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Random Forests

5.1 Introduction and Overview

Just as in bagging, imagine constructing a large number of trees with boot-
strap samples from a dataset. But now, as each tree is constructed, take a
random sample of predictors before each node is split. For example, if there
are twenty predictors, choose a random five as candidates for defining the
split. Then construct the best split, as usual, but selecting only from the five
chosen. Repeat this process for each node. And as in bagging, do not prune.
Thus, each tree is produced from a random sample of cases, and at each split
a random sample of predictors. Finally, just as in bagging, classify by a major-
ity vote of the full set of trees. Breiman calls the set of such trees a “random
forest” (Breiman, 2001a).

The random forest algorithm is, therefore, very much like the bagging
algorithm. Again let N be the number of observations and assume for now
that the response variable is binary.

1. Take a random sample of size N with replacement from the data.
2. Take a random sample without replacement of the predictors.
3. Construct the first CART partition of the data.
4. Repeat Step 2 for each subsequent split until the tree is as large as desired.

Do not prune.
5. Drop the out-of-bag data down the tree. Store the class assigned to each

observation along with each observation’s predictor values.
6. Repeat Steps 1–5 a large number of times (e.g., 500).
7. Using only the class assigned to each observation when that observation

is not used to build the tree, count the number of times over trees that
the observation is classified in one category and the number of times over
trees it is classified in the other category.

8. Assign each case to a category by a majority vote over the set of trees.
Thus, if 51% of the time over a large number of trees a given case is
classified as a “1,” that becomes its estimated classification.
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5.1.1 Unpacking How Random Forests Works

It should be clear that random forests draws on many features of procedures
discussed in the last two chapters. To begin, random forests uses CART as a
key building block. An important benefit is that one can capitalize on CART’s
strengths and flexibility. For example, large trees can be effective tools for
reducing bias, and the averaging over trees can substantially reduce instability
that might otherwise result. In addition, the relative costs of false negatives
and false positives can be explicitly considered. Especially for policy-related
applications, this can be vital.

It should also be apparent that random forests is bagging, but more so.
By working with a random sample of predictors at each possible split, the
fitted values across trees are more independent. Consequently, the gains from
averaging over a large number of trees can be more dramatic. But there is
more to the story.

If the individual trees in a random forest are unbiased in their fitted values
and estimated splits, the gains from random forest are solely with respect to
the variance. In practice, of course, there is no way to know if this is true and
there are usually lots of reasons for skepticism. Sometimes, therefore, random
forests can be seen as helping to reduce the bias.

Perhaps most directly, random forests is able to work with a very large
number of predictors, even more predictors than there are observations. In
addition to conventional regression modeling, all of the statistical learning
procedures considered thus far have required that the number of predictors
be less than the number of observations (usually much less). An obvious gain
with random forests is that more information may be brought to bear on the
fitting process. More predictors can weigh in, which can reduce bias. Variables
that should play a role and that otherwise would have been excluded, can
participate.

A more subtle gain is that different sets of predictors can be evaluated
for different splits so that different “models” can be applied as needed. To
appreciate how this works recall the CART splitting criterion:

ΔI(s, A) = I(A) − p(AL)I(AL) − p(AR)I(AR), (5.1)

where I(A) is the value of the parent impurity, p(AR) is the probability of
a case falling in the right daughter node, p(AL) is the probability of a case
falling in the left daughter node, I(AR) is the impurity of the right daughter
node, and I(AL) is the impurity of the left daughter node. CART tries to find
the predictor and the split for which ΔI(s, A) is as large as possible.

The key point is that the usefulness of a split is a function of the two
new impurities and the probability of cases falling into either of the prospec-
tive daughter nodes. Suppose there is a predictor that could produce splits in
which one of the daughter nodes is very homogeneous but has relatively few
observations whereas the other node is quite heterogeneous but has relatively
many observations. Suppose there is another predictor that could generate
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two nodes of about the same size, each of which is only moderately homo-
geneous. If these two predictors were forced to compete against each other,
the second predictor might well be chosen, and the small local region that
the first predictor would address be ignored. However, if the second predictor
were not in the pool of competitors, the first might be selected instead.

Similar issues arise with predictors that are substantially correlated. There
may be little difference empirically between the two so that when they compete
to be a splitting variable, one might be chosen almost as easily as the other.
But they would not partition the data in exactly the same way. The two
partitions that would be defined would largely overlap. But each partition
would have unique content as well. The unique content defined by the predictor
not chosen would not be included in that step. Moreover, with the shared area
now removed from consideration, the chances that the neglected predictor
would be selected later would be significantly reduced. But if the two variables
each had an opportunity to be selected without competing against each other,
each might be able to contribute.

Both kinds of competitions are in practice likely to involve many variables,
especially if there are a large number of predictors. Then, there can be a few
predictors that in a procedure such as CART will dominate the fitting process
because on the average they consistently perform just a bit better than their
competitors. Consequently, many other predictors, which could be useful for
very local features of the data, are rarely selected as splitting variables.

The same issues can arise for a single predictor. Recall that in CART,
all predictors are evaluated, even predictors previously selected. The same
predictor may be selected more than once. But each new selection for a given
predictor implies the construction of a new basis function for that predictor
(i.e., a different break point). In the competition between all predictors at
each stage, basis functions that might be very important, but only for a small
fraction of the data, risk being overlooked.

With random forests computed for a large enough number of trees, each
predictor will have at least several opportunities to be the predictor defining a
split. And in those opportunities, it will have very few competitors. Moreover,
if there are a relatively small number of dominant predictors, much of the
time a dominant predictor will not be included. As a result, predictors that
might ordinarily be overlooked have the opportunity to contribute to the fit.
The same implications follow for different basis functions for given predictors.
With a changing mix of competitors, highly specialized basis functions may
have the opportunity to define a split.

The sampling of predictors also has beneficial effects for the variance be-
cause of the averaging over trees. In effect, the predictor sampling and aver-
aging leads to shrinkage of the impact of each predictor on the fitted values.
The impacts on the fitted values when a predictor is included are averaged
with the impacts on the fitted values when that predictor is not included.
This regularization can help to reduce the variance beyond what would follow
solely from the sampling of observations.
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To help fix these ideas, Figure 5.1 shows a partitioning diagram much like
the one used earlier when CART was first introduced. As before, there are two
predictors, x and z. There is a choice to be made between the vertical split on
z represented by the solid line and the horizontal split on x represented by the
dashed line. The horizontal split might not be selected because its one very
homogeneous partition has relatively few observations. But if the predictor z
were not available, the horizontal split shown might well be chosen.

Very much the same issues arise if the vertical split is made, but then the
choice is between a horizontal split and another vertical split, which would
imply a second basis function for z. Consider the right vertical partition, for
example. The potential horizontal split shown would have to compete against
all possible vertical splits of z. But if z were not among the competitors for
the second split, the horizontal split might well be chosen.
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Recursive Partitioning of a Binary Outcome With Rare Cases 

(where G = A or B and predictors are Z and X)

Fig. 5.1. Partitioning for some rare cases.

Consider now Figure 5.2, a reproduction of Figure 3.8. This figure was
used earlier to illustrate CART instabilities when two predictors were highly
correlated. Here the point is that whether the partition defined by the dashed
line or the partition defined by the dotted line were selected, it would make
no difference for the three As in the upper-right hand corner. But whether
the fourth A, just below the dashed line, would be included depends on which
partition won in the fitting competition. If the horizontal partition were to win,
the fourth A would be placed in a very heterogeneous grouping. If the vertical
partition were to win, the fourth A would be placed in a very homogeneous
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grouping. And if the former, the fact that the fourth A was very similar to
its three A neighbors would probably be lost to the analysis. With the three
As already in their own partition, it is unlikely that another partition would
be defined later which was also very high on x and z. If x were not available
when the second split were determined, the vertical slice shown might well be
the one selected.
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(where G = A or B and predictors are Z and X)

Fig. 5.2. Competition between highly correlated predictors

The goal of finding a role for highly specialized predictors is an argument
for growing very large, unpruned trees. Generally, this seems to be a wise strat-
egy. However, large trees can sometimes lead to very unstable results when
there are a substantial number of predictors that at best are weakly related to
the response and correlated substantially with one another (Segal, 2003). In
effect, this becomes a problem with multicolinearity that the averaging over
trees becomes more difficult. The instability is too large to be readily averaged
out. In practice, therefore, it can occasionally be useful to work with smaller
trees, especially when there are a large number of weak predictors that are
strongly associated with one another. If before a data analysis is begun there
are reasons to worry about such problems, tree size can be used as a tuning
parameter in yet another manifestation of the bias–variance tradeoff.

