 and correspondingly divide the h; by (n — 1)!/2 then the
distances between the modified g; are equal (not just proportional) to the
Mahalanobis distance and, if m = 2 < p, then the Euclidean distance
between gf and g gives an easily visualized approximation to the Ma-
halanobis distance between x; and x;. Furthermore, the lengths h;-hj are
equal to variances of the variables. This adaptation was noted by Gabriel
(1971), and is used in the examples below.

A further interesting property of the biplot when o = 0 is that measures
can be written down of how well the plot approximates

(a) the column-centred data matrix X;
(b) the covariance matrix S;
(c) the matrix of Mahalanobis distances between each pair of observations.

These measures are, respectively, (Gabriel 1971)

(a) (I1 +12)/ é:llk;
(b) (13 +13) g 2;

(c) (19 + zg)/é1 9 = 2/r.

Because I; > Iy > -+ > [, these measures imply that the biplot gives a
better approximation to the variances and covariances than to the (Ma-
halanobis) distances between observations. This is in contrast to principal
coordinate plots, which concentrate on giving as good a fit as possible to
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interobservation dissimilarities or distances, and do not consider directly
the elements of X or S.

We have now seen readily interpretable properties of both the g} and the
h} separately for the biplot when o = 0, but there is a further property,
valid for any value of a, which shows that the plots of the gi and h} can
be usefully superimposed rather than simply considered separately.

From the relationship z;; = g/h;, it follows that x;; is represented by
the projection of g; onto h;. Remembering that z;; is the value for the ith
observation of the jth variable measured about its sample mean, values of
x;;5 close to zero, which correspond to observations close to the sample mean
of the jth variable, will only be achieved if g; and h; are nearly orthogonal.
Conversely, observations for which z;; is a long way from zero will have g;
lying in a similar direction to h;. The relative positions of the points defined
by the g; and h;, or their approximations in two dimensions, the g; and
h?, will therefore give information about which observations take large,
average and small values on each variable.

Turning to the biplot with oo = 1, the properties relating to g; and h;
separately are different from those for a« = 0. With a = 1 we have

G=UL H =A,

and instead of (g, — g;)'(gr — g:) being proportional to the Mahalanobis
distance between x; and X;, it is now equal to the Euclidean distance. This
follows because

(xp —xi) (xp — %) = (8n — &) H'H(gn — gi)

= (gn —&i)'A'A(gn — 8i)

= (gn — 8i)'(gn — &)
Therefore, if we prefer a plot on which the distance between gy and
g is a good approximation to Euclidean, rather than Mahalanobis, dis-
tance between x5 and x; then the biplot with a = 1 will be preferred
to @ = 0. Note that using Mahalanobis distance emphasizes the dis-
tance between the observations in the direction of the low-variance PCs
and downweights distances in the direction of high-variance PCs, when
compared with Euclidean distance (see Section 10.1).

Another interesting property of the biplot with o = 1 is that the positions
of the g! are identical to those given by a straightforward plot with respect
to the first two PCs, as described in Section 5.1. It follows from equation
(5.3.3) and Section 3.5 that we can write

-
Tij = E ZikQjk,
k=1

where z;, = uikl}c/Q is the value of the kth PC for the ith observation. But

a = 1 implies that G = UL, so the kth element of g; is uikl}c/Z = Zik-
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The vector g consists of the first two elements of g;, which are simply the
values of the first two PCs for the ith observation.

The properties of the h; that were demonstrated above for o = 0 will
no longer be valid exactly for a = 1, although similar interpretations can
still be made, at least in qualitative terms. In fact, the coordinates of h}
are simply the coefficients of the jth variable for the first two PCs. The
advantage of superimposing the plots of the g; and hj is preserved for
a =1, as z;; still represents the projection of g; onto h;. In many ways,
the biplot with o = 1 is nothing new, since the g} give PC scores and
the h} give PC coefficients, both of which are widely used on their own.
The biplot, however, superimposes both the gi and h} to give additional
information.

Other values of « could also be used; for example, Gabriel (1971) men-
tions o = %, in which the sum of squares of the projections of plotted points
onto either one of the axes is the same for observations as for variables (Os-
mond, 1985), but most applications seem to have used o = 0, or sometimes
a = 1. For other values of a the general qualitative interpretation of the
relative positions of the g; and the h; remains the same, but the exact
properties that hold for « = 0 and a = 1 are no longer valid.

Another possibility is to superimpose the g; and the h} corresponding
to different values of a. Choosing a single standard value of « for both
the g7 and h} may mean that the scales of observations and variables are
so different that only one type of entity is visible on the plot. Digby and
Kempton (1987, Section 3.2) choose scales for observations and variables
so that both can easily be seen when plotted together. This is done rather
arbitrarily, but is equivalent to using different values of a for the two types
of entity. Mixing values of « in this way will, of course, lose the property
that x;; is the projection of g; onto h;, but the relative positions of the
g; and hj still give qualitative information about the size of each variable
for each observation. Another way of mixing values of o is to use g cor-
responding to a = 1 and hj corresponding to o = 0, so that the g; give
a PC plot, and the h} have a direct interpretation in terms of variances
and covariances. This is referred to by Gabriel (2001) as a ‘correspondence
analysis’ (see Section 5.4) plot. Gower and Hand (1996) and Gabriel (2001),
among others, have noted that different plotting positions can be chosen
to give optimal approximations to two, but not all three, of the following:

(a) the elements of X, as given by the scalar products gz‘/hj;
(b) Euclidean distances between the rows of X;
(c) the covariance structure in the columns of X.

We noted earlier that for o = 0, (b) is fitted less well than (c). For « = 1,
(¢) rather than (b) is sacrificed, while the correspondence analysis plot loses
(a). Choosing o = 1 approximates (a) optimally, but is suboptimal for (b)
and (c). For each of these four choices Gabriel (2001) investigates how
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much worse than optimal are the approximations to whichever of (a), (b),
(c) are suboptimally approximated. He defines a coefficient of goodness
of proportional fit equal to the squared matrix correlation between the
matrix being approximated and its approximation. For example, if X is
approximated by X, the matrix correlation, sometimes known as Yanai’s
generalized coefficient of determination (see also Section 6.3), is defined as

tr(X'X)
V(XX tr(XX)

By comparing this coefficient for a suboptimal choice of o with that for an
optimal choice, Gabriel (2001) measures how much the approximation is
degraded by the suboptimal choice. His conclusion is that the approxima-
tions are often very close to optimal, except when there is a large separation
between the first two eigenvalues. Even then, the symmetric (o = %) and
correspondence analysis plots are never much inferior to the a =0, a =1
plots when one of the latter is optimal.

Another aspect of fit is explored by Heo and Gabriel (2001). They note
that biplots often appear to give a better representation of patterns in
the data than might be expected from simplistic interpretations of a low
value for goodness-of-fit. To explain this, Heo and Gabriel (2001) invoke
the special case of the unweighted version of the fixed effects model, with
I' =1, (see Section 3.9) and the corresponding view that we are plotting
different means for different observations, rather than points from a single
distribution. By simulating from the model with ¢ = 2 and varying levels
of o2 they show that the match between the biplot representation and the
underlying model is often much better than that between the biplot and
the data in the sample. Hence, the underlying pattern is apparent in the
biplot even though the sample measure of fit is low.

5.3.1 Examples

Two examples are now presented illustrating the use of biplots. Many other
examples have been given by Gabriel; in particular, see Gabriel (1981) and
Gabriel and Odoroff (1990). Another interesting example, which emphasizes
the usefulness of the simultaneous display of both rows and columns of the
data matrix, is presented by Osmond (1985).

In the examples that follow, the observations are plotted as points whose
coordinates are the elements of the g}, whereas variables are plotted as lines
corresponding to the vectors h?, j = 1,2,..., p, with arrowheads at the ends
of the vectors. Plots consisting of points and vectors are fairly conventional,
but an alternative representation for the variables, strongly preferred by
Gower and Hand (1996), is to extend the vectors h7 right across the diagram
in both directions to become lines or axes. The disadvantage of this type
of plot is that information about the relative sizes of the variances is lost.
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Figure 5.3. Biplot using a = 0 for artistic qualities data.

However, what is gained is the ability to label these axes with values of
the variables, so that orthogonally projecting an observation onto an axis
immediately gives a prediction of the value of that variable for the chosen
observation. Examples of this type of plot can be found in Gower and Hand
(1996, Chapter 2).

Other variations of the plot are sometimes used. In one of their examples
in which the data fall into groups, Gabriel and Odoroff (1990) replace the in-
dividual points by ‘concentration ellipses’ for each group. These ellipses are
estimates of equal probability contours, assuming multivariate normality.
Jolicoeur and Mosimann (1960) included similar ellipses on their plots.

Artistic Qualities of Painters

In Figure 5.3 a biplot is given for the data set described in Section 5.1.1
and consisting of four subjective measurements of artistic qualities for 54
painters.

The plot given uses the adapted version of @ = 0 in preference to o =
1, because with a = 1 the points representing the four variables are all
very close to the centre of the plot, leading to difficulties in interpretation.
The coordinates of the 54 painters are therefore rescaled versions of those
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displayed in Figure 5.2, but their relative positions are similar. For example,
the group of three ‘Seventeenth Century’ painters at the bottom of the plot
is still visible. Because of the compression of the horizontal relative to the
vertical scale, the group of four painters at the left of the plot now seems
to have been joined by a fifth, Murillo, who is from the same school as
three of the others in this group. There is also an outlying painter, Fr.
Penni, observation number 34, whose isolated position in the top left of
the plot is perhaps more obvious on Figure 5.3 than Figure 5.2. The main
distinguishing feature of this painter is that de Piles gave him a 0 score for
composition, compared to a minimum of 4 and a maximum of 18 for all
other painters.

Now consider the positions on the biplot of the vectors corresponding to
the four variables. It is seen that composition and expression (V1 and V4)
are close together, reflecting their relatively large positive correlation, and
that drawing and colour (V2 and V3) are in opposite quadrants, confirm-
ing their fairly large negative correlation. Other correlations, and hence
positions of vectors, are intermediate.

Finally, consider the simultaneous positions of painters and variables.
The two painters, numbered 9 and 15, that are slightly below the positive
horizontal axis are Le Brun and Domenichino. These are close to the direc-
tion defined by V4, and not far from the directions of V1 and V2, which
implies that they should have higher than average scores on these three
variables. This is indeed the case: Le Brun scores 16 on a scale from 0 to
20 on all three variables, and Domenichino scores 17 on V2 and V4 and 15
on V1. Their position relative to V3 suggests an average or lower score on
this variable; the actual scores are 8 and 9, which confirms this suggestion.
As another example consider the two painters 16 and 19 (Giorgione and
Da Udine), whose positions are virtually identical, in the bottom left-hand
quadrant of Figure 5.3. These two painters have high scores on V3 (18 and
16) and below average scores on V1, V2 and V4. This behaviour, but with
lower scores on V2 than on V1, V4, would be predicted from the points’
positions on the biplot.

100 km Running Data

The second example consists of data on times taken for each of ten 10
km sections by the 80 competitors who completed the Lincolnshire 100 km
race in June 1984. There are thus 80 observations on ten variables. (I am
grateful to Ron Hindley, the race organizer, for distributing the results of
the race in such a detailed form.)

The variances and coefficients for the first two PCs, based on the correla-
tion matrix for these data, are given in Table 5.2. Results for the covariance
matrix are similar, though with higher coefficients in the first PC for the
later sections of the race, as (means and) variances of the times taken
for each section tend to increase later in the race. The first component
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Table 5.2. First two PCs: 100 km running data.

Component 1 Component 2

First 10 km —0.30 0.45
Second 10 km —0.30 0.45
Third 10 km —0.33 0.34
Fourth 10 km —0.34 0.20
Fifth 10 km . —0.34 —0.06
Sixth 10 km Cocflicients —0.35 —0.16
Seventh 10 km —0.31 —0.27
Eighth 10 km —0.31 —0.30
Ninth 10 km —0.31 —0.29
Tenth 10 km —0.27 —0.40
Eigenvalue 72.4 1.28
Cumulative percentage of total variation 7.24 85.3

measures the overall speed of the runners, and the second contrasts those
runners who slow down substantially during the course of the race with
those runners who maintain a more even pace. Together, the first two PCs
account for more than 85% of the total variation in the data.

The adapted oo = 0 biplot for these data is shown in Figure 5.4.

As with the previous example, the plot using o = 1 is not very sat-
isfactory because the vectors corresponding to the variables are all very
close to the centre of the plot. Figure 5.4 shows that with @ = 0 we have
the opposite extreme—the vectors corresponding to the variables and the
points corresponding to the observations are completely separated. As a
compromise, Figure 5.5 gives the biplot with a = %, which at least has
approximately the same degree of spread for variables and observations.
As with a = 0, the plot has been modified from the straightforward fac-
torization corresponding to o = % The g; have been multiplied, and the
h; divided, by (n — 1)'/%, so that we have a compromise between a = 1
and the adapted version of o = 0. The adapted plot with o = % is still not
entirely satisfactory, but even an arbitrary rescaling of observations and/or
variables, as suggested by Digby and Kempton (1987, Section 3.2), would
still have all the vectors corresponding to variables within a very narrow
sector of the plot. This is unavoidable for data that, as in the present case,
have large correlations between all variables. The tight bunching of the vec-
tors simply reflects large correlations, but it is interesting to note that the
ordering of the vectors around their sector corresponds almost exactly to
their position within the race. (The ordering is the same for both diagrams,
but to avoid congestion, this fact has not been indicated on Figure 5.5.)
With hindsight, this is not surprising as times in one part of the race are
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Figure 5.4. Biplot using o = 0 for 100 km running data (V1, V2, ..., V10 indicate
variables measuring times on first, second, ..., tenth sections of the race).

more likely to be similar to those in adjacent parts than to those which are
more distant.

Turning to the positions of the observations, the points near the right-
hand side of the diagrams correspond to the fastest athletes and those on
the left to the slowest. To illustrate this, the first five and last five of the 80
finishers are indicated on Figure 5.5. Note that competitors 77 and 78 ran
together throughout the race; they therefore have identical values for all ten
variables and PCs, and hence identical positions on the plot. The positions
of the athletes in this (horizontal) direction tally with the directions of the
vectors: observations with large values on all variables, that is slow runners,
will be in the direction of the vectors, namely towards the left.

Similarly, the observations near the top of the diagram are of athletes
who maintained a fairly steady pace, while those at the bottom correspond
to athletes who slowed down considerably during the race. Again this corre-
sponds with the directions of the vectors: those observations at the bottom
of the diagram tend to have large values of V10, V9, V8, etc. compared
with V1, V2, V3, etc., meaning that these runners slow down a lot, whereas
those at the top have more nearly equal values for all variables. For exam-
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Figure 5.5. Biplot using a = % for 100 km running data (numbers indicate

finishing position in race).

ple, consider the outlying observation at the top of Figures 5.4 and 5.5. This
point corresponds to the 54th finisher, who was the only competitor to run
the final 10 km faster than the first 10 km. To put this into perspective it
should be noted that the average times taken for the first and last 10 km
by the 80 finishers were 47.6 min, and 67.0 min respectively, showing that
most competitors slowed down considerably during the race.

At the opposite extreme to the 54th finisher, consider the two athletes
corresponding to the points at the bottom left of the plots. These are the
65th and 73rd finishers, whose times for the first and last 10 km were 50.0
min and 87.8 min for the 65th finisher and 48.2 min and 110.0 min for the
73rd finisher. This latter athlete therefore ran at a nearly ‘average’ pace
for the first 10 km but was easily one of the slowest competitors over the
last 10 km.

5.3.2 Variations on the Biplot

The classical biplot described above is based on the SVD of X, the column-
centred data matrix. This in turn is linked to the spectral decomposition
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of X’X, and hence to PCA. The variations discussed so far relate only to
choices within this classical plot, for example the choice of « in defining g;
and h; (5.3.2), the possible rescaling by a factor (n — 1)1/2 and the form
of display (axes or arrowheads, concentration ellipses).

Gower and Hand (1996) describe many other variations. In particular,
they look at biplots related to multivariate techniques other than PCA,
including multidimensional scaling, canonical variate analysis, correspon-
dence analysis and multiple correspondence analysis. Gabriel (1995a,b) also
discusses biplots related to multivariate methods other than PCA, in partic-
ular multiple correspondence analysis and MANOVA (multivariate analysis
of variance).

A key distinction drawn by Gower and Hand (1996) is between interpo-
lation and prediction in a biplot. The former is concerned with determining
where in the diagram to place an observation, given its values on the mea-
sured variables. Prediction refers to estimating the values of these variables,
given the position of an observation in the plot. Both are straightforward
for classical biplots—g; is used for interpolation and »;; for prediction—
but become more complicated for other varieties of biplot. Gower and Hand
(1996, Chapter 7) describe a framework for generalized biplots that includes
most other versions as special cases. One important special case is that of
non-linear biplots. These will be discussed further in Section 14.1, which
describes a number of non-linear modifications of PCA. Similarly, discus-
sion of robust biplots, due to Daigle and Rivest (1992), will be deferred
until Section 10.4, which covers robust versions of PCA.

The discussion and examples of the classical biplot given above use an
unstandardized form of X and hence are related to covariance matrix PCA.
As noted in Section 2.3 and elsewhere, it is more usual, and often more
appropriate, to base PCA on the correlation matrix as in the examples
of Section 5.3.1. Corresponding biplots can be derived from the SVD of
X, the column-centred data matrix whose jth column has been scaled by
dividing by the standard deviation of z;, j = 1,2,...,p. Many aspects of
the biplot remain the same when the correlation, rather than covariance,
matrix is used. The main difference is in the positions of the h;. Recall that
if & = 0 is chosen, together with the scaling factor (n—l)l/z, then the length
h*;h; approximates the variance of ;. In the case of a correlation-based
analysis, var(z;) = 1 and the quality of the biplot approximation to the
Jth variable by the point representing h} can be judged by the closeness of
h? to the unit circle centred at the origin. For this reason, the unit circle is
sometimes drawn on correlation biplots to assist in evaluating the quality of
the approximation (Besse, 1994a). Another property of correlation biplots
is that the squared distance between h; and hy is 2(1 - rjk), where 1, is
the correlation between z; and xj. The squared distance between h} and
h; approximates this quantity.

An alternative to the covariance and correlation biplots is the coefficient
of variation biplot, due to Underhill (1990). As its name suggests, instead
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of dividing the jth column of X by the standard deviation of z; to give a
correlation biplot, here the jth column is divided by the mean of x;. Of
course, this only makes sense for certain types of non-negative variables,
but Underhill (1990) shows that for such variables the resulting biplot gives
a useful view of the data and variables. The cosines of the angles between
the h? still provide approximations to the correlations between variables,
but the lengths of the vectors h} now give information on the variability
of the x; relative to their means.

Finally, the biplot can be adapted to cope with missing values by in-
troducing weights w;; for each observation z;; when approximating x;; by
gf/h;. A weight of zero is given to missing values and a unit weight to those
values which are present. The appropriate values for g¥, h? can be calcu-
lated using an algorithm which handles general weights, due to Gabriel and
Zamir (1979). For a more general discussion of missing data in PCA see
Section 13.6.

5.4 Correspondence Analysis

The technique commonly called correspondence analysis has been ‘redis-
covered’ many times in several different guises with various names, such
as ‘reciprocal averaging’ or ‘dual scaling.” Greenacre (1984) provides a
comprehensive treatment of the subject; in particular his Section 1.3 and
Chapter 4 discuss, respectively, the history and the various different ap-
proaches to the topic. Benzécri (1992) is also comprehensive, and more
recent, but its usefulness is limited by a complete lack of references to
other sources. Two shorter texts, which concentrate on the more practi-
cal aspects of correspondence analysis, are Clausen (1998) and Greenacre
(1993).

The name ‘correspondence analysis’ is derived from the French ‘analyse
des correspondances’ (Benzécri, 1980). Although, at first sight, correspon-
dence analysis seems unrelated to PCA it can be shown that it is, in fact,
equivalent to a form of PCA for discrete (generally nominal) variables (see
Section 13.1). The technique is often used to provide a graphical representa-
tion of data in two dimensions. The data are normally presented in the form
of a contingency table, but because of this graphical usage the technique is
introduced briefly in the present chapter. Further discussion of correspon-
dence analysis and various generalizations of the technique, together with
its connections to PCA, is given in Sections 13.1, 14.1 and 14.2.

Suppose that a set of data is presented in the form of a two-way contin-
gency table, in which a set of n observations is classified according to its
values on two discrete random variables. Thus the information available is
the set of frequencies {n;;, i =1,2,...,r; j =1,2,...,c}, where n;; is the
number of observations that take the ith value for the first (row) variable
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and the jth value for the second (column) variable. Let N be the (r X ¢)
matrix whose (7, j)th element is n;;.

There are a number of seemingly different approaches, all of which lead
to correspondence analysis; Greenacre (1984, Chapter 4) discusses these
various possibilities in some detail. Whichever approach is used, the final
product is a sequence of pairs of vectors (f1,g1), (f2,82), ..., (f;,8¢) where
fi, kK = 1,2,..., are r-vectors of scores or coefficients for the rows of N,
and g, k= 1,2,... are c-vectors of scores or coefficients for the columns
of N. These pairs of vectors are such that the first ¢ such pairs give a ‘best-
fitting’ representation in ¢ dimensions, in a sense defined in Section 13.1,
of the matrix N, and of its rows and columns. It is common to take ¢ = 2.
The rows and columns can then be plotted on a two-dimensional diagram:;
the coordinates of the ith row are the ith elements of f1,f3, i =1,2,...,7,
and the coordinates of the jth column are the jth elements of g1,g2, j =
1,2,...,c.

Such two-dimensional plots cannot in general be compared in any direct
way with plots made with respect to PCs or classical biplots, as N is
a different type of data matrix from that used for PCs or their biplots.
However, Greenacre (1984, Sections 9.6 and 9.10) gives examples where
correspondence analysis is done with an ordinary (n x p) data matrix,
X replacing N. This is only possible if all variables are measured in the
same units. In these circumstances, correspondence analysis produces a
simultaneous two-dimensional plot of the rows and columns of X, which is
precisely what is done in a biplot, but the two analyses are not the same.

Both the classical biplot and correspondence analysis determine the
plotting positions for rows and columns of X from the singular value de-
composition (SVD) of a matrix (see Section 3.5). For the classical biplot,
the SVD is calculated for the column-centred matrix X, but in correspon-
dence analysis, the SVD is found for a matrix of residuals, after subtracting
‘expected values assuming independence of rows and columns’ from X /n
(see Section 13.1). The effect of looking at residual (or interaction) terms is
(Greenacre, 1984, p. 288) that all the dimensions found by correspondence
analysis represent aspects of the ‘shape’ of the data, whereas in PCA the
first PC often simply represents ‘size’ (see Sections 4.1, 13.2). Correspon-
dence analysis provides one way in which a data matrix may be adjusted
in order to eliminate some uninteresting feature such as ‘size,” before find-
ing an SVD and hence ‘PCs.” Other possible adjustments are discussed in
Sections 13.2 and 14.2.3.

As with the biplot and its choice of «, there are several different ways of
plotting the points corresponding to rows and columns in correspondence
analysis. Greenacre and Hastie (1987) give a good description of the geom-
etry associated with the most usual of these plots. Whereas the biplot may
approximate Euclidean or Mahalanobis distances between rows, in corre-
spondence analysis the points are often plotted to optimally approximate
so-called 2 distances (see Greenacre (1984), Benzécri (1992)).
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Figure 5.6. Correspondence analysis plot for summer species at Irish wetland
sites. The symbol x denotes site; o denotes species.

5.4.1 Example

Figure 5.6 gives a plot obtained by correspondence analysis for a data set
that recorded the presence or otherwise of 52 bird species at a number of
wetland sites in Ireland. The data displayed in Figure 5.6 refer to sum-
mer sightings and are part of a much larger data set. (The larger set was
kindly supplied by Dr. R.J. O’Connor of the British Trust for Ornithol-
ogy, and which was analysed in various ways in two unpublished student
projects/dissertations (Worton, 1984; Denham, 1985) at the University of
Kent.) To avoid congestion on Figure 5.6, only a few of the points cor-
responding to sites and species have been labelled; these points will now
be discussed. Although correspondence analysis treats the data differently
from a biplot, it is still true that sites (or species) which are close to each
other on the correspondence analysis plot are likely to be similar with re-
spect to their values for the original data. Furthermore, as in a biplot, we
can interpret the joint positions of sites and species.

On Figure 5.6 we first note that those sites which are close to each other
on the figure also tend to be close geographically. For example, the group
of sites at the top right of the plot {50,53,103, 155,156,235} are all inland
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sites in the south west of Ireland, and the group {43,168,169,171,172} in
the bottom right of the diagram are all coastal sites in the south and east.

If we look at species, rather than sites, we find that similar species tend
to be located in the same part of Figure 5.6. For example, three of the
four species of goose which were recorded are in the bottom-right of the
diagram (BG, WG, GG).

Turning to the simultaneous positions of species and sites, the Grey-
lag Goose (GG) and Barnacle Goose (BG) were only recorded at site
171, among those sites which are numbered on Figure 5.6. On the plot,
site 171 is closest in position of any site to the positions of these two
species. The Whitefronted Goose (WQG) is recorded at sites 171 and 172
only, the Gadwall (GA) at sites 43, 103, 168, 169, 172 among those la-
belled on the diagram, and the Common Sandpiper (CS) at all sites in
the coastal group {43,168,169,171,172}, but at only one of the inland
group {50, 53,103, 155,156,235}. Again, these occurrences might be pre-
dicted from the relative positions of the sites and species on the plot.
However, simple predictions are not always valid, as the Coot (CO), whose
position on the plot is in the middle of the inland sites, is recorded at all
11 sites numbered on the figure.

5.5 Comparisons Between Principal Coordinates,
Biplots, Correspondence Analysis and Plots
Based on Principal Components

For most purposes there is little point in asking which of the graphical
techniques discussed so far in this chapter is ‘best.” This is because they are
either equivalent, as is the case of PCs and principal coordinates for some
types of similarity matrix, so any comparison is trivial, or the data set is of
a type such that one or more of the techniques are not really appropriate,
and so should not be compared with the others. For example, if the data
are in the form of a contingency table, then correspondence analysis is
clearly relevant, but the use of the other techniques is more questionable.
As demonstrated by Gower and Hand (1996) and Gabriel (1995a,b), the
biplot is not restricted to ‘standard’ (n x p) data matrices, and could be
used on any two-way array of data. The simultaneous positions of the g
and h7 still have a similar interpretation to that discussed in Section 5.3,
even though some of the separate properties of the g and h}, for instance,
those relating to variances and covariances, are clearly no longer valid. A
contingency table could also be analysed by PCA, but this is not really
appropriate, as it is not at all clear what interpretation could be given
to the results. Principal coordinate analysis needs a similarity or distance
matrix, so it is hard to see how it could be used directly on a contingency
table.
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There are a number of connections between PCA and the other
techniques—links with principal coordinate analysis and biplots have al-
ready been discussed, while those with correspondence analysis are deferred
until Section 13.1-—but for most data sets one method is more appropriate
than the others. Contingency table data imply correspondence analysis,
and similarity or dissimilarity matrices suggest principal coordinate analy-
sis, whereas PCA is defined for ‘standard’ data matrices of n observations
on p variables. Notwithstanding these distinctions, different techniques
have been used on the same data sets and a number of empirical compar-
isons have been reported in the ecological literature. Digby and Kempton
(1987, Section 4.3) compare twelve ordination methods, including principal
coordinate analysis, with five different similarity measures and correspon-
dence analysis, on both species abundances and presence/absence data.
The comparison is by means of a second-level ordination based on simi-
larities between the results of the twelve methods. Gauch (1982, Chapter
4) discusses criteria for choosing an appropriate ordination technique for
ecological data, and in Gauch (1982, Chapter 3) a number of studies are
described which compare PCA with other techniques, including correspon-
dence analysis, on simulated data. The data are generated to have a similar
structure to that expected in some types of ecological data, with added
noise, and investigations are conducted to see which techniques are ‘best’
at recovering the structure. However, as with comparisons between PCA
and correspondence analysis given by Greenacre (1994, Section 9.6), the
relevance to the data analysed of all the techniques compared is open to
debate. Different techniques implicitly assume that different types of struc-
ture or model are of interest for the data (see Section 14.2.3 for some further
possibilities) and which technique is most appropriate will depend on which
type of structure or model is relevant.

5.6 Methods for Graphical Display of Intrinsically
High-Dimensional Data

Sometimes it will not be possible to reduce a data set’s dimensionality
to two or three without a substantial loss of information; in such cases,
methods for displaying many variables simultaneously in two dimensions
may be useful. Plots of trigonometric functions due to Andrews (1972),
illustrated below, and the display in terms of faces suggested by Chernoff
(1973), for which several examples are given in Wang (1978), became pop-
ular in the 1970s and 1980s. There are many other possibilities (see, for
example, Tukey and Tukey (1981) and Carr(1998)) which will not be dis-
cussed here. Recent developments in the visualization of high-dimensional
data using the ever-increasing power of computers have created displays
which are dynamic, colourful and potentially highly informative, but there
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remain limitations on how many dimensions can be effectively shown si-
multaneously. The less sophisticated ideas of Tukey and Tukey (1981) still
have a role to play in this respect.

Even when dimensionality cannot be reduced to two or three, a reduc-
tion to as few dimensions as possible, without throwing away too much
information, is still often worthwhile before attempting to graph the data.
Some techniques, such as Chernoff’s faces, impose a limit on the number
of variables that can be handled, although a modification due to Flury and
Riedwyl (1981) increases the limit, and for most other methods a reduction
in the number of variables leads to simpler and more easily interpretable
diagrams. An obvious way of reducing the dimensionality is to replace the
original variables by the first few PCs, and the use of PCs in this context
will be particularly successful if each PC has an obvious interpretation (see
Chapter 4). Andrews (1972) recommends transforming to PCs in any case,
because the PCs are uncorrelated, which means that tests of significance
for the plots may be more easily performed with PCs than with the origi-
nal variables. Jackson (1991, Section 18.6) suggests that Andrews’ curves
of the residuals after ‘removing’ the first ¢ PCs, that is, the sum of the last
(r — q) terms in the SVD of X, may provide useful information about the
behaviour of residual variability.

5.6.1 Example

In Jolliffe et al. (1986), 107 English local authorities are divided into groups
or clusters, using various methods of cluster analysis (see Section 9.2), on
the basis of measurements on 20 demographic variables.

The 20 variables can be reduced to seven PCs, which account for over
90% of the total variation in the 20 variables, and for each local authority
an Andrews’ curve is defined on the range —m < ¢t < w by the function

f@) = % + zosint + z3 cost + z4 8in 2t + z5 cos 2t + zg sin 3t + z7 cos 3t,
where z1, 22, ..., 27 are the values of the first seven PCs for the local au-
thority. Andrews’ curves may be plotted separately for each cluster. These
curves are useful in assessing the homogeneity of the clusters. For example,
Figure 5.7 gives the Andrews’ curves for three of the clusters (Clusters 2,
11 and 12) in a 13-cluster solution, and it can be seen immediately that
the shape of the curves is different for different clusters.

Compared to the variation between clusters, the curves fall into fairly
narrow bands, with a few exceptions, for each cluster. Narrower bands for
the curves imply greater homogeneity in the cluster.

In Cluster 12 there are two curves that are somewhat different from
the remainder. These curves have three complete oscillations in the range
(—m,7), with maxima at 0 and +27/3. This implies that they are domi-
nated by cos3t and hence z7. Examination of the seventh PC shows that
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Figure 5.7. Local authorities demographic data: Andrews’ curves for three
clusters.
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its largest coefficients are all positive and correspond to numbers of elderly
persons who have recently moved to the area, numbers in privately rented
accommodation, and population sparsity (Area/Population). The implica-
tion of the outlying curves for Cluster 12 is that the two local authorities
corresponding to the curves (Cumbria, Northumberland) have substantially
larger values for the seventh PC than do the other local authorities in the
same cluster (Cornwall, Gloucestershire, Kent, Lincolnshire, Norfolk, North
Yorkshire, Shropshire, Somerset and Suffolk). This is, indeed, the case and
it further implies atypical values for Northumberland and Cumbria, com-
pared to the remainder of the cluster, for the three variables having the
largest coefficients for the seventh PC.

Another example of using Andrews’ curves to examine the homogeneity
of clusters in cluster analysis and to investigate potential outliers is given
by Jolliffe et al. (1980) for the data set discussed in Section 4.2.



6

Choosing a Subset of Principal
Components or Variables

In this chapter two separate, but related, topics are considered, both of
which are concerned with choosing a subset of variables. In the first section,
the choice to be examined is how many PCs adequately account for the
total variation in x. The major objective in many applications of PCA is
to replace the p elements of x by a much smaller number m of PCs, which
nevertheless discard very little information. It is crucial to know how small
m can be taken without serious information loss. Various rules, many ad
hoc, have been proposed for determining a suitable value of m, and these
are discussed in Section 6.1. Examples of their use are given in Section 6.2.

Using m PCs instead of p variables considerably reduces the dimension-
ality of the problem when m < p, but usually the values of all p variables
are still needed in order to calculate the PCs, as each PC is likely to be
a function of all p variables. It might be preferable if, instead of using m
PCs we could use m, or perhaps slightly more, of the original variables,
to account for most of the variation in x. The question arises of how to
compare the information contained in a subset of variables with that in
the full data set. Different answers to this question lead to different criteria
and different algorithms for choosing the subset. In Section 6.3 we concen-
trate on methods that either use PCA to choose the variables or aim to
reproduce the PCs in the full data set with a subset of variables, though
other variable selection techniques are also mentioned briefly. Section 6.4
gives two examples of the use of variable selection methods.

All of the variable selection methods described in the present chapter
are appropriate when the objective is to describe variation within x as
well as possible. Variable selection when x is a set of regressor variables
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in a regression analysis, or a set of predictor variables in a discriminant
analysis, is a different type of problem as criteria external to x must be
considered. Variable selection in regression is the subject of Section 8.5. The
related problem of choosing which PCs to include in a regression analysis
or discriminant analysis is discussed in Sections 8.2, 9.1 respectively.

6.1 How Many Principal Components?

In this section we present a number of rules for deciding how many PCs
should be retained in order to account for most of the variation in x (or
in the standardized variables x* in the case of a correlation matrix-based
PCA).

In some circumstances the last few, rather than the first few, PCs are of
interest, as was discussed in Section 3.4 (see also Sections 3.7, 6.3, 8.4, 8.6
and 10.1). In the present section, however, the traditional idea of trying
to reduce dimensionality by replacing the p variables by the first m PCs
(m < p) is adopted, and the possible virtues of the last few PCs are ignored.

The first three types of rule for choosing m, described in Sections 6.1.1—
6.1.3, are very much ad hoc rules-of-thumb, whose justification, despite
some attempts to put them on a more formal basis, is still mainly that
they are intuitively plausible and that they work in practice. Section 6.1.4
discusses rules based on formal tests of hypothesis. These make distribu-
tional assumptions that are often unrealistic, and they frequently seem to
retain more variables than are necessary in practice. In Sections 6.1.5, 6.1.6
a number of statistically based rules, most of which do not require distri-
butional assumptions, are described. Several use computationally intensive
methods such as cross-validation and bootstrapping. Some procedures that
have been suggested in the context of atmospheric science are presented
briefly in Section 6.1.7, and Section 6.1.8 provides some discussion of a
number of comparative studies, and a few comments on the relative merits
of various rules.

6.1.1 Cumulative Percentage of Total Variation

Perhaps the most obvious criterion for choosing m, which has already been
informally adopted in some of the examples of Chapters 4 and 5, is to
select a (cumulative) percentage of total variation which one desires that
the selected PCs contribute, say 80% or 90%. The required number of
PCs is then the smallest value of m for which this chosen percentage is
exceeded. It remains to define what is meant by ‘percentage of variation
accounted for by the first m PCs,’ but this poses no real problem. Principal
components are successively chosen to have the largest possible variance,
and the variance of the kth PC is ly. Furthermore, 377, Iy = >7_, 55,



6.1. How Many Principal Components? 113

that is the sum of the variances of the PCs is equal to the sum of the
variances of the elements of x. The obvious definition of ‘percentage of
variation accounted for by the first m PCs’ is therefore

m p m p
b = 10030 /555 = 10030 /S0,
k=1 j=1 k=1

k=1

which reduces to

in the case of a correlation matrix.

Choosing a cut-off t* somewhere between 70% and 90% and retaining m
PCs, where m is the smallest integer for which ¢,, > t*, provides a rule
which in practice preserves in the first m PCs most of the information in
x. The best value for ¢* will generally become smaller as p increases, or
as n, the number of observations, increases. Although a sensible cutoff is
very often in the range 70% to 90%, it can sometimes be higher or lower
depending on the practical details of a particular data set. For example,
a value greater than 90% will be appropriate when one or two PCs repre-
sent very dominant and rather obvious sources of variation. Here the less
obvious structures beyond these could be of interest, and to find them a
cut-off higher than 90% may be necessary. Conversely, when p is very large
choosing m corresponding to 70% may give an impractically large value of
m for further analyses. In such cases the threshold should be set somewhat
lower.