Geurts and his colleagues (2006) have proposed another method for select-
ing predictors for enhancing independence across trees and further opening
up the predictor competition. They do not build each tree from a bootstrap
sample of the data. Rather, for each random sample of predictors, they select
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splits for each predictor at random (with equal probability), subject to some
minimum number of observations in the smaller of the two partitions. Then, as
in random forests, the predictor that reduces heterogeneity the most is chosen
to define the two subsets of observations. They claim that this approach will
reduce the overall heterogeneity at least as much as other ensemble procedures
without a substantial increase in bias. However, this conclusion would seem to
depend on how good the predictors really are. Moreover, if one is interested in
interpreting the manner in which inputs are related to outputs, their method
risks serious subject matter errors. In the averaging process over trees, model
results characterized by optimal splits are weighted the same as model results
characterized by random spits.

In summary, with forecasting accuracy as a criterion, bagging is in principle
an improvement over CART. And by this same criterion, random forests is in
principle an improvement over bagging. Indeed, random forests is among the
very best classifiers invented to date (Breiman, 2001a). A key reason is the
ability to consider a very large number of predictors, even more predictors
than observations. This can lead to reductions in the bias and reductions in
the variance.

5.2 An Initial Illustration

Table 5.1 shows some results for the domestic violence data described earlier.
As before, there are a little over 500 observations, and even if just double
interactions are considered, well over 100 predictors. This time, the goal is not
to forecast new calls for service to the police department that likely involve
domestic violence, but only those calls in which there is evidence that felony
domestic violence has actually occurred. Such incidents represent about 4%
of the cases. They are very small as a fraction of all domestic violence calls for
service. And as such, they would normally be extremely difficult to forecast
with better skill than using the marginal distribution of the response alone.
One would make only four mistakes in 100 households if one classified all
households as not having new incidents of serious domestic violence.

Using the response variable as the only source of information would in
this case mean never correctly identifying serious domestic violence house-
holds. The policy recommendation might be for the police to assume that the
domestic violence incident to which they had been called would be the last se-
rious one for that household. This would almost certainly be an unsatisfactory
result, which implies that there are significant costs from false negatives.

Using a cost ratio of 10 to 1 for false negatives to false positives favored by
the police department (more on how to do that shortly), Table 5.1 shows that
random forests incorrectly classifies households 13 times out of 100 overall.
If equal costs were used and the empirical distribution of the response vari-
able taken as the prior distribution, random forests would likely do at least
as well as the marginal distribution (i.e. four mistakes per 100 households).
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But whenever costs other than equal ones are introduced, the overall error
proportion will increase, so this result is no surprise. It is also not a problem.

More instructive measures of performance are found in the row propor-
tions. Random forests manages to correctly identify the very rare serious do-
mestic violence households about half the time with a model error of only .30
for households without these problems. As one would expect, when a logistic
regression was applied to the data, not a single incident of serious domestic
violence was identified, either correctly or incorrectly. The logistic regression
performed no better than the marginal distribution of the response.

No DV Forecasted DV Forecasted Model Error

No DV 341 146 .30

DV 15 14 .51

Use Error .04 .91 Overall Error = .13

Table 5.1. Confusion table for the ten-to-one random forest model for new domestic
violence incidents.

The use errors (i.e., column proportions) also look promising. When no
future incidents of domestic violence are forecasted, that forecast is correct
about 96 times out of 100. When future incidents of domestic violence are fore-
casted, that forecast is correct about 1 time in 10. Although that might seem
to be disappointing, it is a reflection of the costs assigned. The results imply
that the police department is prepared to live with nine false positives for
every true positive. If that tradeoff is indeed acceptable, then the forecasting
exercise works as intended.

5.3 A Few Formalities

With some initial material on random forests behind us, it is useful to take a
bit more formal look at the procedure. We build on an exposition by Breiman
(2001a). The concepts considered make more rigorous some ideas that we have
used in the past two chapters, and provide important groundwork for material
to come. As before, we focus on categorical, and especially binary, response
variables.

We also need to change notation just a bit. Bold type is used for vectors
and matrices. Capital letters are used for random variables.

5.3.1 What Is a Random Forest?

With categorical response variables, a random forest is a classifier. More than
two classes can be used. The intent is to assign classes to observations using
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information contained in a set of predictors. A random forest is constructed
from a set of K classification trees, each based in part on chance mechanisms.

We formally represent the random forest classifier as a collection of tree-
structured classifiers {f(x, Θk), k = 1, . . . }, where x is an input vector of P
predictor values used to assign a class, and k is an index for a given tree. Each
Θk is a random vector constructed for the kth tree so that it is independent
of past random vectors Θ1, . . . , Θk−1, and is generated from the same dis-
tribution. For bagging, it is the means by which observations are selected at
random with replacement from the training data. For random forests, it is also
the means by which subsets of predictors are sampled without replacement
for each potential split. In both cases, Θk is a collection of integers. Integers
for both sampling procedures can be represented by Θk.

But we are getting ahead of ourselves. The output from a given classifier
is an assigned class for each observation, determined by the input values x. In
CART, for example, the class assigned to an observation is the class associated
with the terminal node in which an observation falls. With random forests,
the class assigned to each observation is determined by a vote over the set of
tree classifiers for which that observation was not part of the training dataset.
That is, classes are assigned to observations much as they are in bagging. It
is conceptually very important to distinguish between the class assigned by
the kth classifier and the class ultimately assigned by a vote.

5.3.2 Margins and Generalization Error for Classifiers in General

Suppose there is a training dataset with predictor values and associated values
for a categorical response. A training dataset has been drawn at random. This
means that the data on hand can be treated as a realization of two kinds of
random variables: a set of predictors and a response variable.

Consider now a single data point from the training data. If the training
data have, for instance, 250 observations and 20 variables, that data point
might be the 27th row in a 250 by 20 data matrix. The values in this row will
change from sample to sample. Consequently, the set of P predictor values
can be represented by the random variable X. The actual class for that data
point will be represented by the random variable Y.

Suppose there is an ensemble of K classifiers, f1(x), f2(x), . . . , fK(x). For
the moment, we do not consider how these different classifiers are constructed.
The margin function at the data point X, Y is then defined as

mg(X, Y ) = avkI(fk(X) = Y ) − max
j �=Y

avkI(fk(X) = j), (5.2)

where I(.) is an indicator function, j is an incorrect class, avk denotes averag-
ing over the set of classifiers for a single realized data point, and max denotes
the largest value.

For a given set of x-values and the associated observed class, the margin is
the average number of votes for the correct observed class minus the maximum
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average number of votes for any other incorrect class. Thus, the margin is the
smallest spread between the number of correct and incorrect votes for a given
data point. When there are only two classes, there is only one spread to worry
about, and the word “maximum” is unnecessary.

From the definition of the margin function, generalization error is then

g = PX,Y (mg(X, Y ) < 0), (5.3)

where P means probability (easily confused with p, which can be the number
of predictors.

The probability is over the space represented by the random variables
X, Y , so that generalization error addresses what happens to the margin
over different realizations of the data point. Generalization error, therefore, is
the probability over realizations of the data point that the classification vote
will be overturned (i.e., go from positive to negative), and the assigned class
changed. A low probability indicates the class assigned is likely to be stable
over random samples from the same population.

This definition can be somewhat confusing. Generalization error, some-
times called “prediction error”or “test error,” is more typically defined as the
expected loss over all sources of randomness built into the full set of fitted
values. Then, generalization error can be written as

E[L(Y, f(X))]. (5.4)

The loss function L(Y, f(X)), is derived from disparities between the values
of the response predicted and the values of the response observed. Sometimes
a “hat” is placed over the “f” to indicate that it is an estimated function.

Here, we are using a “1–0 loss” because the assigned class is compared
to the observed class via the indicator function. It would also be possible to
compare the observed class to the predicted probability of membership in that
class. Then, a popular loss function is the deviance. But using the deviance
is more appropriate when constructing a given classifier, and if used instead
of the 1–0 loss here would fundamentally change random forests.

5.3.3 Generalization Error for Random Forests

Now, suppose the classifier fk(X) = f(X, Θk); the classifier is a random forest.
Breiman proves (2001a) that as the number of trees increases, the estimated
generalization error converges to the population generalization error, which is

PX,y(PΘ(f(X, Θ) = Y ) − max
j �=Y

PΘ(f(X, θ) = j) < 0). (5.5)

The arguments for PX,Y are (1) the probability of the correct classification
over trees, and (2) the maximum probability over trees of a wrong classifica-
tion. The number of these trees increases without limit. Then the estimated
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generalization error converges to the probability over X, Y that a vote will be
overturned.

There is a lot going on here. The data used for a given tree are a bootstrap
sample of the training dataset. The training dataset is a realization of the
random variables. Thus, two different chance mechanisms are involved, the
first reflected in PΘ and the second reflected in PX,Y .

The importance of the convergence is that demonstrably random forests
does not overfit as more trees are grown. One might think that with more
trees one would get an increasingly false sense of how well the results would
generalize. Breiman proves that this is not true. Given all of the concern about
the problem of overfitting, this is an important result.