Using the rule is, in a sense, equivalent to looking at the spectral de-
composition of the covariance (or correlation) matrix S (see Property A3
of Sections 2.1, 3.1), or the SVD of the data matrix X (see Section 3.5). In
either case, deciding how many terms to include in the decomposition in
order to get a good fit to S or X respectively is closely related to looking
at t,,, because an appropriate measure of lack-of-fit of the first m terms in
either decomposition is > _, 41 k- This follows because

n p p
DY =iy =(n=1) > U,
i=1 j=1 k=m+1
(Gabriel, 1978) and [|,,S—S|| = >} _,,, ;1 lr (see the discussion of Property
G4 in Section 3.2), where ,,,Z;; is the rank m approximation to x;; based
on the SVD as given in equation (3.5.3), and ,,S is the sum of the first m
terms of the spectral decomposition of S.

A number of attempts have been made to find the distribution of ¢,,,
and hence to produce a formal procedure for choosing m, based on t,,.
Mandel (1972) presents some expected values for ¢, for the case where all
variables are independent, normally distributed, and have the same vari-
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ance. Mandel’s results are based on simulation studies, and although exact
results have been produced by some authors, they are only for limited spe-
cial cases. For example, Krzanowski (1979a) gives exact results for m = 1
and p = 3 or 4, again under the assumptions of normality, independence
and equal variances for all variables. These assumptions mean that the
results can be used to determine whether or not all variables are indepen-
dent, but are of little general use in determining an ‘optimal’ cut-off for
tm. Sugiyama and Tong (1976) describe an approximate distribution for ¢,,
which does not assume independence or equal variances, and which can be
used to test whether 1,15, ... [, are compatible with any given structure
for A1, Ag, ..., A\, the corresponding population variances. However, the
test still assumes normality and it is only approximate, so it is not clear
how useful it is in practice for choosing an appropriate value of m.

Huang and Tseng (1992) describe a ‘decision procedure for determining
the number of components’ based on t,,. Given a proportion of population
variance 7, which one wishes to retain, and the true minimum number of
population PCs m, that achieves this, Huang and Tseng (1992) develop
a procedure for finding a sample size n and a threshold ¢t* having a pre-
scribed high probability of choosing m = m.. It is difficult to envisage
circumstances where this would be of practical value.

A number of other criteria based on Y 7_ 41 [k are discussed briefly by
Jackson (1991, Section 2.8.11). In situations where some desired residual
variation can be specified, as sometimes happens for example in quality
control (see Section 13.7), Jackson (1991, Section 2.8.5) advocates choosing
m such that the absolute, rather than percentage, value of Y 7_ 41 Uk first
falls below the chosen threshold.

6.1.2 Size of Variances of Principal Components

The previous rule is equally valid whether a covariance or a correlation
matrix is used to compute the PCs. The rule described in this section is
constructed specifically for use with correlation matrices, although it can
be adapted for some types of covariance matrices. The idea behind the
rule is that if all elements of x are independent, then the PCs are the
same as the original variables and all have unit variances in the case of
a correlation matrix. Thus any PC with variance less than 1 contains less
information than one of the original variables and so is not worth retaining.
The rule, in its simplest form, is sometimes called Kaiser’s rule (Kaiser,
1960) and retains only those PCs whose variances [j, exceed 1. If the data
set contains groups of variables having large within-group correlations, but
small between group correlations, then there is one PC associated with each
group whose variance is > 1, whereas any other PCs associated with the
group have variances < 1 (see Section 3.8). Thus, the rule will generally
retain one, and only one, PC associated with each such group of variables,
which seems to be a reasonable course of action for data of this type.
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As well as these intuitive justifications, Kaiser (1960) put forward a num-
ber of other reasons for a cut-off at I, = 1. It must be noted, however, that
most of the reasons are pertinent to factor analysis (see Chapter 7), rather
than PCA, although Kaiser refers to PCs in discussing one of them.

It can be argued that a cut-off at I = 1 retains too few variables. Con-
sider a variable which, in the population, is more-or-less independent of
all other variables. In a sample, such a variable will have small coefficients
in (p — 1) of the PCs but will dominate one of the PCs, whose variance
l;; will be close to 1 when using the correlation matrix. As the variable
provides independent information from the other variables it would be un-
wise to delete it. However, deletion will occur if Kaiser’s rule is used, and
if, due to sampling variation, I, < 1. It is therefore advisable to choose
a cut-off [* lower than 1, to allow for sampling variation. Jolliffe (1972)
suggested, based on simulation studies, that {* = 0.7 is roughly the correct
level. Further discussion of this cut-off level will be given with respect to
examples in Sections 6.2 and 6.4.

The rule just described is specifically designed for correlation matrices,
but it can be easily adapted for covariance matrices by taking as a cut-off [*
the average value [ of the eigenvalues or, better, a somewhat lower cut-off
such as [* = 0.7]. For covariance matrices with widely differing variances,
however, this rule and the one based on t; from Section 6.1.1 retain very
few (arguably, too few) PCs, as will be seen in the examples of Section 6.2.

An alternative way of looking at the sizes of individual variances is to use
the so-called broken stick model. If we have a stick of unit length, broken
at random into p segments, then it can be shown that the expected length
of the kth longest segment is

One way of deciding whether the proportion of variance accounted for by
the kth PC is large enough for that component to be retained is to compare
the proportion with /. Principal components for which the proportion
exceeds [}, are then retained, and all other PCs deleted. Tables of I} are
available for various values of p and k (see, for example, Legendre and
Legendre (1983, p. 406)).

6.1.3 The Scree Graph and the Log-FEigenvalue Diagram

The first two rules described above usually involve a degree of subjectiv-
ity in the choice of cut-off levels, t* and [* respectively. The scree graph,
which was discussed and named by Cattell (1966) but which was already
in common use, is even more subjective in its usual form, as it involves
looking at a plot of I, against k (see Figure 6.1, which is discussed in detail
in Section 6.2) and deciding at which value of k the slopes of lines joining
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Figure 6.1. Scree graph for the correlation matrix: blood chemistry data.

the plotted points are ‘steep’ to the left of k, and ‘not steep’ to the right.
This value of k, defining an ‘elbow’ in the graph, is then taken to be the
number of components m to be retained. Its name derives from the simi-
larity of its typical shape to that of the accumulation of loose rubble, or
scree, at the foot of a mountain slope. An alternative to the scree graph,
which was developed in atmospheric science, is to plot log(l), rather than
Ik, against k; this is known as the log-eigenvalue (or LEV) diagram (see
Farmer (1971), Maryon (1979)).

In introducing the scree graph, Cattell (1966) gives a somewhat different
formulation from that above, and presents strong arguments that when it
is used in factor analysis it is entirely objective and should produce the
‘correct’ number of factors (see Cattell and Vogelmann (1977) for a large
number of examples). In fact, Cattell (1966) views the rule as a means of
deciding upon an upper bound to the true number of factors in a factor
analysis after rotation (see Chapter 7). He did not seem to envisage its use
in PCA, although it has certainly been widely adopted for that purpose.

The way in which Cattell (1966) formulates the rule goes beyond a simple
change of slope from ‘steep’ to ‘shallow.” He looks for the point beyond
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which the scree graph defines a more-or-less straight line, not necessarily
horizontal. The first point on the straight line is then taken to be the last
factor /component to be retained. If there are two or more straight lines
formed by the lower eigenvalues, then the cut-off is taken at the upper (left-
hand) end of the left-most straight line. Cattell (1966) discusses at some
length whether the left-most point on the straight line should correspond
to the first excluded factor or the last factor to be retained. He concludes
that it is preferable to include this factor, although both variants are used
in practice.

The rule in Section 6.1.1 is based on t,, = E:Ll I, the rule in Sec-
tion 6.1.2 looks at individual eigenvalues [, and the current rule, as applied
to PCA, uses [_1 — I} as its criterion. There is, however, no formal nu-
merical cut-off based on l;_1 — Il and, in fact, judgments of when [ _1 — I,
stops being large (steep) will depend on the relative values of lj_1 — I
and I — lp41, as well as the absolute value of l,_1 — lx. Thus the rule is
based subjectively on the second, as well as the first, differences among
the [j,. Because of this, it is difficult to write down a formal numerical rule
and the procedure has until recently remained purely graphical. Tests that
attempt to formalize the procedure, due to Bentler and Yuan (1996,1998),
are discussed in Section 6.1.4.

Cattell’s formulation, where we look for the point at which Ip_1 — lj
becomes fairly constant for several subsequent values, is perhaps less sub-
jective, but still requires some degree of judgment. Both formulations of
the rule seem to work well in practice, provided that there is a fairly sharp
‘elbow,” or change of slope, in the graph. However, if the slope gradually
becomes less steep, with no clear elbow, as in Figure 6.1, then it is clearly
less easy to use the procedure.

A number of methods have been suggested in which the scree plot is
compared with a corresponding plot representing given percentiles, often a
95 percentile, of the distributions of each variance (eigenvalue) when PCA
is done on a ‘random’ matrix. Here ‘random’ usually refers to a correlation
matrix obtained from a random sample of n observations on p uncorrelated
normal random variables, where n, p are chosen to be the same as for the
data set of interest. A number of varieties of this approach, which goes
under the general heading parallel analysis, have been proposed in the
psychological literature. Parallel analysis dates back to Horn (1965), where
it was described as determining the number of factors in factor analysis.
Its ideas have since been applied, sometimes inappropriately, to PCA.

Most of its variants use simulation to construct the 95 percentiles em-
pirically, and some examine ‘significance’ of loadings (eigenvectors), as well
as eigenvalues, using similar reasoning. Franklin et al. (1995) cite many of
the most relevant references in attempting to popularize parallel analysis
amongst ecologists. The idea in versions of parallel analysis that concen-
trate on eigenvalues is to retain m PCs, where m is the largest integer for
which the scree graph lies above the graph of upper 95 percentiles. Boot-
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strap versions of these rules are used by Jackson (1993) and are discussed
further in Section 6.1.5. Stauffer et al. (1985) informally compare scree
plots from a number of ecological data sets with corresponding plots from
random data sets of the same size. They incorporate bootstrap confidence
intervals (see Section 6.1.5) but their main interest is in the stability of
the eigenvalues (see Section 10.3) rather than the choice of m. Preisendor-
fer and Mobley’s (1988) Rule N, described in Section 6.1.7 also uses ideas
similar to parallel analysis.

Turning to the LEV diagram, an example of which is given in Sec-
tion 6.2.2 below, one of the earliest published descriptions was in Craddock
and Flood (1969), although, like the scree graph, it had been used routinely
for some time before this. Craddock and Flood argue that, in meteorology,
eigenvalues corresponding to ‘noise’ should decay in a geometric progres-
sion, and such eigenvalues will therefore appear as a straight line on the
LEV diagram. Thus, to decide on how many PCs to retain, we should
look for a point beyond which the LEV diagram becomes, approximately,
a straight line. This is the same procedure as in Cattell’s interpretation of
the scree graph, but the results are different, as we are now plotting log(lx)
rather than l;. To justify Craddock and Flood’s procedure, Farmer (1971)
generated simulated data with various known structures (or no structure).
For purely random data, with all variables uncorrelated, Farmer found that
the whole of the LEV diagram is approximately a straight line. Further-
more, he showed that if structures of various dimensions are introduced,
then the LEV diagram is useful in indicating the correct dimensionality, al-
though real examples, of course, give much less clear-cut results than those
of simulated data.

6.1.4 The Number of Components with Unequal Eigenvalues
and Other Hypothesis Testing Procedures

In Section 3.7.3 a test, sometimes known as Bartlett’s test, was described
for the null hypothesis

Hog:Agr1=Age2 == Xp

against the general alternative that at least two of the last (p—q) eigenvalues
are unequal. It was argued that using this test for various values of ¢, it
can be discovered how many of the PCs contribute substantial amounts of
variation, and how many are simply ‘noise.” If m, the required number of
PCs to be retained, is defined as the number of PCs that are not noise,
then the test is used sequentially to find m.

Hy 2 is tested first, that is A,_1 = Ap, and if Hy ;2 is not rejected then
Hy 3 is tested. If Hy 3 is not rejected, Hy p—4 is tested next, and this
sequence continues until Hy , is first rejected at ¢ = ¢*, say. The value of
m is then taken to be ¢* +1 (or ¢* +2 if ¢* = p—2). There are a number of
disadvantages to this procedure, the first of which is that equation (3.7.6)
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is based on the assumption of multivariate normality for x, and is only
approximately true even then. The second problem is concerned with the
fact that unless Hy ,_o is rejected, there are several tests to be done, so
that the overall significance level of the sequence of tests is not the same
as the individual significance levels of each test. Furthermore, it is difficult
to get even an approximate idea of the overall significance level because
the number of tests done is not fixed but random, and the tests are not
independent of each other. It follows that, although the testing sequence
suggested above can be used to estimate m, it is dangerous to treat the
procedure as a formal piece of statistical inference, as significance levels are
usually unknown. The reverse sequence Hyg, Ho1,... can be used instead
until the first non-rejection occurs (Jackson, 1991, Section 2.6), but this
suffers from similar problems.

The procedure could be added to the list of ad hoc rules, but it has
one further, more practical, disadvantage, namely that in nearly all real
examples it tends to retain more PCs than are really necessary. Bartlett
(1950), in introducing the procedure for correlation matrices, refers to it
as testing how many of the PCs are statistically significant, but ‘statistical
significance’ in the context of these tests does not imply that a PC accounts
for a substantial proportion of the total variation. For correlation matrices,
Jolliffe (1970) found that the rule often corresponds roughly to choosing a
cut-off [* of about 0.1 to 0.2 in the method of Section 6.1.2. This is much
smaller than is recommended in that section, and occurs because defining
unimportant PCs as those with variances equal to that of the last PC is
not necessarily a sensible way of finding m. If this definition is acceptable,
as it may be if the model of Tipping and Bishop (1999a) (see Section 3.9) is
assumed, for example, then the sequential testing procedure may produce
satisfactory results, but it is easy to construct examples where the method
gives silly answers. For instance, if there is one near-constant relationship
among the elements of x, with a much smaller variance than any other
PC, then the procedure rejects Hy p—2 and declares that all PCs need to
be retained, regardless of how nearly equal are the next few eigenvalues.

The method of this section is similar in spirit to, though more formal-
ized than, one formulation of the scree graph. Looking for the first ‘shallow’
slope in the graph corresponds to looking for the first of two consecutive
eigenvalues that are nearly equal. The scree graph differs from the formal
testing procedure in that it starts from the largest eigenvalue and com-
pares consecutive eigenvalues two at a time, whereas the tests start with
the smallest eigenvalues and compare blocks of two, three, four and so on.
Another difference is that the ‘elbow’ point is retained in Cattell’s formu-
lation of the scree graph, but excluded in the testing procedure. The scree
graph is also more subjective but, as has been stated above, the objectivity
of the testing procedure is something of an illusion.

Cattell’s original formulation of the scree graph differs from the above
since it is differences I _1 — li, rather than [;, which must be equal beyond
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the cut-off point. In other words, in order to retain ¢ PCs the last (p —
q) eigenvalues should have a linear trend. Bentler and Yuan (1996,1998)
develop procedures for testing in the case of covariance and correlation
matrices, respectively, the null hypothesis

Hy: Ngyr = a+Bag, k=1,2,...,(p—q)

where «, [ are non-negative constants and z = (p — ¢) — k.

For covariance matrices a maximum likelihood ratio test (MLRT) can
be used straightforwardly, with the null distribution of the test statistic
approximated by a x? distribution. In the correlation case Bentler and
Yuan (1998) use simulations to compare the MLRT, treating the correlation
matrix as a covariance matrix, with a minimum x? test. They show that
the MLRT has a seriously inflated Type I error, even for very large sample
sizes. The properties of the minimum x? test are not ideal, but the test
gives plausible results in the examples examined by Bentler and Yuan.
They conclude that it is reliable for sample sizes of 100 or larger. The
discussion section of Bentler and Yuan (1998) speculates on improvements
for smaller sample sizes, on potential problems caused by possible different
orderings of eigenvalues in populations and samples, and on the possibility
of testing hypotheses for specific non-linear relationships among the last
(p — q) eigenvalues.

Ali et al. (1985) propose a method for choosing m based on testing hy-
potheses for correlations between the variables and the components. Recall
from Section 2.3 that for a correlation matrix PCA and the normalization
a0 = g, the coefficients a5 are precisely these correlations. Similarly,
the sample coefficients a; are correlations between the kth PC and the
jth variable in the sample. The normalization constraint means that the
coefficients will decrease on average as k increases. Ali et al. (1985) suggest
defining m as one fewer than the index of the first PC for which none of
these correlation coefficients is significantly different from zero at the 5%
significance level. However, there is one immediate difficulty with this sug-
gestion. For a fixed level of significance, the critical values for correlation
coefficients decrease in absolute value as the sample size n increases. Hence
for a given sample correlation matrix, the number of PCs retained depends
on n. More components will be kept as n increases.

6.1.5 Choice of m Using Cross-Validatory or
Computationally Intensive Methods

The rule described in Section 6.1.1 is equivalent to looking at how well the
data matrix X is fitted by the rank m approximation based on the SVD.
The idea behind the first two methods discussed in the present section is
similar, except that each element z;; of X is now predicted from an equation
like the SVD, but based on a submatrix of X that does not include x;;. In
both methods, suggested by Wold (1978) and Eastment and Krzanowski
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(1982), the number of terms in the estimate for X, corresponding to the
number of PCs, is successively taken as 1,2,..., and so on, until overall
prediction of the z;; is no longer significantly improved by the addition of
extra terms (PCs). The number of PCs to be retained, m, is then taken to
be the minimum number necessary for adequate prediction.

Using the SVD, z;; can be written, as in equations (3.5.2),(5.3.3),

-
. e
Tij = E Uikl Qjk,

k=1

where r is the rank of X. (Recall that, in this context, Iy, k = 1,2,...,p
are eigenvalues of X'X, rather than of S.)
An estimate of z;;, based on the first m PCs and using all the data, is

m
mTij = Zuikli/zajk, (6.1.1)
k=1

but what is required is an estimate based on a subset of the data that does
not include z;;. This estimate is written

m
miij = Z'&ikli/z&jk, (6.1.2)
k=1

where 1, Zk, aji, are calculated from suitable subsets of the data. The sum
of squared differences between predicted and observed x;; is then

n P
PRESS(m) = Z Z(mi‘ij — .inj)Q. (613)

i=1 j=1
The notation PRESS stands for PREdiction Sum of Squares, and is taken
from the similar concept in regression, due to Allen (1974). All of the above
is essentially common to both Wold (1978) and Eastment and Krzanowski
(1982); they differ in how a subset is chosen for predicting z;;, and in how
(6.1.3) is used for deciding on m.

Eastment and Krzanowski (1982) use an estimate d,, in (6.1.2) based on
the data set with just the ith observation x; deleted. 4, is calculated with
only the jth variable deleted, and I, combines information from the two
cases with the ith observation and the jth variable deleted, respectively.
Wold (1978), on the other hand, divides the data into g blocks, where he
recommends that g should be between four and seven and must not be a
divisor of p, and that no block should contain the majority of the elements
in any row or column of X. Quantities equivalent to ;, ik and a; are
calculated g times, once with each block of data deleted, and the estimates
formed with the hth block deleted are then used to predict the data in the
hth block, h=1,2,...,g.

With respect to the choice of m, Wold (1978) and Eastment and Krza-
nowski (1982) each use a (different) function of PRESS(m) as a criterion
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for choosing m. To decide on whether to include the mth PC, Wold (1978)
examines the ratio

PRESS (m)
> it g1 (=1 @ij — wi5)?

This compares the prediction error sum of squares after fitting m compo-
nents, with the sum of squared differences between observed and estimated
data points based on all the data, using (m — 1) components. If R < 1,
then the implication is that a better prediction is achieved using m rather
than (m — 1) PCs, so that the mth PC should be included.

The approach of Eastment and Krzanowski (1982) is similar to that in an
analysis of variance. The reduction in prediction (residual) sum of squares
in adding the mth PC to the model, divided by its degrees of freedom, is
compared to the prediction sum of squares after fitting m PCs, divided by
its degrees of freedom. Their criterion is thus

[PRESS(m — 1) — PRESS(m)]/vm 1

W= PRESS (1) /v : (6.1.5)

R:

(6.1.4)

where v, 1, Uy, 2 are the degrees of freedom associated with the numerator
and denominator, respectively. It is suggested that if W > 1, then inclusion
of the mth PC is worthwhile, although this cut-off at unity is to be inter-
preted with some flexibility. It is certainly not appropriate to stop adding
PCs as soon as (6.1.5) first falls below unity, because the criterion is not
necessarily a monotonic decreasing function of m. Because the ordering
of the population eigenvalues may not be the same as that of the sam-
ple eigenvalues, especially if consecutive eigenvalues are close, Krzanowski
(1987a) considers orders of the components different from those implied by
the sample eigenvalues. For the well-known alate adelges data set (see Sec-
tion 6.4), Krzanowski (1987a) retains components 1-4 in a straightforward
implementation of W, but he keeps only components 1,2,4 when reorder-
ings are allowed. In an example with a large number (100) of variables,
Krzanowski and Kline (1995) use W in the context of factor analysis and
simply take the number of components with W greater than a threshold,
regardless of their position in the ordering of eigenvalues, as an indicator of
the number of factors to retain. For example, the result where W exceeds
0.9 for components 1, 2, 4, 18 and no others is taken to indicate that a
4-factor solution is appropriate.

It should be noted that although the criteria described in this section
are somewhat less ad hoc than those of Sections 6.1.1-6.1.3, there is still
no real attempt to set up a formal significance test to decide on m. Some
progress has been made by Krzanowski (1983) in investigating the sam-
pling distribution of W using simulated data. He points out that there are
two sources of variability to be considered in constructing such a distri-
bution; namely the variability due to different sample covariance matrices
S for a fixed population covariance matrix ¥ and the variability due to
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the fact that a fixed sample covariance matrix S can result from different
data matrices X. In addition to this two-tiered variability, there are many
parameters that can vary: n, p, and particularly the structure of 3. This
means that simulation studies can only examine a fraction of the possible
parameter values, and are therefore of restricted applicability. Krzanowski
(1983) looks at several different types of structure for X, and reaches the
conclusion that W chooses about the right number of PCs in each case, al-
though there is a tendency for m to be too small. Wold (1978) also found,
in a small simulation study, that R retains too few PCs. This underestima-
tion for m can clearly be overcome by moving the cut-offs for W and R,
respectively, slightly below and slightly above unity. Although the cut-offs
at R =1 and W = 1 seem sensible, the reasoning behind them is not rigid,
and they could be modified slightly to account for sampling variation in the
same way that Kaiser’s rule (Section 6.1.2) seems to work better when [*
is changed to a value somewhat below unity. In later papers (Krzanowski,
1987a; Krzanowski and Kline, 1995) a threshold for W of 0.9 is used.
Krzanowski and Kline (1995) investigate the use of W in the context of
factor analysis, and compare the properties and behaviour of W with three
other criteria derived from PRESS(m). Criterion P is based on the ratio

(PRESS(1) — PRESS(m))
PRESS(m) ’

P* on
(PRESS(0) — PRESS(m))
PRESS(m) ’

and R (different from Wold’s R) on

(PRESS(m — 1) — PRESS(m))
(PRESS(m — 1) — PRESS(m + 1))

In each case the numerator and denominator of the ratio are divided by
appropriate degrees of freedom, and in each case the value of m for which
the criterion is largest gives the number of factors to be retained. On the
basis of two previously analysed psychological examples, Krzanowski and
Kline (1995) conclude that W and P* select appropriate numbers of factors,
whereas P and R are erratic and unreliable. As discussed later in this
section, selection in factor analysis needs rather different considerations
from PCA. Hence a method that chooses the ‘right number’ of factors may
select too few PCs.

Cross-validation of PCs is computationally expensive for large data sets.
Mertens et al. (1995) describe efficient algorithms for cross-validation, with
applications to principal component regression (see Chapter 8) and in the
investigation of influential observations (Section 10.2). Besse and Ferré
(1993) raise doubts about whether the computational costs of criteria based
on PRESS(m) are worthwhile. Using Taylor expansions, they show that
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for large n, PRESS(m) and W are almost equivalent to the much simpler
quantities Y p_ . I and

lm

p l ’
k=m+1 'k

respectively. However, Gabriel (personal communication) notes that this
conclusion holds only for large sample sizes.

In Section 3.9 we introduced the fized effects model. A number of authors
have used this model as a basis for constructing rules to determine m,
with some of the rules relying on the resampling ideas associated with the
bootstrap and jackknife. Recall that the model assumes that the rows x; of
the data matrix are such that E(x;) = z;, where z; lies in a ¢g-dimensional
space Fy. If e; is defined as (x; — 2z;), then E(e;) = 0 and var(e;) = ;—jI‘,
where T is a positive definite symmetric matrix and the w; are positive
scalars whose sum is unity. For fixed ¢, the quantity

> willxi — zilla (6.1.6)
=1

given in equation (3.9.1), is to be minimized in order to estimate o2, the z;
and F, (T and the w; are assumed known). The current selection problem
is not only to estimate the unknown parameters, but also to find ¢. We
wish our choice of m, the number of components retained, to coincide with
the true value of ¢, assuming that such a value exists.

To choose m, Ferré (1990) attempts to find ¢ so that it minimizes the
loss function

2
= E[Z w; ||z; — 2ip-1], (6.1.7)
i=1

where 2; is the projection of x; onto Fy. The criterion f; cannot be calcu-
lated, but must be estimated, and Ferré (1990) shows that a good estimate
of fy is

a P
Z)\k+o[2q(n+q p) —np+2(p—q) Z Z )\/\l)\)
=1 kg k

l

k=q+1
(6.1.8)
where Ay is the kth largest eigenvalue of VI'™! and
P
V= wi(xi — %)(x; — X)'.
i=1
In the special case Where F =1I, and w; = %, i =1,...,n, we have
vt = = 1)S and )\, )lk, where [j; is the kth 1argest eigenvalue

of the sample covariance matrlx S. In addition, z; is the projection of x;
onto the space spanned by the first ¢ PCs. The residual variance o2 still
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needs to be estimated; an obvious estimate is the average of the (p — ¢q)
smallest eigenvalues of S.

Besse and de Falguerolles (1993) start from the same fixed effects model
and concentrate on the special case just noted. They modify the loss
function to become

2

1 .
Ly=3 HPq -p,[, (6.1.9)

where f’q = AgA’y, Aq is the (p X g) matrix whose kth column is the
kth eigenvalue of S, P, is the quantity corresponding to f’q for the true
g-dimensional subspace Fy, and ||.|| denotes Euclidean norm. The loss func-
tion L, measures the distance between the subspace Fj, and its estimate
ﬁ‘q spanned by the columns of A,.

The risk function that Besse and de Falguerolles (1993) seck to mini-
mize is R, = E[Ly]. As with f;, R, must be estimated, and Besse and
de Falguerolles (1993) compare four computationally intensive ways of do-
ing so, three of which were suggested by Besse (1992), building on ideas
from Daudin et al. (1988, 1989). Two are bootstrap methods; one is based
on bootstrapping residuals from the g-dimensional model, while the other
bootstraps the data themselves. A third procedure uses a jackknife esti-
mate and the fourth, which requires considerably less computational effort,
constructs an approzimation to the jackknife.

Besse and de Falguerolles (1993) simulate data sets according to the fixed
effects model, with p = 10, ¢ = 4 and varying levels of the noise variance
o2. Because q and o2 are known, the true value of R, can be calculated.
The four procedures outlined above are compared with the traditional scree
graph and Kaiser’s rule, together with boxplots of scores for each principal
component. In the latter case a value m is sought such that the boxplots
are much less wide for components (m + 1), (m + 2),...,p than they are
for components 1,2,...,m.

As the value of o2 increases, all of the criteria, new or old, deteriorate in
their performance. Even the true value of R, does not take its minimum
value at ¢ = 4, although ¢ = 4 gives a local minimum in all the simulations.
Bootstrapping of residuals is uninformative regarding the value of ¢, but
the other three new procedures each have strong local minima at ¢ = 4. All
methods have uninteresting minima at ¢ = 1 and at ¢ = p, but the jackknife
techniques also have minima at ¢ = 6,7 which become more pronounced
as 02 increases. The traditional methods correctly choose ¢ = 4 for small
o2, but become less clear as o2 increases.

The plots of the risk estimates are very irregular, and both Besse (1992)
and Besse and de Falguerolles (1993) note that they reflect the important
feature of stability of the subspaces retained. Many studies of stability (see,
for example, Sections 10.2, 10.3, 11.1 and Besse, 1992) show that pairs of
consecutive eigenvectors are unstable if their corresponding eigenvalues are
of similar size. In a similar way, Besse and de Falguerolles’ (1993) risk
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estimates depend on the reciprocal of the difference between [,, and 1,1
where, as before, m is the number of PCs retained. The usual implemen-
tations of the rules of Sections 6.1.1, 6.1.2 ignore the size of gaps between
eigenvalues and hence do not take stability into account. However, it is ad-
visable when using Kaiser’s rule or one of its modifications, or a rule based
on cumulative variance, to treat the threshold with flexibility, and be pre-
pared to move it, if it does not correspond to a good-sized gap between
eigenvalues.

Besse and de Falguerolles (1993) also examine a real data set with p = 16
and n = 60. Kaiser’s rule chooses m = 5, and the scree graph suggests either
m = 3 or m = 5. The bootstrap and jackknife criteria behave similarly to
each other. Ignoring the uninteresting minimum at m = 1, all four methods
choose m = 3, although there are strong secondary minima at m = 8 and
m = 9.

Another model-based rule is introduced by Bishop (1999) and, even
though one of its merits is said to be that it avoids cross-validation, it
seems appropriate to mention it here. Bishop (1999) proposes a Bayesian
framework for Tipping and Bishop’s (1999a) model, which was described in
Section 3.9. Recall that under this model the covariance matrix underlying
the data can be written as BB’ + 021, where B is a (p x ¢) matrix. The
prior distribution of B in Bishop’s (1999) framework allows B to have its
maximum possible value of ¢ (= p — 1) under the model. However if the
posterior distribution assigns small values for all elements of a column by, of
B, then that dimension is removed. The mode of the posterior distribution
can be found using the EM algorithm.

Jackson (1993) discusses two bootstrap versions of ‘parallel analysis,’
which was described in general terms in Section 6.1.3. The first, which
is a modification of Kaiser’s rule defined in Section 6.1.2, uses bootstrap
samples from a data set to construct confidence limits for the popula-
tion eigenvalues (see Section 3.7.2). Only those components for which the
corresponding 95% confidence interval lies entirely above 1 are retained.
Unfortunately, although this criterion is reasonable as a means of deciding
the number of factors in a factor analysis (see Chapter 7), it is inappropri-
ate in PCA. This is because it will not retain PCs dominated by a single
variable whose correlations with all the other variables are close to zero.
Such variables are generally omitted from a factor model, but they provide
information not available from other variables and so should be retained if
most of the information in X is to be kept. Jolliffe’s (1972) suggestion of
reducing Kaiser’s threshold from 1 to around 0.7 reflects the fact that we
are dealing with PCA and not factor analysis. A bootstrap rule designed
with PCA in mind would retain all those components for which the 95%
confidence interval for the corresponding eigenvalue does not lie entirely
below 1.

A second bootstrap approach suggested by Jackson (1993) finds 95%
confidence intervals for both eigenvalues and eigenvector coefficients. To
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decide on m, two criteria need to be satisfied. First, the confidence inter-
vals for A\, and A,,+1 should not overlap, and second no component should
be retained unless it has at least two coefficients whose confidence intervals
exclude zero. This second requirement is again relevant for factor analy-
sis, but not PCA. With regard to the first criterion, it has already been
noted that avoiding small gaps between [,, and [,,+1 is desirable because
it reduces the likelihood of instability in the retained components.

6.1.6 Partial Correlation

For PCA based on a correlation matrix, Velicer (1976) suggested that the
partial correlations between the p variables, given the values of the first
m PCs, may be used to determine how many PCs to retain. The criterion
proposed is the average of the squared partial correlations

y P P (Tfj)2
; ; p(p—1)’
iz T
where r; is the partial correlation between the ith and jth variables, given
the first m PCs. The statistic r}; is defined as the correlation between the
residuals from the linear regression of the ¢th variable on the first m PCs,
and the residuals from the corresponding regression of the jth variable on
these m PCs. It therefore measures the strength of the linear relationship
between the ith and jth variables after removing the common effect of the
first m PCs.

The criterion V first decreases, and then increases, as m increases, and
Velicer (1976) suggests that the optimal value of m corresponds to the
minimum value of the criterion. As with Jackson’s (1993) bootstrap rules
of Section 6.1.5, and for the same reasons, this criterion is plausible as
a means of deciding the number of factors in a factor analysis, but it is
inappropriate in PCA. Numerous other rules have been suggested in the
context of factor analysis (Reddon, 1984, Chapter 3). Many are subjective,
although some, such as parallel analysis (see Sections 6.1.3, 6.1.5) attempt
a more objective approach. Few are relevant to, or useful for, PCA unless
they are modified in some way.

Beltrando (1990) gives a sketchy description of what appears to be an-
other selection rule based on partial correlations. Instead of choosing m so
that the average squared partial correlation is minimized, Beltrando (1990)
selects m for which the number of statistically significant elements in the
matrix of partial correlations is minimized.

6.1.7 Rules for an Atmospheric Science Context

As mentioned in Section 4.3, PCA has been widely used in meteorology
and climatology to summarize data that vary both spatially and tempo-
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rally, and a number of rules for selecting a subset of PCs have been put
forward with this context very much in mind. The LEV diagram, discussed
in Section 6.1.3, is one example, as is Beltrando’s (1990) method in Sec-
tion 6.1.6, but there are many others. In the fairly common situation where
different observations correspond to different time points, Preisendorfer and
Mobley (1988) suggest that important PCs will be those for which there is
a clear pattern, rather than pure randomness, present in their behaviour
through time. The important PCs can then be discovered by forming a
time series of each PC, and testing which time series are distinguishable
from white noise. Many tests are available for this purpose in the time
series literature, and Preisendorfer and Mobley (1988, Sections 5g—5j) dis-
cuss the use of a number of them. This type of test is perhaps relevant
in cases where the set of multivariate observations form a time series (see
Chapter 12), as in many atmospheric science applications, but in the more
usual (non-meteorological) situation where the observations are indepen-
dent, such techniques are irrelevant, as the values of the PCs for different
observations will also be independent. There is therefore no natural order-
ing of the observations, and if they are placed in a sequence, they should
necessarily look like a white noise series.

Chapter 5 of Preisendorfer and Mobley (1988) gives a thorough review of
selection rules used in atmospheric science. In Sections 5¢c—5e they discuss
a number of rules similar in spirit to the rules of Sections 6.1.3 and 6.1.4
above. They are, however, derived from consideration of a physical model,
based on spring-coupled masses (Section 5b), where it is required to distin-
guish signal (the important PCs) from noise (the unimportant PCs). The
details of the rules are, as a consequence, somewhat different from those
of Sections 6.1.3 and 6.1.4. Two main ideas are described. The first, called
Rule A4 by Preisendorfer and Mobley (1988), has a passing resemblance to
Bartlett’s test of equality of eigenvalues, which was defined and discussed
in Sections 3.7.3 and 6.1.4. Rule A, assumes that the last (p—g¢) population
eigenvalues are equal, and uses the asymptotic distribution of the average
of the last (p — q) sample eigenvalues to test whether the common popula-
tion value is equal to Ag. Choosing an appropriate value for g introduces
a second step into the procedure and is a weakness of the rule.

Rule N, described in Section 5d of Preisendorfer and Mobley (1988) is
popular in atmospheric science. It is similar to the techniques of parallel
analysis, discussed in Sections 6.1.3 and 6.1.5, and involves simulating a
large number of uncorrelated sets of data of the same size as the real data
set which is to be analysed, and computing the eigenvalues of each sim-
ulated data set. To assess the significance of the eigenvalues for the real
data set, the eigenvalues are compared to percentiles derived empirically
from the simulated data. The suggested rule keeps any components whose
eigenvalues lie above the 95% level in the cumulative distribution of the
simulated data. A disadvantage is that if the first eigenvalue for the data
is very large, it makes it difficult for later eigenvalues to exceed their own
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95% thresholds. It may therefore be better to look at the size of second and
subsequent eigenvalues only with respect to smaller, not larger, eigenval-
ues. This could be achieved by removing the first term in the singular value
decomposition (SVD) (3.5.2), and viewing the original second eigenvalue
as the first eigenvalue in the analysis of this residual matrix. If the second
eigenvalue is above its 95% threshold in this analysis, we subtract a second
term from the SVD, and so on. An alternative idea, noted in Preisendorfer
and Mobley (1988, Section 5f), is to simulate from a given covariance or
correlation structure in which not all the variables are uncorrelated.