It is also important to appreciate the limitations of what is being claimed.
The convergence is to a value for the generalization error in the population.
(This implies that the data are a random sample from that population or
a random realization from a specified stochastic process.) This says nothing
about the quality of the population classifier responsible for that generaliza-
tion error. That classifier could well generate fitted values some distance from
the actual response variable’s observations, and these fitted values could con-
tain substantial systematic error. As a result, the target generalization error
could be some distance from the “true” generalization error were the classifier
in the population the “correct” classifier (Traskin, 2008). In short, Breiman
does not prove that the classifier estimated from the data is a consistent es-
timator of the f(X), even if one has access to all of the necessary predictors
perfectly measured. We return to this point in a slightly different context
shortly.

As noted earlier, however, if there is no postulated f(X), or if the data
analyst is prepared to accept that with the data available the f(X) will not
be well estimated, then concerns about whether the population classifier is
“correct” are moot. Breiman’s proof remains relevant nevertheless because
one might otherwise believe that growing lots of trees in order to assemble a
random forest would lead to overfitting.

5.3.4 The Strength of a Random Forest

The margin function for a given realized data point in a random forest (not
just any classifier) is defined as

mr(X, Y ) = PΘ(f(X, Θ) = Y ) − max
j �=Y

PΘ(f(X, Θ) = j), (5.6)

where f(X, Θ) is a set of classifications that varies because of the chance
mechanism represented by Θ. Thus, considering all possible trees and that
realized data point, the margin function of a random forest is the probability
that a classification will be correct minus the maximum probability that it
will be incorrect.
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The margin function for a given random forest takes the training data
as fixed. If one allows for different realizations of the data point, the margin
function for a random forest will vary from realization to realization. But if we
take the expected value of Equation 5.6, over realizations of the data point,
the strength of a random forest is defined as

s = EX,ymr(X,y). (5.7)

Thus, the strength of a random forest is essentially the average margin
over randomly drawn training data. Clearly, the larger this expected value is,
the better.

5.3.5 Dependence

For a given data point, the trees from which a random forests is constructed
differ from each other because of the chance mechanism represented in Θk.
Recall that for both the selection of observations in the bootstrap sample
and the selection of potential predictors at each split, the chance mechanism
generates a set of integers.

For the bootstrap sample, the chance mechanism generates the number of
times each observation in the training data is selected. For the predictors, the
chance mechanism generates integers denoting which predictors are chosen.
For example, if there are 10 predictors 1, . . . , 10, and a decision is made to
select three of them, the integers 1, 3, and 8 might be drawn at random.

Ideally, both chance mechanisms should perform so that the output from
each tree is as independent as possible. That allows the averaging to occur
most effectively. But what output in particular?

For the binary outcome case, there is a relatively straightforward result.
Draw an observation from the relevant population. For any one tree, clas-
sify that realized data point. If the classification is correct, record a 1. If
the classification is incorrect, record a 0. Repeat the process beginning with
random sampling of a single observation. The average correlation between
these coded values, which represent whether the classification is correct, over
samples and trees, is the appropriate measure of dependence. Ideally, this
correlation should be small. The probability that a given observation chosen
at random is classified correctly should be unrelated to whether any other
randomly chosen observation is classified correctly.

5.3.6 Implications

The central concept in this more technical discussion is the margin. From
the margin comes the definition of generalization error. Generalization error,
in turn, depends on the strength of the collection of classifiers and the de-
pendence between them. When the dependence between trees is small and
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the strength of the trees is large, the generalization error will be small. More
precisely, Breiman shows that the upper bound for the generalization error is

g∗ =
ρ̄(1 − s2)

s2
, (5.8)

where ρ̄ is the average correlation over realizations of the data and trees, and
s is the strength of the set of trees. We want the former to be small and the
latter to be large.

In addition, generalization error will not increase with the number of trees.
Indeed, more trees are generally better than fewer trees because the true value
of the generalization error will be more accurately approximated. In practice,
this means that unless one is limited by the computer being used, a random
forests can usefully include several thousand trees.

Another practical lesson is that a useful random forest classifier will on
the average produce large margins as observations are classified. Put another
way, one should have less confidence in random forest results when the margins
tend to be small. This point and related ones have been made informally in
earlier discussions.

A final lesson is that the random selection of predictors helps to make
random forests more desirable than bagging because dependence is reduced.
Other advantages of random forests are considered shortly.

5.4 Random Forests and Adaptive Nearest Neighbor
Methods

A conceptual link was made earlier between CART and adaptive nearest
neighbor methods. Not surprisingly, similar links can be made between ran-
dom forests and adaptive nearest neighbor methods. But for random forests,
there are a number of more subtle issues (Lin and Jeon, 2006). These are im-
portant not just for a deeper understanding of random forests, but for some
extensions of random forests considered at the end of this chapter.

Recall that in CART, each terminal node represented a region of nearest
neighbors. The boundaries of the neighborhood were constructed adaptively
when the best predictors and their best splits were determined. With the
neighborhood defined, all of the observations inside were used to compute
a mean or proportion. This value became the measure of central tendency
for the response within that neighborhood. In short, each terminal node and
the neighborhood represented had it own conditional mean or conditional
proportion. Figure 3.1 might be a useful memory refresher.

Consider the case in which equals costs are assumed. This makes for a
much easier exposition, and no key points are lost. The calculations that take
place within each terminal node, in effect, rely on a weight given to each value
of the response variable. (Meinshausen, 2006; Lin and Jeon, 2006). For a given
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terminal node, all observations not in that node play no role when the mean
or proportion is computed. Consequently, each such observation has a weight
of zero. For a given terminal node, all of the observations are used when the
mean or proportion is computed. Consequently, each value of the response
variable in that node has a weight equal to 1/nτ , where n is the number of
observations in terminal node τ . Once the mean or proportion for a terminal
node is computed, that mean or proportion can serve as a fitted value for all
cases that fall in that terminal node.

CART Use of Weights

y = [1,2,4] y = [4,2,6]

Terminal Node 

A

Terminal Node

B

ȳB = (0 ∗ 1) + (0 ∗ 2) + (0 ∗ 4) + (1/3 ∗ 4) + (1/3 ∗ 2) + (1/3 ∗ 6) = 4

Root Node

Fig. 5.3. CART weighting.

Figure 5.3 shows a toy rendering of this account. The tree has but a single
partitioning of the data. There are three values of the response variable in
each terminal node. Consider terminal node B. The mean for terminal node
B is 4, computed with weights of 1/3 for the values in that node and weights
of 0 otherwise. Each of the three observations landing in terminal node B can
be assigned a value of 4 as their fitted value. If the response variable had been
binary, the numbers in the two terminal nodes would have been replaced by
1s and 0s. Then a conditional proportion for each terminal node would be the
outcome of the weighted averaging. And from this an assigned class could be
determined as usual.

A bit more formally, a conditional mean or proportion for any terminal
node τ is

ȳτ |x =
N∑

i=1

w(i,τ)yi, (5.9)

where the sum is taken over the entire training dataset, and wi is the weight for
each yi. The sum of the weights over all observations is 1.0. In practice, most
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of the weights will be zero because they are not associated with the terminal
node in question. This is really no different from the manner in which nearest
neighbor methods can work when summary measures of a response variable
are computed.

It may be important to underscore that each observation in the training
dataset has a set of weights, one weight for each yi. So, if there are 150
observations in the training data, there will be 150 weight values. It is these
weights and y-values from which the mean or proportion for each terminal
node is computed. Then each observation can have one fitted value depending
on the node in which it comes to rest.

When a classification or regression tree becomes part of a random forest,
there are a large number of trees with which to contend. For a given obser-
vation, there will now be a set of weights produced by each tree. Once again,
most of the weights will be 0, with the rest fractions. Because of the stochastic
nature of each tree, the weights will vary.

Consider a given observation x0 characterized by a set of predictor values
and a value for the response variable. From tree to tree, the observations in
the terminal nodes in which x0 falls will vary. Consequently, the node mean
will likely vary as well. It follows that the set of weights used to compute the
fitted value for x0 will change. In effect, random forests averages these weights
for x0 (and for all other observations). Then, the average weight replaces the
tree-specific weight in Equation 5.9. Weights greater than zero are sometimes
called “voting points” when the mean or proportion for x0 is computed (Lin
and Jeon, 2006: 579–580). The sum of the average weights over all observations
is 1.0. Clearly, the links to adaptive nearest neighbors remain. It is just that
each weight is an average weight over trees.

To help firm up these ideas, Table 5.2 carries on with the toy example
for a single case. There are six observations in the dataset represented in the
table as columns. A very small random forest of three trees is grown. To keep
the table format manageable, assume that despite sampling with replacement,
each observation appears just once in each bootstrap sample. The cell entries
for the first three rows are the CART weights for each of the three trees. The
last row is the average of each column. Each row sums to 1.0 and the average
weights sum to 1.0 (except for rounding error).

Tree i=1 i=2 i=3 i=4 i=5 i=6

1 0 .33 .33 0 .33 0

2 .5 .5 0 0 0 0

3 .25 .25 0 .25 0 .25

Average .25 .36 .11 .083 .11 .083

Table 5.2. Weights from three random trees for a single observation.
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Table 5.2 contains three sets of CART weights and their average for a
given observation. When in random forests the fitted value is computed for
that observation, the average weights in the last row are used. Each value of
yi, i = 1, 2, . . . , 6, is multiplied by its weight and summed. There would be a
corresponding table for each of the six observations in the dataset.

There are at least three interesting implications that follow from formu-
lating the random forest fitted values in terms of weights. First, a plot of the
weights in the space defined by the predictors can be instructive. To begin,
consider a given x0 and all of the nonzero weights for all of the observations
associated with that target point. Then, find each x-value in the predictor
space and mark that point with a symbol for the weight. Figure 5.4 is an
example for CART in which just two predictors are shown: age and income.
The response might be years of education. For the moment, assume that age
and income are unrelated. For ease of exposition, we can ignore the other
predictors used in the analysis such as gender or ethnicity. For simplicity, we
also ignore the weight values.

Age

Income

18 24

CART Weights

Fig. 5.4. Weights with two unrelated predictors.

Predictors that define the terminal node in which x0 falls will have all of
nonzero weights (1) clustered along the dimensions of x used to define x0’s
terminal node and (2) spread out along the dimensions of x not used to define
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x0’s terminal node. Suppose, for example, age alone is used to define the
terminal node. The terminal node only includes individuals between 18 and
24 years of age. Then, the plotted weights would be found within the range
of 18 to 24 years old.

For Figure 5.4, income is not a defining feature of the node; it was not used
to define the relevant splits. Then, the weights would be spread out over its
range. Income is not by itself important for how the terminal node is defined
and plays no systematic role in how the node mean or proportion is computed.
In other words, such plots are characterized by tight clustering along some
dimensions and little clustering at all along others, much as in Figure 5.4.

Suppose now that age and income are related. Perhaps older people tend to
have higher incomes. The basic ideas just presented still apply, but the plot
will be less dramatic. There will now be some clustering along the income
dimension as well because of the association between the two predictors.

Age

Income

18 24

Random Forest Weights

Fig. 5.5. Weights with two related predictors.

Random forests leads to somewhat different looking plots. As Figure 5.5
shows, the distinction between predictors that are included and predictors that
are excluded is far less dramatic. One reason is that even weak predictors may
be selected on occasion for use in partitioning the data if the predictors against
which it is competing are even weaker. Another reason is that depending on
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the competing predictors selected by chance for consideration, a splitpoint for
strong predictors may sometimes be chosen that would otherwise be ignored.

Consequently, although there will be more nonzero weights clustering
within regions defined by stronger predictors than elsewhere, there will also
be instances where weights for weak predictors or weak regions within strong
predictors will be greater than zero. Notice that in Figure 5.5 there is cluster-
ing in the vertical direction implying that now there is a cutpoint separating
moderate to low incomes from high incomes. When income does not compete
with age, a useful partitioning of the data tends to be found. Notice also that
there are now voting points for years of age outside of 18 to 24.

It follows that information from income that would have been pushed aside
under CART can be brought to bear in random forests. The fitting burden
is shared, at least a bit, between age and income because nonzero weights
are more widely distributed. In this context, income is an illustration of a
highly specialized predictor that random forests is able to exploit. This is also
another way to think about how random forests regularizes the fitted values.

Compared to CART more generally, random forests can include a wider
variety of locations in the predictor space when conditional means or pro-
portions are computed. There can be more voting points for a larger set of
predictors and partitions within predictors. It is this ability to make better
use of predictors that in part explains random forests’ successes.

A second implication of the weighting formulation is that once one rec-
ognizes that random forests computes its fitted values as weighted averages,
other uses can be made of the weights (Meinshausen, 2006). In particular,
when one has a quantitative response variable (more on this later), the weights
can be used to construct the cumulative distribution of the response values
for each configuration of x-values. And with this in hand, one can compute for
quantitative variables any conditional quantiles of interest such as the median
or the 90th percentile. In effect, one can do random forests quantile regression.

Table 5.3 provides a simple illustration for a given target value x0. There
are ten response values available for x0, listed in order, that have nonzero
average weights across trees. The mean is computed by multiplying each re-
sponse value by its average weight and adding the products. In this case, the
mean is 83. However, quantiles are also available. The 10th quantile is 66.
The 50th quantile (the median) is 82. The 90th quantile is 92. In short, if
information such as that found in Table 5.3 is available, one is not limited to
the mean of each x0.

There will sometimes be interest in the fitted values of conditional medians
to “robustify” random forest results or to consider a central tendency measure
unaffected by the tails of the distribution. Sometimes, there is subject-matter
interest in learning about the conditional distribution of a very high or very
low quantile, especially if those conditional distributions differ from one an-
other and from the conditional distribution for the median.

For example, in today’s world of school accountability based on standard-
ized tests, perhaps students who score especially poorly on standardized tests
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Average Weight Response Value Cumulative Weight

.10 66 .10

.11 71 .21

.12 74 .33

.08 78 .41

.09 82 .50

.10 85 .60

.13 87 .73

.07 90 .80

.11 98 .91

.09 99 1.0

Table 5.3. Weights and cumulative weights for a target value x0

.

respond better to smaller classroom sizes than students who excel on standard-
ized tests. The performance distribution on standardized tests, conditioning
on classroom size, differs for good versus poor performers. Random forests
quantile regression can address such concerns. A real illustration is provided
later in this chapter.

A final implication is that the weights provide another way to think about
how a correct classifier would perform. In the population or stochastic process
responsible for the data, the f(X) leads to weights that in turn generate as
a weighted average the systematic part of the response variable. A desirable
classifier working with a random sample from this population or a random
realization from the stochastic process might provide unbiased, or at least
consistent, estimates of those weights. From these estimated weights, unbi-
ased or consistent estimates of the fitted values could be constructed. By this
standard, CART and random forest do not measure up.

5.5 Taking Costs into Account in Random Forests

Just as in CART, there is a need to consider the relative costs of false negatives
and false positives. Otherwise, for each tree, one again has to live with the
default values of equal costs and a prior distribution for the response variable
that is the same as its empirical distribution in the data.

Perhaps the most conceptually direct method would be to allow for a cost
matrix just as CART does. To date, this option is not available in random
forest software, and there are suspicions that it might not work effectively if
it were.

There are four approaches that have been seriously considered for the
binary class case. They differ by whether costs are imposed on the data before
each tree is built, as each tree itself is built, or at the end when classes are
assigned.
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1. Just as in CART, one can use a prior distribution to capture costs when
each tree is built. This has the clear advantages of being based on the me-
chanics of CART and a straightforward way in the binary case to translate
costs into an appropriate prior.

2. After all of the trees are built, one can differentially weight the classi-
fication votes over trees. For example, one vote for classification in the
less common category might count the same as two votes for classifica-
tion in the more common category. This has the advantage of being easily
understood.

3. After all of the trees are built, one can abandon the majority vote rule and
use thresholds that reflect the relative costs of false negatives and false
positives. For instance, rather than classifying as “1” all observations for
which the vote is larger than 50%, one might classify all observations as
“1” when the vote is larger than 33%. This too is easy to understand.

4. When each bootstrap sample is drawn before a tree is built, one can over-
sample one class of cases relative to the other class of cases in much the
same spirit as disproportional stratified sampling used for data collection
(Thompson, 2002: Chapter 11). Before a tree is built, one oversamples the
cases for which forecasting errors are relatively more costly. Conceptually,
this is a lot like altering the prior distribution.

All four approaches share the problem that the actual ratio of false nega-
tives to false positives in the confusion table may not sufficiently mirror the
cost ratio. In practice, this means that whatever method is used to introduce
relative costs, that method is simply considered a way to “tune” the results.
With some trial and error, an appropriate ratio of false negatives to false
positives can usually be achieved.

Although some very tentative experience suggests that in general all four
methods can tune the results as needed, there may be some preference for
tuning by the prior or by stratified bootstrap sampling. Both of these methods
will affect the confusion table through the trees themselves. The structure of
the trees themselves responds to the costs introduced. Changing the way votes
are counted or the thresholds used only affects the classes assigned, and leaves
the trees unchanged. The defaults of equal costs and the empirical prior remain
in effect. It would seem that by allowing the trees themselves to respond to
cost considerations, more responsive forecasts should be produced. Moreover,
any output beyond a confusion table will reflect the role of costs. More is said
about such output shortly.

There is one very important situation in which the stratified sampling ap-
proach is likely to be superior to the other three approaches. If the response
variable is highly unbalanced (e.g., a 95–5 split), any given bootstrap sample
may fail to include enough observations for the rare category. Then, a useful
tree will be difficult to construct. As observed earlier, it will often be difficult
under these circumstances for CART to move beyond the marginal distribu-
tion of the response. Oversampling rare cases when the bootstrap sample is
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drawn will generally eliminate this problem. Using a prior that makes the rare
observations less rare can also help, but that help applies in general and will
not be sufficient if a given bootstrap sample makes the rare cases even more
rare. We consider some examples in depth shortly. But a very brief illustration
is provided now to prime the pump.

5.5.1 A Brief Illustration

Forecast No Misconduct Forecast Misconduct Model Error

No Misconduct 3311 1357 .29

Misconduct 58 80 .42

Use Error .02 .94 Overall Error = .29

Table 5.4. Confusion table for forecasts of serious prison misconduct.