If the data are time series, with autocorrelation between successive obser-
vations, Preisendorfer and Mobley (1988) suggest calculating an ‘equivalent
sample size’, n*, allowing for the autocorrelation. The simulations used to
implement Rule N are then carried out with sample size n*, rather than
the actual sample size, n. They also note that both Rules A4 and N tend to
retain too few components, and therefore recommend choosing a value for
m that is the larger of the two values indicated by these rules. In Section 5k
Preisendorfer and Mobley (1988) provide rules for the case of vector-valued
fields.

Like Besse and de Falguerolles (1993) (see Section 6.1.5) North et al.
(1982) argue strongly that a set of PCs with similar eigenvalues should
either all be retained or all excluded. The size of gaps between successive
eigenvalues is thus an important consideration for any decision rule, and
North et al. (1982) provide a rule-of-thumb for deciding whether gaps are
too small to split the PCs on either side of the gap.

The idea of using simulated data to assess significance of eigenvalues
has also been explored by other authors, for example, Farmer (1971) (see
also Section 6.1.3 above), Cahalan (1983) and, outside the meteorological
context, Mandel (1972), Franklin et al. (1995) and the parallel analysis
literature.

Other methods have also been suggested in the atmospheric science liter-
ature. For example, Jones et al. (1983), Briffa et al. (1986) use a criterion for
correlation matrices, which they attribute to Guiot (1981). In this method
PCs are retained if their cumulative eigenvalue product exceeds one. This
technique retains more PCs than most of the other procedures discussed
earlier, but Jones et al. (1983) secem to be satisfied with the results it
produces. Preisendorfer and Mobley (1982, Part IV) suggest a rule that
considers retaining subsets of m PCs not necessarily restricted to the first
m. This is reasonable if the PCs are to be used for an external purpose,
such as regression or discriminant analysis (see Chapter 8, Section 9.1),
but is not really relevant if we are merely interested in accounting for as
much of the variation in x as possible. Richman and Lamb (1987) look
specifically at the case where PCs are rotated (see Section 11.1), and give
a rule for choosing m based on the patterns in rotated eigenvectors.

North and Wu (2001), in an application of PCA to climate change
detection, use a modification of the percentage of variation criterion of
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Section 6.1.1. They use instead the percentage of ‘signal’ accounted for,
although the PCA is done on a covariance matrix other than that associ-
ated with the signal (see Section 12.4.3). Buell (1978) advocates stability
with respect to different degrees of approximation of a continuous spatial
field by discrete points as a criterion for choosing m. Section 13.3.4 of von
Storch and Zwiers (1999) is dismissive of selection rules.

6.1.8 Discussion

Although many rules have been examined in the last seven subsections,
the list is by no means exhaustive. For example, in Section 5.1 we noted
that superimposing a minimum spanning tree on a plot of the observations
with respect to the first two PCs gives a subjective indication of whether or
not a two-dimensional representation is adequate. It is not possible to give
definitive guidance on which rules are best, but we conclude this section
with a few comments on their relative merits. First, though, we discuss a
small selection of the many comparative studies that have been published.
Reddon (1984, Section 3.9) describes nine such studies, mostly from the
psychological literature, but all are concerned with factor analysis rather
than PCA. A number of later studies in the ecological, psychological and
meteorological literatures have examined various rules on both real and
simulated data sets. Simulation of multivariate data sets can always be
criticized as unrepresentative, because they can never explore more than
a tiny fraction of the vast range of possible correlation and covariance
structures. Several of the published studies, for example Grossman et al.
(1991), Richman (1988), are particularly weak in this respect, looking only
at simulations where all p of the variables are uncorrelated, a situation
which is extremely unlikely to be of much interest in practice. Another
weakness of several psychology-based studies is their confusion between
PCA and factor analysis. For example, Zwick and Velicer (1986) state that
‘if PCA is used to summarize a data set each retained component must
contain at least two substantial loadings.” If the word ‘summarize’ implies
a descriptive purpose the statement is nonsense, but in the simulation study
that follows all their ‘components’ have three or more large loadings. With
this structure, based on factor analysis, it is no surprise that Zwick and
Velicer (1986) conclude that some of the rules they compare, which were
designed with descriptive PCA in mind, retain ‘too many’ factors.
Jackson (1993) investigates a rather broader range of structures, includ-
ing up to 12 variables in up to 3 correlated groups, as well as the completely
uncorrelated case. The range of stopping rules is also fairly wide, includ-
ing: Kaiser’s rule; the scree graph; the broken stick rule; the proportion of
total variance; tests of equality of eigenvalues; and Jackson’s two bootstrap
procedures described in Section 6.1.5. Jackson (1993) concludes that the
broken stick and bootstrapped eigenvalue-eigenvector rules give the best
results in his study. However, as with the reasoning used to develop his
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bootstrap rules, the results are viewed from a factor analysis rather than a
PCA perspective.

Franklin et al. (1995) compare 39 published analyses from ecology. They
seem to start from the unproven premise that ‘parallel analysis’ (see Sec-
tion 6.1.3) selects the ‘correct’ number of components or factors to retain,
and then investigate in how many of the 39 analyses ‘too many’ or ‘too few’
dimensions are chosen. Franklin et al. (1995) claim that % of the 39 analyses
retain too many dimensions. However, as with a number of other references
cited in this chapter, they fail to distinguish between what is needed for
PCA and factor analysis. They also stipulate that PCAs require normally
distributed random variables, which is untrue for most purposes. It seems
difficult to instil the message that PCA and factor analysis require differ-
ent rules. Turner (1998) reports a large study of the properties of parallel
analysis, using simulation, and notes early on that ‘there are important
differences between principal component analysis and factor analysis.” He
then proceeds to ignore the differences, stating that the ‘term factors will
be used throughout [the] article [to refer] to either factors or components.’

Ferré (1995b) presents a comparative study which is extensive in its
coverage of selection rules, but very limited in the range of data for which
the techniques are compared. A total of 18 rules are included in the study,
as follows:

e From Section 6.1.1 the cumulative percentage of variance with four
cut-offs: 60%, 70%, 80%, 90%.

e From Section 6.1.2 Kaiser’'s rule with cut-off 1, together with
modifications whose cut-offs are 0.7 and 2; the broken stick rule.

e From Section 6.1.3 the scree graph.

e From Section 6.1.4 Bartlett’s test and an approximation due to
Mardia.

e From Section 6.1.5 four versions of Eastment and Krzanowski’s cross-
validation methods, where two cut-offs, 1 and 0.9, are used and, for
each threshold, the stopping rule can be based on either the first or
last occasion that the criterion dips below the threshold; Ferré’s fq;
Besse and de Falguerolles’s approximate jackknife criterion.

e From Section 6.1.6 Velicer’s test.

The simulations are based on the fixed effects model described in Sec-
tion 6.1.5. The sample size is 20, the number of variables is 10, and each
simulated data matrix is the sum of a fixed (20 x 10) matrix Z of rank 8
and a matrix of independent Gaussian noise with two levels of the noise
variance. This is a fixed effects model with ¢ = 8, so that at first sight we
might aim to choose m = 8. For the smaller value of noise, Ferre (1995b)
considers this to be appropriate, but the higher noise level lies between the
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second and third largest eigenvalues of the fixed matrix Z, so he argues
that m = 2 should be chosen. This implies a movement away from the
objective ‘correct’ choice given by the model, back towards what seems to
be the inevitable subjectivity of the area.

The simulations are replicated 100 times for each of the two noise levels,
and give results which are consistent with other studies. Kaiser’s modified
rule with a threshold at 2, the broken stick rule, Velicer’s test, and cross-
validation rules that stop after the first fall below the threshold—all retain
relatively few components. Conversely, Bartlett’s test, cumulative variance
with a cut-off of 90%, fq and the approximate jackknife retain greater
numbers of PCs. The approximate jackknife displays the strange behaviour
of retaining more PCs for larger than for smaller noise levels. If we consider
m = 8 to be ‘correct’ for both noise levels, all rules behave poorly for the
high noise level. For the low noise level, fq and Bartlett’s tests do best.
If m = 2 is deemed correct for the high noise level, the best procedures
are Kaiser’s modified rule with threshold 2, the scree graph, and all four
varieties of cross-validation. Even within this restricted study no rule is
consistently good.

Bartkowiak (1991) gives an empirical comparison for some meteorologi-
cal data of: subjective rules based on cumulative variance and on the scree
and LEV diagrams; the rule based on eigenvalues greater than 1 or 0.7; the
broken stick rule; Velicer’s criterion. Most of the rules lead to similar deci-
sions, except for the broken stick rule, which retains too few components,
and the LEV diagram, which is impossible to interpret unambiguously.
The conclusion for the broken stick rule is the opposite of that in Jackson’s
(1993) study.

Throughout our discussion of rules for choosing m we have empha-
sized the descriptive role of PCA and contrasted it with the model-based
approach of factor analysis. It is usually the case that the number of compo-
nents needed to achieve the objectives of PCA is greater than the number
of factors in a factor analysis of the same data. However, this need not
be the case when a model-based approach is adopted for PCA (see Sec-
tions 3.9, 6.1.5). As Heo and Gabriel (2001) note in the context of biplots
(see Section 5.3), the fit of the first few PCs to an underlying population
pattern (model) may be much better than their fit to a sample. This im-
plies that a smaller value of m may be appropriate for model-based PCA
than for descriptive purposes. In other circumstances, too, fewer PCs may
be sufficient for the objectives of the analysis. For example, in atmospheric
science, where p can be very large, interest may be restricted only to the
first few dominant and physically interpretable patterns of variation, even
though their number is fewer than that associated with most PCA-based
rules. Conversely, sometimes very dominant PCs are predictable and hence
of less interest than the next few. In such cases more PCs will be retained
than indicated by most rules. The main message is that different objec-
tives for a PCA lead to different requirements concerning how many PCs
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Table 6.1. First six eigenvalues for the correlation matrix, blood chemistry data.

Component number 1 2 3 4 5 6
Eigenvalue, [ 279 153 125 078 0.62 0.49
b = 10000 I/p 349 541 69.7 794 87.2 933
le—1 — Ik 126 028 047 0.16 0.13

to retain. In reading the concluding paragraph that follows, this message
should be kept firmly in mind.

Some procedures, such as those introduced in Sections 6.1.4 and 6.1.6,
are usually inappropriate because they retain, respectively, too many or too
few PCs in most circumstances. Some rules have been derived in particular
fields of application, such as atmospheric science (Sections 6.1.3, 6.1.7) or
psychology (Sections 6.1.3, 6.1.6) and may be less relevant outside these
fields than within them. The simple rules of Sections 6.1.1 and 6.1.2 seem
to work well in many examples, although the recommended cut-offs must
be treated flexibly. Ideally the threshold should not fall between two PCs
with very similar variances, and it may also change depending on the values
on the values of n and p, and on the presence of variables with dominant
variances (see the examples in the next section). A large amount of research
has been done on rules for choosing m since the first edition of this book
appeared. However it still remains true that attempts to construct rules
having more sound statistical foundations seem, at present, to offer little
advantage over the simpler rules in most circumstances.

6.2 Choosing m, the Number of Components:
Examples

Two examples are given here to illustrate several of the techniques described
in Section 6.1; in addition, the examples of Section 6.4 include some relevant
discussion, and Section 6.1.8 noted a number of comparative studies.

6.2.1 Clinical Trials Blood Chemistry

These data were introduced in Section 3.3 and consist of measurements
of eight blood chemistry variables on 72 patients. The eigenvalues for the
correlation matrix are given in Table 6.1, together with the related infor-
mation that is required to implement the ad hoc methods described in
Sections 6.1.1-6.1.3.

Looking at Table 6.1 and Figure 6.1, the three methods of Sections 6.1.1—
6.1.3 suggest that between three and six PCs should be retained, but the
decision on a single best number is not clear-cut. Four PCs account for
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Table 6.2. First six eigenvalues for the covariance matrix, blood chemistry data.

Component number 1 2 3 4 5 6
Eigfnvalue, Ik 1704.68 15.07  6.98 2.64 0.13 0.07
I/l . 7.88 0.07 0.03 0.01 0.0006  0.0003
tm = 10025;122 98.6 99.4 99.8  99.99 99.995 99.9994
[ M 1689.61 809 434 251 0.6

nearly 80% of the total variation, but it takes six PCs to account for 90%.
A cut-off at I* = 0.7 for the second criterion retains four PCs, but the next
eigenvalue is not very much smaller, so perhaps five should be retained. In
the scree graph the slope actually increases between £ = 3 and 4, but then
falls sharply and levels off, suggesting that perhaps only four PCs should
be retained. The LEV diagram (not shown) is of little help here; it has no
clear indication of constant slope after any value of k, and in fact has its
steepest slope between k = 7 and 8.

Using Cattell’s (1966) formulation, there is no strong straight-line be-
haviour after any particular point, although perhaps a cut-off at k = 4 is
most appropriate. Cattell suggests that the first point on the straight line
(that is, the ‘elbow’ point) should be retained. However, if we consider the
scree graph in the same light as the test of Section 6.1.4, then all eigen-
values after, and including, the elbow are deemed roughly equal and so all
corresponding PCs should be deleted. This would lead to the retention of
only three PCs in the present case.

Turning to Table 6.2, which gives information for the covariance matrix,
corresponding to that presented for the correlation matrix in Table 6.1, the
three ad hoc measures all conclusively suggest that one PC is sufficient. It
is undoubtedly true that choosing m = 1 accounts for the vast majority
of the variation in x, but this conclusion is not particularly informative
as it merely reflects that one of the original variables accounts for nearly
all the variation in x. The PCs for the covariance matrix in this example
were discussed in Section 3.3, and it can be argued that it is the use of
the covariance matrix, rather than the rules of Sections 6.1.1-6.1.3, that is
inappropriate for these data.

6.2.2 Gas Chromatography Data

These data, which were originally presented by McReynolds (1970), and
which have been analysed by Wold (1978) and by Eastment and Krzanow-
ski (1982), are concerned with gas chromatography retention indices. After
removal of a number of apparent outliers and an observation with a missing
value, there remain 212 (Eastment and Krzanowski) or 213 (Wold) mea-
surements on ten variables. Wold (1978) claims that his method indicates
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Table 6.3. First six eigenvalues for the covariance matrix, gas chromatography
data.

Component number 1 2 3 4 5 6

Eigenvalue, I 312187 2100 768 336 190 149

I/l 9.88 0.067 0.024 0.011 0.006 0.005
™o

tm = 100215;1; 98.8 99.5 99.7 99.8 99.9 99.94
k=1"Fk

lo—1 — Ui 310087 1332 432 146 51

R 0.02 0.43 0.60 0.70 0.83 0.99

w 494.98 4.95 1.90 092 041 0.54

the inclusion of five PCs in this example but, in fact, he slightly modifies
his criterion for retaining PCs. His nominal cut-off for including the kth
PCis R < 1; the sixth PC has R = 0.99 (see Table 6.3) but he nevertheless
chooses to exclude it. Eastment and Krzanowski (1982) also modify their
nominal cut-off but in the opposite direction, so that an extra PC is in-
cluded. The values of W for the third, fourth and fifth PCs are 1.90, 0.92,
0.41 (see Table 6.3) so the formal rule, excluding PCs with W < 1, would
retain three PCs. However, because the value of W is fairly close to unity,
Eastment and Krzanowski (1982) suggest that it is reasonable to retain the
fourth PC as well.

It is interesting to note that this example is based on a covariance ma-
trix, and has a very similar structure to that of the previous example when
the covariance matrix was used. Information for the present example, cor-
responding to Table 6.2, is given in Table 6.3, for 212 observations. Also
given in Table 6.3 are Wold’s R (for 213 observations) and Eastment and
Krzanowski’s W.

It can be seen from Table 6.3, as with Table 6.2, that the first two of
the ad hoc methods retain only one PC. The scree graph, which cannot be
sensibly drawn because l; > [5, is more equivocal; it is clear from Table 6.3
that the slope drops very sharply after & = 2, indicating m = 2 (or 1), but
each of the slopes for k£ = 3,4, 5, 6 is substantially smaller than the previous
slope, with no obvious levelling off. Nor is there any suggestion, for any cut-
off, that the later eigenvalues lie on a straight line. There is, however, an
indication of a straight line, starting at m = 4, in the LEV plot, which is
given in Figure 6.2.

It would seem, therefore, that the cross-validatory criteria R and W dif-
fer considerably from the ad hoc rules (except perhaps the LEV plot) in the
way in which they deal with covariance matrices that include a very domi-
nant PC. Whereas most of the ad hoc rules will invariably retain only one
PC in such situations, the present example shows that the cross-validatory
criteria may retain several more. Krzanowski (1983) suggests that W looks
for large gaps among the ordered eigenvalues, which is a similar aim to that
of the scree graph, and that W can therefore be viewed as an objective ana-
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Figure 6.2. LEV diagram for the covariance matrix: gas chromatography data.

logue of the scree diagram. However, although this interpretation may be
valid for the correlation matrices in his simulations, it does not seem to
hold for the dominant variance structures exhibited in Tables 6.2 and 6.3.

For correlation matrices, and presumably for covariance matrices with
less extreme variation among eigenvalues, the ad hoc methods and the
cross-validatory criteria are likely to give more similar results. This is illus-
trated by a simulation study in Krzanowski (1983), where W is compared
with the first two ad hoc rules with cut-offs at ¢* = 75% and [* = 1,
respectively. Bartlett’s test, described in Section 6.1.4, is also included in
the comparison but, as expected from the earlier discussion, it retains too
many PCs in most circumstances. The behaviour of W compared with the
two ad hoc rules is the reverse of that observed in the example above. W
retains fewer PCs than the t,,, > 75% criterion, despite the fairly low cut-
off of 75%. Similar numbers of PCs are retained for W and for the rule
based on [, > 1. The latter rule retains more PCs if the cut-off is lowered
to 0.7 rather than 1.0, as suggested in Section 6.1.2. It can also be argued
that the cut-off for W should be reduced below unity (see Section 6.1.5),
in which case all three rules will give similar results.
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Krzanowski (1983) examines the gas chromatography example further
by generating six different artificial data sets with the same sample covari-
ance matrix as the real data. The values of W are fairly stable across the
replicates and confirm the choice of four PCs obtained above by slightly de-
creasing the cut-off for W. For the full data set, with outliers not removed,
the replicates give some different, and useful, information from that in the
original data.

6.3 Selecting a Subset of Variables

When p, the number of variables observed, is large it is often the case that
a subset of m variables, with m < p, contains virtually all the information
available in all p variables. It is then useful to determine an appropriate
value of m, and to decide which subset or subsets of m variables are best.

Solution of these two problems, the choice of m and the selection of a
good subset, depends on the purpose to which the subset of variables is
to be put. If the purpose is simply to preserve most of the variation in
x, then the PCs of x can be used fairly straightforwardly to solve both
problems, as will be explained shortly. A more familiar variable selection
problem is in multiple regression, and although PCA can contribute in this
context (see Section 8.5), it is used in a more complicated manner. This is
because external considerations, namely the relationships of the predictor
(regressor) variables with the dependent variable, as well as the internal
relationships between the regressor variables, must be considered. External
considerations are also relevant in other variable selection situations, for
example in discriminant analysis (Section 9.1); these situations will not be
considered in the present chapter. Furthermore, practical considerations,
such as ease of measurement of the selected variables, may be important in
some circumstances, and it must be stressed that such considerations, as
well as the purpose of the subsequent analysis, can play a prominent role in
variable selection, Here, however, we concentrate on the problem of finding
a subset of x in which the sole aim is to represent the internal variation of
x as well as possible.

Regarding the choice of m, the methods of Section 6.1 are all relevant.
The techniques described there find the number of PCs that account for
most of the variation in x, but they can also be interpreted as finding the
effective dimensionality of x. If x can be successfully described by only m
PCs, then it will often be true that x can be replaced by a subset of m (or
perhaps slightly more) variables, with a relatively small loss of information.

Moving on to the choice of m variables, Jolliffe (1970, 1972, 1973) dis-
cussed a number of methods for selecting a subset of m variables that
preserve most of the variation in x. Some of the methods compared, and
indeed some of those which performed quite well, are based on PCs. Other



138 6. Choosing a Subset of Principal Components or Variables

methods, including some based on cluster analyses of variables (see Sec-
tion 9.2) were also examined but, as these do not use the PCs to select
variables, they are not described here. Three main types of method using
PCs were examined.

(i) Associate one variable with each of the last m}(= p — m;) PCs and
delete those mj variables. This can either be done once only or iter-
atively. In the latter case a second PCA is performed on the my
remaining variables, and a further set of m3 variables is deleted, if ap-
propriate. A third PCA can then be done on the p—mj —m3 variables,
and the procedure is repeated until no further deletions are considered
necessary. The choice of mj, m3, ... is based on a criterion determined
by the size of the eigenvalues Ij.

The reasoning behind this method is that small eigenvalues correspond
to near-constant relationships among a subset of variables. If one of
the variables involved in such a relationship is deleted (a fairly obvious
choice for deletion is the variable with the highest coefficient in abso-
lute value in the relevant PC) little information is lost. To decide on
how many variables to delete, the criterion I; is used as described in
Section 6.1.2. The criterion ¢, of Section 6.1.1 was also tried by Jolliffe
(1972), but shown to be less useful.

(ii) Associate a set of m* variables en bloc with the last m* PCs, and
then delete these variables. Jolliffe (1970, 1972) investigated this type
of method, with the m* variables either chosen to maximize sums of
squares of coefficients in the last m* PCs or to be those m* variables
that are best predicted by regression on the first m = p — m* PCs.
Choice of m* is again based on the sizes of the [;. Such methods
were found to be unsatisfactory, as they consistently failed to select
an appropriate subset for some simple correlation structures.

(iii) Associate one variable with each of the first m PCs, namely the variable
not already chosen with the highest coefficient in absolute value in
each successive PC. These m variables are retained, and the remaining
m* = p —m are deleted. The arguments leading to this approach are
twofold. First, it is an obvious complementary approach to (i) and,
second, in cases where there are groups of highly correlated variables it
is designed to select just one variable from each group. This will happen
because there will be exactly one high-variance PC associated with each
group (see Section 3.8). The approach is a plausible one, as a single
variable from each group should preserve most of the information given
by that group when all variables in the group are highly correlated.

In Jolliffe (1972) comparisons were made, using simulated data, between
non-iterative versions of method (i) and method (iii), called methods B2, B4
respectively, and with several other subset selection methods that did not
use the PCs. The results showed that the PC methods B2, B4 retained the
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‘best’ subsets more often than the other methods considered, but they also
selected ‘bad,” as opposed to ‘good’ or ‘moderate’, subsets more frequently
than the other methods. Method B4 was most extreme in this respect; it
selected ‘best’ and ‘bad’ subsets more frequently than any other method,
and ‘moderate’ or ‘good’ subsets less frequently.

Similarly, for various real data sets Jolliffe (1973) found that none of
the variable selection methods was uniformly best, but several of them,
including B2 and B4, found reasonable subsets in most cases.

McCabe (1984) adopted a somewhat different approach to the variable
selection problem. He started from the fact that, as has been seen in Chap-
ters 2 and 3, PCs satisfy a number of different optimality criteria. A subset
of the original variables that optimizes one of these criteria is termed a set
of principal variables by McCabe (1984). Property Al of Sections 2.1, 3.1,
is uninteresting as it simply leads to a subset of variables whose variances
are largest, but other properties lead to one of these four criteria:

(a) Minimize Hej
j=1

(b) Minimize ) 6,
j=1

(¢) Minimize Z@?

=1

m
(d) Minimize Zp?

j=1
where 0;, j =1,2,...,m" are the eigenvalues of the conditional covariance
(or correlation) matrix of the m* deleted variables, given the values of
the m selected variables, and p;, j = 1,2,...,m~ = min(m, m*) are the
canonical correlations between the set of m* deleted variables and the set
of m selected variables.

Consider, for example, Property A4 of Sections 2.1 and 3.1, where
det(3,) (or det(S,) for samples) is to be maximized. In PCA, y consists
of orthonormal linear functions of x; for principal variables y is a subset of
X.

From a well-known result concerning partitioned matrices, det(3) =
det(3,) det(X,~,), where 3, -, is the matrix of conditional covariances for
those variables not in y, given the value of y. Because X, and hence det(3X),
is fixed for a given random vector x, maximizing det(X,) is equivalent to

minimizing det(X,-,). Now det(32,-,) = H;nz*l 0;, so that Property A4

becomes McCabe’s criterion (a) when deriving principal variables. Other
properties of Chapters 2 and 3 can similarly be shown to be equivalent to
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one of McCabe’s four criteria when dealing with principal variables.

Of the four criteria, McCabe (1984) argues that only for the first is it
computationally feasible to explore all possible subsets, although the second
can be used to define a stepwise variable-selection procedure; Bhargava and
Ishizuka (1991) describe such a procedure. The third and fourth criteria are
not explored further in McCabe’s paper.

Several of the methods for selecting subsets of variables that preserve
most of the information in the data associate variables with individual PCs.
Cadima and Jolliffe (2001) extend the ideas of Cadima and Jolliffe (1995)
for individual PCs, and look for subsets of variables that best approximate
the subspace spanned by a subset of ¢ PCs, in the the sense that the
subspace spanned by the chosen variables is close to that spanned by the
PCs of interest. A similar comparison of subspaces is the starting point
for Besse and de Falguerolles’s (1993) procedures for choosing the number
of components to retain (see Section 6.1.5). In what follows we restrict
attention to the first ¢ PCs, but the reasoning extends easily to any set of
q PCs.

Cadima and Jolliffe (2001) argue that there are two main ways of assess-
ing the quality of the subspace spanned by a subset of m variables. The
first compares the subspace directly with that spanned by the first g PCs;
the second compares the data with its configuration when projected onto
the m-variable subspaces.

Suppose that we wish to approximate the subspace spanned by the first
q PCs using a subset of m variables. The matrix of orthogonal projections
onto that subspace is given by

1
P,= ——XS_ X 6.3.1
q (n _ 1) q ’ ( )
where S, = >°7_, la,a), is the sum of the first ¢ terms in the spectral
decomposition of S, and S = S i1 ! akak is a generalized inverse of S,.

The corresponding matrix of orthogonal projections onto the space spanned
by a subset of m variables is

P, = ! ——XI,S,'T, X', (6.3.2)
(n—1)
where I,,, is the identity matrix of order m and S;! is the inverse of the
(m x m) submatrix of S corresponding to the m selected variables.
The first measure of closeness for the two subspaces considered by
Cadima and Jolliffe (2001) is the matrix correlation between P, and P,,,
defined by

tr(P,P.,)

corr(P,, P, .
! \/tr (P! P,) tr(P],P,,)

(6.3.3)

This measure is also known as Yanai’s generalized coefficient of determina-
tion (Yanai, 1980). It was used by Tanaka (1983) as one of four criteria for
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variable selection in factor analysis. Cadima and Jolliffe (2001) show that
Yanai’s coefficient can be written as

corr(Py,P,,) = (6.3.4)

1 -,
\/q—m ; Tkm
where 7., is the multiple correlation between the kth PC and the set of
m selected variables.

The second indicator examined by Cadima and Jolliffe (2001) is again a
matrix correlation, this time between the data matrix X and the matrix
formed by orthogonally projecting X onto the space spanned by the m
selected variables. It can be written

p by 2
corr(X, P, X) = ¢ /M. (6.3.5)
k=1 Ak

It turns out that this measure is equivalent to the second of McCabe’s
(1984) criteria defined above (see also McCabe (1986)). Cadima and Jol-
liffe (2001) discuss a number of other interpretations, and relationships
between their measures and previous suggestions in the literature. Both
indicators (6.3.4) and (6.3.5) are weighted averages of the squared multi-
ple correlations between each PC and the set of selected variables. In the
second measure, the weights are simply the eigenvalues of S, and hence the
variances of the PCs. For the first indicator the weights are positive and
equal for the first ¢ PCs, but zero otherwise. Thus the first indicator ignores
PCs outside the chosen g-dimensional subspace when assessing closeness,
but it also gives less weight than the second indicator to the PCs with the
very largest variances relative to those with intermediate variances.

Cadima and Jolliffe (2001) discuss algorithms for finding good subsets
of variables and demonstrate the use of the two measures on three exam-
ples, one of which is large (p = 62) compared to those typically used for
illustration. The examples show that the two measures can lead to quite
different optimal subsets, implying that it is necessary to know what aspect
of a subspace it is most desirable to preserve before choosing a subset of
variables to achieve this. They also show that

e the algorithms usually work efficiently in cases where numbers of
variables are small enough to allow comparisions with an exhaustive
search;

e as discussed elsewhere (Section 11.3), choosing variables on the basis
of the size of coefficients or loadings in the PCs’ eigenvectors can be
inadvisable;

e to match the information provided by the first ¢ PCs it is often only
necessary to keep (¢ + 1) or (g + 2) variables.

For data sets in which p is too large to conduct an exhaustive search
for the optimal subset, algorithms that can find a good subset are needed.
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Cadima et al. (2002) compare various algorithms for finding good subsets
according to the measures (6.3.4) and (6.3.5), and also with respect to the
RV-coefficient, which is discussed briefly below (see also Section 3.2). Two
versions of simulated annealing, a genetic algorithm, and a restricted im-
provement algorithm, are compared with a number of stepwise algorithms,
on a total of fourteen data sets. The results show a general inferiority of
the stepwise methods, but no single algorithm outperforms all the others.
Cadima et al. (2002) recommend using simulated annealing or a genetic al-
gorithm to provide a starting point for a restricted improvement algorithm,
which then refines the solution. They make the interesting point that for
large p the number of candidate subsets is so large that, for criteria whose
range of values is bounded, it is almost inevitable that there are many solu-
tions that are very close to optimal. For instance, in one of their examples,
with p = 62, they find 800 solutions corresponding to a population size of
800 in their genetic algorithm. The best of these has a value 0.8079 for the
criterion (6.3.5), but the worst is 0.8060, less than 0.3% smaller. Of course,
it is possible that the global optimum is much greater than the best of
these 800, but it seems highly unlikely.

Al-Kandari (1998) provides an extensive study of a large number of
variable selection methods. The ideas of Jolliffe (1972, 1973) and McCabe
(1984) are compared with a variety of new methods, based on loadings in
the PCs, on correlations of the PCs with the variables, and on versions of
McCabe’s (1984) principal variables that are constructed from correlation,
rather than covariance, matrices. The methods are compared on simulated
data with a wide range of covariance or correlation structures, and on var-
ious real data sets that are chosen to have similar covariance/correlation
structures to those of the simulated data. On the basis of the results of
these analyses, it is concluded that few of the many techniques considered
are uniformly inferior to other methods, and none is uniformly superior.
The ‘best’ method varies, depending on the covariance or correlation struc-
ture of a data set. It also depends on the ‘measure of efficiency’ used to
determine how good is a subset of variables, as noted also by Cadima and
Jolliffe (2001). In assessing which subsets of variables are best, Al-Kandari
(1998) additionally takes into account the interpretability of the PCs based
on the subset, relative to the PCs based on all p variables (see Section 11.3).

Al-Kandari (1998) also discusses the distinction between criteria used to
choose subsets of variables and criteria used to evaluate how good a chosen
subset is. The latter are her ‘measures of efficiency’ and ideally these same
criteria should be used to choose subsets in the first place. However, this
may be computationally infeasible so that a suboptimal but computation-
ally straightforward criterion is used to do the choosing instead. Some of
Al-Kandari’s (1998) results are reported in Al-Kandari and Jolliffe (2001)
for covariance, but not correlation, matrices.

King and Jackson (1999) combine some of the ideas of the present Section
with some from Section 6.1. Their main objective is to select a subset
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of m variables, but rather than treating m as fixed they also consider
how to choose m. They use methods of variable selection due to Jolliffe
(1972, 1973), adding a new variant that was computationally infeasible in
1972. To choose m, King and Jackson (1999) consider the rules described
in Sections 6.1.1 and 6.1.2, including the broken stick method, together
with a rule that selects the largest value of m for which n/m > 3. To
assess the quality of a chosen subset of size m, King and Jackson (1999)
compare plots of scores on the first two PCs for the full data set and for
the data set containing only the m selected variables. They also compute a
Procrustes measure of fit (Krzanowski, 1987a) between the m-dimensional
configurations given by PC scores in the full and reduced data sets, and a
weighted average of correlations between PCs in the full and reduced data
sets.

The data set analyzed by King and Jackson (1999) has n = 37 and
p = 36. The results of applying the various selection procedures to these
data confirm, as Jolliffe (1972, 1973) found, that methods B2 and B4 do
reasonably well. The results also confirm that the broken stick method
generally chooses smaller values of m than the other methods, though its
subsets do better with respect to the Procrustes measure of fit than some
much larger subsets. The small number of variables retained by the broken
stick implies a corresponding small proportion of total variance accounted
for by the subsets it selects. King and Jackson’s (1999) recommendation of
method B4 with the broken stick could therefore be challenged.

We conclude this section by briefly describing a number of other possible
methods for variable selection. None uses PCs directly to select variables,
but all are related to topics discussed more fully in other sections or chap-
ters. Bartkowiak (1991) uses a method described earlier in Bartkowiak
(1982) to select a set of ‘representative’ variables in an example that also
illustrates the choice of the number of PCs (see Section 6.1.8). Variables
are added sequentially to a ‘representative set’ by considering each vari-
able currently outside the set as a candidate for inclusion. The maximum
residual sum of squares is calculated from multiple linear regressions of
each of the other excluded variables on all the variables in the set plus the
candidate variable. The candidate for which this maximum sum of squares
is minimized is then added to the set. One of Jolliffe’s (1970, 1972, 1973)
rules uses a similar idea, but in a non-sequential way. A set of m variables
is chosen if it maximizes the minimum multiple correlation between each
of the (p — m) non-selected variables and the set of m selected variables.

The RV-coefficient, due to Robert and Escoufier (1976), was defined in
Section 3.2. To use the coefficient to select a subset of variables, Robert
and Escoufier suggest finding X; which maximizes RV(X,M'X;), where
RV(X,Y) is defined by equation (3.2.2) of Section 3.2. The matrix X;
is the (n x m) submatrix of X consisting of n observations on a subset
of m variables, and M is a specific (m x m) orthogonal matrix, whose
construction is described in Robert and Escoufier’s paper. It is interesting
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to compare what is being optimized here with the approaches described
earlier.

e The RV-coefficient compares linear combinations of subsets of
variables with the full set of variables.

e Some methods, such as those of Jolliffe (1970, 1972, 1973), com-
pare principal components of subsets of variables with principal
components from the full set.

e Some approaches, such as McCabe’s (1984) principal variables, simply
compare subsets of the variables with the full set of variables.

e Some criteria, such as Yanai’s generalized coefficient of determination,
compare subspaces spanned by a subset of variables with subspaces
spanned by a subset of PCs, as in Cadima and Jolliffe (2001).

No examples are presented by Robert and Escoufier (1976) of how their
method works in practice. However, Gonzalez et al. (1990) give a stepwise
algorithm for implementing the procedure and illustrate it with a small
example (n = 49; p = 6). The example is small enough for all subsets of
each size to be evaluated. Only for m = 1, 2,3 does the stepwise algorithm
give the best subset with respect to RV, as identified by the full search.
Escoufier (1986) provides further discussion of the properties of the RV-
coefficient when used in this context.

Tanaka and Mori (1997) also use the RV-coefficient, as one of two criteria
for variable selection. They consider the same linear combinations M'X of
a given set of variables as Robert and Escoufier (1976), and call these lin-
ear combinations modified principal components. Tanaka and Mori (1997)
assess how well a subset reproduces the full set of variables by means of
the RV-coefficient. They also have a second form of ‘modified’ principal
components, constructed by minimizing the trace of the residual covari-
ance matrix obtained by regressing X on M’'X;. This latter formulation is
similar to Rao’s (1964) PCA of instrumental variables (see Section 14.3).
The difference between Tanaka and Mori’s (1997) instrumental variable
approach and that of Rao (1964) is that Rao attempts to predict Xo, the
(n x (p —m)) complementary matrix to X; using linear functions of Xj,
whereas Tanaka and Mori try to predict the full matrix X.

Both of Tanaka and Mori’s modified PCAs solve the same eigenequation

(ST + S12S21)a = IS11a, (6.3.6)

with obvious notation, but differ in the way that the quality of a sub-
set is measured. For the instrumental variable approach, the criterion
is proportional to > ;" Iy, whereas for the components derived via the
RV-coefficient, quality is based on >, [7, where [; is the kth largest
eigenvalue in the solution of (6.3.6). A backward elimination method is
used to delete variables until some threshold is reached, although in the
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examples given by Tanaka and Mori (1997) the decision on when to stop
deleting variables appears to be rather subjective.