Table 5.4 was constructed using data from the prison misconduct study
described earlier. In this example, the response is incidents of very serious
misconduct, not the garden-variety kind. As noted previously, such miscon-
duct is relatively rare. Less than about 3% of the inmates had such reported
incidents. So, just as for the domestic violence data shown in Table 5.1, it is
difficult to do better than the marginal distribution under the usual CART
defaults.

Suppose that the costs of forecasting errors for the rare cases were substan-
tially higher than the costs of forecasting errors for the common cases. These
relative costs can be effectively introduced by taking a stratified bootstrap
sample, oversampling the rare cases. And by making the rare cases less rare,
problems that might follow from the highly unbalanced response variable can
sometimes be overcome.

For Table 5.4, the bootstrap samples for each of the response categories
was set to equal 100. The “50–50” bootstrap distribution was selected by trial
and error to produce a cost ratio of false negatives to false positives of about
20 to 1. This may be too high for real policy purposes, but it is still within
the range considered reasonable by prison officials.

Why 100 cases each? Experience to date suggests that the sample size
for the less common response category should equal about two-thirds of the
number of cases in the class. If a larger fraction of the less common cases is
sampled, the out-of-bag sample size may be too small.

With the number of bootstrap observations for the less common category
determined to be 100, the 50–50 constraint leads to 100 cases being sampled for
the more common response category. In practice, one determines the sample
size for the less common outcome and then adjusts the sample size of the more
common outcome as needed.
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Table 5.4 can be interpreted just as any of the earlier confusion tables. For
example, the overall proportion of cases incorrectly identified is .29. Random
forests forecasts 42% of the incidents of misconduct incorrectly and 29% of the
no misconduct cases incorrectly. Were prison officials to use these results for
forecasting, a forecast of no serious misconduct would be wrong only 2 times
out of 100, and a forecast of serious misconduct would be wrong 94 times out of
100. But for very serious inmate misconduct, having 1 true positive for about
20 false positives may be an acceptable tradeoff. The misconduct represented
can include homicide, assault, sexual assault, and narcotics trafficking.

To summarize, random forests provides several ways to take the costs of
false negatives and false positives into account. Ignoring these options does
not mean that costs are not affecting the results. The default is equal to the
costs and the use of the marginal distribution of the response variable as the
empirical prior. However, there is to date no formal justification for preferring
one costing method over the others, and the early hands-on experience is far
from conclusive.

5.6 Determining the Importance of the Predictors

Just as for bagging, random forests leaves behind so many trees that col-
lectively they are useless for interpretation. Yet, a central goal of statistical
learning is to explore how inputs are related to outputs. Exactly how best to
do this is currently unresolved, but there are several useful options available.
We begin with a discussion of variable “importance.”

5.6.1 Contributions to the Fit

One approach to predictor importance is to record the decrease in the fitting
measure (e.g., Gini index) each time a given variable is used to define a split.
The sum of these reductions for a given tree is a measure of importance for
that variable when that tree is built. For random forests, one can average this
measure of importance over the set of trees.

As with variance partitions, however, reductions in the fitting criterion
ignore the forecasting skill of a model, which many statisticians treat as the
gold standard. Fit measures are computed with the data used to build the
classifier. They are not computed from test data.

Moreover, it can be difficult to translate contributions to a fit statistic
into practical terms. Simply asserting that a percentage contribution to a fit
statistic is a measure of importance is circular. Importance must be defined
outside of the procedure used to measure it. And what is it about contributions
to a measure of fit that makes a predictor more or less important? Even if an
external definition is provided, is a predictor important if it can account for,
say, 10% of the reduction in impurity?
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In any case, one must be fully clear that contributions to the fit by them-
selves are silent on what would happen if in the real world a predictor is
manipulated. Causality can only be established by how the data were gen-
erated, and causal interpretations depend on there being a real intervention
altering one or more predictors (Berk, 2003).

5.6.2 Contributions to Forecasting Skill

Breiman (2001a) has suggested another form of randomization to assess the
role of each predictor. This method is implemented in the R version of random
forests. It is based on the reduction in predictive accuracy when a predictor
is shuffled so that it cannot make a systematic contribution to a forecast. Re-
ductions in predictive accuracy can be translated into practical terms. Would
a reduction of, say, 10% in forecasting accuracy matter in real applications?
In contrast to fit statistics, forecasting skill has direct implications for actual
decisions.

Breiman’s approach has much in common with the concept of Granger
causality (Granger and Newbold, 1986: Section 7.3). Imagine two times series,
Yt and Xt. If the future conditional distribution of Y given current past values
of Y is the same as the future conditional distribution of Y given current and
past values of Y and X, X does not Granger cause Y . If the two future
conditional distributions differ, X is a prima facie cause of Y .

These ideas generalize so that for the baseline conditional distribution,
one can condition not just on current and past values of Y but on current
and past values of other predictors (but not X). Then X Granger causes Y,
conditional on the other predictors, if including X as a predictor changes the
future conditional distribution of Y . In short, the idea of using forecasting skill
as a way to characterize the performance of predictors has been advanced in
both the statistical and econometrics literature.

Breiman’s importance measure of forecasting skill differs perhaps most
significantly from Granger’s in that Breiman does not require time series
data and randomly shuffles the values of predictors rather than dropping (or
adding) predictors from the forecasting model. The latter has some important
implications discussed shortly.

For Breiman’s approach a categorical response variable is constructed us-
ing the following algorithm.

1. Construct a measure prediction error ν for each tree as usual by drop-
ping the out-of-bag (OOB) data down the tree. Note that this is a real
forecasting enterprise because data not used to build the tree are used to
evaluate its predictive skill.

2. If there are p predictors, repeat Step 1 p times, but each time with the
values of a given predictor randomly shuffled. The shuffling makes that
predictor on the average unrelated to the response and all other predictors.
For each shuffled predictor j, compute new measures of prediction error,
νj .
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3. For each of the p predictors, average over trees the difference between the
prediction error with no shuffling and the prediction error with the jth
predictor shuffled.

The average increase in the forecasting error when a given predictor j is
shuffled represents the importance of that predictor for forecasting skill. That
is,

Ij =
K∑

k=i

[
1
K

(νj − ν)
]

, j = 1, . . . , p, (5.10)

where there are K trees, νj is the forecasting error with predictor j shuffled,
and ν is the forecasting error with none of the predictors shuffled. It is some-
times possible for forecasting accuracy to improve slightly when a variable is
shuffled because of the randomness introduced. A negative measure of fore-
casting importance follows. Negative forecasting importance can be treated
as no decline in accuracy or simply can be ignored.

As written, Equation 5.10 is somewhat open-ended. The measures of fore-
casting error (ν and νj) are not defined. One could imagine using the number
of forecasting errors, the percentage of cases forecasted incorrectly, the change
in the margin, or some other measure. Currently, the preferred measure is the
same as the one used when confusion tables are constructed: the proportion
(or percentage) of cases misclassified. This has the advantage of allowing di-
rect comparisons between predictor importance and either the row or column
totals in the table. In addition, all of the other measures considered to date
have been found less satisfactory for one reason or another. For example, some
measures are misleadingly sensitive; small changes in the number of classifi-
cation errors can lead to large changes in the importance measure.

One significant complication is that Equation 5.10 will almost always pro-
duce different importance measures for given predictors for different categories
of the response. That is, there will be for any given predictor a measure of
importance for each class forecasted, and the measures will not generally be
the same. For example, if there are three response classes, there will be three
measures of importance for each predictor that will generally not be the same.
Moreover, this can lead to different rankings of predictors in the forecasting
importance depending on which response category is being considered. Al-
though this may seem odd, it follows directly from the fact that the number
of observations in each response class and the margins for each class will typi-
cally differ. Consequently, a given increase in the number of misclassifications
can have different impacts. A detailed illustration is be presented shortly.

Partly in response to such complications, one can standardize the declines
in forecasting skill. The standard deviation of Equation 5.10 can be computed
over the K trees. In effect, one has a bootstrap estimate over trees of the
standard error associated with the increase in forecasting error, which can be
used as a descriptive measure of stability. Larger values imply less stability.
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Then, one can divide Equation 5.10 by this value. The result can be in-
terpreted as a z-score so that importance measures are now all on the same
scale. And with a bit of a stretch, confidence intervals can be computed and
conventional hypothesis tests performed. It is a stretch because the sampling
distribution of the predictor importance measure is usually not known. Per-
haps more important, the descriptive gains from standardization are modest
at best, as the illustrations that follow make clear.

One of the drawbacks of the shuffling approach to variable importance is
that only one variable is shuffled at a time. There is no role for joint impor-
tance over several predictors. This can be an issue when predictors are not
independent. There will be a contribution to forecasting skill that is uniquely
linked to each predictor and a joint contributions shared between two or more
predictors.