Mori et al. (1999) propose that the subsets selected in modified PCA
are also assessed by means of a PRESS criterion, similar to that defined in
equation (6.1.3), except that ,,&;; is replaced by the prediction of z;; found
from modified PCA with the ith observation omitted. Mori et al. (2000)
demonstrate a procedure in which the PRESS citerion is used directly to
select variables, rather than as a supplement to another criterion. Tanaka
and Mori (1997) show how to evaluate the influence of variables on param-
eters in a PCA (see Section 10.2 for more on influence), and Mori et al.
(2000) implement and illustrate a backward-elimination variable selection
algorithm in which variables with the smallest influence are successively
removed.

Hawkins and Eplett (1982) describe a method which can be used for
selecting a subset of variables in regression; their technique and an ear-
lier one introduced by Hawkins (1973) are discussed in Sections 8.4 and
8.5. Hawkins and Eplett (1982) note that their method is also potentially
useful for selecting a subset of variables in situations other than multiple
regression, but, as with the RV-coefficient, no numerical example is given
in the original paper. Krzanowski (1987a,b) describes a methodology, us-
ing principal components together with Procrustes rotation for selecting
subsets of variables. As his main objective is preserving ‘structure’ such as
groups in the data, we postpone detailed discussion of his technique until
Section 9.2.2.

6.4 FExamples Illustrating Variable Selection

Two examples are presented here; two other relevant examples are given in
Section 8.7.

6.4.1 Alate adelges (Winged Aphids)

These data were first presented by Jeffers (1967) and comprise 19 different
variables measured on 40 winged aphids. A description of the variables,
together with the correlation matrix and the coefficients of the first four
PCs based on the correlation matrix, is given by Jeffers (1967) and will
not be reproduced here. For 17 of the 19 variables all of the correlation
coeflicients are positive, reflecting the fact that 12 variables are lengths
or breadths of parts of each individual, and some of the other (discrete)
variables also measure aspects of the size of each aphid. Not surprisingly,
the first PC based on the correlation matrix accounts for a large proportion
(73.0%) of the total variation, and this PC is a measure of overall size of
each aphid. The second PC, accounting for 12.5% of total variation, has its
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Table 6.4. Subsets of selected variables, Alate adelges.

(Each row corresponds to a selected subset with x denoting a selected variable.)
Variables
5 8 9 11 13 14 17 18 19

McCabe, using criterion (a)

Three variables { best x x x
second best X X X
Four variables { best X x %
second best X X X X
Jolliffe, using criteria B2, B4
. B2 X X X
Three variables { B4 v o
B2 X X X X
7 )
our variables { B4 o v x o
Criterion (6.3.4)
Three variables X X X
Four variables X X X X
Criterion (6.3.5)
Three variables X X X
Four variables X X X X

largest coefficients on five of the seven discrete variables, and the third PC
(3.9%) is almost completely dominated by one variable, number of antennal
spines. This variable, which is one of the two variables negatively correlated
with size, has a coefficient in the third PC that is five times as large as any
other variable.

Table 6.4 gives various subsets of variables selected by Jolliffe (1973)
and by McCabe (1982) in an earlier version of his 1984 paper that included
additional examples. The subsets given by McCabe (1982) are the best two
according to his criterion (a), whereas those from Jolliffe (1973) are selected
by the criteria B2 and B4 discussed above. Only the results for m = 3 are
given in Jolliffe (1973), but Table 6.4 also gives results for m = 4 using his
methods. In addition, the table includes the ‘best’ 3- and 4-variable subsets
according to the criteria (6.3.4) and (6.3.5).

There is considerable overlap between the various subsets selected. In
particular, variable 11 is an almost universal choice and variables 5, 13 and
17 also appear in subsets selected by at least three of the four methods.
Conversely, variables {14, 6, 7, 10, 12, 15, 16} appear in none of subsets of
Table 6.4. It should be noted the variable 11 is ‘number of antennal spines,’
which, as discussed above, dominates the third PC. Variables 5 and 17, mea-
suring number of spiracles and number of ovipositor spines, respectively, are
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both among the group of dominant variables for the second PC, and vari-
able 13 (tibia length 3) has the largest coefficient of any variable for PC1.

Comparisons can be made regarding how well Jolliffe’s and McCabe’s se-
lections perform with respect to the criteria (6.3.4) and (6.3.5). For (6.3.5),
Jolliffe’s choices are closer to optimality than McCabe’s, achieving values
of 0.933 and 0.945 for four variables, compared to 0.907 and 0.904 for
McCabe, whereas the optimal value is 0.948. Discrepancies are generally
larger but more variable for criterion (6.3.4). For example, the B2 selec-
tion of three variables achieves a value of only 0.746 compared the optimal
value of 0.942, which is attained by B4. Values for McCabe’s selections are
intermediate (0.838, 0.880).

Regarding the choice of m, the i criterion of Section 6.1.2 was found
by Jolliffe (1972), using simulation studies, to be appropriate for methods
B2 and B4, with a cut-off close to [* = 0.7. In the present example the
criterion suggests m = 3, as l3 = 0.75 and Iy = 0.50. Confirmation that m
should be this small is given by the criterion t,, of Section 6.1.1. Two PCs
account for 85.4% of the variation, three PCs give 89.4% and four PCs
contribute 92.0%, from which Jeffers (1967) concludes that two PCs are
sufficient to account for most of the variation. However, Jolliffe (1973) also
looked at how well other aspects of the structure of data are reproduced for
various values of m. For example, the form of the PCs and the division into
four distinct groups of aphids (see Section 9.2 for further discussion of this
aspect) were both examined and found to be noticeably better reproduced
for m = 4 than for m = 2 or 3, so it seems that the criteria of Sections 6.1.1
and 6.1.2 might be relaxed somewhat when very small values of m are
indicated, especially when coupled with small values of n, the sample size.
McCabe (1982) notes that four or five of the original variables are necessary
in order to account for as much variation as the first two PCs, confirming
that m = 4 or 5 is probably appropriate here.

Tanaka and Mori (1997) suggest, on the basis of their two criteria and
using a backward elimination algorithm, that seven or nine variables should
be kept, rather more than Jolliffe (1973) or McCabe (1982). If only four
variables are retained, Tanaka and Mori’s (1997) analysis keeps variables
5,6,14,19 according to the RV-coefficient, and variables 5,14,17, 18 using
residuals from regression. At least three of the four variables overlap with
choices made in Table 6.4. On the other hand, the selection rule based
on influential variables suggested by Mori et al. (2000) retains variables
2,4,12,13 in a 4-variable subset, a quite different selection from those of
the other methods.

6.4.2 Crime Rates

These data were given by Ahamad (1967) and consist of measurements of
the crime rate in England and Wales for 18 different categories of crime
(the variables) for the 14 years, 1950-63. The sample size n = 14 is very
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Table 6.5. Subsets of selected variables, crime rates.

(Each row corresponds to a selected subset with x denoting a selected variable.)

Variables
1 3 4 5 7 8 10 13 14 16 17

McCabe, using criterion (a)

Three variables best x xox
second best X X X
Four variables best X X X
second best X X X X
Jolliffe, using criteria B2, B4
. B2 X X X
Three variables { B4 < x »
Four variables B2 % % X
B4 X X X X
Criterion (6.3.4)
Three variables X X X
Four variables X X X X
Criterion (6.3.5)
Three variables X X X
Four variables X X X X

small, and is in fact smaller than the number of variables. Furthermore,
the data are time series, and the 14 observations are not independent (see
Chapter 12), so that the effective sample size is even smaller than 14. Leav-
ing aside this potential problem and other criticisms of Ahamad’s analysis
(Walker, 1967), subsets of variables that are selected using the correlation
matrix by the same methods as in Table 6.4 are shown in Table 6.5.

There is a strong similarity between the correlation structure of the
present data set and that of the previous example. Most of the variables
considered increased during the time period considered, and the correla-
tions between these variables are large and positive. (Some elements of the
correlation matrix given by Ahamad (1967) are incorrect; Jolliffe (1970)
gives the correct values.)

The first PC based on the correlation matrix therefore has large coeffi-
cients on all these variables; it measures an ‘average crime rate’ calculated
largely from 13 of the 18 variables, and accounts for 71.7% of the total
variation. The second PC, accounting for 16.1% of the total variation, has
large coefficients on the five variables whose behaviour over the 14 years
is ‘atypical’ in one way or another. The third PC, accounting for 5.5% of
the total variation, is dominated by the single variable ‘homicide,” which
stayed almost constant compared with the trends in other variables over
the period of study. On the basis of t,, only two or three PCs are necessary,
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as they account for 87.8%, 93.3%, respectively, of the total variation. The
third and fourth eigenvalues are 0.96, 0.68 so that a cut-off of I* = 0.70
gives m = 3, but Iy is so close to 0.70 that caution suggests m = 4. Such
conservatism is particularly appropriate for small sample sizes, where sam-
pling variation may be substantial. As in the previous example, Jolliffe
(1973) found that the inclusion of a fourth variable produced a marked
improvement in reproducing some of the results given by all 18 variables.
McCabe (1982) also indicated that m = 3 or 4 is appropriate.

The subsets chosen in Table 6.5 overlap less than in the previous example,
and McCabe’s subsets change noticeably in going from m = 3 to m = 4.
However, there is still substantial agreement; for example, variable 1 is
a member of all but one of the selected subsets and variable 13 is also
selected by all four methods, whereas variables {2, 6, 9, 11, 12, 15, 18} are
not selected at all.

Of the variables that are chosen by all four methods, variable 1 is ‘homi-
cide,” which dominates the third PC and is the only crime whose occurrence
shows no evidence of serial correlation during the period 1950-63. Because
its behaviour is different from that of all the other variables, it is impor-
tant that it should be retained in any subset that seeks to account for most
of the variation in x. Variable 13 (assault) is also atypical of the general
upward trend—it actually decreased between 1950 and 1963.

The values of the criteria (6.3.4) and (6.3.5) for Jolliffe’s and McCabe’s
subsets are closer to optimality and less erratic than in the earlier exam-
ple. No chosen subset does worse with respect to (6.3.5) than 0.925 for 3
variables and 0.964 for 4 variables, compared to optimal values of 0.942,
0.970 respectively. The behaviour with respect to (6.3.4) is less good, but
far less erratic than in the previous example.

In addition to the examples given here, Al-Kandari (1998), Cadima and
Jolliffe (2001), Gonzalez et al. (1990), Jolliffe (1973), King and Jackson
(1999) and McCabe (1982, 1984) all give further illustrations of variable
selection based on PCs. Krzanowski (1987b) looks at variable selection for
the alate adelges data set of Section 6.4.1, but in the context of preserving
group structure. We discuss this further in Chapter 9.
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Principal Component Analysis and
Factor Analysis

Principal component analysis has often been dealt with in textbooks as a
special case of factor analysis, and this practice is continued by some widely
used computer packages, which treat PCA as one option in a program for
factor analysis. This view is misguided since PCA and factor analysis, as
usually defined, are really quite distinct techniques. The confusion may
have arisen, in part, because of Hotelling’s (1933) original paper, in which
principal components were introduced in the context of providing a small
number of ‘more fundamental’ variables that determine the values of the
p original variables. This is very much in the spirit of the factor model
introduced in Section 7.1, although Girschick (1936) indicates that there
were soon criticisms of Hotelling’s PCs as being inappropriate for factor
analysis. Further confusion results from the fact that practitioners of ‘fac-
tor analysis’ do not always have the same definition of the technique (see
Jackson, 1991, Section 17.1). In particular some authors, for example Rey-
ment and Joreskog (1993), Benzécri (1992, Section 4.3) use the term to
embrace a wide spectrum of multivariate methods. The definition adopted
in this chapter is, however, fairly standard.

Both PCA and factor analysis aim to reduce the dimensionality of a
set of data, but the approaches taken to do so are different for the two
techniques. Principal component analysis has been extensively used as part
of factor analysis, but this involves ‘bending the rules’ that govern factor
analysis and there is much confusion in the literature over the similarities
and differences between the techniques. This chapter attempts to clarify
the issues involved, and starts in Section 7.1 with a definition of the basic
model for factor analysis. Section 7.2 then discusses how a factor model
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may be estimated and how PCs are, but should perhaps not be, used in
this estimation process. Section 7.3 contains further discussion of differences
and similarities between PCA and factor analysis, and Section 7.4 gives a
numerical example, which compares the results of PCA and factor analysis.
Finally, in Section 7.5, a few concluding remarks are made regarding the
‘relative merits’ of PCA and factor analysis, and the possible use of rotation
with PCA. The latter is discussed further in Chapter 11.

7.1 Models for Factor Analysis

The basic idea underlying factor analysis is that p observed random vari-
ables, x, can be expressed, except for an error term, as linear functions
of m (< p) hypothetical (random) variables or common factors, that
is if x1,x92,...,2, are the variables and fi, fa,..., fr, are the factors,
then

z1=A1fi +Aefot+ o A fm e (7.1.1)
To = A1 f1 +Aaafo+ ..o+ Ao i + €2

Ty = )\plf1 + /\p2f2 +...+ /\pmfm +ep

where \ji, j = 1,2,...,p; k = 1,2,...,m are constants called the factor
loadings, and e;, j = 1,2,...,p are error terms, sometimes called specific
factors (because e; is ‘specific’ to x;, whereas the fi are ‘common’ to sev-
eral z;). Equation (7.1.1) can be rewritten in matrix form, with obvious
notation, as

x = Af +e. (7.1.2)

One contrast between PCA and factor analysis is immediately ap-
parent. Factor analysis attempts to achieve a reduction from p to
m dimensions by invoking a model relating zi,z2,...,z, to m hy-
pothetical or latent variables. We have seen in Sections 3.9, 5.3 and
6.1.5 that models have been postulated for PCA, but for most prac-
tical purposes PCA differs from factor analysis in having no explicit
model.

The form of the basic model for factor analysis given in (7.1.2) is fairly
standard, although some authors give somewhat different versions. For ex-
ample, there could be three terms on the right-hand side corresponding
to contributions from common factors, specific factors and measurement
errors (Reyment and Joreskog, 1993, p. 36), or the model could be made
non-linear. There are a number of assumptions associated with the factor
model, as follows:

(i) Ele] =0, E[f]=0, E[x]=0.
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Of these three assumptions, the first is a standard assumption for error
terms in most statistical models, and the second is convenient and loses no
generality. The third may not be true, but if it is not, (7.1.2) can be simply
adapted to become x = p + Af + e, where E[x] = p. This modification
introduces only a slight amount of algebraic complication compared with
(7.1.2), but (7.1.2) loses no real generality and is usually adopted.

)
(ii) Elee] = (diagonal)
Elfe’] =
E|ff] = Im (an identity matrix)

(a matrix of zeros)

The first of these three assumptions is merely stating that the error terms
are uncorrelated which is a basic assumption of the factor model, namely
that all of x which is attributable to common influences is contained in
Af, and e, ey, j # k are therefore uncorrelated. The second assumption,
that the common factors are uncorrelated with the specific factors, is also
a fundamental one. However, the third assumption can be relaxed so that
the common factors may be correlated (oblique) rather than uncorrelated
(orthogonal). Many techniques in factor analysis have been developed for
finding orthogonal factors, but some authors, such as Cattell (1978, p.
128), argue that oblique factors are almost always necessary in order to
get a correct factor structure. Such details will not be explored here as
the present objective is to compare factor analysis with PCA, rather than
to give a full description of factor analysis, and for convenience all three
assumptions will be made.

(iii) For some purposes, such as hypothesis tests to decide on an appropriate
value of m, it is necessary to make distributional assumptions. Usually
the assumption of multivariate normality is made in such cases but,
as with PCA, many of the results of factor analysis do not depend on
specific distributional assumptions.

(iv) Some restrictions are generally necessary on A, because without any
restrictions there will be a multiplicity of possible As that give equally
good solutions. This problem will be discussed further in the next
section.

7.2 Estimation of the Factor Model

At first sight, the factor model (7.1.2) looks like a standard regression model
such as that given in Property A7 of Section 3.1 (see also Chapter 8). How-
ever, closer inspection reveals a substantial difference from the standard
regression framework, namely that neither A nor f in (7.1.2) is known,
whereas in regression A would be known and f would contain the only un-
known parameters. This means that different estimation techniques must
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be used, and it also means that there is indeterminacy in the solutions—the
‘best-fitting’ solution is not unique.

Estimation of the model is usually done initially in terms of the pa-
rameters in A and W, while estimates of f are found at a later stage.
Given the assumptions of the previous section, the covariance matrix can
be calculated for both sides of (7.1.2) giving

S =AA 4+ U, (7.2.1)

In practice, we have the sample covariance (or correlation) matrix S, rather
than 3, and A and ¥ are found so as to satisfy

S=AA+ ¥,

(which does not involve the unknown vector of factor scores f) as closely as
possible. The indeterminacy of the solution now becomes obvious; if A, ¥
is a solution of (7.2.1) and T is an orthogonal matrix, then A*, ¥ is also
a solution, where A* = AT. This follows since

A*A* = (AT)(AT)
= ATT'A’
= AN/,

as T is orthogonal.

Because of the indeterminacy, estimation of A and ¥ typically proceeds
in two stages. In the first, some restrictions are placed on A in order to find
a unique initial solution. Having found an initial solution, other solutions
which can be found by rotation of A, that is, multiplication by an orthog-
onal matrix T, are explored. The ‘best’ of these rotated solutions is chosen
according to some particular criterion. There are several possible criteria,
but all are designed to make the structure of A as simple as possible in some
sense, with most elements of A either ‘close to zero’ or ‘far from zero,” and
with as few as possible of the elements taking intermediate values. Most
statistical computer packages provide options for several different rotation
criteria, such as varimax, quartimax and promax. Cattell (1978, p. 136),
Richman (1986) give non-exhaustive lists of eleven and nineteen automatic
rotation methods, respectively, including some like oblimax that enable the
factors to become oblique by allowing T to be not necessarily orthogonal.
For illustration, we give the formula for what is probably the most popular
rotation criterion, varimax. It is the default in several of the best known
software packages. For details of other rotation criteria see Cattell (1978,
p. 136), Lawley and Maxwell (1971, Chapter 6), Lewis-Beck (1994, Section
I1.3), Richman (1986) or Rummel (1970, Chapters 16 and 17) An example
illustrating the results of using two rotation criteria is given in Section 7.4.

Suppose that B = AT and that B has elements bz, j =1,2,...,p; k=
1,2,...,m. Then for varimax rotation the orthogonal rotation matrix T is
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chosen to maximize
m [ p 1 /2 2
Q=>_ [Z b — = (Z b?k) 1 : (7.2.2)

The terms in the square brackets are proportional to the variances of
squared loadings for each rotated factor. In the usual implementations of
factor analysis the loadings are necessarily between —1 and 1, so the cri-
terion tends to drive squared loadings towards the end of the range 0 to 1,
and hence loadings towards —1, 0 or 1 and away from intermediate values,
as required. The quantity @) in equation (7.2.2) is the raw varimax criterion.
A normalized version is also used in which b;;, is replaced by

bk
\ ke
in (7.2.2).

As discussed in Section 11.1, rotation can be applied to principal compo-
nent coefficients in order to simplify them, as is done with factor loadings.
The simplification achieved by rotation can help in interpreting the factors
or rotated PCs. This is illustrated nicely using diagrams (see Figures 7.1
and 7.2) in the simple case where only m = 2 factors or PCs are retained.
Figure 7.1 plots the loadings of ten variables on two factors. In fact, these
loadings are the coefficients a;, as for the first two PCs from the exam-
ple presented in detail later in the chapter, normalized so that aja; = I,
where [, is the kth eigenvalue of S, rather than aja, = 1. When an orthog-
onal rotation method (varimax) is performed, the loadings for the rotated
factors (PCs) are given by the projections of each plotted point onto the
axes represented by dashed lines in Figure 7.1.

Similarly, rotation using an oblique rotation method (direct quartimin)
gives loadings after rotation by projecting onto the new axes shown in
Figure 7.2. It is seen that in Figure 7.2 all points lie close to one or other
of the axes, and so have near-zero loadings on the factor represented by
the other axis, giving a very simple structure for the loadings. The loadings
implied for the rotated factors in Figure 7.1, whilst having simpler structure
than the original coefficients, are not as simple as those for Figure 7.2, thus
illustrating the advantage of oblique, compared to orthogonal, rotation.

Returning to the first stage in the estimation of A and ¥, there is some-
times a problem with identifiability, meaning that the size of the data set
is too small compared to the number of parameters to allow those param-
eters to be estimated (Jackson, 1991, Section 17.2.6; Everitt and Dunn,
2001, Section 12.3)). Assuming that identifiability is not a problem, there
are a number of ways of constructing initial estimates (see, for example,
Lewis-Beck (1994, Section I1.2); Rencher (1998, Section 10.3); Everitt and
Dunn (2001, Section 12.2)). Some, such as the centroid method (see Cat-
tell, 1978, Section 2.3), were developed before the advent of computers and
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Figure 7.1. Factor loadings for two factors with respect to original and
orthogonally rotated factors.

were designed to give quick computationally feasible results. Such methods
do a reasonable job of getting a crude factor model, but have little or no
firm mathematical basis for doing so. This, among other aspects of fac-
tor analysis, gave it a ‘bad name’ among mathematicians and statisticians.
Chatfield and Collins (1989, Chapter 5), for example, treat the topic rather
dismissively, ending with the recommendation that factor analysis ‘should
not be used in most practical situations.’

There are more ‘statistically respectable’ approaches, such as the
Bayesian approach outlined by Press (1972, Section 10.6.2) and the widely
implemented idea of maximum likelihood estimation of ¥ and A, assuming
multivariate normality of f and e. Finding maximum likelihood estimates
of ¥ and A leads to an iterative procedure involving a moderate amount
of algebra, which will not be repeated here (see, for example, Lawley and
Maxwell (1971)).
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Figure 7.2. Factor loadings for two factors with respect to original and obliquely
rotated factors.

An interesting point is that factor loadings found by maximum likeli-
hood for a correlation matrix are equivalent to those for the corresponding
covariance matrix, that is, they are scale invariant. This is in complete
contrast to what happens for PCA (see Sections 2.3 and 3.3).

A potential problem with the maximum likelihood approach is that
it relies on the assumption of multivariate normality, which may not be
justified, and Everitt and Dunn (2001, Section 12.7) caution against us-
ing such estimates when the data are categorical. However, it can be
shown (Morrison, 1976, Section 9.8; Rao, 1955, which is also reproduced
in Bryant and Atchley (1975)) that the maximum likelihood estimators
(MLESs) also optimize two criteria that make no direct distributional as-
sumptions. If the factor model (7.1.2) holds exactly, then the partial
correlations between the elements of x, given the value of f, are zero
(see also Section 6.1.6), as f accounts for all the common variation in
the elements of x. To derive the criterion described by Morrison (1976),
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a sample estimate of the matrix of partial correlations is calculated. The
determinant of this matrix will attain its maximum value of unity when
all its off-diagonal elements are zero, so that maximizing this determi-
nant is one way of attempting to minimize the absolute values of the
partial correlations. This maximization problem leads to the MLEs, but
here they appear regardless of whether or not multivariate normality
holds.

The procedure suggested by Rao (1955) is based on canonical correla-
tion analysis (see Section 9.3) between x and f. He looks, successively,
for pairs of linear functions {a},x,aj,f} that have maximum correlation
subject to being uncorrelated with previous pairs. The factor loadings are
then proportional to the elements of the ags, £ = 1,2,...,m, which in
turn leads to the same loadings as for the MLEs based on the assump-
tion of multivariate normality (Rao, 1955). As with the criterion based on
partial correlations, no distributional assumptions are necessary for Rao’s
canonical analysis.

In a way, the behaviour of the partial correlation and canonical cor-
relation criteria parallels the phenomenon in regression where the least
squares criterion is valid regardless of the distribution of error terms, but
if errors are normally distributed then least squares estimators have the
added attraction of maximizing the likelihood function.

An alternative but popular way of getting initial estimates for A is to
use the first m PCs. If z = A’x is the vector consisting of all p PCs, with
A defined to have ay, the kth eigenvector of X, as its kth column as in
(2.1.1), then x = Az because of the orthogonality of A. If A is partitioned
into its first m and last (p —m) columns, with a similar partitioning of the
rows of z, then

x = (Am | A5 (me ) (7.2.3)

p—m
=AnZm + A, 7%
=Af+e,

where

A=A,, f=z, and e=A'_ z*

p—mPp—m-

Equation (7.2.3) looks very much like the factor model (7.1.2) but it violates
a basic assumption of the factor model, because the elements of e in (7.2.3)
are not usually uncorrelated. Despite the apparently greater sophistication
of using the sample version of A,, as an initial estimator, compared with
crude techniques such as centroid estimates, its theoretical justification is
really no stronger.

As well as the straightforward use of PCs to estimate A, many varieties
of factor analysis use modifications of this approach; this topic will be
discussed further in the next section.
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7.3 Comparisons and Contrasts Between Factor
Analysis and Principal Component Analysis

As mentioned in Section 7.1 a major distinction between factor analysis
and PCA is that there is a definite model underlying factor analysis, but
for most purposes no model is assumed in PCA. Section 7.2 concluded by
describing the most common way in which PCs are used in factor analysis.
Further connections and contrasts between the two techniques are discussed
in the present section, but first we revisit the ‘models’ that have been
proposed for PCA. Recall from Section 3.9 that Tipping and Bishop (1999a)
describe a model in which x has covariance matrix BB’ + 02Ip, where B is
a (p x ¢) matrix. Identifying B with A, and ¢ with m, it is clear that this
model is equivalent to a special case of equation (7.2.1) in which ¥ = ¢2I,,,
so that all p specific variances are equal.

De Leeuw (1986) refers to a generalization of Tipping and Bishop’s
(1999a) model, in which 021p is replaced by a general covariance matrix for
the error terms in the model, as the (random factor score) factor analysis
model. This model is also discussed by Roweis (1997). A related model,
in which the factors are assumed to be fixed rather than random, corre-
sponds to Caussinus’s (1986) fixed effects model, which he also calls the
‘fixed factor scores model.” In such models, variability amongst individu-
als is mainly due to different means rather than to individuals’ covariance
structure, so they are distinctly different from the usual factor analysis
framework.

Both factor analysis and PCA can be thought of as trying to represent
some aspect of the covariance matrix ¥ (or correlation matrix) as well
as possible, but PCA concentrates on the diagonal elements, whereas in
factor analysis the interest is in the off-diagonal elements. To justify this
statement, consider first PCA. The objective is to maximize Y-, var(zj)
or, as Y p_, var(z) = ?:1 var(z;), to account for as much as possible
of the sum of diagonal elements of ¥. As discussed after Property A3 in
Section 2.1, the first m PCs will in addition often do a good job of explain-
ing the off-diagonal elements of 3, which means that PCs can frequently
provide an adequate initial solution in a factor analysis. However, this is
not the stated purpose of PCA and will not hold universally. Turning now
to factor analysis, consider the factor model (7.1.2) and the corresponding
equation (7.2.1) for 3. Tt is seen that, as W is diagonal, the common fac-
tor term Af in (7.1.2) accounts completely for the off-diagonal elements
of 3 in the perfect factor model, but there is no compulsion for the diag-
onal elements to be well explained by the common factors. The elements,
v, 5 =1,2,...,p, of ¥ will all be low if all of the variables have consid-
erable common variation, but if a variable z; is almost independent of all
other variables, then ); = var(e;) will be almost as large as var(x;). Thus,
factor analysis concentrates on explaining only the off-diagonal elements of
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3 by a small number of factors, whereas, conversely, PCA concentrates on
the diagonal elements of 3.

This leads to another difference between the two techniques concerning
the number of dimensions m which give an adequate representation of the
p dimensional variable x. In PCA, if any individual variables are almost
independent of all other variables, then there will be a PC corresponding
to each such variable, and that PC will be almost equivalent to the corre-
sponding variable. Such ‘single variable’ PCs are generally included if an
adequate representation of x is required, as was discussed in Section 6.1.5.
In contrast, a common factor in factor analysis must contribute to at least
two of the variables, so it is not possible to have a ‘single variable’ common
factor. Instead, such factors appear as specific factors (error terms) and do
not contribute to the dimensionality of the model. Thus, for a given set
of data, the number of factors required for an adequate factor model is no
larger—and may be strictly smaller—than the number of PCs required to
account for most of the variation in the data. If PCs are used as initial
factors, then the ideal choice of m is often less than that determined by
the rules of Section 6.1, which are designed for descriptive PCA. As noted
several times in that Section, the different objectives underlying PCA and
factor analysis have led to confusing and inappropriate recommendations
in some studies with respect to the best choice of rules.

The fact that a factor model concentrates on accounting for the off-
diagonal elements, but not the diagonal elements, of ¥ leads to various
modifications of the idea of using the first m PCs to obtain initial esti-
mates of factor loadings. As the covariance matrix of the common factors’
contribution to x is ¥ — W, it seems reasonable to use ‘PCs’ calculated for
3 — U rather than X to construct initial estimates, leading to so-called
principal factor analysis. This will, of course, require estimates of ¥, which
can be found in various ways (see, for example, Rencher, 1998, Section 10.3;
Rummel, 1970, Chapter 13), either once-and-for-all or iteratively, leading
to many different factor estimates. Many, though by no means all, of the
different varieties of factor analysis correspond to simply using different
estimates of ¥ in this type of ‘modified PC’ procedure. None of these esti-
mates has a much stronger claim to absolute validity than does the use of
the PCs of X, although arguments have been put forward to justify various
different estimates of ¥.

Another difference between PCA and (after rotation) factor analysis is
that changing m, the dimensionality of the model, can have much more
drastic effects on factor analysis than it does on PCA. In PCA, if m is
increased from m; to mao, then an additional (ms —mq) PCs are included,
but the original m; PCs are still present and unaffected. However, in factor
analysis an increase from my to mo produces ms factors, none of which need
bear any resemblance to the original m, factors.

A final difference between PCs and common factors is that the former
can be calculated exactly from x, whereas the latter typically cannot. The
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PCs are exact linear functions of x and have the form
z = A'x.

The factors, however, are not exact linear functions of x; instead x is defined
as a linear function of f apart from an error term, and when the relationship
is reversed, it certainly does not lead to an exact relationship between f
and x. Indeed, the fact that the expected value of x is a linear function
of f need not imply that the expected value of f is a linear function of
x (unless multivariate normal assumptions are made). Thus, the use of
PCs as initial factors may force the factors into an unnecessarily restrictive
linear framework. Because of the non-exactness of the relationship between
f and x, the values of f, the factor scores, must be estimated, and there
are several possible ways of doing this (see, for example, Bartholomew and
Knott (1999, 3.23-3.25); Jackson (1991, Section 17.7); Lawley and Maxwell
(1971, Chapter 8); Lewis-Beck (1994, Section I1.6)).

To summarize, there are many ways in which PCA and factor analysis
differ from one another. Despite these differences, they both have the aim of
reducing the dimensionality of a vector of random variables. The use of PCs
to find initial factor loadings, though having no firm justification in theory
(except when ¥ = 021, as in Tipping and Bishop’s (1999a) model) will
often not be misleading in practice. In the special case where the elements
of ¥ are proportional to the diagonal elements of 33, Gower (1966) shows
that the configuration of points produced by factor analysis will be similar
to that found by PCA. In principal factor analysis, the results are equivalent
to those of PCA if all (non-zero) elements of ¥ are identical (Rao, 1955).
More generally, the coefficients found from PCA and the loadings found
from (orthogonal) factor analysis will often be very similar, although this
will not hold unless all the elements of ¥ are of approximately the same size
(Rao, 1955), which again relates to Tipping and Bishop’s (1999a) model.

Schneeweiss and Mathes (1995) provide detailed theoretical comparisons
between factor analysis and PCA. Assuming the factor model (7.2.1), they
compare A with estimates of A obtained from PCA and from factor anal-
ysis. Comparisons are also made between f, the PC scores, and estimates
of f using factor analysis. General results are given, as well as comparisons
for the special cases where m = 1 and where ¥ = ¢2I. The theorems, lem-
mas and corollaries given by Schneeweiss and Mathes provide conditions
under which PCs and their loadings can be used as adequate surrogates
for the common factors and their loadings. One simple set of conditions
is that p is large and that the elements of ¥ are small, although, un-
like the conventional factor model, ¥ need not be diagonal. Additional
conditions for closeness of factors and principal components are given by
Schneeweiss (1997). Further, mainly theoretical, discussion of relationships
between factor analysis and PCA appears in Ogasawara (2000).

The results derived by Schneeweiss and Mathes (1995) and Schneeweiss
(1997) are ‘population’ results, so that the ‘estimates’ referred to above
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are actually derived from correlation matrices corresponding exactly to the
underlying model. In practice, the model itself is unknown and must be
estimated from a data set. This allows more scope for divergence between
the results from PCA and from factor analysis. There have been a number
of studies in which PCA and factor analysis are compared empirically on
data sets, with comparisons usually based on a subjective assessment of
how well and simply the results can be interpreted. A typical study of
this sort from atmospheric science is Barring (1987). There have also been
a number of comparative simulation studies, such as Snook and Gorsuch
(1989), in which, unsurprisingly, PCA is inferior to factor analysis in finding
underlying structure in data simulated from a factor model.

There has been much discussion in the behavioural science literature of
the similarities and differences between PCA and factor analysis. For exam-
ple, 114 pages of the first issue in 1990 of Multivariate Behavioral Research
was devoted to a lead article by Velicer and Jackson (1990) on ‘Component
analysis versus common factor analysis ...," together with 10 shorter dis-
cussion papers by different authors and a rejoinder by Velicer and Jackson.
Widaman (1993) continued this debate, and concluded that ‘... principal
component analysis should not be used if a researcher wishes to obtain
parameters reflecting latent constructs or factors.” This conclusion reflects
the fact that underlying much of the 1990 discussion is the assumption that
unobservable factors are being sought from which the observed behavioural
variables can be derived. Factor analysis is clearly designed with this ob-
jective in mind, whereas PCA does not directly address it. Thus, at best,
PCA provides an approximation to what is truly required.

PCA and factor analysis give similar numerical results for many exam-
ples. However PCA should only be used as a surrogate for factor analysis
with full awareness of the differences between the two techniques, and even
then caution is necessary. Sato (1990), who, like Schneeweiss and Mathes
(1995) and Schneeweiss (1997), gives a number of theoretical comparisons,
showed that for m = 1 and small p the loadings given by factor analysis
and by PCA can sometimes be quite different.

7.4 An Example of Factor Analysis

The example that follows is fairly typical of the sort of data that are often
subjected to a factor analysis. The data were originally discussed by Yule
et al. (1969) and consist of scores for 150 children on ten subtests of the
Wechsler Pre-School and Primary Scale of Intelligence (WPPSI); there are
thus 150 observations on ten variables. The WPPSI tests were designed
to measure ‘intelligence’ of children aged 4%76 years, and the 150 children
tested in the Yule et al. (1969) study were a sample of children who entered
school in the Isle of Wight in the autumn of 1967, and who were tested
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during their second term in school. Their average age at the time of testing
was b years, 5 months. Similar data sets are analysed in Lawley and Maxwell
(1971).

Table 7.1 gives the variances and the coefficients of the first four PCs,
when the analysis is done on the correlation matrix. It is seen that the
first four components explain nearly 76% of the total variation, and that
the variance of the fourth PC is 0.71. The fifth PC, with a variance of
0.51, would be discarded by most of the rules described in Section 6.1
and, indeed, in factor analysis it would be more usual to keep only two,
or perhaps three, factors in the present example. Figures 7.1, 7.2 earlier in
the chapter showed the effect of rotation in this example when only two
PCs are considered; here, where four PCs are retained, it is not possible to
easily represent the effect of rotation in the same diagrammatic way.

All of the correlations between the ten variables are positive, so the
first PC has the familiar pattern of being an almost equally weighted
‘average’ of all ten variables. The second PC contrasts the first five vari-
ables with the final five. This is not unexpected as these two sets of
variables are of different types, namely ‘verbal’ tests and ‘performance’
tests, respectively. The third PC is mainly a contrast between variables
6 and 9, which interestingly were at the time the only two ‘new’ tests in
the WPSSI battery, and the fourth does not have a very straightforward
interpretation.

Table 7.2 gives the factor loadings when the first four PCs are rotated
using an orthogonal rotation method (varimax), and an oblique method
(direct quartimin). It would be counterproductive to give more varieties
of factor analysis for this single example, as the differences in detail tend
to obscure the general conclusions that are drawn below. Often, results
are far less sensitive to the choice of rotation criterion than to the choice
of how many factors to rotate. Many further examples can be found in
texts on factor analysis such as Cattell (1978), Lawley and Maxwell (1971),
Lewis-Beck (1994) and Rummel (1970).

In order to make comparisons between Table 7.1 and Table 7.2 straight-
forward, the sum of squares of the PC coefficients and factor loadings are
normalized to be equal to unity for each factor. Typically, the output from
computer packages that implement factor analysis uses the normalization in
which the sum of squares of coefficients in each PC before rotation is equal
to the variance (eigenvalue) associated with that PC (see Section 2.3). The
latter normalization is used in Figures 7.1 and 7.2. The choice of normal-
ization constraints is important in rotation as it determines the properties
of the rotated factors. Detailed discussion of these properties in the context
of rotated PCs is given in Section 11.1.