There is currently no option in the random forest software to shuffle more
than one variable at a time. However, it is relatively easy to apply the predic-
tion procedure in random forests using as input the original dataset with two
or more of the predictors shuffled. Then, Equation 5.10 can be employed as
before, where j would now be joined by other predictor subscripts. The main
problem is that the number of potential joint contributions can be very large.
In practice, some subset selection procedure is likely to be needed, perhaps
based on substantive considerations.

It might seem that Granger’s approach of examining forecasting skill with
and without a given predictor included is effectively the same as Breiman’s
shuffling approach. And if so, one might consider, for instance, dropping sets of
predictors to document their joint contribution. But actually, the two strate-
gies are somewhat different. In Granger’s approach, dropping or adding pre-
dictors to the model means that the model itself will be re-estimated each
time. So, the comparisons Granger favors are the result of different predictors
being included and different models. Under Breiman’s approach, the model
is not reconstructed. The shuffling is undertaken as an additional procedure
with the model fixed.

In summary, for many scientists the ability to forecast accurately is the
gold standard of a model’s worth. If one cannot forecast well, it means that
the model cannot usefully reproduce the empirical world. It follows that such
a model has little value. And as now stressed a number of times, a model that
fits the data well will not necessarily forecast well. The take-home message is
simple: if forecasting skill is the gold standard (or even just a very important
criterion by which to evaluate a model), then a predictor’s contribution to
that skill is surely one reasonable measure of that predictor’s importance.

Some Examples

Figures 5.6 to 5.9 show how predictor importance can be represented as a
reduction in forecasting accuracy. The data are, once again, from the prison
study with the response variable very serious misconduct in prison. In each
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figure, importance is on the horizontal axis and predictor names are on the
vertical axis.

Figure 5.6 displays predictor importance for the “misconduct” response
category. Importance is just the average decline over trees in forecasting accu-
racy. It is, therefore, “unscaled” or “unstandardized.” Taking all the variables
into account, Table 5.4 indicates that serious misconduct is correctly fore-
casted about 58% of the time. That accuracy drops to about 51% (i.e., about
7%) if the variable “Term” is shuffled. It drops to about 52% (i.e., about 6%)
if the variable “Gang” is shuffled. None of the other predictors meaningfully
affect forecasting accuracy. The two most important predictors are “Term”
and “Gang.” Recall that “Term” refers to sentence length and “Gang” refers
to street or prison gang activity.

It is useful to keep in mind that the importance represented is the decline
in forecasting accuracy uniquely attributable to each predictor. Predictive skill
shared between predictors is not included. Thus, for example, the sum of the
declines in forecasting accuracy for all predictors is usually less, often far less,
than overall forecasting accuracy.

Figure 5.7 shows the unscaled importance of the predictor for the no mis-
conduct response category. Now the base is different because the absence of
misconduct is forecast with about 71% accuracy. Moreover, there is no particu-
lar reason why the predictors that play a major role in forecasting misconduct
should play a major role in forecasting no misconduct. Because this may seem
to be counterintuitive, some discussion is warranted.

Recall how classification is accomplished in random forests. The class is
assigned by majority vote. Two features of those votes are especially relevant
here: the margin and the number of actual class members.

Consider a simple example. Suppose a given inmate receives a vote of 25 to
24 to be assigned to the misconduct class category. Suppose that in fact that
inmate has a reported incident of serious misconduct; the forecast is correct.
Now a predictor is shuffled. The vote might be very different. But suppose it
is now 24 to 25. Only one vote has changed. Yet, the inmate is now placed in
the no misconduct class. This increases the forecasting error by one inmate.

Is that one inmate increase enough to matter? It depends on how many
inmates were correctly predicted to have a serious misconduct incident and
how many were incorrectly predicted to have a serious misconduct incident.
Suppose 10 inmates actually had an incident of serious misconduct, with 7
correctly predicted to have an incident of serious misconduct and 3 incorrectly
predicted to have an incident of serious misconduct. Changing just one inmate
from a true positive to a false negative reduces forecasting accuracy from 70%
to 60%. If there had been 100 inmates who actually had incidents of serious
misconduct with 70 true positives and 30 true negatives, changing that one
inmate would reduce forecasting accuracy from 70% to 69%.

In summary, if the margins tend to be small, dropping a predictor can
easily change the class assigned for a significant number of cases. Then, if
the number of true class members is small as well, the change of even a few
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Fig. 5.6. Unscaled forecasting importance for misconduct

cases from one assigned class to another can dramatically affect the proportion
of cases whose class membership was accurately forecasted. Because both the
margins and the class sizes can differ depending on which response category is
considered, forecasting importance of the predictors can differ as well. Thus,
Figure 5.6 looks somewhat different from Figure 5.7. Comparisons such as
these seem to argue for some kind of standardization, perhaps through the
z-scores mentioned earlier.

In Figure 5.7, none of the predictors affect forecasting skill very much. Yet,
“Term” is still the most important predictor. A previous sentence in a state
juvenile facility (CYA) now comes in second. Gang activity drops to third
place.

The differences between Figures 5.6 and 5.7 illustrate the kinds of com-
plications just noted. As an empirical matter, the number of no misconduct
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observations is large. Other things being equal, many cases would have to
change from true negative to false positive for forecasting accuracy to decline
a substantial amount. But it is more complicated than that because mar-
gins for each case will likely differ from the margins when misconduct is the
response category.

Jail
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Psych

Gang

CYA

Term

0.000 0.002 0.004 0.006 0.008 0.010

Reduction in Forecasting Accurcy for No Misconduct Outcome

Importance

Fig. 5.7. Unscaled forecasting importance for no misconduct.

Figures 5.8 and 5.9 replay the same analysis in standardized scores. The
horizontal axis is now in z-scores. Because forecasting importance is scaled
to be in units of the same size, the two figures can be more easily compared.
However, we already know that forecasting skill declines very little for the
no misconduct class when predictors are shuffled. Those are the facts. It is
not clear, therefore, how standardizing helps if the goal is to characterize
predictors by their forecasting skill. Two predictors may be deemed strong
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and equally important by the z-score metric when in fact one substantially
affects forecasting skill and the other does not.
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Fig. 5.8. Scaled forecasting importance for misconduct.

Let’s return to the matter of stability over trees and take “Term” for the
misconduct outcome as an example. The standard deviation over trees of the
measure of forecasting importance is about .03. Thus for term length, one can
say that although mean importance over trees is about .07, importance will
typically vary from about .04 to about .10. If, however, the standard deviation
over trees were .10, importance would typically vary from the lower bound of
0.0 to about .17. Clearly, one has a much worse fix on how important term
length really is for the second case.

Insofar as the distribution of raw importance scores over trees is approx-
imately normal, formal hypothesis tests and confidence intervals can follow.
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Fig. 5.9. Scaled forecasting importance for no misconduct.

For example, if term length had a z-score of over 2.0, one might justifiably take
that as a rejection of the null hypothesis at the .05 level that the importance
of term length is 0.0. If one is not prepared to bet that the distribution of
importance is approximately normal, one can in principle resort to resampling
tests directly over the set of trees. This capability is currently not available
in R’s random forests software, but with very modest changes in the code it
could be.

One must be clear that the uncertainty being assessed comes from the
bootstrap sampling and predictor sampling within random forests itself. Noth-
ing whatsoever is being said about the stability of importance measures over
sets of training data selected by probability sampling. Random forests outputs
a single measure of importance for each predictor as an average over trees. If
one were interested in the overall uncertainty in this single measure for each
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predictor, one would at least need to address in addition the implications of
random samples of training data. A possible approach would be to embed the
random forest procedure in bootstrap samples of the existing training data.

In summary, the decision to standardize or not standardize raises the old
saw of substantive versus statistical significance. The unstandardized measure
of forecasting importance addresses substantive significance. The standardized
measure of forecasting importance addresses (ideally) statistical significance.
Both can be important, but they are different.

The implications of these illustrations generalize to response variables with
more than two categories. There can be scaled or unscaled plots for each re-
sponse category. This underscores a point made earlier. Moving from two
response categories to more than two does not change anything fundamen-
tal. But analysis complexity will increase dramatically with each additional
response category.

5.7 Response Functions

Predictor importance is only part of the story. In addition to knowing the
importance of each predictor, it can be very useful to have a description of
how each predictor is related to the response. The set of response functions
needs to be described.

One useful solution, based on an earlier suggestion by Breiman and his
colleagues (1984) is “partial dependence plots” (Friedman, 2001; Hastie et al.,
2001: Section 10.13.2). For tree-based approaches such as CART, one proceeds
as follows.

1. Grow a forest.
2. Suppose x1 is the initial predictor of interest, and it has v distinct values

in the training data. Construct v data sets as follows.
a) For each of the v values of x1, make up a new dataset where x1 only

takes on that value, leaving all other variables untouched.
b) For each of the v datasets, predict the response using random forests.

There will be a single value averaged over all observations.
c) Average each of these predictions over the trees.
d) Plot the average prediction for each value for each of the v datasets

against the v values of x1

3. Go back to Step 2 and repeat for each predictor.

Partial dependence plots show the relationship between a given predictor
and the response averaged within the joint values of the other predictors as
they are represented in a tree structure. In this way, the other predictors are
being “held constant” by matching. Consequently, no assumptions are made
about how the predictors are related to one another or to the response variable.
One price for this approach is that interaction effects are not represented



5.7 Response Functions 223

unless the appropriate interaction variables are constructed in advance and
included among the set of predictors.

Unlike the plots of fitted values constructed by smoothers (e.g., from the
generalized additive model), partial dependence plots impose no smoothness
constraints, and the underlying tree structure tends to produce somewhat
bumpy results. In practice, one usually imposes an “eyeball” smoother when
the plot is interpreted. Alternatively, it is often possible to overlay a smoother
if the software stores the requisite output.

Partial plots can be constructed for quantitative responses and for re-
sponses with more than two categories. For quantitative response variables,
the units represented on the vertical axis usually are the natural units of the
response, whatever they happen to be. For categorical response variables, the
units of the response represented on the vertical axis are unconventional and
easily misunderstood. Because partial dependence plots can be so very useful
for applied work, the metric used needs to be examined in some detail. We
begin with the binomial case.

It is common to see a logistic regression equation written as

log
(

p

1 − p

)
= Xβ, (5.11)

where p is the probability of success. The term on the left-hand side is the log
of the odds of a success, often called the “logit.” The change in the response
for a unit change in a predictor is in “logits.”

For the multinomial case, the most common approach to logistic regres-
sion builds up from the familiar binary formulation. If there are K response
categories, there are K − 1 equations, each of the same general form as Equa-
tion 5.11. However, one equation of the K possible equations is redundant
because the response categories are exhaustive and mutually exclusive. Thus,
if an observation does not fall in categories 1, . . . , K−1, it must fall in the Kth
category. This implies that a single category can be chosen as the reference
category, just as in the binomial case (i.e., there are two possible outcomes
and one equation). Then, for each of the K − 1 equations, the logit is the log
of the odds for a given category compared to the reference category.

Suppose there are four response categories, and the fourth is chosen as the
reference category. There would then be three equations with three different
responses, one for log(p1/p4), one for log(p2/p4), and one for log(p3/p4). The
predictors would be the same for each equation, but each equation would have
its own set of regression coefficients differing in values across equations.

One might think that partial dependence plots would follow a similar con-
vention. But they don’t. The choice of the reference category determines which
logits will be used, and the logits used affect the regression coefficients that
result. Although the overall fit is the same no matter what the reference cat-
egory, and although one can compute from the set of estimated regression
coefficients what the regression coefficients would be were another reference
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category used, the regression coefficients reported are still different when dif-
ferent reference categories are used.

There is no statistical justification for choosing one reference category
or another. The choice is usually made on subject matter grounds to make
interpretations easier, and the choice can easily vary from data analyst to data
analyst. So, the need for a reference category can complicate interpretations of
the results and means that a user of the results has to undertake considerable
additional work if regression coefficients using another reference category are
desired.

In response to these complications, partial dependence plots are based on
a somewhat different approach. There are K, rather than K − 1, response
functions, one for each response variable class. For the logistic model, these
take the form of

pk(X) =
efk(X)∑K

k=1 efk(X)
. (5.12)

There is still a redundancy problem to solve. The solution employed by
partial dependence plots is to constrain

∑K
k=1 fk(X) = 0. This leads to the

multinomial deviance loss function and the use of a rather different kind of
baseline.

Instead of using a given category as the reference, the unweighted mean
of the proportions in the K categories is used as the reference. In much the
same spirit as analysis of variance, the response variable units are then in
deviations from a mean. More specifically, we let

fk(X) = log[pk(X)] − 1
K

K∑
k=1

log[pk(X)]. (5.13)

Thus, the response is the disparity between the logged proportion for category
k and the average of the logged proportions for all K categories. The units
are essentially logits but with the mean over the K classes as the reference.
Consequently, each response category can have its own equation and, there-
fore, its own partial dependence plot. This approach is applied even when
there are only two response categories, and the conventional logit formulation
might not present interpretive problems.

To help fix these ideas, consider an example of a single data point for a
binary outcome. Here, a single data point is defined by a single value of a given
predictor. For that data point, the partial dependence algorithm classifies all
of the observations as described earlier. For each of the response variable
categories, there is a proportion of observations assigned. Then Equation 5.13
is applied.

To illustrate, consider once again the prison data. Suppose term length
in years was the predictor whose relationship with the binary misconduct
response variable was of interest. And suppose for a term length of say, 1
year, the proportion of inmates engaging in an incident of misconduct was
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.20 (computed using the partial dependence algorithm). If the proportion of
success is .20, the value plotted is log(.2)−[log(.2)+log(.8)]/2 = −0.693 (using
natural logarithms). This is the value that would be plotted on the vertical
axis for the term length value on the horizontal axis of 1.0.

The same approach could be used for the proportion of inmates with no
misconduct. The proportion of failures is necessarily .80, so that value plotted
for failures is log(.8)−[log(.2)+log(.8)]/2 = 0.693, also associated with a term
length of 1.0. In the binary case, essentially the same information is obtained
no matter which response class is examined. The partial dependence function
is centered on 0.0 because of the constraint that the sum of the response
functions is zero; these are deviation scores in logit units. So, the distance
above zero for the response function of one class is the same as the distance
below zero for the response function of the other class. One response function
is the mirror image of the other. Thus, one partial dependence plot is the
mirror image of the other partial dependence plot, and only one of the two is
required for interpretation.

In the binary case, it is easy to get back into more familiar logit units.
The values produced by Equation 5.13 are half the usual log of the odds. And
from there, one can easily get back to the relevant probabilities. For example,
multiplying –.693 by 2 and exponentiating yields an odds of .25. Then, solving
for the numerator probability results in a value of .20. We are back where we
started.

Equation 5.13 would be applied for each value of term length. Thus, for
1.5 years, the proportion of inmates engaging in misconduct might be .25.
Then the value plotted on the horizontal axis would be 1.5, and the value on
the vertical axis would be log(.25) − [log(.25) + log(.75)]/2 = −.549.

The value of –.549 is at a region where the response function is increasing.
With .5 units (i.e., six months) increase in term length, the value of the re-
sponse increases .144 (i.e., from –.693 to –.549). And all other values produced
for different term lengths can be interpreted in a similar way. Consequently,
one can get a sense of how the response variable changes with changes in a
given predictor, all other predictors held constant.

For more than two response variable categories, each of the response cate-
gories can be usefully plotted. Suppose, for example, there are three response
categories: no misconduct, minor misconduct, and serious misconduct. And
suppose the respective proportions when term length is 1.0 years are .70, .20,
and .10. The three values computed for the three response categories are re-
spectively 1.066, –.187, and –.880. Note that as before the sum of the values
is again 0.0. Each of these values would likely change as the value of the
predictor of interest changed. For each, the sum would still be zero. But the
changing values could not be represented as a set of mirror images. Three
partial dependence plots would follow.

To summarize, the vertical axis in partial dependence plots is the response
function as defined by Equation 5.13. It is derived from Equation 5.12 with
the constraint that the sum of response functions fk(X) is equal to zero. Thus,
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the sum of the values from Equation 5.13 for the categories of the response
variable is zero as well.

5.7.1 An Example
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Fig. 5.10. Response function for misconduct and term.

Figures 5.10 and 5.11 show partial dependence plots constructed from
the prison data. Figure 5.10 is for the misconduct response category and
Figure 5.11 is for the no misconduct response category. For both, term length
in years is the predictor. In both cases the vertical axis is in the logit units
just discussed, and the horizontal axis is in years. From the discussion just
completed, one plot should be the mirror image of the other. For the binary
case, one partial plot is sufficient.

Both plots indicate that the odds of serious misconduct generally increase
with term length. The increase is relatively rapid for terms from two to ten
years. There seems to be no relationship between term length and misconduct
for terms less than two years, and the rate of increase is relatively slow for
terms greater than about ten years.

In order to get a practical sense of whether misconduct varies a lot with
term length, it can be useful to transform the logits back to their underlying
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Fig. 5.11. Response function for no misconduct and term.

probabilities. For example, a logit value of –1 is equal to a probability of about
.12. A logit value of .5 is equal to a probability of about .73. Because –1 and .5
represent the approximate minimum and maximum values of the response in
logit units, the probability of serious misconduct increases from about .12 to
about .72 as term length increases from two years to about ten years. This is
a large effect in practical terms. Note that this increase is in deviation scores
and that, therefore, it is the difference that matters, not the values themselves.

Finally, it is important to keep in mind that the response functions dis-
played in partial dependence plots reflect the relationship between a given
predictor and the response, conditioning on all other predictors. All other
predictors are being “held constant” in a manner that is equivalent to match-
ing. That is why the plots are called partial dependence plots. Consequently,
Figures 5.10 and 5.11 show how term length is related to serious miscon-
duct, with gang activity, age at the time of admission to prison, and all other
predictors included in the analysis held constant.