The correlations between the oblique factors in Table 7.2 are given in
Table 7.3 and it can be seen that there is a non-trivial degree of correlation
between the factors given by the oblique method. Despite this, the structure
of the factor loadings is very similar for the two factor rotation methods.
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Table 7.1. Coefficients for the first four PCs: children’s intelligence tests.

Component number 1 2 3 4

1 0.34 —0.39 0.09 —0.08

2 0.34 —-0.37 —-0.08 —0.23

3 0.35 —0.10 0.05 0.03

4 0.30 —0.24 —0.20 0.63

Variable 5 0.34 —-0.32 0.19 —-0.28
number 6 0.27 0.24 —-0.57 0.30
7 0.32 0.27 —-0.27 -0.34

8 0.30 0.51 0.19 —0.27

9 0.23 0.22 0.69 0.43

10 0.36 0.33 —0.03 0.02

Eigenvalue 4.77 1.13 0.96 0.71

Cumulative percentage
of total variation 47.7  59.1 68.6 75.7

Table 7.2. Rotated factor loadings—four factors: children’s intelligence tests.

Factor number 1 2 3 4
Varimax

1 0.48 0.09 0.17 0.14

2 0.49 0.15 0.18 —0.03

3 0.35 0.22 0.24 0.22

4 0.26  —0.00 0.64 0.20

Variable 5 0.49 0.16 0.02 0.15
number 6 0.05 0.34 0.60 —0.09
7 0.20 0.51 0.18 —0.07

8 0.10 0.54 —0.02 0.32

9 0.10 0.13 0.07 0.83

10 0.17 0.46 0.28 0.26

Direct quartimin

1 0.51 —0.05 0.05 0.05

2 0.53 0.04 0.05 —0.14

3 0.32 0.13 0.16 0.15

4 0.17 —-0.19 0.65 0.20

Variable 5 0.54 0.06 —0.13 0.05
number 6 —0.07 0.28 0.67 —0.12
7 0.16 0.53 0.13 —-0.17

8 0.03 0.62 —0.09 0.26

9 0.00 0.09 0.02 0.87

10 0.08 0.45 0.24 0.21
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Table 7.3. Correlations between four direct quartimin factors: children’s intelli-
gence tests.

Factor number
1 2 3
Factor 2 0.349

number 3 0.418 0.306
4 0.305 0.197 0.112

Table 7.4. Factor loadings—three factors, varimax rotation: children’s intelligence
tests.

Factor number

1 2 3

1 047 0.09 0.14

2 0.47 0.17 0.05

3 0.36 0.23 0.24

4 0.37 0.23 0.00

Variable 5 0.45 0.08 0.23
number 6 0.12 0.55 —0.05
7 0.17 0.48 0.17

8 0.05 0.36 0.52

9 0.13 -0.01 0.66

10 0.18 0.43 0.36

The first factor in both methods has its highest loadings in variables 1, 2,
3 and 5, with the next highest loadings on variables 4 and 7. In factors
2, 3, 4 there is the same degree of similarity in the position of the highest
loadings: for factor 2, the loadings for variables 7, 8, 10 are highest, with an
intermediate value on variable 6; factor 3 has large loadings on variables 4
and 6 and an intermediate value on variable 10; and factor 4 is dominated by
variable 9 with intermediate values on variables 8 and 10. The only notable
difference between the results for the two methods is that obliqueness allows
the second method to achieve slightly higher values on the highest loadings
and correspondingly lower values on the low loadings, as indeed it is meant
to.

By contrast, the differences between the loadings before and after ro-
tation are more substantial. After rotation, the ‘general factor’ with
coefficients of similar size on all variables disappears, as do most nega-
tive coefficients, and the structure of the loadings is simplified. Again, this
is precisely what rotation is meant to achieve.
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To illustrate what happens when different numbers of factors are re-
tained, Table 7.4 gives factor loadings for three factors using varimax
rotation. The loadings for direct quartimin (not shown) are again very sim-
ilar. Before rotation, changing the number of PCs simply adds or deletes
PCs, leaving the remaining PCs unchanged. After rotation, however, dele-
tion or addition of factors will usually change all of the factor loadings.
In the present example, deletion of the fourth unrotated factor leaves the
first rotated factor almost unchanged, except for a modest increase in the
loading for variable 4. Factor 2 here is also similar to factor 2 in the four-
factor analysis, although the resemblance is somewhat less strong than for
factor 1. In particular, variable 6 now has the largest loading in factor 2,
whereas previously it had only the fourth largest loading. The third factor
in the three-factor solution is in no way similar to factor 3 in the four-factor
analysis. In fact, it is quite similar to the original factor 4, and the original
factor 3 has disappeared, with its highest loadings on variables 4 and 6
partially ‘transferred’ to factors 1 and 2, respectively.

The behaviour displayed in this example, when a factor is deleted, is
not untypical of what happens in factor analysis generally, although the
‘mixing-up’ and ‘rearrangement’ of factors can be much more extreme than
in the present case.

7.5 Concluding Remarks

Factor analysis is a large subject, and this chapter has concentrated on
aspects that are most relevant to PCA. The interested reader is referred to
one of the many books on the subject such as Cattell (1978), Lawley and
Maxwell (1971), Lewis-Beck (1994) or Rummell (1970) for further details.
Factor analysis is one member of the class of latent variable models (see
Bartholomew and Knott (1999)) which have been the subject of much
recent research. Mixture modelling, discussed in Section 9.2.3, is another
of the many varieties of latent variable models.

It should be clear from the discussion of this chapter that it does not
really make sense to ask whether PCA is ‘better than’ factor analysis or
vice versa, because they are not direct competitors. If a model such as
(7.1.2) seems a reasonable assumption for a data set, then factor analysis,
rather than PCA, is appropriate. If no such model can be assumed, then
factor analysis should not really be used.

Despite their different formulations and objectives, it can be informa-
tive to look at the results of both techniques on the same data set. Each
technique gives different insights into the data structure, with PCA con-
centrating on explaining the diagonal elements, and factor analysis the
off-diagonal elements, of the covariance matrix, and both may be useful.
Furthermore, one of the main ideas of factor analysis, that of rotation, can
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be ‘borrowed’ for PCA without any implication that a factor model is be-
ing assumed. Once PCA has been used to find an m-dimensional subspace
that contains most of the variation in the original p variables, it is possible
to redefine, by rotation, the axes (or derived variables) that form a basis
for this subspace. The rotated variables will together account for the same
amount of variation as the first few PCs, but will no longer successively
account for the maximum possible variation. This behaviour is illustrated
by Tables 7.1 and 7.2; the four rotated PCs in Table 7.2 together account
for 75.7% of the total variation, as did the unrotated PCs in Table 7.1.
However, the percentages of total variation accounted for by individual
factors (rotated PCs) are 27.4, 21.9, 14.2 and 12.1, compared with 47.7,
11.3, 9.6 and 7.1 for the unrotated PCs. The rotated PCs, when expressed
in terms of the original variables, may be easier to interpret than the PCs
themselves because their coefficients will typically have a simpler structure.
This is discussed in more detail in Chapter 11. In addition, rotated PCs of-
fer advantages compared to unrotated PCs in some types of analysis based
on PCs (see Sections 8.5 and 10.1).



8

Principal Components in Regression
Analysis

As illustrated elsewhere in this book, principal components are used in
conjunction with a variety of other statistical techniques. One area in which
this activity has been extensive is regression analysis.

In multiple regression, one of the major difficulties with the usual least
squares estimators is the problem of multicollinearity, which occurs when
there are near-constant linear functions of two or more of the predictor,
or regressor, variables. A readable review of the multicollinearity problem
is given by Gunst (1983). Multicollinearities are often, but not always,
indicated by large correlations between subsets of the variables and, if mul-
ticollinearities exist, then the variances of some of the estimated regression
coefficients can become very large, leading to unstable and potentially mis-
leading estimates of the regression equation. To overcome this problem,
various approaches have been proposed. One possibility is to use only a sub-
set of the predictor variables, where the subset is chosen so that it does not
contain multicollinearities. Numerous subset selection methods are avail-
able (see, for example, Draper and Smith, 1998, Chapter 15; Hocking, 1976;
Miller, 1984, 1990), and among the methods are some based on PCs. These
methods will be dealt with later in the chapter (Section 8.5), but first some
more widely known uses of PCA in regression are described.

These uses of PCA follow from a second class of approaches to overcom-
ing the problem of multicollinearity, namely the use of biased regression
estimators. This class includes ridge regression, shrinkage estimators, par-
tial least squares, the so-called LASSO, and also approaches based on PCA.
The best-known such approach, generally known as PC regression, simply
starts by using the PCs of the predictor variables in place of the predic-
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tor variables. As the PCs are uncorrelated, there are no multicollinearities
between them, and the regression calculations are also simplified. If all the
PCs are included in the regression, then the resulting model is equivalent
to that obtained by least squares, so the large variances caused by multi-
collinearities have not gone away. However, calculation of the least squares
estimates via PC regression may be numerically more stable than direct
calculation (Flury and Riedwyl, 1988, p. 212).

If some of the PCs are deleted from the regression equation, estima-
tors are obtained for the coefficients in the original regression equation.
These estimators are usually biased, but can simultaneously greatly reduce
any large variances for regression coefficient estimators caused by multi-
collinearities. Principal component regression is introduced in Section 8.1,
and strategies for deciding which PCs to delete from the regression equa-
tion are discussed in Section 8.2; some connections between PC regression
and other forms of biased regression are described in Section 8.3.

Variations on the basic idea of PC regression have also been proposed.
One such variation, noted in Section 8.3, allows the possibility that a PC
may be only ‘partly deleted’ from the regression equation. A rather different
approach, known as latent root regression, finds the PCs of the predictor
variables together with the dependent variable. These PCs can then be
used to construct biased regression estimators, which differ from those de-
rived from PC regression. Latent root regression in various forms, together
with its properties, is discussed in Section 8.4. A widely used alternative
to PC regression is partial least squares (PLS). This, too, is included in
Section 8.4, as are a number of other regression-related techniques that
have connections with PCA. One omission is the use of PCA to detect out-
liers. Because the detection of outliers is important in other areas as well
as regression, discussion of this topic is postponed until Section 10.1.

A topic which is related to, but different from, regression analysis is
that of functional and structural relationships. The idea is, like regression
analysis, to explore relationships between variables but, unlike regression,
the predictor variables as well as the dependent variable may be subject
to error. Principal component analysis can again be used in investigat-
ing functional and structural relationships, and this topic is discussed in
Section 8.6.

Finally in this chapter, in Section 8.7 two detailed examples are given
of the use of PCs in regression, illustrating many of the ideas discussed in
earlier sections.

8.1 Principal Component Regression

Consider the standard regression model, as defined in equation (3.1.5), that
is,

y =XB +e¢, (8.1.1)



8.1. Principal Component Regression 169

where y is a vector of n observations on the dependent variable, measured
about their mean, X is an (n X p) matrix whose (, j)th element is the value
of the jth predictor (or regressor) variable for the ith observation, again
measured about its mean, 3 is a vector of p regression coefficients and € is
a vector of error terms; the elements of € are independent, each with the
same variance o2. It is convenient to present the model (8.1.1) in ‘centred’
form, with all variables measured about their means. Furthermore, it is
conventional in much of the literature on PC regression to assume that the
predictor variables have been standardized so that X’X is proportional to
the correlation matrix for the predictor variables, and this convention is
followed in the present chapter. Similar derivations to those below are pos-
sible if the predictor variables are in uncentred or non-standardized form,
or if an alternative standardization has been used, but to save space and
repetition, these derivations are not given. Nor do we discuss the contro-
versy that surrounds the choice of whether or not to centre the variables
in a regression analysis. The interested reader is referred to Belsley (1984)
and the discussion which follows that paper.
The values of the PCs for each observation are given by

7 = XA, (8.1.2)

where the (4, k)th element of Z is the value (score) of the kth PC for the
ith observation, and A is a (p x p) matrix whose kth column is the kth
eigenvector of X'X.

Because A is orthogonal, X3 can be rewritten as XAA’S = Z~, where
v = A’B. Equation (8.1.1) can therefore be written as

y=2Zv+e, (8.1.3)

which has simply replaced the predictor variables by their PCs in the re-
gression model. Principal component regression can be defined as the use
of the model (8.1.3) or of the reduced model

Y =Zn"Y,, + €m, (8.1.4)

where 7,, is a vector of m elements that are a subset of elements of ~,
Z,, is an (n X m) matrix whose columns are the corresponding subset of
columns of Z, and €, is the appropriate error term. Using least squares to
estimate « in (8.1.3) and then finding an estimate for 3 from the equation

B =A% (8.1.5)

is equivalent to finding 3 by applying least squares directly to (8.1.1).

The idea of using PCs rather than the original predictor variables is not
new (Hotelling, 1957; Kendall, 1957), and it has a number of advantages.
First, calculating 4 from (8.1.3) is more straightforward than finding B
from (8.1.1) as the columns of Z are orthogonal. The vector ¥ is

4=(Z2'2)"'2Zy =L?Zy, (8.1.6)
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where L is the diagonal matrix whose kth diagonal element is l,lc/ 2, and
Iy, is defined here, as in Section 3.5, as the kth largest eigenvalue of X'X,
rather than S. Furthermore, if the regression equation is calculated for PCs
instead of the predictor variables, then the contributions of each trans-
formed variable (PC) to the equation can be more easily interpreted than
the contributions of the original variables. Because of uncorrelatedness, the
contribution and estimated coefficient of a PC are unaffected by which other
PCs are also included in the regression, whereas for the original variables
both contributions and coeflicients can change dramatically when another
variable is added to, or deleted from, the equation. This is especially true
when multicollinearity is present, but even when multicollinearity is not
a problem, regression on the PCs, rather than the original predictor vari-
ables, may have advantages for computation and interpretation. However, it
should be noted that although interpretation of the separate contributions
of each transformed variable is improved by taking PCs, the interpretation
of the regression equation itself may be hindered if the PCs have no clear
meaning.

The main advantage of PC regression occurs when multicollinearities are
present. In this case, by deleting a subset of the PCs, especially those with
small variances, much more stable estimates of 3 can be obtained. To see
this, substitute (8.1.6) into (8.1.5) to give

B=A(Z'2)"'Zy (8.1.7)
= AL ?Z'y
= AL ?A'X'y
p
=) [l 'aga X'y, (8.1.8)
k=1

where [, is the kth diagonal element of L? and ay, is the kth column of A.
Equation (8.1.8) can also be derived more directly from 8 = (X'X) X'y,
by using the spectral decomposition (see Property A3 of Sections 2.1 and
3.1) of the matrix (X’X)~!, which has eigenvectors a; and eigenvalues
L k=1,2,...,p

Making the usual assumption that the elements of y are uncorrelated,
each with the same variance o2 (that is the variance-covariance matrix of
y is 021,), it is seen from (8.1.7) that the variance-covariance matrix of B
is

o’A(Z'Z)'ZZ(Z'Z) A’ = *A(Z'Z) A’
= o?ALT2A’

P
= o2 Zl;lakaﬁc. (8.1.9)
k=1
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This expression gives insight into how multicollinearities produce large
variances for the elements of B If a multicollinearity exists, then it appears
as a PC with very small variance (see also Sections 3.4 and 10.1); in other
words, the later PCs have very small values of I (the variance of the kth
PC sl /(n—1) in the present notation), and hence very large values of ;'
Thus (8.1.9) shows that any predictor variable having moderate or large
coefficients in any of the PCs associated with very small eigenvalues will
have a very large variance.

One way of reducing this effect is to delete the terms from (8.1.8) that
correspond to very small [x, leading to an estimator

B=> I aa X'y, (8.1.10)
k=1
where l,41,lm+2, ..., 1, are the very small eigenvalues. This is equivalent

to setting the last (p —m) elements of v equal to zero.
Then the variance-covariance matrix V(8) for 8 is

m m
o? Z I;a;alX'X Z I tagal,.
j=1 k=1
Substituting
P
X,X = Z lhaha;l
h=1

from the spectral decomposition of X'X, we have

P m m
=o? E E E Inl aJajahahakak
h=1j=1k=1
Because the vectors aj, h =1,2,...,p are orthonormal, the only non-zero

terms in the triple summation occur when h = j = k, so that

V(B) =0 U aaj (8.1.11)

k=1

If none of the first m eigenvalues [ is very small, then none of the variances
given by the diagonal elements of (8.1.11) will be large.

The decrease in variance for the estimator B given by (8.1.10), compared
with the variance of ﬁ, is achieved at the expense of introducing bias into
the estimator B This follows because

p
/é = B - Z llzlaka;gxlyv E(ﬁ) = /6’
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and
P P
E| Y l,;laka;x’y] = > I 'aa X'Xg
k=m+1 k=m+1
P
= Z aia) 3.
k=m+1

This last term is, in general, non-zero so that E(8) # (3. However, if
multicollinearity is a serious problem, the reduction in variance can be
substantial, whereas the bias introduced may be comparatively small. In
fact, if the elements of v corresponding to deleted components are actually
zero, then no bias will be introduced.

As well as, or instead of, deleting terms from (8.1.8) corresponding to
small eigenvalues, it is also possible to delete terms for which the cor-
responding elements of < are not significantly different from zero. The
question of which elements are significantly non-zero is essentially a variable
selection problem, with PCs rather than the original predictor variables as
variables. Any of the well-known methods of variable selection for regres-
sion (see, for example, Draper and Smith, 1998, Chapter 15) can be used.
However, the problem is complicated by the desirability of also deleting
high-variance terms from (8.1.8).

The definition of PC regression given above in terms of equations (8.1.3)
and (8.1.4) is equivalent to using the linear model (8.1.1) and estimating

B by
B = Zz;lakagx'y, (8.1.12)
M

where M is some subset of the integers 1,2, ..., p. A number of authors con-
sider only the special case (8.1.10) of (8.1.12), in which M = {1,2,...,m},
but this is often too restrictive, as will be seen in Section 8.2. In the general
definition of PC regression, M can be any subset of the first p integers, so
that any subset of the coefficients of «y, corresponding to the complement of
M, can be set to zero. The next section will consider various strategies for
choosing M, but we first note that once again the singular value decompo-
sition (SVD) of X defined in Section 3.5 can be a useful concept (see also
Sections 5.3, 6.1.5, 13.4, 13.5, 13.6, 14.2 and Appendix Al). In the present
context it can be used to provide an alternative formulation of equation
(8.1.12) and to help in the interpretation of the results of a PC regression.
Assuming that n > p and that X has rank p, recall that the SVD writes X
in the form

X = ULA/,
where

(i) A and L are as defined earlier in this section;
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(ii) the columns of U are those eigenvectors of XX’ that correspond to
non-zero eigenvalues, normalized so that U'U =1I,,.

Then X3 can be rewritten ULA’B = U§, where § = LA’3, so that
B = AL71'§. The least squares estimator for § is

§ = (U'U)'Uy = Uy,

leading to B =AL™16.
The relationship between -, defined earlier, and § is straightforward,
namely

y=A'B=A'(AL"'6) = (A'/A)L"'6 =L '4,

so that setting a subset of elements of § equal to zero is equivalent to setting
the same subset of elements of v equal to zero. This result means that the
SVD can provide an alternative computational approach for estimating PC
regression equations, which is an advantage, as efficient algorithms exist for
finding the SVD of a matrix (see Appendix Al).

Interpretation of the results of a PC regression can also be aided by using
the SVD, as illustrated by Mandel (1982) for artificial data (see also Nelder
(1985)).

8.2 Strategies for Selecting Components in
Principal Component Regression

When choosing the subset M in equation (8.1.12) there are two partially
conflicting objectives. In order to eliminate large variances due to multi-
collinearities it is essential to delete all those components whose variances
are very small but, at the same time, it is undesirable to delete components
that have large correlations with the dependent variable y. One strategy
for choosing M is simply to delete all those components whose variances
are less than [*, where [* is some cut-off level. The choice of [* is rather
arbitrary, but when dealing with correlation matrices, where the average
value of the eigenvalues is 1, a value of [* somewhere in the range 0.01 to
0.1 seems to be useful in practice.

An apparently more sophisticated way of choosing [* is to look at so-
called variance inflation factors (VIFs) for the p predictor variables. The
VIF for the jth variable when using standardized variables is defined as
¢j;/0? (which equals the jth diagonal element of (X'X)~!'—Marquardt,
1970), where c;; is the variance of the jth element of the least squares
estimator for @. If all the variables are uncorrelated, then all the VIFs
are equal to 1, but if severe multicollinearities exist then the VIFs for ,@
will be very large for those variables involved in the multicollinearities. By
successively deleting the last few terms in (8.1.8), the VIF's for the resulting
biased estimators will be reduced; deletion continues until all VIFs are
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Table 8.1. Variation accounted for by PCs of predictor variables in monsoon data
for (a) predictor variables, (b) dependent variable.

Component
number 1 2 3 4 5 6 7 8 9 10
Percentage (a) Predictor
variation variables 26 22 17 11 10 7 4 3 1 <1
accounted (b) Dependent
for variable 3 22 <1 1 3 3 6 24 5 20

below some desired level. The original VIF for a variable is related to the
squared multiple correlation R? between that variable and the other (p—1)
predictor variables by the formula VIF = (1 — R?)~!. Values of VIF > 10
correspond to R? > 0.90, and VIF > 4 is equivalent to R > 0.75, so that
values of R? can be considered when choosing how small a level of VIF is
desirable. However, the choice of this desirable level is almost as arbitrary
as the choice of [* above.

Deletion based solely on variance is an attractive and simple strategy, and
Property A7 of Section 3.1 gives it, at first sight, an added respectability.
However, low variance for a component does not necessarily imply that
the corresponding component is unimportant in the regression model. For
example, Kung and Sharif (1980) give an example from meteorology where,
in a regression of monsoon onset dates on all of the (ten) PCs, the most
important PCs for prediction are, in decreasing order of importance, the
eighth, second and tenth (see Table 8.1). The tenth component accounts
for less than 1% of the total variation in the predictor variables, but is
an important predictor of the dependent variable, and the most important
PC in the regression accounts for 24% of the variation in y but only 3% of
the variation in x. Further examples of this type are presented in Jolliffe
(1982). Thus, the two objectives of deleting PCs with small variances and
of retaining PCs that are good predictors of the dependent variable may
not be simultaneously achievable.

Some authors (for example, Hocking, 1976; Mosteller and Tukey, 1977,
pp. 397-398; Gunst and Mason, 1980, pp. 327-328) argue that the choice
of PCs in the regression should be made entirely, or mainly, on the basis of
variance reduction but, as can be seen from the examples cited by Jolliffe
(1982), such a procedure can be dangerous if low-variance components have
predictive value. Jolliffe (1982) notes that examples where this occurs seem
to be not uncommon in practice. Berk’s (1984) experience with six data
sets indicates the opposite conclusion, but several of his data sets are of
a special type, in which strong positive correlations exist between all the
regressor variables and between the dependent variable and the regressor
variables. In such cases the first PC is a (weighted) average of the regres-
sor variables, with all weights positive (see Section 3.8), and as y is also
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positively correlated with each regressor variable it is strongly correlated
with the first PC. Hadi and Ling (1998) (see also Cuadras (1998)) define
PC regression in terms of equation (8.1.10), and argue that the technique
is flawed because predictive low-variance PCs may be excluded. With the
more general definition of PC regression, based on (8.1.12), this criticism
disappears.

In contrast to selection based solely on size of variance, the opposite
extreme is to base selection only on values of t-statistics measuring the
(independent) contribution of each PC to the regression equation. This, too,
has its pitfalls. Mason and Gunst (1985) showed that ¢-tests for low-variance
PCs have reduced power compared to those for high-variance components,
and so are less likely to be selected. A compromise between selection on the
basis of variance and on the outcome of t-tests is to delete PCs sequentially
starting with the smallest variance, then the next smallest variance and
so on; deletion stops when the first significant t-value is reached. Such a
strategy is likely to retain more PCs than are really necessary.

Hill et al. (1977) give a comprehensive discussion of various, more so-
phisticated, strategies for deciding which PCs to delete from the regression
equation. Their criteria are of two main types, depending on whether the
primary objective is to get B close to B, or to get X,B', the estimate of y,
close to y or to E(y). In the first case, estimation of 3 is the main interest;
in the second it is prediction of y which is the chief concern. Whether or
not B is an improvement on B is determined for several of the criteria by
looking at mean square error (MSE) so that variance and bias are both
taken into account.

More specifically, two criteria are suggested of the first type, the ‘weak’
and ‘strong’ criteria. The weak criterion, due to Wallace (1972), prefers B
to B if tr]MSE(B)] < tr[MSE(B)], where MSE(B) is the matrix E[(3 —
B)(3 — B)'], with a similar definition for the matrix MSE(3). This simply
means that B is preferred when the expected Euclidean distance between
B3 and 3 is smaller than that between 8 and 3.

The strong criterion insists that

MSE(c'B8) < MSE(c3)
for every non-zero p-element vector ¢, where
MSE(¢'8) = E[(¢'8 - ¢8)7,

with, again, a similar definition for MSE(C'B).

Among those criteria of the second type (where prediction of y rather
than estimation of 3 is the main concern) that are considered by Hill et al.
(1977), there are again two which use MSE. The first is also due to Wallace

(1972) and is again termed a ‘weak’ criterion. It prefers B to B if

E[(XB-Xp)(XB - XPB)] < E[(X3 - XB) (XB - XB)],
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so that B is preferred to B if the expected Euclidean distance between XB
(the estimate of y) and X3 (the expected value of y) is smaller than the
corresponding distance between XB and X3. An alternative MSE criterion
is to look at the distance between each estimate of y and the actual, rather
than expected, value of y. Thus 3 is preferred to ,é' if

E[(XB -y)'(XB - y)] < E[(XB - y)'(XB - y)).
Substituting y = X3 + € it follows that
E[(XB - y) (X8 —y)] = E[(XB - XB)'(XB — XB)] + no*,

with a similar expression for B At first sight, it seems that this second
criterion is equivalent to the first. However o2 is unknown and, although
it can be estimated, we may get different estimates when the equation is
fitted using B, B, respectively.

Hill et al. (1977) consider several other criteria; further details may be
found in their paper, which also describes connections between the various
decision rules for choosing M and gives illustrative examples. They argue
that the choice of PCs should not be based solely on the size of their
variance, but little advice is offered on which of their criteria gives an overall
‘best’ trade-off between variance and bias; rather, separate circumstances
are identified in which each may be the most appropriate.

Gunst and Mason (1979) also consider integrated MSE of predictions
as a criterion for comparing different regression estimators. Friedman and
Montgomery (1985) prefer to use the predictive ability for individual obser-
vations, rather than averaging this ability over a distribution of potential
observations as is done by Gunst and Mason (1979).

Another way of comparing predicted and observed values of y is by means
of cross-validation. Mertens et al. (1995) use a version of PRESS, defined
in equation (6.1.3), as a criterion for deciding how many PCs to retain in
PC regression. Their criterion is

n

Z(yz — @)’

i=1

where ,7(;) is the estimate of y; obtained from a PC regression based on
a subset M and using the data matrix X(;), which is X with its ith row
deleted. They have an efficient algorithm for computing all PCAs with each
observation deleted in turn, though the algebra that it uses is applicable
only to covariance, not correlation, matrices. Mainly for reasons of conve-
nience, they also restrict their procedure to implementing (8.1.10), rather
than the more general (8.1.12).

Yet another approach to deletion of PCs that takes into account both
variance and bias is given by Lott (1973). This approach simply calculates
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the adjusted multiple coefficient of determination,
(n—1)
(n—p—1)

where R? is the usual multiple coefficient of determination (squared multi-
ple correlation) for the regression equation obtained from each subset M of
interest. The ‘best’ subset is then the one that maximizes R?. Lott demon-
strates that this very simple procedure works well in a limited simulation
study. Soofi (1988) uses a Bayesian approach to define the gain of informa-
tion from the data about the ith element ~; of 4. The subset M is chosen
to comnsist of integers corresponding to components with the largest val-
ues of this measure of information. Soofi shows that the measure combines
the variance accounted for by a component with its correlation with the
dependent variable.

It is difficult to give any general advice regarding the choice of a decision
rule for determining M. It is clearly inadvisable to base the decision en-
tirely on the size of variance; conversely, inclusion of highly predictive PCs
can also be dangerous if they also have very small variances, because of
the resulting instability of the estimated regression equation. Use of MSE
criteria provides a number of compromise solutions, but they are essentially
arbitrary.

What PC regression can do, which least squares cannot, is to indicate
explicitly whether a problem exists with respect to the removal of multi-
collinearity, that is whether instability in the regression coefficients can only
be removed by simultaneously losing a substantial proportion of the pre-
dictability of y. An extension of the cross-validation procedure of Mertens
et al. (1995) to general subsets M would provide a less arbitrary way than
most of deciding which PCs to keep, but the choice of M for PC regression
remains an open question.

R*=1- (1— R?),

8.3 Some Connections Between Principal
Component Regression and Other Biased
Regression Methods

Using the expressions (8.1.8), (8.1.9) for 3 and its variance-covariance ma-
trix, it was seen in the previous section that deletion of the last few terms
from the summation for B can dramatically reduce the high variances of el-
ements of 3 caused by multicollinearities. However, if any of the elements of
~ corresponding to deleted components are non-zero, then the PC estimator
B for 3 is biased. Various other methods of biased estimation that aim to
remove collinearity-induced high variances have also been proposed. A full
description of these methods will not be given here as several do not involve



178 8. Principal Components in Regression Analysis

PCs directly, but there are various relationships between PC regression and
other biased regression methods which will be briefly discussed.

Consider first ridge regression, which was described by Hoerl and Ken-
nard (1970a,b) and which has since been the subject of much debate in
the statistical literature. The estimator of B using the technique can be
written, among other ways, as

P
Br=Y (I +r) taa Xy,
k=1
where k is some fixed positive constant and the other terms in the expres-
sion have the same meaning as in (8.1.8). The variance-covariance matrix
of B, is equal to

p
o2 Z lk(lk + n)ankafc.
k=1

Thus, ridge regression estimators have rather similar expressions to those
for least squares and PC estimators, but variance reduction is achieved
not by deleting components, but by reducing the weight given to the later
components. A generalization of ridge regression has p constants ki, k =
1,2,...,p that must be chosen, rather than a single constant x.

A modification of PC regression, due to Marquardt (1970) uses a simi-
lar, but more restricted, idea. Here a PC regression estimator of the form
(8.1.10) is adapted so that M includes the first m integers, excludes the
integers m + 2, m + 3, ..., p, but includes the term corresponding to inte-
ger (m + 1) with a weighting less than unity. Detailed discussion of such
estimators is given by Marquardt (1970).

Ridge regression estimators ‘shrink’ the least squares estimators towards
the origin, and so are similar in effect to the shrinkage estimators pro-
posed by Stein (1960) and Sclove (1968). These latter estimators start with
the idea of shrinking some or all of the elements of 4 (or ,3) using argu-
ments based on loss functions, admissibility and prior information; choice
of shrinkage constants is based on optimization of MSE criteria. Partial
least squares regression is sometimes viewed as another class of shrinkage
estimators. However, Butler and Denham (2000) show that it has peculiar
properties, shrinking some of the elements of 4 but inflating others.

All these various biased estimators have relationships between them. In
particular, all the present estimators, as well as latent root regression,
which is discussed in the next section along with partial least squares,
can be viewed as optimizing (8 — 8)'X'X(8 — ), subject to different
constraints for different estimators (see Hocking (1976)). If the data set
is augmented by a set of dummy observations, and least squares is used
to estimate B from the augmented data, Hocking (1976) demonstrates
further that ridge, generalized ridge, PC regression, Marquardt’s modifi-
cation and shrinkage estimators all appear as special cases for particular
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choices of the dummy observations and their variances. In a slightly differ-
ent approach to the same topic, Hocking et al. (1976) give a broad class
of biased estimators, which includes all the above estimators, including
those derived from PC regression, as special cases. Oman (1978) shows
how several biased regression methods, including PC regression, can be
fitted into a Bayesian framework by using different prior distributions for
3; Leamer and Chamberlain (1976) also look at a Bayesian approach to
regression, and its connections with PC regression. Other biased estima-
tors have been suggested and compared with PC regression by Iglarsh and
Cheng (1980) and Trenkler (1980), and relationships between ridge regres-
sion and PC regression are explored further by Hsuan (1981). Trenkler and
Trenkler (1984) extend Hsuan’s (1981) results, and examine circumstances
in which ridge and other biased estimators can be made close to PC re-
gression estimators, where the latter are defined by the restrictive equation
(8.1.10).

Hoerl et al. (1986) describe a simulation study in which PC regression is
compared with other biased estimators and variable selection methods, and
found to be inferior. However, the comparison is not entirely fair. Several
varieties of ridge regression are included in the comparison, but only one
way of choosing M is considered for PC regression. This is the restrictive
choice of M consisting of 1,2,...,m, where m is the largest integer for
which a t-test of the PC regression coefficient -, gives a significant result.
Hoerl et al. (1986) refer to a number of other simulation studies comparing
biased regression methods, some of which include PC regression. Theoret-
ical comparisons between PC regression, least squares and ridge regression
with respect to the predictive ability of the resulting regression equations
are made by Gunst and Mason (1979) and Friedman and Montgomery
(1985), but only for p = 2.

Essentially the same problem arises for all these biased methods as oc-
curred in the choice of M for PC regression, namely, the question of which
compromise should be chosen in the trade-off between bias and variance.
In ridge regression, this compromise manifests itself in the choice of x, and
for shrinkage estimators the amount of shrinkage must be determined. Sug-
gestions have been made regarding rules for making these choices, but the
decision is usually still somewhat arbitrary.

8.4 Variations on Principal Component Regression

Marquardt’s (1970) fractional rank estimator, which was described in the
previous section, is one modification of PC regression as defined in Sec-
tion 8.1, but it is a fairly minor modification. Another approach, suggested
by Oman (1991), is to use shrinkage estimators, but instead of shrink-
ing the least squares estimators towards zero or some other constant, the
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shrinkage is towards the first few PCs. This tends to downweight the con-
tribution of the less stable low-variance PC but does not ignore them.
Oman (1991) demonstrates considerable improvements over least squares
with these estimators.

A rather different type of approach, which, nevertheless, still uses PCs in
a regression problem, is provided by latent root regression. The main dif-
ference between this technique and straightforward PC regression is that
the PCs are not calculated for the set of p predictor variables alone. In-
stead, they are calculated for a set of (p + 1) variables consisting of the
p predictor variables and the dependent variable. This idea was suggested
independently by Hawkins (1973) and by Webster et al. (1974), and termed
‘latent root regression’ by the latter authors. Subsequent papers (Gunst et
al., 1976; Gunst and Mason, 1977a) investigated the properties of latent
root regression, and compared it with other biased regression estimators.
As with the biased estimators discussed in the previous section, the latent
root regression estimator can be derived by optimizing a quadratic func-
tion of 3, subject to constraints (Hocking, 1976). Latent root regression,
as defined in Gunst and Mason (1980, Section 10.2), will now be described;
the technique introduced by Hawkins (1973) has slight differences and is
discussed later in this section.

In latent root regression, a PCA is done on the set of (p + 1) variables
described above, and the PCs corresponding to the smallest eigenvalues
are examined. Those for which the coefficient of the dependent vari-
able y is also small are called non-predictive multicollinearities, and are
deemed to be of no use in predicting y. However, any PC with a small
eigenvalue will be of predictive value if its coefficient for y is large.
Thus, latent root regression deletes those PCs which indicate multi-
collinearities, but only if the multicollinearities appear to be useless for
predicting y.

Let d; be the vector of the p coefficients on the p predictor variables
in the kth PC for the enlarged set of (p + 1) variables; let dox be the
corresponding coefficient of y, and let I be the corresponding eigenvalue.
Then the latent root estimator for 3 is defined as

Brr=>_ fvbs, (8.4.1)

Mrr

where My R is the subset of the integers 1,2,...,p 4+ 1, in which integers
corresponding to the non-predictive multicollinearities defined above, and
no others, are deleted; the fj are coefficients chosen to minimize residual
sums of squares among estimators of the form (8.4.1).

The fr can be determined by first using the kth PC to express y as a
linear function of X to provide an estimator y,. A weighted average, yr g,
of the yi for k € My g is then constructed, where the weights are chosen
so as to minimize the residual sum of squares (y.r —y) (yLr —y)- The

vector yrr is then the latent root regression predictor X3; r, and the fi
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are given by

-1
fr = —Oormyli (Z 5§k~k1> , (8.4.2)

MLr

where 7733 =30 (yi — )2, and S, [, are as defined above. Note that the

least squares estimator 3 can also be written in the form (8.4.1) if M in
(8.4.1) and (8.4.2) is taken to be the full set of PCs.

The full derivation of this expression for f is fairly lengthy, and can
be found in Webster et al. (1974). It is interesting to note that f; is pro-
portional to the size of the coefficient of y in the kth PC, and inversely
proportional to the variance of the kth PC; both of these relationships are
intuitively reasonable.

In order to choose the subset M R it is necessary to decide not only how
small the eigenvalues must be in order to indicate multicollinearities, but
also how large the coefficient of y must be in order to indicate a predictive
multicollinearity. Again, these are arbitrary choices, and ad hoc rules have
been used, for example, by Gunst et al. (1976). A more formal procedure
for identifying non-predictive multicollinearities is described by White and
Gunst (1979), but its derivation is based on asymptotic properties of the
statistics used in latent root regression.

Gunst et al. (1976) compared BLR and B in terms of MSE, using a
simulation study, for cases of only one multicollinearity, and found that
Z‘] r showed substantial improvement over ﬁ when the multicollinearity
is non-predictive. However, in cases where the single multicollinearity had
some predictive value, the results were, unsurprisingly, less favourable to
3 r- Gunst and Mason (1977a) reported a larger simulation study, which
compared PC, latent root, ridge and shrinkage estimators, again on the
basis of MSE. Overall, latent root estimators did well in many, but not all,
situations studied, as did PC estimators, but no simulation study can ever
be exhaustive, and different conclusions might be drawn for other types of
simulated data.

Hawkins (1973) also proposed finding PCs for the enlarged set of (p+ 1)
variables, but he used the PCs in a rather different way from that of latent
root regression as defined above. The idea here is to use the PCs themselves,
or rather a rotated version of them, to decide upon a suitable regression
equation. Any PC with a small variance gives a relationship between y
and the predictor variables whose sum of squared residuals orthogonal to
the fitted plane is small. Of course, in regression it is squared residuals in
the y-direction, rather than orthogonal to the fitted plane, which are to
be minimized (see Section 8.6), but the low-variance PCs can nevertheless
be used to suggest low-variability relationships between y and the predic-
tor variables. Hawkins (1973) goes further by suggesting that it may be
more fruitful to look at rotated versions of the PCs, instead of the PCs
themselves, in order to indicate low-variance relationships. This is done
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by rescaling and then using varimax rotation (see Chapter 7), which has
the effect of transforming the PCs to a different set of uncorrelated vari-
ables. These variables are, like the PCs, linear functions of the original
(p + 1) variables, but their coefficients are mostly close to zero or a long
way from zero, with relatively few intermediate values. There is no guaran-
tee, in general, that any of the new variables will have particularly large or
particularly small variances, as they are chosen by simplicity of structure
of their coefficients, rather than for their variance properties. However, if
only one or two of the coefficients for y are large, as should often happen
with varimax rotation, then Hawkins (1973) shows that the corresponding
transformed variables will have very small variances, and therefore suggest
low-variance relationships between y and the predictor variables. Other
possible regression equations may be found by substitution of one subset of
predictor variables in terms of another, using any low-variability relation-
ships between predictor variables that are suggested by the other rotated
PCs.

The above technique is advocated by Hawkins (1973) and by Jeffers
(1981) as a means of selecting which variables should appear in the regres-
sion equation (see Section 8.5), rather than as a way of directly estimating
their coefficients in the regression equation, although the technique could
be used for the latter purpose. Daling and Tamura (1970) also discussed
rotation of PCs in the context of variable selection, but their PCs were for
the predictor variables only.

In a later paper, Hawkins and Eplett (1982) propose another variant of la-
tent root regression one which can be used to efficiently find low-variability
relationships between y and the predictor variables, and which also can be
used in variable selection. This method replaces the rescaling and varimax
rotation of Hawkins’ earlier method by a sequence of rotations leading to
a set of relationships between y and the predictor variables that are sim-
pler to interpret than in the previous method. This simplicity is achieved
because the matrix of coefficients defining the relationships has non-zero
entries only in its lower-triangular region. Despite the apparent complexity
of the new method, it is also computationally simple to implement. The
covariance (or correlation) matrix ¥ of y and all the predictor variables is
factorized using a Cholesky factorization

> = DD/,
where D is lower-triangular. Then the matrix of coefficients defining the
relationships is proportional to D™, which is also lower-triangular. To find
D it is not necessary to calculate PCs based on 32, which makes the links
between the method and PCA rather more tenuous than those between
PCA and latent root regression. The next section discusses variable selec-
tion in regression using PCs, and because all three variants of latent root

regression described above can be used in variable selection, they will all
be discussed further in that section.
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Another variation on the idea of PC regression has been used in several
meteorological examples in which a multivariate (rather than multiple)
regression analysis is appropriate, that is, where there are several dependent
variables as well as regressor variables. Here PCA is performed on the
dependent variables and, separately, on the predictor variables. A number
of PC regressions are then carried out with, as usual, PCs of predictor
variables in place of the predictor variables but, in each regression, the
dependent variable is now one of the high variance PCs of the original set
of dependent variables. Preisendorfer and Mobley (1988, Chapter 9) discuss
this set-up in some detail, and demonstrate links between the results and
those of canonical correlation analysis (see Section 9.3) on the two sets
of variables. Briffa et al. (1986) give an example in which the dependent
variables are mean sea level pressures at 16 grid-points centred on the
UK and France, and extending from 45°-60°N, and from 20°W-10°E. The
predictors are tree ring widths for 14 oak ring width chronologies from the
UK and Northern France. They transform the relationships found between
the two sets of PCs back into relationships between the original sets of
variables and present the results in map form.

The method is appropriate if the prediction of high-variance PCs of the
dependent variables is really of interest, in which case another possibil-
ity is to regress PCs of the dependent variables on the original predictor
variables. However, if overall optimal prediction of linear functions of de-
pendent variables from linear functions of predictor variables is required,
then canonical correlation analysis (see Section 9.3; Mardia et al., 1979,
Chapter 10; Rencher, 1995, Chapter 11) is more suitable. Alternatively,
if interpretable relationships between the original sets of dependent and
predictor variables are wanted, then multivariate regression analysis or a
related technique (see Section 9.3; Mardia et al., 1979, Chapter 6; Rencher,
1995, Chapter10) may be the most appropriate technique.

The so-called PLS (partial least squares) method provides yet another
biased regression approach with links to PC regression. The method has
a long and complex history and various formulations (Geladi, 1988; Wold,
1984). It has often been expressed only in terms of algorithms for its im-
plementation, which makes it difficult to understand exactly what it does.
A number of authors, for example, Garthwaite (1994) and Helland (1988,
1990), have given interpretations that move away from algorithms towards
a more model-based approach, but perhaps the most appealing interpre-
tation from a statistical point of view is that given by Stone and Brooks
(1990). They show that PLS is equivalent to successively finding linear
functions of the predictor variables that have maximum covariance with
the dependent variable, subject to each linear function being uncorrelated
with previous ones. Whereas PC regression in concerned with variances de-
rived from X, and least squares regression maximizes correlations between
y and X, PLS combines correlation and variance to consider covariance.
Stone and Brooks (1990) introduce a general class of regression procedures,
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called continuum regression, in which least squares and PC regression are
two extremes of the class, and PLS lies halfway along the continuum in
between them. As well as different algorithms and interpretations, PLS is
sometimes known by a quite different name, albeit with the same acronym,
in the field of statistical process control (see Section 13.7). Martin et al.
(1999), for example, refer to it as ‘projection to latent structure.’

Lang et al. (1998) define another general class of regression estimates,
called cyclic subspace regression, which includes both PC regression and
PLS as special cases. The nature of the special cases within this framework
shows that PLS uses information from the directions of all the eigenvectors
of X'X, whereas PC regression, by definition, uses information from only
a chosen subset of these directions.

Naes and Helland (1993) propose a compromise between PC regres-
sion and PLS, which they call restricted principal component regression
(RPCR). The motivation behind the method lies in the idea of components
(where ‘component’ means any linear function of the predictor variables x)
or subspaces that are ‘relevant’ for predicting y. An m-dimensional sub-
space M in the space of the predictor variables is strongly relevant if the
linear functions of x defining the (p — m)-dimensional subspace M, or-
thogonal to M, are uncorrelated with y and with the linear functions of
x defining M. Using this definition, if an m-dimensional relevant subspace
exists it can be obtained by taking the first component found by PLS as the
first component in this subspace, followed by (m — 1) components, which
can be considered as PCs in the space orthogonal to the first PLS com-
ponent. Naes and Helland (1993) show, in terms of predictive ability, that
when PC regression and PLS differ considerably in performance, RPCR
tends to be close to the better of the two. Asymptotic comparisons be-
tween PLS, RPCR and PC regression (with M restricted to contain the
first m integers) are made by Helland and Almgy (1994). Their conclusions
are that PLS is preferred in many circumstances, although in some cases
PC regression is a better choice.

A number of other comparisons have been made between least squares,
PC regression, PLS and other biased regression techniques, and adapta-
tions involving one or more of the biased methods have been suggested.
A substantial proportion of this literature is in chemometrics, in particu-
lar concentrating on the analysis of spectroscopic data. Naes et al. (1986)
find that PLS tends to be superior to PC regression, although only the
rule based on (8.1.10) is considered for PC regression. For near infrared
spectroscopy data, the researchers also find that results are improved by
pre-processing the data using an alternative technique which they call mul-
tiple scatter correction, rather than simple centering. Frank and Friedman
(1993) give an extensive comparative discussion of PLS and PC regres-
sion, together with other strategies for overcoming the problems caused by
multicollinearity. From simulations and other considerations they conclude
that the two techniques are superior to variable selection but inferior to
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ridge regression, although this latter conclusion is disputed by S. Wold in
the published discussion that follows the article.

Naes and Isaksson (1992) use a locally weighted version of PC regression
in the calibration of spectroscopic data. PCA is done on the predictor
variables, and to form a predictor for a particular observation only the k
observations closest to the chosen observation in the space of the first m
PCs are used. These k observations are given weights in a regression of the
dependent variable on the first m PCs whose values decrease as distance
from the chosen observation increases. The values of m and k are chosen
by cross-validation, and the technique is shown to outperform both PC
regression and PLS.

Bertrand et al. (2001) revisit latent root regression, and replace the PCA
of the matrix of (p + 1) variables formed by y together with X by the
equivalent PCA of y together with the PC scores Z. This makes it easier
to identify predictive and non-predictive multicollinearities, and gives a
simple expression for the MSE of the latent root estimator. Bertrand et al.
(2001) present their version of latent root regression as an alternative to
PLS or PC regression for near infrared spectroscopic data.

Marx and Smith (1990) extend PC regression from linear models to gen-
eralized linear models. Straying further from ordinary PCA, Li et al. (2000)
discuss principal Hessian directions, which utilize a variety of generalized
PCA (see Section 14.2.2) in a regression context. These directions are used
to define splits in a regression tree, where the objective is to find directions
along which the regression surface ‘bends’ as much as possible. A weighted
covariance matrix Sy, is calculated for the predictor variables, where the
weights are residuals from a multiple regression of y on all the predictor
variables. Given the (unweighted) covariance matrix S, their derivation of
the first principal Hessian direction is equivalent to finding the first eigen-
vector in a generalized PCA of Sy with metric Q = S™! and D = %In, in
the notation of Section 14.2.2.

8.5 Variable Selection in Regression Using
Principal Components

Principal component regression, latent root regression, and other biased re-
gression estimates keep all the predictor variables in the model, but change
the estimates from least squares estimates in a way that reduces the ef-
fects of multicollinearity. As mentioned in the introductory section of this
chapter, an alternative way of dealing with multicollinearity problems is to
use only a subset of the predictor variables. Among the very many possible
methods of selecting a subset of variables, a few use PCs.

As noted in the previous section, the procedures due to Hawkins (1973)
and Hawkins and Eplett (1982) can be used in this way. Rotation of the PCs
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produces a large number of near-zero coefficients for the rotated variables,
so that in low-variance relationships involving y (if such low-variance rela-
tionships exist) only a subset of the predictor variables will have coefficients
substantially different from zero. This subset forms a plausible selection of
variables to be included in a regression model. There may be other low-
variance relationships between the predictor variables alone, again with
relatively few coefficients far from zero. If such relationships exist, and in-
volve some of the same variables as are in the relationship involving vy,
then substitution will lead to alternative subsets of predictor variables.
Jeffers (1981) argues that in this way it is possible to identify all good sub-
regressions using Hawkins’ (1973) original procedure. Hawkins and Eplett
(1982) demonstrate that their newer technique, incorporating Cholesky fac-
torization, can do even better than the earlier method. In particular, for an
example that is analysed by both methods, two subsets of variables selected
by the first method are shown to be inappropriate by the second.

Principal component regression and latent root regression may also be
used in an iterative manner to select variables. Consider, first, PC regression
and suppose that 3 given by (8.1.12) is the proposed estimator for 3.
Then it is possible to test whether or not subsets of the elements of /é are
significantly different from zero, and those variables whose coefficients are
found to be not significantly non-zero can then be deleted from the model.
Mansfield et al. (1977), after a moderate amount of algebra, construct the
appropriate tests for estimators of the form (8.1.10), that is, where the
PCs deleted from the regression are restricted to be those with the smallest
variances. Provided that the true coefficients of the deleted PCs are zero
and that normality assumptions are valid, the appropriate test statistics
are F-statistics, reducing to t-statistics if only one variable is considered at
a time. A corresponding result will also hold for the more general form of
estimator (8.1.12).

Although the variable selection procedure could stop at this stage, it may
be more fruitful to use an iterative procedure, similar to that suggested by
Jolliffe (1972) for variable selection in another (non-regression) context (see
Section 6.3, method (i)). The next step in such a procedure is to perform
a PC regression on the reduced set of variables, and then see if any further
variables can be deleted from the reduced set, using the same reasoning
as before. This process is repeated, until eventually no more variables are
deleted. Two variations on this iterative procedure are described by Mans-
field et al. (1977). The first is a stepwise procedure that first looks for the
best single variable to delete, then the best pair of variables, one of which is
the best single variable, then the best triple of variables, which includes the
best pair, and so on. The procedure stops when the test for zero regression
coeflicients on the subset of excluded variables first gives a significant result.
The second variation is to delete only one variable at each stage, and then
recompute the PCs using the reduced set of variables, rather than allowing
the deletion of several variables before the PCs are recomputed. According
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to Mansfield et al. (1977) this second variation gives, for several examples,
an improved performance for the selected variables compared with subsets
selected by the other possibilities. Only one example is described in detail
in their paper, and this will be discussed further in the final section of
the present chapter. In this example, they adapt their method still further
by discarding a few low variance PCs before attempting any selection of
variables.

A different iterative procedure is described by Boneh and Mendieta
(1994). The method works on standardized variables, and hence on the
correlation matrix. The first step is to do a PC regression and choose M
to contain those PCs that contribute significantly to the regression. Signif-
icance is judged mainly by the use of t-tests. However, a modification is
used for the PCs with the smallest variance, as Mason and Gunst (1985)
have shown that t-tests have reduced power for such PCs.

Each of the p predictor variables is then regressed on the PCs in M,
and the variable with the smallest residual sum of squares is selected. At
subsequent stages in the iteration, suppose that a set Q of ¢ variables has
been selected and that Q is the complement of Q, consisting of (p — q)
variables. The variables in Q are individually regressed on all the variables
in Q, and a vector of residuals is found for each variable in Q. Principal
components are then found for the (p — ¢) residual variables and the de-
pendent variable y is regressed on these (p — ¢q) PCs, together with the
q variables in Q. If none of the PCs contributes significantly to this re-
gression, the procedure stops. Otherwise, each of the residual variables is
regressed on the significant PCs, and the variable is selected for which the
residual sum of squares is smallest. As well as these forward selection steps,
Boneh and Mendieta’s (1994) procedure includes backward looks, in which
previously selected variables can be deleted from (and never allowed to re-
turn to) Q. Deletion of a variable occurs if its contribution is sufficiently
diminished by the later inclusion of other variables. Boneh and Mendieta
(1994) claim that, using cross-validation, their method often does better
than its competitors with respect to prediction error.

A similar procedure to that of Mansfield et al. (1977) for PC regression
can be constructed for latent root regression, this time leading to approxi-
mate F-statistics (see Gunst and Mason (1980, p. 339)). Such a procedure
is described and illustrated by Webster et al. (1974) and Gunst et al. (1976).

Baskerville and Toogood (1982) also suggest that the PCs appearing in
latent root regression can be used to select subsets of the original predictor
variables. Their procedure divides the predictor variables into four groups
on the basis of their coeflicients in the PCs, where each of the groups has
a different degree of potential usefulness in the regression equation. The
first group of predictor variables they define consists of ‘isolated’ variables,
which are virtually uncorrelated with y and with all other predictor vari-
ables; such variables can clearly be deleted. The second and third groups
contain variables that are involved in nonpredictive and predictive multi-
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collinearities, respectively; those variables in the second group can usually
be excluded from the regression analysis, whereas those in the third group
certainly cannot. The fourth group simply consists of variables that do not
fall into any of the other three groups. These variables may or may not
be important in the regression, depending on the purpose of the analysis
(for example, prediction or identification of structure) and each must be
examined individually (see Baskerville and Toogood (1982) for an example).

A further possibility for variable selection is based on the idea of associ-
ating a variable with each of the first few (last few) components and then
retaining (deleting) those variables associated with the first few (last few)
PCs. This procedure was described in a different context in Section 6.3,
and it is clearly essential to modify it in some way for use in a regression
context. In particular, when there is not a single clear-cut choice of which
variable to associate with a particular PC, the choice should be determined
by looking at the strength of the relationships between the candidate vari-
ables and the dependent variable. Great care is also necessary to avoid
deletion of variables that occur in a predictive multicollinearity.

Daling and Tamura (1970) adopt a modified version of this type of ap-
proach. They first delete the last few PCs, then rotate the remaining PCs
using varimax, and finally select one variable associated with each of those
rotated PCs which has a ‘significant’ correlation with the dependent vari-
able. The method therefore takes into account the regression context of the
problem at the final stage, and the varimax rotation increases the chances
of an unambiguous choice of which variable to associate with each rotated
PC. The main drawback of the approach is in its first stage, where dele-
tion of the low-variance PCs may discard substantial information regarding
the relationship between y and the predictor variables, as was discussed in
Section 8.2.

8.6 Functional and Structural Relationships

In the standard regression framework, the predictor variables are implicitly
assumed to be measured without error, whereas any measurement error in
the dependent variable y can be included in the error term e. If all the
variables are subject to measurement error the problem is more compli-
cated, even when there is only one predictor variable, and much has been
written on how to estimate the so-called functional or structural relation-
ships between the variables in such cases (see, for example, Kendall and
Stuart (1979, Chapter 29); Anderson (1984); Cheng and van Ness (1999)).
The term ‘functional and structural relationships’ seems to have gone out
of fashion, but there are close connections to the ‘errors-in-variables’ mod-
els from econometrics (Darnell, 1994) and to some of the approaches of
Section 9.3.
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Consider the case where there are (p+1) variables zo, 1, 22, ..., x, that
have a linear functional relationship (Kendall and Stuart, 1979, p. 416)

P
Zﬁjxj = const (8.6.1)

Jj=0

between them, but which are all subject to measurement error, so that we
actually have observations on &p, &1, &2, . .. ,&p, wWhere

gj:xj+ej7 j:071727"‘7p7

and e; is a measurement error term. The distinction between ‘functional’
and ‘structural’ relationships is that 1,2, ..., x, are taken as fixed in the
former but are random variables in the latter. We have included (p + 1)
variables in order to keep a parallel with the case of linear regression with
dependent variable y and p predictor variables x1, 22, ..., x}, but there is no
reason here to treat any one variable differently from the remaining p. On
the basis of n observations on &;, j = 0,1,2,...,p, we wish to estimate the
coefficients By, 81, . . . Bp in the relationship (8.6.1). If the e; are assumed to
be normally distributed, and (the ratios of) their variances are known, then
maximum likelihood estimation of 3y, 81, ..., B, leads to the coefficients of
the last PC from the covariance matrix of &y/009,&1/01,...,&p/0p, Where
crj2- = var(e;). This holds for both functional and structural relationships. If
there is no information about the variances of the e;, and the z; are distinct,
then no formal estimation procedure is possible, but if it is expected that
the measurement errors of all (p + 1) variables are of similar variability,
then a reasonable procedure is to use the last PC of &,&1,...,&p.

If replicate observations are available for each x;, they can be used to
estimate var(e;). In this case, Anderson (1984) shows that the maximum
likelihood estimates for functional, but not structural, relationships are
given by solving an eigenequation, similar to a generalized PCA in which
the PCs of between-z; variation are found with respect to a metric based
on within-z; variation (see Section 14.2.2). Even if there is no formal re-
quirement to estimate a relationship such as (8.6.1), the last few PCs are
still of interest in finding near-constant linear relationships among a set of
variables, as discussed in Section 3.4.

When the last PC is used to estimate a ‘best-fitting’ relationship between
a set of (p + 1) variables, we are finding the p-dimensional hyperplane for
which the sum of squares of perpendicular distances of the observations
from the hyperplane is minimized. This was, in fact, one of the objectives of
Pearson’s (1901) original derivation of PCs (see Property G3 in Section 3.2).
By contrast, if one of the (p + 1) variables y is a dependent variable and
the remaining p are predictor variables, then the ‘best-fitting’ hyperplane,
in the least squares sense, minimizes the sum of squares of the distances
in the y direction of the observations from the hyperplane and leads to a
different relationship.
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A different way of using PCs in investigating structural relationships
is illustrated by Rao (1964). In his example there are 20 variables corre-
sponding to measurements of ‘absorbance’ made by a spectrophotometer
at 20 different wavelengths. There are 54 observations of the 20 variables,
corresponding to nine different spectrophotometers, each used under three
conditions on two separate days. The aim is to relate the absorbance mea-
surements to wavelengths; both are subject to measurement error, so that
a structural relationship, rather than straightforward regression analysis, is
of interest. In this example, the first PCs, rather than the last, proved to be
useful in investigating aspects of the structural relationship. Examination
of the values of the first two PCs for the 54 observations identified sys-
tematic differences between spectrophotometers in the measurement errors
for wavelength. Other authors have used similar, but rather more compli-
cated, ideas based on PCs for the same type of data. Naes (1985) refers to
the problem as one of multivariate calibration (see also Martens and Naes
(1989)) and investigates an estimate (which uses PCs) of some chemical
or physical quantity, given a number of spectrophotometer measurements.
Sylvestre et al. (1974) take as their objective the identification and estima-
tion of mixtures of two or more overlapping curves in spectrophotometry,
and again use PCs in their procedure.

8.7 Examples of Principal Components in
Regression

Early examples of PC regression include those given by Kendall (1957,
p. 71), Spurrell (1963) and Massy (1965). Examples of latent root regres-
sion in one form or another, and its use in variable selection, are given by
Gunst et al. (1976), Gunst and Mason (1977b), Hawkins (1973), Baskerville
and Toogood (1982) and Hawkins and Eplett (1982). In Gunst and Mason
(1980, Chapter 10) PC regression, latent root regression and ridge regres-
sion are all illustrated, and can therefore be compared, for the same data
set. In the present section we discuss two examples illustrating some of the
techniques described in this chapter.

8.7.1 Pitprop Data

No discussion of PC regression would be complete without the example
given originally by Jeffers (1967) concerning strengths of pitprops, which
has since been analysed by several authors. The data consist of 14 vari-
ables which were measured for each of 180 pitprops cut from Corsican pine
timber. The objective is to construct a prediction equation for one of the
variables (compressive strength y) using the values of the other 13 variables.
These other 13 variables are physical measurements on the pitprops that
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could be measured fairly straightforwardly without destroying the props.
The variables are listed by Jeffers (1967, 1981) and the correlation matrix
for all 14 variables is reproduced in Table 8.2. In his original paper, Jeffers
(1967) used PC regression to predict y from the 13 variables. The coef-
ficients of the variables for each of the PCs are given in Table 8.3. The
pattern of correlations in Table 8.2 is not easy to interpret; nor is it sim-
ple to deduce the form of the first few PCs from the correlation matrix.
However, Jeffers (1967) was able to interpret the first six PCs.

Also given in Table 8.3 are variances of each component, the percentage
of total variation accounted for by each component, the coefficients 7, in
a regression of y on the PCs, and the values of t-statistics measuring the
importance of each PC in the regression.

Judged solely on the basis of size of variance it appears that the last
three, or possibly four, PCs should be deleted from the regression. However,
looking at values of 7y, and the corresponding t-statistics, it can be seen that
the twelfth component is relatively important as a predictor of y, despite
the fact that it accounts for only 0.3% of the total variation in the predictor
variables. Jeffers (1967) only retained the first, second, third, fifth and sixth
PCs in his regression equation, whereas Mardia et al. (1979, p. 246) suggest
that the seventh, eighth and twelfth PCs should also be included.

This example has been used by various authors to illustrate techniques
of variable selection, and some of the results are given in Table 8.4. Jeffers
(1981) used Hawkins’ (1973) variant of latent root regression to select sub-
sets of five, six or seven regressor variables. After varimax rotation, only
one of the rotated components has a substantial coefficient for compressive
strength, y. This rotated component has five other variables that have large
coefficients, and it is suggested that these should be included in the regres-
sion equation for y; two further variables with moderate coefficients might
also be included. One of the five variables definitely selected by this method
is quite difficult to measure, and one of the other rotated components sug-
gests that it can be replaced by another, more readily measured, variable.
However, this substitution causes a substantial drop in the squared multiple
correlation for the five-variable regression equation, from 0.695 to 0.581.

Mansfield et al. (1977) used an iterative method based on PC regression
and described above in Section 8.5, to select a subset of variables for these
data. The procedure is fairly lengthy as only one variable is deleted at each
iteration, but the F'-criterion used to decide whether to delete an extra
variable jumps from 1.1 to 7.4 between the fifth and sixth iterations, giving
a clear-cut decision to delete five variables, that is to retain eight variables.
The iterative procedure of Boneh and Mendieta (1994) also selects eight
variables. As can be seen from Table 8.4, these eight-variable subsets have
a large degree of overlap with the subsets found by Jeffers (1981).

Jolliffe (1973) also found subsets of the 13 variables, using various meth-
ods, but the variables in this case were chosen to reproduce the relationships
between the regressor variables, rather than to predict y as well as possi-
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Table 8.2. Correlation matrix for the pitprop data.

TOPDIAM
0.954
0.364
0.342

—-0.129
0.313
0.496
0.424
0.592
0.545
0.084

—-0.019
0.134

—0.419

LENGTH
0.297
0.284

—0.118
0.291
0.503
0.419
0.648
0.569
0.076

—0.036
0.144

—0.338

MOIST
0.882
—0.148
0.153
—0.029
—0.054
0.125
—0.081
0.162
0.220
0.126
—0.728

TESTSG
0.220
0.381
0.174

—0.059
0.137

—-0.014
0.097
0.169
0.015

—0.543

OVENSG
0.364
0.296
0.004

—0.039
0.037
0.091

—0.145

—0.208
0.247

RINGTOP
0.813
0.090
0.211
0.274

—0.036
0.024
—-0.329
0.117

RINGBUT
0.372
0.465
0.679
—0.113
—0.232
—0.424

0.110

BOWMAX
0.482
0.557
0.061

—0.357
—0.202
—0.253

BOWDIST
0.526
0.085

—-0.127
—0.076
—0.235

WHORLS
—0.319
—0.368
—0.291
—0.101

CLEAR
0.029
0.007

—0.055

KNOTS

0.184 DIAKNOT

—-0.117

—0.153

STRENGTH
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Table 8.3. Principal component regression for the pitprop data: coefficients, variances, regression coefficients and t¢-statistics for each
component.

Principal component

1 2 3 4 5 6 7 8 9 10 11 12 13
1 -0.40 0.22 -0.21 -0.09 —-0.08 0.12 -0.11 0.14 033 —-0.31 0.00 0.39 —0.57
T -0.41 0.19 -0.24 -0.10 —-0.11 0.16 —-0.08 0.02 0.32 —-0.27 —0.05 —0.41 0.58
T3 —-0.12 054 0.14 0.08 0.35 —0.28 —-0.02 0.00 —0.08 0.06 0.12 0.53 0.41
Ty —-0.17 046 035 0.05 036 —-0.05 0.08 —0.02 —-0.01 0.10 —0.02 —0.59 -0.38
T5 -0.06 —0.17 048 0.05 0.18 063 042 —-0.01 0.28 —0.00 0.01 0.20 0.12
Tg fg -0.28 —-0.01 048 -0.06 —-0.32 0.05 —-0.30 0.15 —0.41 —-0.10 —0.54 0.08 0.06
Ty s -0.40 —-0.19 0.25 -0.0r —0.22 0.00 —-0.23 0.01 —-0.13 0.19 0.76 —0.04 0.00
T % -0.29 -0.19 -0.24 029 0.19 -0.06 040 0.64 —-0.35 —0.08 0.03 —0.05 0.02
9 | S -0.36 0.02 -0.21 0.10 —-0.10 0.03 0.40 —-0.70 —0.38 —0.06 —0.05 0.05 —0.06
T10 -0.38 —-0.25 -0.12 -0.21 0.16 —-0.17 0.00 —0.01 0.27 0.71 —-0.32 0.06 0.00
T11 0.01 0.21 -0.07r 0.80 —-0.34 0.18 —-0.14 0.01 0.15 0.3¢4 —0.05 0.00 —0.01
T12 0.12 034 0.09 —-0.30 —0.60 —-0.17 054 021 0.08 0.19 0.05 0.00 0.00
T13 0.11 031 -0.33 —-0.30 0.08 0.63 —-0.16 0.11 -0.38 0.33 0.04 0.01 —-0.01
Variance 422 238 18 111 091 082 058 044 035 0.19 0.05 004 0.04
% of total
variance 325 183 144 8.5 7.0 6.3 4.4 3.4 2.7 1.5 0.4 0.3 0.3
Regression

coefficient v,  0.13 —-0.37 0.13 -0.05 —-0.39 0.27 —-0.24 -0.17 0.03 0.00 —-0.12 —1.05 0.00
t-value 68.6 14.39 438 126 9.23 6.19 450 281 046 0.00 064 526 0.01
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Table 8.4. Variable selection using various techniques on the pitprop data. (Each
row corresponds to a selected subset with x denoting a selected variable.)

Variables
1 2 3 4 5 6 7 8 9 10 11 12 13

Five variables

Jeffers (1981) X X X X X
X X X X X
McCabe (1982) X X X X X
X X X X X
X X X X X
X X X X X
Six variables
Jeffers (1981) X X X XX X
McCabe (1982) X X X X X X
Jolliffe (1973) X X X X X X
X X X X X X
{ McCabe (1982) y i i X i i z
Jolliffe (1973)
X X X X X X
Eight variables
Mansfield et al. X X X X X X X X
(1977)
Boneh and X X X X X X X X

Mendieta (1994)

ble. McCabe (1982), using a technique related to PCA (see Section 6.3),
and with a similar purpose to Jolliffe’s (1973) methods, chose subsets of
various sizes. McCabe’s subsets in Table 8.4 are the best few with re-
spect to a single criterion, whereas Jolliffe gives the single best subset but
for several different methods. The best subsets due to Jolliffe (1973) and
McCabe (1982) have considerable overlap with each other, but there are
substantial differences from the subsets of Jeffers (1981) and Mansfield et
al. (1977). This reflects the different aims of the different selection methods.
It shows again that substantial variation within the set of regressor vari-
ables does not necessarily imply any relationship with y and, conversely,
that variables having little correlation with the first few PCs can still be
important in predicting y. Interestingly, the subset chosen by Boneh and
Mendieta (1994) overlaps less with Jeffers’ (1981) selection than that of
Mansfield et al. (1977), but more than do those of Jolliffe (1973) or McCabe
(1982).
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Table 8.5. Variables used in the household formation example.

Z
o

Sl IR E A i ol el B

Description

Population in non-private establishments

Population age 0-14

Population age 15-44

Population age 60/65+

Females currently married

Married males 15-29

Persons born ex UK

Average population increase per annum (not births and deaths)
9. Persons moved in previous 12 months

10. Households in owner occupation

11. Households renting from Local Authority

12.  Households renting private unfurnished

13.  Vacant dwellings

14.  Shared dwellings

15.  Households over one person per room

16. Households with all exclusive amenities

17.  Ratio households to rateable units

18.  Domestic rateable value (£) per head

19. Rateable units with rateable value < £100

20. Students age 15+

21. Economically active married females

22.  Unemployed males seeking work

23.  Persons employed in agriculture

24.  Persons employed in mining and manufacturing

25.  Males economically active or retired in socio-economic

group 1, 2, 3, 4, 13
26. Males economically active or retired in socio-economic
group 5, 6, 8, 9, 12, 14

27.  With degrees (excluding students with degree)

28.  Economically active males socio-economic group 3, 4

29. Average annual total income (£) per adult

8.7.2 Household Formation Data

This example uses part of a data set that arose in a study of household
formation. The subset of data used here has 29 demographic variables mea-
sured in 1971 for 168 local government areas in England and Wales. The
variables are listed in Table 8.5. All variables, except numbers 17, 18 and
29, are expressed as numbers per 1000 of population; precise definitions of
each variable are given in Appendix B of Bassett et al. (1980).
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Table 8.6. Eigenvalues of the correlation matrix and order of importance in
predicting y for the household formation data.

PC Eigenvalue Order of PC Eigenvalue Order of
number importance  number importance
in predicting y in predicting y
1 8.62 1 15 0.24 17
2 6.09 4 16 0.21 25
3 3.40 2 17 0.18 16
4 2.30 8 18 0.14 10
5 1.19 9 19 0.14 7
6 1.06 3 20 0.10 21
7 0.78 13 21 0.10 28
8 0.69 22 22 0.07 6
9 0.58 20 23 0.07 18
10 0.57 5 24 0.05 12
11 0.46 11 25 0.04 14
12 0.36 15 26 0.03 27
13 0.27 24 27 0.02 19
14 0.25 23 28 0.003 26

Although this was not the purpose of the original project, the objective
considered here is to predict the final variable (average annual total income
per adult) from the other 28. This objective is a useful one, as information
on income is often difficult to obtain accurately, and predictions from other,
more readily available, variables would be valuable. The results presented
below were given by Garnham (1979) in an unpublished M.Sc. disserta-
tion, and further details of the regression analysis can be found in that
source. A full description of the project from which the data are taken is
available in Bassett et al. (1980). Most regression problems with as many
as 28 regressor variables have multicollinearities, and the current example
is no exception. Looking at the list of variables in Table 8.5 it is clear,
even without detailed definitions, that there are groups of variables that
are likely to be highly correlated. For example, several variables relate to
type of household, whereas another group of variables considers rates of
employment in various types of job. Table 8.6, giving the eigenvalues of the
correlation matrix, confirms that there are multicollinearities; some of the
eigenvalues are very small.

Consider now PC regression and some of the strategies that can be used
to select a subset of PCs to be included in the regression. Deleting compo-
nents with small variance, with a cut-off of about [* = 0.10, implies that
between seven and nine components can be left out. Sequential deletion
of PCs with the smallest variances using t-statistics at each stage suggests
that only six PCs can be deleted. However, from the point of view of R2,
the squared multiple correlation coefficient, deletion of eight or more might
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be acceptable; R? is 0.874 for the full model including all 28 variables, and
it is reduced to 0.865, 0.851, respectively, when five and eight components
are deleted.

It is interesting to examine the ordering of size of correlations between y
and the PCs, or equivalently the ordering of the individual ¢-values, which
is also given in Table 8.6. It is seen that those PCs with small variances do
not necessarily have small correlations with y. The 18th, 19th and 22nd in
size of variance are in the first ten in order of importance for predicting y; in
particular, the 22nd PC with variance 0.07, has a highly significant ¢-value,
and should almost certainly be retained.

An approach using stepwise deletion based solely on the size of corre-
lation between y and each PC produces, because of the zero correlations
between PCs, the subset whose value of R? is maximized for any given
subset size. Far fewer PCs need to be retained using this approach than
the 20 to 23 indicated when only small-variance components are rejected.
In particular, if the 10 PCs are retained that best predict y, then R? is
0.848, compared with 0.874 for the full model and 0.851 using the first 20
PCs. It would appear that a strategy based solely on size of variance is
unsatisfactory.

The two ‘weak MSE’ criteria described in Section 8.2 were also tested, in
a limited way, on these data. Because of computational constraints it was
not possible to find the overall ‘best’ subset M, so a stepwise approach was
adopted, deleting PCs according to either size of variance, or correlation
with y. The first criterion selected 22 PCs when selection was based on
size of variance, but only 6 PCs when correlation with y was the basis for
stepwise selection. The corresponding results for the second (predictive)
criterion were 24 and 12 PCs, respectively. It is clear, once again, that
selection based solely on order of size of variance retains more components
than necessary but may still miss predictive components.

The alternative approach of Lott (1973) was also investigated for these
data in a stepwise manner using correlation with y to determine order of
selection, with the result that R? was maximized for 19 PCs. This is a
substantially larger number than indicated by those other methods that
use correlation with y to define order of selection and, given the concensus
from the other methods, suggests that Lott’s (1973) method is not ideal.

When PCs are found for the augmented set of variables, including y and
all the regressor variables, as required for latent root regression, there is
remarkably little change in the PCs, apart from the addition of an extra one.
All of the coefficients on the regressor variables are virtually unchanged,
and the PCs that have largest correlation with y are in very nearly the
same order as in the PC regression.

It may be of more interest to select a subset of variables, rather than a
subset of PCs, to be included in the regression, and this was also attempted,
using various methods, for the household formation data. Variable selec-
tion based on PC regression, deleting just one variable at a time before
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recomputing the PCs as suggested by Mansfield et al. (1977), indicated
that only 12, and possibly fewer, variables need to be retained. R? for the
12-variable subset given by this method is 0.862, and it only drops to 0.847
for the 8-variable subset, compared with 0.874 for the full model and 0.851
using the first 20 PCs in the regression. Other variable selection methods,
described by Jolliffe (1972) and in Section 6.3, were also tried, but these did
not produce quite such good results as the Mansfield et al. (1977) method.
This is not surprising since, as noted in the previous example, they are not
specifically tailored for variable selection in the context of regression. How-
ever, they did confirm that only eight to ten variables are really necessary
in order to provide an adequate prediction of ‘income’ for these data.



9

Principal Components Used with
Other Multivariate Techniques

Principal component analysis is often used as a dimension-reducing tech-
nique within some other type of analysis. For example, Chapter 8 described
the use of PCs as regressor variables in a multiple regression analysis. The
present chapter discusses three classes of multivariate techniques, namely
discriminant analysis, cluster analysis and canonical correlation analysis;
for each these three there are examples in the literature that use PCA as
a dimension-reducing technique.

Discriminant analysis is concerned with data in which each observation
comes from one of several well-defined groups or populations. Assumptions
are made about the structure of the populations, and the main objective
is to construct rules for assigning future observations to one of the popula-
tions so as to minimize the probability of misclassification or some similar
criterion. As with regression, there can be advantages in replacing the vari-
ables in a discriminant analysis by their principal components. The use
of PCA in this way in linear discriminant analysis is discussed in Section
9.1. In addition, the section includes brief descriptions of other discrimi-
nant techniques that use PCs, and discussion of links between PCA and
canonical discriminant analysis.

Cluster analysis is one of the most frequent contexts in which PCs are
derived in order to reduce dimensionality prior to the use of a different
multivariate technique. Like discriminant analysis, cluster analysis deals
with data sets in which the observations are to be divided into groups.
However, in cluster analysis little or nothing is known a priori about the
groups, and the objective is to divide the given observations into groups or
clusters in a ‘sensible’ way. There are two main ways in which PCs are em-
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ployed within cluster analysis: to construct distance measures or to provide
a graphical representation of the data; the latter is often called ordination
or scaling (see also Section 5.1) and is useful in detecting or verifying a
cluster structure. Both roles are described and illustrated with examples
in Section 9.2. The idea of clustering variables rather than observations
is sometimes useful, and a connection between PCA and this idea is de-
scribed. Also discussed in Section 9.2 are projection pursuit, which searches
for clusters using techniques bearing some resemblance to PCA, and the
construction of models for clusters which are mixtures of the PC model
introduced in Section 3.9.

‘Discriminant analysis’ and ‘cluster analysis’ are standard statistical
terms, but the techniques may be encountered under a variety of other
names. For example, the word ‘classification’ is sometimes used in a broad
sense, including both discrimination and clustering, but it also has more
than one specialized meaning. Discriminant analysis and cluster analysis
are prominent in both the pattern recognition and neural network liter-
atures, where they fall within the areas of supervised and unsupervised
learning, respectively (see, for example, Bishop (1995)). The relatively new,
but large, field of data mining (Hand et al. 2001; Witten and Frank, 2000)
also includes ‘clustering methods. . . [and] supervised classification methods
in general. ..’ (Hand, 1998).

The third, and final, multivariate technique discussed in this chapter, in
Section 9.3, is canonical correlation analysis. This technique is appropriate
when the vector of random variables x is divided into two parts, xp,,Xp,,
and the objective is to find pairs of linear functions of x,, and x,,, respec-
tively, such that the correlation between the linear functions within each
pair is maximized. In this case the replacement of x,,,, x,, by some or all
of the PCs of x,,,, x;,, respectively, has been suggested in the literature. A
number of other techniques linked to PCA that are used to investigate rela-
tionships between two groups of variables are also discussed in Section 9.3.
Situations where more than two groups of variables are to be analysed are
left to Section 14.5.

9.1 Discriminant Analysis

In discriminant analysis, observations may be taken from any of G > 2 pop-
ulations or groups. Assumptions are made regarding the structure of these
groups, namely that the random vector x associated with each observa-
tion is assumed to have a particular (partly or fully specified) distribution
depending on its group membership. Information may also be available
about the overall relative frequencies of occurrence of each group. In ad-
dition, there is usually available a set of data x1,Xa,...,x, (the training
set) for which the group membership of each observation is known. Based
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on the assumptions about group structure and on the training set if one
is available, rules are constructed for assigning future observations to one
of the G groups in some ‘optimal’ way, for example, so as to minimize the
probability or cost of misclassification.

The best-known form of discriminant analysis occurs when there are only
two populations, and x is assumed to have a multivariate normal distribu-
tion that differs between the two populations with respect to its mean but
not its covariance matrix. If the means p,, g, and the common covariance
matrix X are known, then the optimal rule (according to several different
criteria) is based on the linear discriminant function x' X~ (p; — o). If g1y,
o, 3 are estimated from a ‘training set’ by X1, X2, S, respectively, then a
rule based on the sample linear discriminant function x’S; ! (%; —%5) is often
used. There are many other varieties of discriminant analysis (McLach-
lan, 1992), depending on the assumptions made regarding the population
structure, and much research has been done, for example, on discriminant
analysis for discrete data and on non-parametric approaches (Goldstein
and Dillon, 1978; Hand, 1982).

The most obvious way of using PCA in a discriminant analysis is to
reduce the dimensionality of the analysis by replacing x by the first m
(high variance) PCs in the derivation of a discriminant rule. If the first two
PCs account for a high proportion of the variance, they can also be used
to provide a two-dimensional graphical representation of the data showing
how good, or otherwise, the separation is between the groups.

The first point to be clarified is exactly what is meant by the PCs of
X in the context of discriminant analysis. A common assumption in many
forms of discriminant analysis is that the covariance matrix is the same
for all groups, and the PCA may therefore be done on an estimate of this
common within-group covariance (or correlation) matrix. Unfortunately,
this procedure may be unsatisfactory for two reasons. First, the within-
group covariance matrix may be different for different groups. Methods for
comparing PCs from different groups are discussed in Section 13.5, and later
in the present section we describe techniques that use PCs to discriminate
between populations when equal covariance matrices are not assumed. For
the moment, however, we make the equal covariance assumption.

The second, more serious, problem encountered in using PCs based on a
common within-group covariance matrix to discriminate between groups is
that there is no guarantee that the separation between groups will be in the
direction of the high-variance PCs. This point is illustrated diagramatically
in Figures 9.1 and 9.2 for two variables. In both figures the two groups are
well separated, but in the first the separation is in the direction of the first
PC (that is parallel to the major axis of within-group variation), whereas in
the second the separation is orthogonal to this direction. Thus, the first few
PCs will only be useful for discriminating between groups in the case where
within- and between-group variation have the same dominant directions. If
this does not occur (and in general there is no particular reason for it to
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Figure 9.1. Two data sets whose direction of separation is the same as that of
the first (within-group) PC.

do so) then omitting the low-variance PCs may actually throw away most
of the information in x concerning between-group variation.

The problem is essentially the same one that arises in PC regression
where, as discussed in Section 8.2, it is inadvisable to look only at high-
variance PCs, as the low-variance PCs can also be highly correlated with the
dependent variable. That the same problem arises in both multiple regres-
sion and discriminant analysis is hardly surprising, as linear discriminant
analysis can be viewed as a special case of multiple regression in which
the dependent variable is a dummy variable defining group membership
(Rencher, 1995, Section 8.3).

An alternative to finding PCs from the within-group covariance ma-
trix is mentioned by Rao (1964) and used by Chang (1983), Jolliffe et
al. (1996) and Mager (1980b), among others. It ignores the group structure
and calculates an overall covariance matrix based on the raw data. If the
between-group variation is much larger than within-group variation, then
the first few PCs for the overall covariance matrix will define directions in
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Figure 9.2. Two data sets whose direction of separation is orthogonal to that of
the first (within-group) PC.

which there are large between-group differences. Such PCs therefore seem
more useful than those based on within-group covariance matrices, but the
technique should be used with some caution, as it will work well only if
between-group variation dominates within-group variation.

It is well known that, for two completely specified normal populations,
differing only in mean, the probability of misclassification using the linear
discriminant function is a monotonically decreasing function of the squared
Mahalanobis distance A? between the two populations (Rencher, 1998,
Section 6.4). Here A? is defined as

A% = (1 — 1) S 1 — pay). (9.1.1)

Note that we meet a number of other varieties of Mahalanobis distance else-
where in the book. In equation (5.3.5) of Section 5.3, Mahalanobis distance
between two observations in a sample is defined, and there is an obvious sim-
ilarity between (5.3.5) and the definition given in (9.1.1) for Mahalanobis
distance between two populations. Further modifications define Mahalanobis
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distance between two samples (see equation (9.1.3)), between an observa-
tion and a sample mean (see Section 10.1, below equation (10.1.2)), and
between an observation and a population mean.

If we take a subset of the original p variables, then the discriminatory
power of the subset can be measured by the Mahalanobis distance between
the two populations in the subspace defined by the subset of variables.
Chang (1983) shows that this is also true if £ 7" is replaced in (9.1.1) by
W where ¥ = X 4 7(1 —7) (1) — o) (16 — o)’ and 7 is the probability
of an observation coming from the ith population, i = 1,2. The matrix
W is the overall covariance matrix for x, ignoring the group structure.
Chang (1983) shows further that the Mahalanobis distance based on the
kth PC of ¥ is a monotonic, increasing function of 0, = [a}, (1 — p5)]?/ Ak,
where oy, A\, are, as usual, the vector of coefficients in the kth PC and the
variance of the kth PC, respectively. Therefore, the PC with the largest
discriminatory power is the one that maximizes 60y; this will not necessarily
correspond to the first PC, which maximizes A\y. Indeed, if a1 is orthogonal
to (uq — Mo), as in Figure 9.2, then the first PC has no discriminatory
power at all. Chang (1983) gives an example in which low-variance PCs are
important discriminators, and he also demonstrates that a change of scaling
for the variables, for example in going from a covariance to a correlation
matrix, can change the relative importance of the PCs. Townshend (1984)
has an example from remote sensing in which there are seven variables
corresponding to seven spectral bands. The seventh PC accounts for less
than 0.1% of the total variation, but is important in discriminating between
different types of land cover.

The quantity 6y is also identified as an important parameter for dis-
criminant analysis by Dillon et al. (1989) and Kshirsagar et al. (1990) but,
like Chang (1983), they do not examine the properties of its sample ana-
logue 6y, where 6y, is defined as [al,(X; — X2)]?/lx, with obvious notation.
Jolliffe et al. (1996) show that a statistic which is a function of 6 has a
t-distribution under the null hypothesis that the k&th PC has equal means
for the two populations.

The results of Chang (1983) and Jolliffe et al. (1996) are for two groups
only, but Devijver and Kittler (1982, Section 9.6) suggest that a similar
quantity to ék should be used when more groups are present. Their statistic
is 0, = a Spay/lx, where Sy, is proportional to a quantity that generalizes
(X1 — X2)(X1 — X2)’, namely Zle ng(Xy — X)(Xy — X)/, where ngy is the
number of observations in the gth group and X is the overall mean of all
the observations. A difference between ék and ék is seen in the following:
ay, lp are eigenvectors and eigenvalues, respectively, for the overall co-
variance matrix in the formula for 6, but for the within-group covariance
matrix S,, for 6. Devijver and Kittler (1982) advocate ranking the PCs in
terms of 6, and deleting those components for which 6, is smallest. Once
again, this ranking will typically diverge from the ordering based on size of
variance.
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Corbitt and Ganesalingam (2001) also examine an extension to more
than two groups based on the ideas of Dillon et al. (1989), but most of their
paper consists of case studies in which only two groups are present. Corbitt
and Ganesalingam (2001) show that a two-group version of their interpreta-
tion of Dillon et al.’s methodology is inferior to Jolliffe et al.’s (1996) ¢-tests
with respect to correct classification. However, both are beaten in several
of the examples studied by selecting a subset of the original variables.

Friedman (1989) demonstrates that a quantity similar to 0}, is also rel-
evant in the case where the within-group covariance matrices are not
necessarily equal. In these circumstances a discriminant score is formed
for each group, and an important part of that score is a term correspond-
ing to ék, with I, a; replaced by the eigenvalues and eigenvectors of the
covariance matrix for that group. Friedman (1989) notes that sample esti-
mates of large eigenvalues are biased upwards, whereas estimates of small
eigenvalues are biased downwards and, because the reciprocals of the eigen-
values appear in the discriminant scores, this can lead to an exaggerated
influence of the low-variance PCs in the discrimination. To overcome this,
he proposes a form of ‘regularized’ discriminant analysis in which sample
covariance matrices for each group are shrunk towards the pooled estimate
S.- This has the effect of decreasing large eigenvalues and increasing small
ones.

We return to regularized discriminant analysis later in this section, but
we first note that Takemura (1985) also describes a bias in estimating eigen-
values in the context of one- and two-sample tests for multivariate normal
means, based on Hotelling 72. For two groups, the question of whether or
not it is worth calculating a discriminant function reduces to testing the
null hypothesis Hy : p; = po. This is often done using Hotelling’s T2.
Léuter (1996) suggests a statistic based on a subset of the PCs of the over-
all covariance matrix. He concentrates on the case where only the first PC
is used, for which one-sided, as well as global, alternatives to Hy may be
considered.

Takemura (1985) proposes a decomposition of T2 into contributions
due to individual PCs. In the two-sample case this is equivalent to cal-
culating t-statistics to decide which PCs discriminate between the groups
corresponding to the samples, although in Takemura’s case the PCs are
calculated from the within-group, rather than overall, covariance matrix.
Takemura (1985) suggests that later PCs might be deemed significant,
and hence selected, too often. However, Jolliffe et al. (1996) dispel these
worries for their tests by conducting a simulation study which shows no
tendency for over-selection of the low-variance PCs in the null case, and
which also gives indications of the power of the ¢-test when the null hypoth-
esis of equal means in the two populations is false. Interestingly, Mason and
Gunst (1985) noted bias in the opposite direction in PC regression, namely
that low-variance PCs are selected less, rather than more, often than the
high-variance components. Given the links between regression and discrim-
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ination, it may be that the opposite effects described by Mason and Gunst
(1985) and by Takemura (1985) roughly balance in the case of using PCs
in discriminant analysis.

The fact that separation between populations may be in the directions
of the last few PCs does not mean that PCs should not be used at all in
discriminant analysis. They can still provide a reduction of dimensionality
and, as in regression, their uncorrelatedness implies that in linear discrim-
inant analysis each PC’s contribution can be assessed independently. This
is an advantage compared to using the original variables x, where the con-
tribution of one of the variables depends on which other variables are also
included in the analysis, unless all elements of x are uncorrelated. The main
point to bear in mind when using PCs in discriminant analysis is that the
best subset of PCs does not necessarily simply consist of those with the
largest variances. It is easy to see, because of their uncorrelatedness, which
of the PCs are best at discriminating between the populations. However,
as in regression, some caution is advisable in using PCs with very low vari-
ances, because at least some of the estimated coefficients in the discriminant
function will have large variances if low variance PCs are included. Many
of the comments made in Section 8.2 regarding strategies for selecting PCs
in regression are also relevant in linear discriminant analysis.

Some of the approaches discussed so far have used PCs from the over-
all covariance matrix, whilst others are based on the pooled within-group
covariance matrix. This latter approach is valid for types of discriminant
analysis in which the covariance structure is assumed to be the same for
all populations. However, it is not always realistic to make this assump-
tion, in which case some form of non-linear discriminant analysis may be
necessary. If the multivariate normality assumption is kept, the most usual
approach is quadratic discrimination (Rencher, 1998, Section 6.2.2). With
an assumption of multivariate normality and G groups with sample means

and covariance matrices X4, Sy, g = 1,2,..., G, the usual discriminant rule
assigns a new vector of observations x to the group for which
(x— %,)'S;" (x — %,) + In([S, ) (9.1.2)

is minimized. When the equal covariance assumption is made, S is replaced
by the pooled covariance matrix S,, in (9.1.2), and only the linear part of
the expression is different for different groups. In the general case, (9.1.2) is
a genuine quadratic function of x, leading to quadratic discriminant anal-
ysis. Flury (1995) suggests two other procedures based on his common
principal component (CPC) framework, whose assumptions are interme-
diate compared to those of linear and quadratic discrimination. Further
details will be given when the CPC framework is discussed in Section 13.5.

Alternatively, the convenience of looking only at linear functions of x
can be kept by computing PCs separately for each population. In a num-
ber of papers (see, for example, Wold, 1976; Wold et al., 1983), Wold and
others have described a method for discriminating between populations
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that adopts this approach. The method, called SIMCA (Soft Independent
Modelling of Class Analogy), does a separate PCA for each group, and
retains sufficient PCs in each to account for most of the variation within
that group. The number of PCs retained will typically be different for dif-
ferent populations. The square of this distance for a particular population
is simply the sum of squares of the values of the omitted PCs for that pop-
ulation, evaluated for the observation in question (Mertens, et al., 1994).
The same type of quantity is also used for detecting outliers (see Section
10.1, equation (10.1.1)).

To classify a new observation, a ‘distance’ of the observation from the
hyperplane defined by the retained PCs is calculated for each population.
If future observations are to be assigned to one and only one population,
then assignment is to the population from which the distance is minimized.
Alternatively, a firm decision may not be required and, if all the distances
are large enough, the observation can be left unassigned. As it is not close
to any of the existing groups, it may be an outlier or come from a new
group about which there is currently no information. Conversely, if the
groups are not all well separated, some future observations may have small
distances from more than one population. In such cases, it may again be
undesirable to decide on a single possible class; instead two or more groups
may be listed as possible ‘homes’ for the observation.

According to Wold et al. (1983), SIMCA works with as few as five ob-
jects from each population, although ten or more is preferable, and there
is no restriction on the number of variables. This is important in many
chemical problems where the number of variables can greatly exceed the
number of observations. SIMCA can also cope with situations where one
class is very diffuse, simply consisting of all observations that do not be-
long in one of a number of well-defined classes. Frank and Freidman (1989)
paint a less favourable picture of SIMCA. They use a number of data
sets and a simulation study to compare its performance with that of linear
and quadratic discriminant analyses, with regularized discriminant analysis
and with a technique called DASCO (discriminant analysis with shrunken
covariances).

As already explained, Friedman’s (1989) regularized discriminant analy-
sis shrinks the individual within-group covariance matrices S, towards the
pooled estimate S,, in an attempt to reduce the bias in estimating eigen-
values. DASCO has a similar objective, and Frank and Freidman (1989)
show that SIMCA also has a similar effect. They note that in terms of
expression (9.1.2), SIMCA ignores the log-determinant term and replaces
Sg_1 by a weighted and truncated Version of its spectral decomposition,
which in its full form is S; ! = i agral,, with fairly obvious nota-
tion. If ¢4 PCs are retamed in the gth group, then SIMCA’s replacement

for S;1is Y0 G+l lg 1agkagk, where I, z:k(p'i+l)g DASCO treats the

last (p ¢g) PCs in the same way as SIMCA, but adds the terms from the
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spectral decomposition corresponding to the first ¢, PCs. Thus it replaces
S;l in (9.1.2) by

E :lgk agkagk+ E : agkagk

k=qqg+1

Another difference between DASCO and SIMCA is that DASCO retains
the log-determinant term in (9.1.2).

In Frank and Freidman’s (1989) simulation studies and data analyses,
SIMCA is outperformed by both DASCO and regularized discriminant
analysis in many circumstances, especially when the covariance structures
are different in different groups. This is perhaps not surprising, given its
omission of the log-determinant term from (9.1.2). The absence of the first
gy PCs from SIMCA’s measure of discrepancy of an observation from a
group also means that it is unlikely to do well when the groups differ
in the directions of these PCs (Mertens et al., 1994). These latter authors
treat SIMCA’s measure of discrepancy between an observation and a group
as an indication of the outlyingness of the observation with respect to the
group, and suggest modifications of SIMCA in which other outlier detection
measures are used (see Section 10.1).

A similar idea to SIMCA is suggested by Asselin de Beauville (1995).
As with SIMCA, separate PCAs are done for each group, but here an
observation is assigned on the basis of a measure that combines the smallest
distance of the observation from an axis defining a PC for a group and its
score on that PC.

It has been noted above that discriminant analysis can be treated as a
multiple regression problem, with dummy variables, corresponding to the
group membership, as dependent variables. Other regression techniques,
as well as PC regression, can therefore be adapted for the discriminant
problem. In particular, partial least squares (PLS — see Section 8.4), which
is, in a sense, a compromise between least squares and PC regression, can
be used in the discriminant context (Vong et al. (1990)).

SIMCA calculates PCs separately within each group, compared with the
more usual practice of finding PCs from the overall covariance matrix, or
from a pooled within-group covariance matrix. Yet another type of PC
can be derived from the between-group covariance matrix S;,. However,
if the dominant direction of S, coincides with that of the within-group
covariance matrix S,,, there may be better discriminatory power in a dif-
ferent direction, corresponding to a low-variance direction for S,,. This
leads Devijver and Kittler (1982, Section 9.7) to ‘prewhiten’ the data,
using S,,, before finding PCs with respect to S,. This is equivalent to
the well-known procedure of canonical variate analysis or canonical dis-
criminant analysis, in which uncorrelated linear functions are found that
discriminate as well as possible between the groups. Canonical variates are

.. . 'S
defined as v}, v5X,...,7;_1X where v} x maximizes the ratio V,sz, of
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between- to within-group variance of 4'x, subject to being uncorrelated
with v)x, v5x,...,7}_;x. For more details see, for example, McLachlan
(1992, Section 9.2) or Mardia et al. (1979, Section 12.5).

A variation on prewhitening using S,, is to ‘standardize’ Sy, by dividing
each variable by its within-group standard deviation and then calculate a
between-group covariance matrix S; from these rescaled variables. Finding
PCs based on Sj is called discriminant principal components analysis by
Yendle and MacFie (1989). They compare the results of this analysis with
those from a PCA based on S, and also with canonical discriminant analysis
in which the variables x are replaced by their PCs. In two examples, Yendle
and MacFie (1989) find, with respect to misclassification probabilities, the
performance of PCA based on Sj to be superior to that based on Sy, and
comparable to that of canonical discriminant analysis using PCs. However,
in the latter analysis only the restrictive special case is examined, in which
the first ¢ PCs are retained. It is also not made explicit whether the PCs
used are obtained from the overall covariance matrix S or from S,,, though
it seems likely that S is used.

To conclude this section, we note some relationships between PCA and
canonical discriminant analysis, via principal coordinate analysis (see Sec-
tion 5.2), which are described by Gower (1966). Suppose that a principal
coordinate analysis is done on a distance matrix whose elements are Ma-
halanobis distances between the samples from the G populations. These
distances are defined as the square roots of

0%, = (Xp — %;)'S; (Rn — %y); h,i=1,2,...,G. (9.1.3)

Y2

Gower (1966) then shows that the configuration found in m(< G) di-
mensions is the same as that provided by the first m canonical variates
from canonical discriminant analysis. Furthermore, the same results may
be found from a PCA with X’X replaced by (XW)'(XW), where WW' =
S;! and X is the (G x p) matrix whose hth row gives the sample means
of the p variables for the hth population, h = 1,2,...,G. Yet another, re-
lated, way of finding canonical variates is via a two-stage PCA, as described
by Campbell and Atchley (1981). At the first stage PCs are found, based
on the within-group covariance matrix S,,, and standardized to have unit
variance. The values of the means of these standardised PCs for each of the
G groups are then subjected to a weighted PCA (see Section 14.2.1), with
weights proportional to the sample sizes n; in each group. The PC scores
at this second stage are the values of the group means with respect to the
canonical variates. Krzanowski (1990) generalizes canonical discriminant
analysis, based on the common PCA model due to Flury (1988), using this
two-stage derivation. Bensmail and Celeux (1996) also describe an approach
to discriminant analysis based on the common PCA framework; this will
be discussed further in Section 13.5. Campbell and Atchley (1981) note the
possibility of an alternative analysis, different from canonical discriminant
analysis, in which the PCA at the second of their two stages is unweighted.
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Because of the connections between PCs and canonical variates, Mardia et
al. (1979, p. 344) refer to canonical discriminant analysis as the analogue
for grouped data of PCA for ungrouped data. Note also that with an ap-
propriate choice of metric, generalized PCA as defined in Section 14.2.2 is
equivalent to a form of discriminant analysis.

No examples have been given in detail in this section, although some have
been mentioned briefly. An interesting example, in which the objective is
to discriminate between different carrot cultivars, is presented by Horgan
et al. (2001). Two types of data are available, namely the positions of
‘landmarks’ on the outlines of the carrots and the brightness of each pixel
in a cross-section of each carrot. The two data sets are subjected to separate
PCAs, and a subset of PCs taken from both analyses is used to construct
a discriminant function.

9.2 Cluster Analysis

In cluster analysis, it is required to divide a set of observations into groups
or clusters in such a way that most pairs of observations that are placed in
the same group are more similar to each other than are pairs of observations
that are placed into two different clusters. In some circumstances, it may
be expected or hoped that there is a clear-cut group structure underlying
the data, so that each observation comes from one of several distinct popu-
lations, as in discriminant analysis. The objective then is to determine this
group structure where, in contrast to discriminant analysis, there is little or
no prior information about the form that the structure takes. Cluster anal-
ysis can also be useful when there is no clear group structure in the data.
In this case, it may still be desirable to segment or dissect (using the ter-
minology of Kendall (1966)) the observations into relatively homogeneous
groups, as observations within the same group may be sufficiently similar
to be treated identically for the purpose of some further analysis, whereas
this would be impossible for the whole heterogeneous data set. There are
very many possible methods of cluster analysis, and several books have
appeared on the subject, for example Aldenderfer and Blashfield (1984),
Everitt et al. (2001), Gordon (1999). Most methods can be used either
for detection of clear-cut groups or for dissection/segmentation, although
there is increasing interest in mixture models, which explicitly assume the
existence of clusters (see Section 9.2.3).

The majority of cluster analysis techniques require a measure of sim-
ilarity or dissimilarity between each pair of observations, and PCs have
been used quite extensively in the computation of one type of dissimilarity.
If the p variables that are measured for each observation are quantitative
and in similar units, then an obvious measure of dissimilarity between two
observations is the Euclidean distance between the observations in the p-
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dimensional space defined by the variables. If the variables are measured
in non-compatible units, then each variable can be standardized by divid-
ing by its standard deviation, and an arbitrary, but obvious, measure of
dissimilarity is then the Euclidean distance between a pair of observations
in the p-dimensional space defined by the standardized variables.

Suppose that a PCA is done based on the covariance or correlation ma-
trix, and that m (< p) PCs account for most of the variation in x. A possible
alternative dissimilarity measure is the Euclidean distance between a pair
of observations in the m-dimensional subspace defined by the first m PCs;
such dissimilarity measures have been used in several published studies, for
example Jolliffe et al. (1980). There is often no real advantage in using this
measure, rather than the Euclidean distance in the original p-dimensional
space, as the Euclidean distance calculated using all p PCs from the co-
variance matrix is identical to that calculated from the original variables.
Similarly, the distance calculated from all p PCs for the correlation matrix
is the same as that calculated from the p standardized variables. Using m
instead of p PCs simply provides an approximation to the original Euclidean
distance, and the extra calculation involved in finding the PCs far outweighs
any saving which results from using m instead of p variables in computing
the distance. However, if, as in Jolliffe et al. (1980), the PCs are being cal-
culated in any case, the reduction from p to m variables may be worthwhile.

In calculating Euclidean distances, the PCs have the usual normalization,
so that the sample variance of ajx is I, k=1,2,...,pand [ >l > --- >
l,, using the notation of Section 3.1. As an alternative, a distance can be
calculated based on PCs that have been renormalized so that each PC
has the same variance. This renormalization is discussed further in the
context of outlier detection in Section 10.1. In the present setting, where
the objective is the calculation of a dissimilarity measure, its use is based
on the following idea. Suppose that one of the original variables is almost
independent of all the others, but that several of the remaining variables are
measuring essentially the same property as each other. Euclidean distance
will then give more weight to this property than to the property described
by the ‘independent’ variable. If it is thought desirable to give equal weight
to each property then this can be achieved by finding the PCs and then
giving equal weight to each of the first m PCs.

To see that this works, consider a simple example in which four meteo-
rological variables are measured. Three of the variables are temperatures,
namely air temperature, sea surface temperature and dewpoint, and the
fourth is the height of the cloudbase. The first three variables are highly
correlated with each other, but nearly independent of the fourth. For a
sample of 30 measurements on these variables, a PCA based on the corre-
lation matrix gave a first PC with variance 2.95, which is a nearly equally
weighted average of the three temperature variables. The second PC, with
variance 0.99 is dominated by cloudbase height, and together the first two
PCs account for 98.5% of the total variation in the four variables.
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Euclidean distance based on the first two PCs gives a very close ap-
proximation to Euclidean distance based on all four variables, but it gives
roughly three times as much weight to the first PC as to the second. Al-
ternatively, if the first two PCs are renormalized to have equal weight, this
implies that we are treating the one measurement of cloudbase height as
being equal in importance to the three measurements of temperature.

In general, if Euclidean distance is calculated using all p renormalized
PCs, then this is equivalent to calculating the Mahalanobis distance for the
original variables (see Section 10.1, below equation (10.1.2), for a proof of
the corresponding property for Mahalanobis distances of observations from
sample means, rather than between pairs of observations). Mahalanobis
distance is yet another plausible dissimilarity measure, which takes into
account the variances and covariances between the elements of x. Naes and
Isaksson (1991) give an example of (fuzzy) clustering in which the distance
measure is based on Mahalanobis distance, but is truncated to exclude the
last few PCs when the variances of these are small and unstable.

Regardless of the similarity or dissimilarity measure adopted, PCA has
a further use in cluster analysis, namely to give a two-dimensional repre-
sentation of the observations (see also Section 5.1). Such a two-dimensional
representation can give a simple visual means of either detecting or verify-
ing the existence of clusters, as noted by Rao (1964), provided that most of
the variation, and in particular the between-cluster variation, falls in the
two-dimensional subspace defined by the first two PCs.

Of course, the same problem can arise as in discriminant analysis, namely
that the between-cluster variation may be in directions other than those of
the first two PCs, even if these two PCs account for nearly all of the total
variation. However, this behaviour is generally less likely in cluster analysis,
as the PCs are calculated for the whole data set, not within-groups. As
pointed out in Section 9.1, if between-cluster variation is much greater than
within-cluster variation, such PCs will often successfully reflect the cluster
structure. It is, in any case, frequently impossible to calculate within-group
PCs in cluster analysis as the group structure is usually unknown a priori.

It can be argued that there are often better directions than PCs in
which to view the data in order to ‘see’ structure such as clusters. Pro-
jection pursuit includes a number of ideas for finding such directions, and
will be discussed in Section 9.2.2. However, the examples discussed below
illustrate that plots with respect to the first two PCs can give suitable
two-dimensional representations on which to view the cluster structure if
a clear structure exists. Furthermore, in the case where there is no clear
structure, but it is required to dissect the data using cluster analysis, there
can be no real objection to the use of a plot with respect to the first two
PCs. If we wish to view the data in two dimensions in order to see whether
a set of clusters given by some procedure ‘looks sensible,” then the first two
PCs give the best possible representation in two dimensions in the sense
defined by Property G3 of Section 3.2.
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Before looking at examples of the uses just described of PCA in cluster
analysis, we discuss a rather different way in which cluster analysis can
be used and its connections with PCA. So far we have discussed cluster
analysis on observations or individuals, but in some circumstances it is
desirable to divide variables, rather than observations, into groups. In fact,
by far the earliest book on cluster analysis (Tryon, 1939) was concerned
with this type of application. Provided that a suitable measure of similarity
between variables can be defined—the correlation coefficient is an obvious
candidate—methods of cluster analysis used for observations can be readily
adapted for variables.

One connection with PCA is that when the variables fall into well-defined
clusters, then, as discussed in Section 3.8, there will be one high-variance
PC and, except in the case of ‘single-variable’ clusters, one or more low-
variance PCs associated with each cluster of variables. Thus, PCA will
identify the presence of clusters among the variables, and can be thought
of as a competitor to standard cluster analysis of variables. The use of
PCA in this way in fairly common in climatology (see, for example, Cohen
(1983), White et al. (1991), Romero et al. (1999)). In an analysis of a
climate variable recorded at stations over a large geographical area, the
loadings of the PCs at the various stations can be used to divide the area
into regions with high loadings on each PC. In fact, this regionalization
procedure is usually more effective if the PCs are rotated (see Section 11.1)
so that most analyses are done using rotated loadings.

Identifying clusters of variables may be of general interest in investigating
the structure of a data set but, more specifically, if we wish to reduce
the number of variables without sacrificing too much information, then we
could retain one variable from each cluster. This is essentially the idea
behind some of the variable selection techniques based on PCA that were
described in Section 6.3.

Hastie et al. (2000) describe a novel clustering procedure for ‘variables’
which uses PCA applied in a genetic context. They call their method ‘gene
shaving.” Their data consist of p = 4673 gene expression measurements
for n = 48 patients, and the objective is to classify the 4673 genes into
groups that have coherent expressions. The first PC is found for these data
and a proportion of the genes (typically 10%) having the smallest absolute
inner products with this PC are deleted (shaved). PCA followed by shaving
is repeated for the reduced data set, and this procedure continues until
ultimately only one gene remains. A nested sequence of subsets of genes
results from this algorithm and an optimality criterion is used to decide
which set in the sequence is best. This gives the first cluster of genes. The
whole procedure is then repeated after centering the data with respect to
the ‘average gene expression’ in the first cluster, to give a second cluster
and so on.

Another way of constructing clusters of variables, which simultaneously
finds the first PC within each cluster, is proposed by Vigneau and Qannari
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(2001). Suppose that the p variables are divided into G groups or clusters,
and that x4 denotes the vector of variables in the gth group, g = 1,2,...,G.
Vigneau and Qannari (2001) seek vectors ajp,as;,...,ag1 that maximize
Zngl var(ay;X,), where var(aj;x,) is the sample variance of the linear
function a’glxg. This sample variance is clearly maximized by the first PC
for the variables in the gth group, but simultaneously we wish to find the
partition of the variables into G groups for which the sum of these variances
is maximized. An iterative procedure is presented by Vigneau and Qannari
(2001) for solving this problem.

The formulation of the problem assumes that variables with large squared
correlations with the first PC in a cluster should be assigned to that clus-
ter. Vigneau and Qannari consider two variations of their technique. In the
first, the signs of the correlations between variables and PCs are important;
only those variables with large positive correlations with a PC should be
in its cluster. In the second, relationships with external variables are taken
into account.

9.2.1 Examples

Only one example will be described in detail here, although a number of
other examples that have appeared elsewhere will be discussed briefly. In
many of the published examples where PCs have been used in conjunction
with cluster analysis, there is no clear-cut cluster structure, and cluster
analysis has been used as a dissection technique. An exception is the well-
known example given by Jeffers (1967), which was discussed in the context
of variable selection in Section 6.4.1. The data consist of 19 variables mea-
sured on 40 aphids and, when the 40 observations are plotted with respect
to the first two PCs, there is a strong suggestion of four distinct groups; re-
fer to Figure 9.3, on which convex hulls (see Section 5.1) have been drawn
around the four suspected groups. It is likely that the four groups indi-
cated on Figure 9.3 correspond to four different species of aphids; these
four species cannot be readily distinguished using only one variable at a
time, but the plot with respect to the first two PCs clearly distinguishes
the four populations.

The example introduced in Section 1.1 and discussed further in Section
5.1.1, which has seven physical measurements on 28 students, also shows (in
Figures 1.3, 5.1) how a plot with respect to the first two PCs can distinguish
two groups, in this case men and women. There is, unlike the aphid data,
a small amount of overlap between groups and if the PC plot is used to
identify, rather than verify, a cluster structure, then it is likely that some
misclassification between sexes will occur. A simple but specialized use of
PC scores, one PC at a time, to classify seabird communities is described
by Huettmann and Diamond (2001).

In the situation where cluster analysis is used for dissection, the aim of a
two-dimensional plot with respect to the first two PCs will almost always be
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PC2

PC1

Figure 9.3. Aphids: plot with respect to the first two PCs showing four groups
corresponding to species.

to verify that a given dissection ‘looks’ reasonable, rather than to attempt
to identify clusters. An early example of this type of use was given by Moser
and Scott (1961), in their Figure 9.2. The PCA in their study, which has
already been mentioned in Section 4.2, was a stepping stone on the way
to a cluster analysis of 157 British towns based on 57 variables. The PCs
were used both in the construction of a distance measure, and as a means
of displaying the clusters in two dimensions.

Principal components are used in cluster analysis in a similar manner
in other examples discussed in Section 4.2, details of which can be found
in Jolliffe et al. (1980, 1982a, 1986), Imber (1977) and Webber and Craig
(1978). Each of these studies is concerned with demographic data, as is the
example described next in detail.

Demographic Characteristics of English Counties

In an unpublished undergraduate dissertation, Stone (1984) considered
a cluster analysis of 46 English counties. For each county there were 12
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Table 9.1. Demographic variables used in the analysis of 46 English counties.

Population density—numbers per hectare
Percentage of population aged under 16
Percentage of population above retirement age
Percentage of men aged 16-65 who are employed
Percentage of men aged 16—65 who are unemployed
Percentage of population owning their own home
Percentage of households which are ‘overcrowded’
Percentage of employed men working in industry

9. Percentage of employed men working in agriculture
10.  (Length of public roads)/(area of county)
11.  (Industrial floor space)/(area of county)
12.  (Shops and restaurant floor space)/(area of county)

O N oUW

Table 9.2. Coefficients and variances for the first four PCs: English counties data.

Component number 1 2 3 4

1 0.35 -0.19 0.29 0.06
2 0.02 0.60 —0.03 0.22
3 -0.11 -0.52 —-0.27 —0.36
4 —0.30 0.07 0.59 —-0.03
) 0.31 0.06 -0.57 0.07
6
7
8

-0.29 0.09 -0.07 -0.59

Variable 038  0.04 009  0.08
013 050 —0.14 —0.34

9 025 —017 -028  0.51

10 0.37 —0.09  0.09 —0.18

11 034 002 —000 —0.24

12 035 —0.20 024 007

Eigenvalue 6.27 2.53 1.16 0.96

Cumulative percentage
of total variation  52.3 73.3 83.0 90.9
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demographic variables, which are listed in Table 9.1.

The objective of Stone’s analysis, namely dissection of local authority
areas into clusters, was basically the same as that in other analyses by
Imber (1977), Webber and Craig (1978) and Jolliffe et al. (1986), but these
various analyses differ in the variables used and in the local authorities
considered. For example, Stone’s list of variables is shorter than those of the
other analyses, although it includes some variables not considered by any of
the others. Also, Stone’s list of local authorities includes large metropolitan
counties such as Greater London, Greater Manchester and Merseyside as
single entities, whereas these large authorities are subdivided into smaller
areas in the other analyses. A comparison of the clusters obtained from
several different analyses is given by Jolliffe et al. (1986).

As in other analyses of local authorities, PCA is used in Stone’s analysis
in two ways: first, to summarize and explain the major sources of variation
in the data, and second, to provide a visual display on which to judge the
adequacy of the clustering.

Table 9.2 gives the coefficients and variances for the first four PCs using
the correlation matrix for Stone’s data. It is seen that the first two compo-
nents account for 73% of the total variation, but that most of the relevant
rules of Section 6.1 would retain four components (the fifth eigenvalue
is 0.41).

There are fairly clear interpretations for each of the first three PCs. The
first PC provides a contrast between urban and rural areas, with positive
coefficients for variables that are high in urban areas, such as densities of
population, roads, and industrial and retail floor space; negative coefficients
occur for owner occupation, percentage of employed men in agriculture, and
overall employment level, which at the time of the study tended to be higher
in rural areas. The main contrast for component 2 is between the percent-
ages of the population below school-leaving age and above retirement age.
This component is therefore a measure of the age of the population in each
county, and it identifies, at one extreme, the south coast retirement areas.

The third PC contrasts employment and unemployment rates. This con-
trast is also present in the first urban versus rural PC, so that the third
PC is measuring variation in employment/unemployment rates within ru-
ral areas and within urban areas, rather than between the two types of
area.

Turning now to the cluster analysis of the data, Stone (1984) examines
several different clustering methods, and also considers the analysis with
and without Greater London, which is very different from any other area,
but whose omission produces surprisingly little change. Figure 9.4 shows
the position of the 46 counties with respect to the first two PCs, with the
four-cluster solution obtained using complete-linkage cluster analysis (see
Gordon, 1999, p. 85) indicated by different symbols for different clusters.
The results for complete-linkage are fairly similar to those found by several
of the other clustering methods investigated.

In the four-cluster solution, the single observation at the bottom left of
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Figure 9.4. English counties: complete-linkage four-cluster solution superimposed
on a plot of the first two PCs.

the diagram is Greater London and the four-county cluster at the top left
consists of other metropolitan counties. The counties at the right of the
diagram are more rural, confirming the interpretation of the first PC given
earlier. The split between the larger groups at the right of the plot is rather
more arbitrary but, as might be expected from the interpretation of the
second PC, most of the retirement areas have similar values in the vertical
direction; they are all in the bottom part of the diagram. Conversely, many
of the counties towards the top have substantial urban areas within them,
and so have somewhat lower values on the first PC as well.

The clusters are rather nicely located in different areas of the figure,
although the separation between them is not particularly clear-cut, except
for Greater London. This behaviour is fairly similar to what occurs for other
clustering methods in this example, and for different numbers of clusters.
For example, in the eight-cluster solution for complete-linkage clustering,
one observation splits off from each of the clusters in the top left and bottom
right parts of the diagram to form single-county clusters. The large 27-
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county cluster in the top right of the plot splits into three groups containing
13, 10 and 4 counties, with some overlap between them.

This example is typical of many in which cluster analysis is used for
dissection. Examples like that of Jeffers’ (1967) aphids, where a very clear-
cut and previously unknown cluster structure is uncovered, are relatively
unusual, although another illustration is given by Blackith and Reyment
(1971, p. 155). In their example, a plot of the observations with respect to
the second and third (out of seven) PCs shows a very clear separation into
two groups. It is probable that in many circumstances ‘projection-pursuit’
methods, which are discussed next, will provide a better two-dimensional
space in which to view the results of a cluster analysis than that defined by
the first two PCs. However, if dissection rather than discovery of a clear-cut
cluster structure is the objective of a cluster analysis, then there is likely
to be little improvement over a plot with respect to the first two PCs.

9.2.2 Projection Pursuit

As mentioned earlier in this chapter, it may be possible to find low-
dimensional representations of a data set that are better than the first few
PCs at displaying ‘structure’ in the data. One approach to doing this is to
define structure as ‘interesting’ and then construct an index of ‘interesting-
ness,” which is successively maximized. This is the idea behind projection
pursuit, with different indices leading to different displays. If ‘interesting’
is defined as ‘large variance,’ it is seen that PCA is a special case of projec-
tion pursuit. However, the types of structure of interest are often clusters
or outliers, and there is no guarantee that the high-variance PCs will find
such features. The term ‘projection pursuit’ dates back to Friedman and
Tukey (1974), and a great deal of work was done in the early 1980s. This
is described at length in three key papers: Friedman (1987), Huber (1985),
and Jones and Sibson (1987). The last two both include extensive discus-
sion, in addition to the paper itself. Some techniques are good at finding
clusters, whereas others are better at detecting outliers.

Most projection pursuit techniques start from the premise that the least
interesting structure is multivariate normality, so that deviations from
normality form the basis of many indices. There are measures based on
skewness and kurtosis, on entropy, on looking for deviations from unifor-
mity in transformed data, and on finding ‘holes’ in the data. More recently,
Foster (1998) suggested looking for directions of high density, after ‘spher-
ing’ the data to remove linear structure. Sphering operates by transforming
the variables x toz = S~z (x—x), which is equivalent to converting to PCs,
which are then standardized to have zero mean and unit variance. Friedman
(1987) also advocates sphering as a first step in his version of projection
pursuit. After identifying the high-density directions for the sphered data,
Foster (1998) uses the inverse transformation to discover the nature of the
interesting structures in terms of the original variables.
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Projection pursuit indices usually seek out deviations from multivariate
normality. Bolton and Krzanowski (1999) show that if normality holds then
PCA finds directions for which the maximized likelihood is minimized. They
interpret this result as PCA choosing interesting directions to be those for
which normality is least likely, thus providing a link with the ideas of pro-
jection pursuit. A different projection pursuit technique with an implicit
assumption of normality is based on the fixed effects model of Section 3.9.
Recall that the model postulates that, apart from an error term e; with
var(e;) = Z]—il", the variables x lie in a g-dimensional subspace. To find
the best-fitting subspace, > ., w; ||x; — Z%”i/[ is minimized for an appro-
priately chosen metric M. For multivariate normal e; the optimal choice
for M is I'"!. Given a structure of clusters in the data, all w; equal, and
e; describing variation within clusters, Caussinus and Ruiz (1990) suggest
a robust estimate of I', defined by

n—1 n 2
izt i Kllxi = xjllg-1 (x5 — x5) (% — x;)’
n—1 n 2
Zi:l Zj:i+1 Kl||x; — Xj”s—l]

where K.] is a decreasing positive real function (Caussinus and Ruiz, 1990,

f‘:

: (9.2.1)

use K[d] = e~ 5t for B > 0) and S is the sample covariance matrix. The best

fit is then given by finding eigenvalues and eigenvectors of Sf‘_l, which is
a type of generalized PCA (see Section 14.2.2). There is a similarity here
with canonical discriminant analysis (Section 9.1), which finds eigenvalues
and eigenvectors of S,S,!, where S;, S, are between and within-group
covariance matrices. In Caussinus and Ruiz’s (1990) form of projection
pursuit, S is the overall covariance matrix, and I is an estimate of the
within-group covariance matrix. Equivalent results would be obtained if S
were replaced by an estimate of between-group covariance, so that the only
real difference from canonical discriminant analysis is that the groups are
known in the latter case but are unknown in projection pursuit. Further
theoretical details and examples of Caussinus and Ruiz’s technique can
be found in Caussinus and Ruiz-Gazen (1993, 1995). The choice of values
for § is discussed, and values in the range 0.5 to 3.0 are recommended.
There is a link between Caussinus and Ruiz-Gazen’s technique and the
mixture models of Section 9.2.3. In discussing theoretical properties of their
technique, they consider a framework in which clusters arise from a mixture
of multivariate normal distributions. The ¢ dimensions of the underlying
model correspond to g clusters and I represents ‘residual’ or within-group
covariance.

Although not projection pursuit as such, Krzanowski (1987b) also looks
for low-dimensional representations of the data that preserve structure, but
in the context of variable selection. Plots are made with respect to the first
two PCs calculated from only a subset of the variables. A criterion for
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choosing a subset of k variables is based on how closely a Procrustes rota-
tion of the configuration of scores on the first ¢ PCs for a selected subset of
variables matches the corresponding configuration based on the first ¢ PCs
for the full set of variables. It is shown that the visibility of group structure
may be enhanced by plotting with respect to PCs that are calculated from
only a subset of variables. The selected variables differ from those chosen
by the methods of Section 6.3 (Krzanowski, 1987b; Jmel, 1992), which il-
lustrates again that different selection rules are needed, depending on the
purpose for which the variables are chosen (Jolliffe, 1987a).

Some types of projection pursuit are far more computationally demand-
ing than PCA, and for large data sets an initial reduction of dimension
may be necessary before they can be implemented. In such cases, Friedman
(1987) suggests reducing dimensionality by retaining only the high-variance
PCs from a data set and conducting the projection pursuit on those. Causs-
inus (1987) argues that an initial reduction of dimensionality using PCA
may be useful even when there are no computational problems.

9.2.3 Mixture Models

Cluster analysis traditionally consisted of a wide variety of rather ad hoc
descriptive techniques, with little in the way of statistical underpinning.
The consequence was that it was fine for dissection, but less satisfactory
for deciding whether clusters actually existed and, if so, how many there
were. An attractive alternative approach is to model the cluster structure
by a mixture model, in which the probability density function (p.d.f.) for
the vector of variables x is expressed as

G
F(x:0) = mofy(x:0), (9.2.2)

where G is the number of clusters, 7, is the probability of an observation
coming from the gth cluster, fy(x;0,) is the p.d.f. in the gth cluster, and
0 = (07,0,,...,0;) is a vector of parameters that must be estimated.
A particular form needs to be assumed for each p.d.f. fy(x;6,), the most
usual choice being multivariate normality in which 8, consists of the mean
vector g, and the covariance matrix 3, for the gth cluster.

The problem of fitting a model such as (9.2.2) is difficult, even for small
values of p and G, so the approach was largely ignored at the time when
many clustering algorithms were developed. Later advances in theory, in
computational sophistication, and in computing speed made it possible for
versions of (9.2.2) to be developed and fitted, especially in the univariate
case (see, for example, Titterington et al. (1985); McLachlan and Bashford
(1988); Bohning (1999)). However, many multivariate problems are still
intractable because of the large number of parameters that need to be esti-
mated. For example, in a multivariate normal mixture the total number of
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parameters in the m,, p, and X is 1G[p* 4 3p+ 2] — 1. To overcome this
intractability, the elements of the 3, can be constrained in some way, and
a promising approach was suggested by Tipping and Bishop (1999b), based
on their probabilistic model for PCA which is described in Section 3.9. In
this approach, the p.d.f.s in (9.2.2) are replaced by p.d.f.s derived from Tip-
ping and Bishop’s (1999a,b) model. These p.d.f.s are multivariate normal,
but instead of having general covariance matrices, the matrices take the
form ByBj + 0.1, where By is a (p X ¢) matrix, and ¢ (< p) is the same
for all groups. This places constraints on the covariance matrices, but the
constraints are not as restrictive as the more usual ones, such as equality or
diagonality of matrices. Tipping and Bishop (1999b) describe a two-stage
EM algorithm for finding maximum likelihood estimates of all the parame-
ters in the model. As with Tipping and Bishop’s (1999a) single population
model, it turns out the columns of B, define the space spanned by the first
q PCs, this time within each cluster. There remains the question of the
choice of ¢, and there is still a restriction to multivariate normal distribu-
tions for each cluster, but Tipping and Bishop (1999b) provide examples
where the procedure gives clear improvements compared to the imposi-
tion of more standard constraints on the X,. Bishop (1999) outlines how a
Bayesian version of Tipping and Bishop’s (1999a) model can be extended
to mixtures of distributions.

9.3 Canonical Correlation Analysis and Related
Techniques

Canonical correlation analysis (CCA) is the central topic in this section.
Here the variables are in two groups, and relationships are sought between
these groups of variables. CCA is probably the most commonly used tech-
nique for tackling this objective. The emphasis in this section, as elsewhere
in the book, is on how PCA can be used with, or related to, the tech-
nique. A number of other methods have been suggested for investigating
relationships between groups of variables. After describing CCA, and illus-
trating it with an example, some of these alternative approaches are briefly
described, with their connections to PCA again highlighted. Discussion of
techniques which analyse more than two sets of variables simultaneously is
largely deferred to Section 14.5.

9.3.1 Canonical Correlation Analysis

Suppose that x,,, x,, are vectors of random variables with p;, p2 elements,
respectively. The objective of canonical correlation analysis (CCA) is to find
successively for k = 1,2,..., min[py, ps], pairs {a},,Xp,,a},Xp, } of linear
functions of x,,, xp,, respectively, called canonical variates, such that the
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correlation between aj x,, and aj,X,, is maximized, subject to aj xp,,
aj,Xp, both being uncorrelated with a%,x,,, j = 1,2,...,(k = 1); h =
1,2. The name of the technique is confusmgly similar to canonical variate
analysis,’ which is used in discrimination (see Section 9.1). In fact, there is a
link between the two techniques (see, for example, Gittins, 1985, Chapter 4;
Mardia et al. 1979, Exercise 11.5.4), but this will not be discussed in detail
here. Because of this link, the view of canonical discriminant analysis as a
two-stage PCA, noted by Campbell and Atchley (1981) and discussed in
Section 9.1, is also a valid perspective for CCA. Although CCA treats the
two sets of variables x,,, x,, on an equal footing, it can still be used, as
in the example of Section 9.3.2, if one set is clearly a set of responses while
the other is a set of predictors. However, alternatives such as multivariate
regression and other techniques discussed in Sections 8.4, 9.3.3 and 9.3.4
may be more appropriate in this case.

A number of authors have suggested that there are advantages in calcu-
lating PCs z), , z,, separately for x,, ,x,, and then performing the CCA on
Zp, , Zp, Tather than x, ,x,,. Indeed, the main derivation of CCA given by
Preisendorfer and Mobley (1988, Chapter 8) is in terms of the PCs for the
two groups of variables. If z,,,z,, consist of all p;, ps PCs, respectively,
then the results using z,,,zp, are equivalent to those for x,,,x,,. This
follows as z,, ,2p, are exact linear functions of x,, ,x,,, respectively, and,
conversely, x,,,,X,, are exact linear functions of z,,,z,,, respectively. We
are looking for ‘optimal’ linear functions of z,,,z,,, but this is equivalent
to searching for ‘optimal’ linear functions of x,,,%p, so we have the same
analysis as that based on x,,,x,,.

Muller (1982) argues that using z,,,2,, instead of x,,,%,, can make
some of the theory behind CCA easier to understand, and that it can
help in interpreting the results of such an analysis. He also illustrates the
use of PCA as a preliminary dimension-reducing technique by performing
CCA based on just the first few elements of z,, and z,,. Von Storch and
Zwiers (1999, Section 14.1.6) note computational advantages in working
with the PCs and also suggest using only the first few PCs to construct
the canonical variates. This works well in the example given by Muller
(1982), but cannot be expected to do so in general, for reasons similar
to those already discussed in the contexts of regression (Chapter 8) and
discriminant analysis (Section 9.1). There is simply no reason why those
linear functions of x,, that are highly correlated with linear functions of
Xp, should necessarily be in the subspace spanned by the first few PCs
of xp,; they could equally well be related to the last few PCs of x,,.
The fact that a linear function of x,, has a small variance, as do the
last few PCs, in no way prevents it from having a high correlation with
some linear function of x,,. As well as suggesting the use of PCs in CCA,
Muller (1982) describes the closely related topic of using canonical corre-
lation analysis to compare sets of PCs. This will be discussed further in
Section 13.5.
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An interesting connection between PCA and CCA is given by consider-
ing the problem of minimizing var[a}x,, —a5xp,]. If constraints a} 3,2, =
abYs0as = 1 are added to this problem, where 311, 3o are the covariance
matrices for x,,, X,,, respectively, we obtain the first pair of canonical
variates. If, instead, the constraint aja; + abas = 1 is added, the co-
efficients (a},a})’ define the last PC for the vector of random variables
x = (x},,%p,)". There has been much discussion in the literature of a va-
riety of connections between multivariate techniques, including PCA and
CCA. Gittins (1985, Sections 4.8, 5.6, 5.7) gives numerous references. In
the special case where p; = ps and the same variables are measured in
both x,, and x,,, perhaps at different time periods or for matched pairs
of individuals, Flury and Neuenschwander (1995) demonstrate a theoret-
ical equivalence between the canonical variates and a common principal
component model (see Section 13.5) when the latter model holds.

9.3.2 Example of CCA

Jeffers (1978, p. 136) considers an example with 15 variables measured on
272 sand and mud samples taken from various locations in Morecambe Bay,
on the north west coast of England. The variables are of two types: eight
variables are chemical or physical properties of the sand or mud samples,
and seven variables measure the abundance of seven groups of invertebrate
species in the samples. The relationships between the two groups of vari-
ables, describing environment and species, are of interest, so that canonical
correlation analysis is an obvious technique to use.

Table 9.3 gives the coefficients for the first two pairs of canonical variates,
together with the correlations between each pair—the canonical corre-
lations. The definitions of each variable are not given here (see Jeffers
(1978, pp. 103, 107)). The first canonical variate for species is dominated
by a single species. The corresponding canonical variate for the environ-
mental variables involves non-trivial coefficients for four of the variables,
but is not difficult to interpret (Jeffers, 1978, p. 138). The second pair of
canonical variates has fairly large coeflicients for three species and three
environmental variables.

Jeffers (1978, pp. 105-109) also looks at PCs for the environmental and
species variables separately, and concludes that four and five PCs, respec-
tively, are necessary to account for most of the variation in each group. He
goes on to look, informally, at the between-group correlations for each set
of retained PCs.

Instead of simply looking at the individual correlations between PCs for
different groups, an alternative is to do a canonical correlation analysis
based only on the retained PCs, as suggested by Muller (1982). In the
present example this analysis gives values of 0.420 and 0.258 for the first
two canonical correlations, compared with 0.559 and 0.334 when all the
variables are used. The first two canonical variates for the environmental
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Table 9.3. Coefficients for the first two canonical variates in a canonical correlation
analysis of species and environmental variables.

First canonical variates Second canonical variates

1 0.03 0.17
To 0.51 0.52
T3 0.56 0.49
Environment | x4 0.37 0.67
variables Ty 0.01 —0.08
Tg 0.03 0.07
7 —0.00 0.04
s 0.53 —0.02
Tg 0.97 —0.19
T10 —0.06 —0.25
Species T11 0.01 —0.28
variables 12 0.14 0.58
T13 0.19 0.00
T14 0.06 0.46
Canonical
correlation 0.559 0.334

variables and the first canonical variate for the species variables are each
dominated by a single PC, and the second canonical variate for the species
variables has two non-trivial coefficients. Thus, the canonical variates for
PCs look, at first sight, easier to interpret than those based on the origi-
nal variables. However, it must be remembered that, even if only one PC
occurs in a canonical variate, the PC itself is not necessarily an easily in-
terpreted entity. For example, the environmental PC that dominates the
first canonical variate for the environmental variables has six large coeffi-
cients. Furthermore, the between-group relationships found by CCA of the
retained PCs are different in this example from those found from CCA on
the original variables.

9.3.3 Maximum Covariance Analysis (SVD Analysis),
Redundancy Analysis and Principal Predictors

The first technique described in this section has been used in psychology for
many years, dating back to Tucker (1958), where it is known as inter-battery
factor analysis. This method postulates a model in which

Xp, = +Aiz+ Ty + e (9.3.1)
Xp, = Mo + A2z + Tays + e,
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where p;, po are vectors of means, Aj, Ay, I'1, T2 are matrices of coeffi-
cients, z is a vector of latent variables common to both x,, and x,,, y1,y2
are vectors of latent variables specific to x,,,X,,, and ej, ey are vectors
of errors. Tucker (1958) fits the model using the singular value decom-
position of the (p; X pz) matrix of correlations between two batteries of
tests xp,,X,,, and notes that his procedure is equivalent to finding linear
combinations of the two batteries that have maximum covariance. Browne
(1979) demonstrates some algebraic connections between the results of this
technique and those of CCA.

The method was popularised in atmospheric science by Bretherton et
al. (1992) and Wallace et al. (1992) under the name singular value de-
composition (SVD) analysis. This name arose because, as Tucker (1958)
showed, the analysis can be conducted via an SVD of the (p; X p2) matrix
of covariances between x,, and x,,, but the use of this general term for a
specific technique is potentially very confusing. The alternative canonical
covariance analysis, which Cherry (1997) notes was suggested in unpub-
lished work by Muller, is a better descriptor of what the technique does,
namely that it successively finds pairs of linear functions of x,, and xp,
that have maximum covariance and whose vectors of loadings are orthog-
onal. Even better is mazimum covariance analysis, which is used by von
Storch and Zwiers (1999, Section 14.1.7) and others (Frankignoul, personal
communication), and we will adopt this terminology. Maximum covariance
analysis differs from CCA in two ways: covariance rather than correlation
is maximized, and vectors of loadings are orthogonal instead of derived
variates being uncorrelated. The rationale behind maximum covariance
analysis is that it may be important to explain a large proportion of
the variance in one set of variables using the other set, and a pair of
variates from CCA with large correlation need not necessarily have large
variance.

Bretherton et al. (1992) and Wallace et al. (1992) discuss maximum
covariance analysis (SVD analysis) in some detail, make comparisons with
competing techniques and give examples. Cherry (1997) and Hu (1997)
point out some disadvantages of the technique, and Cherry (1997) also
demonstrates a relationship with PCA. Suppose that separate PCAs are
done on the two sets of variables and that the values (scores) of the n
observations on the first ¢ PCs are given by the (n x ¢) matrices Z1, Zs
for the two sets of variables. If By, Bs are orthogonal matrices chosen to
minimize | Z;B; — Z2Bs||, the resulting matrices Z1B;, ZoBs contain the
values for the n observations of the first ¢ pairs of variates from a maximum
covariance analysis. Thus, maximum covariance analysis can be viewed as
two PCAs, followed by rotation to match up the results of the two analyses
as closely as possible.

Like maximum covariance analysis, redundancy analysis attempts to in-
corporate variance as well as correlation in its search for relationships
between two sets of variables. The redundancy coefficient was introduced
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by Stewart and Love (1968), and is an index of the average proportion
of the variance of the variables in one set that is reproducible from the
variables in the other set. One immediate difference from both CCA and
maximum covariance analysis is that it does not view the two sets of vari-
ables symmetrically. One set is treated as response variables and the other
as predictor variables, and the results of the analysis are different depend-
ing on the choice of which set contains responses. For convenience, in what
follows x,, and x,, consist of responses and predictors, respectively.

Stewart and Love’s (1968) redundancy index, given a pair of canonical
variates, can be expressed as the product of two terms. These terms are
the squared canonical correlation and the variance of the canonical variate
for the response set. It is clear that a different value results if the roles of
predictor and response variables are reversed. The redundancy coefficient
can be obtained by regressing each response variable on all the predictor
variables and then averaging the p; squared multiple correlations from
these regressions. This has a link to the interpretation of PCA given in
the discussion of Property A6 in Chapter 2, and was used by van den
Wollenberg (1977) and Thacker (1999) to introduce two slightly different
techniques.

In van den Wollenberg’s (1977) redundancy analysis, linear functions
aj,Xp, of xp, are found that successively maximize their average squared
correlation with the elements of the response set x,,,, subject to the vectors
of loadings aja, ass, . . . being orthogonal. It turns out (van den Wollenberg,
1977) that finding the required linear functions is achieved by solving the
equation

RzyRymak2 = lk'Raja:ak;Q, (932)

where R, is the correlation matrix for the predictor variables, R, is the
matrix of correlations between the predictor and response variables, and
Ry, is the transpose of R;,. A linear function of x,, can be found by
reversing the roles of predictor and response variables, and hence replacing
x by y and vice versa, in equation (9.3.2).

Thacker (1999) also considers a linear function z; = afyx,, of the pre-
dictors x,,. Again a;s is chosen to maximize Zj 1 rlj, where 71, is the
correlation between z; and the jth response variable. The variable z; is
called the first principal predictor by Thacker (1999). Second, third,
principal predictors are defined by maximizing the same quantity, subject
to the constraint that each principal predictor must be uncorrelated with
all previous principal predictors. Thacker (1999) shows that the vectors of
loadings ajs, aso, ... are solutions of the equation

Swy[diag(syy)]_lsywalﬁ = lksxmak2, (933)

where S;4, Syy, Szy and S, are covariance matrices defined analogously to

the correlation matrices Rz, Ryy, Rzy and Ry, above. The eigenvalue [,

corresponding to ays is equal to the sum of squared correlations Y ! =1 7",3 J
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between aj,x,2 and each of the variables ;. The difference between prin-
cipal predictors and redundancy analysis is that the principal predictors
are uncorrelated, whereas the derived variables in redundancy analysis are
correlated but have vectors of loadings that are orthogonal. The presence
of correlation in redundancy analysis may be regarded as a drawback, and
van den Wollenberg (1977) suggests using the first few derived variables
from redundancy analysis as input to CCA. This will then produce uncor-
related canonical variates whose variances are unlikely to be small. The
possibility of using the first few PCs from each set as input to CCA was
mentioned above, as was the disadvantage that excluded low-variance PCs
might contain strong inter-set correlations. As low-variance directions are
unlikely to be of interest in redundancy analysis, using the first few PCs
as input seems to be far safer in this case and is another option.

It is of interest to note the similarity between equations (9.3.2), (9.3.3)
and the eigenequation whose solution gives the loadings ax2 on x,, for
canonical correlation analysis, namely

S2yS,, Syear2 = lkSazcare, (9.3.4)

using the present notation. Wang and Zwiers (2001) solve a version of
(9.3.2) with covariance matrices replacing correlation matrices, by first
solving the eigenequation

SyaSisSzybra = lkbra, (9.3.5)

and then setting ags = l;%S;IlSwybkg. This is equivalent to a PCA of
the covariance matrix S,,S;.S,, of the predicted values of the response
variables obtained from a multivariate regression on the predictor variables.
Multivariate regression is discussed further in Section 9.3.4.

Van den Wollenberg (1977) notes that PCA is a special case of redun-
dancy analysis (and principal predictors, but not CCA) when x,, and xp,
are the same (see also Property A6 in Chapter 2). Muller (1981) shows
that redundancy analysis is equivalent to orthogonally rotating the results
of a multivariate regression analysis. DeSarbo and Jedidi (1986) give a
number of other properties, together with modifications and extensions, of
redundancy analysis.

9.3.4 Other Techniques for Relating Two Sets of Variables

A number of other techniques for relating two sets of variables were noted
in Section 8.4. They include separate PCAs on the two groups of variables,
followed by the calculation of a regression equation to predict, again sepa-
rately, each PC from one set from the PCs in the other set. Another way of
using PCA is to concatenate the two sets of variables and find PCs for the
combined set of (p; + p2) variables. This is sometimes known as combined
PCA, and is one of the methods that Bretherton et al. (1992) compare with
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maximum covariance analysis. The reasoning behind the analysis, apart
from being very easy to implement, is that two variables are more likely
to simultaneously have large loadings in the same high-variance combined
PC if they are strongly correlated. Thus, by looking at which variables
from different groups appear together in the same high-variance compo-
nents, some ideas can be gained about the relationships between the two
groups. This is true to some extent, but the combined components do not
directly quantify the precise form of the relationships, nor their strength,
in the way that CCA or maximum covariance analysis does. One other
PCA-based technique considered by Bretherton et al. (1992) is to look at
correlations between PCs of one set of variables and the variables them-
selves from the other set. This takes us back to a collection of simple PC
regressions.

Another technique from Section 8.4, partial least squares (PLS), can be
generalized to the case of more than one response variable (Wold, 1984).
Like single-response PLS, multiresponse PLS is often defined in terms of an
algorithm, but Frank and Friedman (1993) give an interpretation showing
that multiresponse PLS successively maximizes the covariance between lin-
ear functions of the two sets of variables. It is therefore similar to maximum
covariance analysis, which was discussed in Section 9.3.3, but differs from
it in not treating response and predictor variables symmetrically. Whereas
in maximum covariance analysis the vectors of coefficients of the linear
functions are orthogonal within each set of variables, no such restriction
is placed on the response variables in multiresponse PLS. For the predic-
tor variables there is a restriction, but it is that the linear functions are
uncorrelated, rather than having orthogonal vectors of coefficients.

The standard technique when one set of variables consists of responses
and the other is made up of predictors is multivariate linear regression.
Equation (8.1.1) generalizes to

Y = XB +E, (9.3.6)

where Y, X are (n X p1), (n X p3) matrices of n observations on p; response
variables and py predictor variables, respectively, B is a (p2 X p1) matrix of
unknown parameters, and E is an (n X p;) matrix of errors. The number
of parameters to be estimated is at least p;ps (as well as those in B, there
are usually some associated with the covariance matrix of the error term).
Various attempts have been made to reduce this number by simplifying the
model. The reduced rank models of Davies and Tso (1982) form a general
class of this type. In these models B is assumed to be of rank m < py. There
is more than one way to estimate the unknown parameters in a reduced
rank regression model. That recommended by Davies and Tso (1982) first
finds the least squares estimate B of B in (9.3.6) and uses this to obtain
predicted values Y = XB for Y. Next a singular value decomposition (with
its usual meaning) is done on Y and B is then projected onto the subspace
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spanned by the first m terms in the SVD. This is equivalent to projecting
the rows of Y onto the subspace spanned by the first m PCs of Y.

Two further equivalences are noted by ter Braak and Looman (1994),
namely that the reduced rank regression model estimated in this way is
equivalent to redundancy analysis, and also to PCA of instrumental vari-
ables, as introduced by Rao (1964) (see Section 14.3). Van den Brink and
ter Braak (1999) also refer to redundancy analysis as ‘PCA in which sample
scores are constrained to be linear combinations of the explanatory [pre-
dictor] variables.” They extend redundancy analysis to the case where the
variables in X and Y are observed over several time periods and the model
changes with time. This extension is discussed further in Section 12.4.2.
Because of the link with PCA, it is possible to construct biplots (see Sec-
tion 5.3) of the regression coefficients in the reduced rank regression model
(ter Braak and Looman, 1994).

Aldrin (2000) proposes a modification of reduced rank regression, called
softly shrunk reduced-rank regression (SSRRR), in which the terms in the
SVD of Y are given varying non-zero weights, rather than the all-or-nothing
inclusion/exclusion of terms in reduced rank regression. Aldrin (2000) also
suggests that a subset of PCs of the predictor variables may be used as
input for a reduced rank regression or SSRRR instead of the predictor
variables themselves. In a simulation study comparing least squares with a
number of biased multivariate regression procedures, SSRRR with PCs as
input seems to be the best method overall.

Reduced rank regression models essentially assume a latent structure
underlying the predictor variables, so that their dimensionality can be re-
duced below py. Burnham et al. (1999) describe so-called latent variable
multivariate regression models, which take the idea of reduced rank regres-
sion further by postulating overlapping latent structures underlying both
the response and predictor variables. The model can be written

X=ZxI'x + Ex
Y =ZyTy + Ey,

where Zx, Zy are of dimension (n x m) and contain values of m latent
variables for the n observations; I'x, I'y are (m X p1), (m X p2) matrices
of unknown parameters, and Ex, Ey are matrices of errors.

To fit this model, Burnham et al. (1999) suggest carrying out PCAs
on the data in X, on that in Y, and on the combined (n x (p1 + p2))
matrix containing both response and predictor variables. In each PCA, a
judgment is made of how many PCs seem to represent common underlying
structure and how many represent error or noise. Suppose that the numbers
of non-noisy PCs in the three analyses are mx, my and m¢, with obvious
notation. The implication is then that the overlapping part of the latent
structures has dimension mx + my — me¢. If mx = my = mg¢ there is
complete overlap, whereas if mc = mx + my there is none. This model
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is very similar to that of (9.3.1). The difference is that the separation
into latent variables common to both sets of measured variables and those
specific to one set of measured variables is explicit in (9.3.1). Burnham
et al. (1999) successfully fit their model to a number of examples from
chemometrics.



10

Outlier Detection, Influential
Observations, Stability, Sensitivity,
and Robust Estimation of Principal
Components

This chapter deals with four related topics, which are all concerned with
situations where some of the observations may, in some way, be atypical of
the bulk of the data.

First, we discuss the problem of detecting outliers in a set of data. Out-
liers are generally viewed as observations that are a long way from, or
inconsistent with, the remainder of the data. Such observations can, but
need not, have a drastic and disproportionate effect on the results of var-
ious analyses of a data set. Numerous methods have been suggested for
detecting outliers (see, for example, Barnett and Lewis, 1994; Hawkins,
1980); some of the methods use PCs, and these methods are described in
Section 10.1.

The techniques described in Section 10.1 are useful regardless of the type
of statistical analysis to be performed, but in Sections 10.2-10.4 we look
specifically at the case where a PCA is being done. Depending on their
position, outlying observations may or may not have a large effect on the
results of the analysis. It is of interest to determine which observations do
indeed have a large effect. Such observations are called influential observa-
tions and are discussed in Section 10.2. Leaving out an observation is one
type of perturbation to a data set. Sensitivity and stability of PCA with
respect to other types of perturbation is the subject of Section 10.3.

Given that certain observations are outliers or influential, it may be
desirable to adapt the analysis to remove or diminish the effects of such
observations; that is, the analysis is made robust. Robust analyses have
been developed in many branches of statistics (see, for example, Huber
(1981); Hampel et al. (1986) for some of the theoretical background, and
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Hoaglin et al. (1983) for a more readable approach), and robustness with
respect to distributional assumptions, as well as with respect to outlying or
influential observations, may be of interest. A number of techniques have
been suggested for robustly estimating PCs, and these are discussed in the
fourth section of this chapter; the final section presents a few concluding
remarks.

10.1 Detection of Outliers Using Principal
Components

There is no formal, widely accepted, definition of what is meant by an ‘out-
lier.” The books on the subject by Barnett and Lewis (1994) and Hawkins
(1980) both rely on informal, intuitive definitions, namely that outliers are
observations that are in some way different from, or inconsistent with, the
remainder of a data set. For p-variate data, this definition implies that out-
liers are a long way from the rest of the observations in the p-dimensional
space defined by the variables. Numerous procedures have been suggested
for detecting outliers with respect to a single variable, and many of these
are reviewed by Barnett and Lewis (1994) and Hawkins (1980). The lit-
erature on multivariate outliers is less extensive, with each of these two
books containing only one chapter (comprising less than 15% of their total
content) on the subject. Several approaches to the detection of multivariate
outliers use PCs, and these will now be discussed in some detail. As well as
the methods described in this section, which use PCs in fairly direct ways
to identify potential outliers, techniques 