Figures 5.12 – 5.14 show the response functions for three classes of inmate
misconduct and sentence length. The three classes, as before, are no miscon-
duct, minor misconduct, and serious misconduct. Three partial dependence
plots are necessary because although the values of the three response func-
tions sum to zero, no plot is the mirror image of another. The baseline is, in
the sense discussed above, the typical proportion of inmates over the three
response classes.
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Fig. 5.12. Response function for no misconduct and term for a three class response.

Figure 5.12 shows the partial dependence of no misconduct on sentence
length. The proportion of inmates with no reported incidents of misconduct
decreases rapidly for sentences up to five years. Then the response function
becomes flat.

Figure 5.13 shows the partial dependence of minor misconduct on sentence
length. The proportion of inmates with reported incidents of minor miscon-
duct increases rapidly for sentences up to about five years, levels off, and then
declines for sentences of more than ten years. The downward trend ends with
sentences of about 18 years. After that, it may even increase a bit.

Figure 5.14 shows the partial dependence of serious misconduct on sen-
tence length. The proportion of inmates with reported incidents of serious
misconduct increases rapidly up to a sentence of about five years and then
increases much less rapidly thereafter.

Viewed as a group, the three figures complement one another and show
associations that are large in practical terms. With increasing sentence length,
the proportion of inmates who engage in no misconduct drops off rapidly until
a sentence of about five years. Over those same shorter sentences, the propor-
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Fig. 5.13. Response function for minor misconduct and term for a three class
response.

tion of inmates who engage in minor misconduct increases commensurately.
And over the same short sentences, the proportion of inmates who engage in
serious misconduct also increases commensurately.

But for sentences of around ten years or more, the proportion of inmates
who engage in minor misconduct falls off, and the proportion of inmates who
engage in serious misconduct continues to increase. Longer sentences are asso-
ciated with increases in the likelihood of both minor and serious misconduct,
but for very long sentences, the association is only with serious misconduct.
One interpretation is that with very long sentences, inmates who might com-
mit acts of minor misconduct now commit acts of serious misconduct.

5.8 The Proximity Matrix

It can be useful to determine the degree to which individual observations tend
to be classified alike. In random forests, this information is contained in the
“proximity matrix.” The proximity matrix is constructed as follows.
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Fig. 5.14. Response function for serious misconduct and term for a three class
response.

1. Grow a tree as usual.
2. Drop all the training data (in-bag and out-of-bag) down the tree.
3. For all possible pairs of cases, if a pair lands in the same terminal node,

increase their proximity by one.
4. Repeat Steps 1–4 until the designated number of trees has been grown.
5. Normalize by dividing by the number of trees.

The result is an n×n matrix with each cell showing the proportion of trees
for which each pair of observations winds up in the same terminal node. The
higher that proportion, the more alike those observations are in how CART
places them, and the more “proximate” they are.

However, it can be very demanding to store an n×n matrix and even more
demanding to operate on it. The storage problem can be partly addressed by
only storing the upper or lower triangle, but working with tens of thousands of
proximity values (or more) remains a serious difficulty. When feasible, it can
help to work with a random sample of the training data instead of the full set
of observations. Another work around is to store only the largest proximity



5.8 The Proximity Matrix 231

values. There are currently efforts under way to find more elegant and formally
defensible solutions.

The proximity matrix is also usually far too large to be directly examined
in a meaningful manner. But helpful information can be extracted from the
proximity matrix in several different ways. We consider three applications that
are sufficiently well developed to be of some practical use.

5.8.1 Clustering by Proximity Values

The proximity matrix can be treated as a similarity matrix and subjected to
multidimensional scaling. Plots of the observations in the first two dimensions
extracted can help show whether the data tend to cluster in the space defined
by predictors and whether those clusters tend to differ by the class to which
the observations in each cluster belong. This information can give an initial
sense of whether a classification exercise is likely to be successful.

The existing methods for displaying the scaling results are currently in
some flux. A lot depends on first solving the computational problems associ-
ated with the proximity matrix. In addition, the current graphic display will
no doubt be refined as hands-on experiences accumulates.

5.8.2 Using Proximity Values to Impute Missing Data

There are two ways in which random forests can impute missing data. The
first and quick method relies on a measure of location. If a predictor is quanti-
tative, the median of the available values is used. If the predictor is categorical,
the modal category from the available data is used. If there are small amounts
of missing data, this method may be satisfactory, especially given the compu-
tational demands of the second method.

The second method capitalizes on the proximity matrix in the following
manner.

1. The “quick and dirty” method of imputation is first applied to the training
data, a random forest is constructed, and the proximity values computed.

2. If the missing value is from a quantitative variable, the weighted average
of the values of the nonmissing cases for that variable is used. The prox-
imity values between that missing observation and all of the nonmissing
observations are used as the weights. So, cases that are more like the cases
with the missing data are given greater weight. All missing values for that
variable are computed in the same fashion.

3. If the missing value is from a categorical value, the inputed value is the
most common nonmissing value for the variable, with the frequencies
weighted by proximity. Again, cases more like the case with the miss-
ing data are given greater weight. All missing values for that variable are
are computed in the same fashion.
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The step using proximity values is then iterated several times. Experience
to date suggests that four to six iterations is sufficient. But the use of imputed
values tends to make the OOB measures of fit too optimistic. There is really
less information being brought to bear in the analysis than the random forest
algorithm knows about. The computational demands are also quite daunting
and may be impractical for many datasets until more efficient ways to handle
the proximities are found.

5.8.3 Using Proximities to Detect Outliers

The proximity matrix can be used to spot outliers in the space defined by the
predictors. The basic idea is that outliers are observations whose proximities
to all other observations in the data are small. Currently, the procedures
in R’s version of random forests to detect outliers are not implemented for
quantitative response variables. For categorical response variables, outliers are
defined within categories of the response variable. For each observed outcome
class, each observation is given a value for its “outlyingness” computed as
follows.

1. For a given observation, compute the sum of the squares of the proximities
with all of the other observations in the same outcome class. Then take
the inverse. A large value will indicate that on the average the proximities
are small for that observation. Do the same for all other observations in
that class. One can think of these values as unstandardized.

2. Compute the median and mean absolute deviation around the median of
the unstandardized values.

3. Subtract the median from each of the unstandardized values and divide
by the mean absolute deviation. In this fashion, the unstandardized values
are standardized.

4. Values less than zero are set to 0.0.

These steps are then repeated for each category of the response variable.
Observations with values larger than about ten can be considered outliers.

Especially if the number of observations overall is modest (e.g., less than
100), it can be instructive to drop the outliers from the training data, repeat
the random forest analysis, and see if the results change by a meaningful
amount. If the number of observations is large, it is very unlikely that a few
outliers will make an important difference in the results.

When the data analyst considers dropping one or more outlying cases, a
useful diagnostic tool can be a cross-tabulation of the classes assigned for the
set of observations that the two random forest analyses have in common. If
the observations are, by and large, classified in the same way in both analyses,
the outliers do not make an important difference to the classification process.
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5.9 Quantitative Response Variables

There is not very much new that needs to be said about quantitative response
variables once one appreciates that random forests handles quantitative re-
sponse variables much as CART does. Recall that for CART, impurity when
trees are constructed is defined as the within-node error sum of squares. A
new partition of the data is determined by the split that would most reduce
the within-node error sum of squares. Predicted values are determined by
the mean of the response variable in each of the terminal nodes. For each
observation, the mean of its terminal node is the value assigned.

For regression trees, therefore, there are no classification errors, only resid-
uals. Concerns about false negatives and positives and their costs are no longer
relevant. There are no confusion tables and no measures of importance based
on predictor errors.

To turn a regression tree into a fully operational random forest, there are
several operations required.

1. Just as in the classification case, each tree is constructed from a random
sample (with replacement) of the training data.

2. Just as in the classification case, at each potential partitioning of the data,
a random sample (without replacement) of predictors is used.

3. Just as in the classification case, the out-of-bag data are used to con-
struct predicted values. After a tree is built, the OOB observations are
dropped down the tree. From these observations, a mean is computed for
each terminal node. These means serve as the predicted values for the
observations in their respective terminal nodes. The predicted values are
not (and cannot be) membership in a particular class.

4. Then, random forest averages in much the way as it does for classification
problems. For a given observation, the average of the tree-by-tree pre-
dicted values is computed using only the predicted values from trees in
which that observation was not used to build the tree. This is the predicted
value that random forest returns. Then the deviations between these over-
tree predicted values and the observed values are used to construct the
mean square error reported for the collection of trees that constitutes a
random forest. The value of the mean square error can be used to compute
a pseudo R2 as (1 − MSE)/Var(Y ).

5. Construction of partial dependence plots is done in the same manner as
for classification trees, but now the fitted response is the set of condi-
tional means for different predictor values, not a set of transformed fitted
proportions.

6. Importance is computed using the shuffling approach as before. And as
before there is a “resubstitution” measure and a forecasting measure. For
the resubstitution measure, consider a single tree. Each time a given vari-
able is used to define a partitioning of the data, the reduction in the
within-node error sum of squares is recorded. When the tree is complete,
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the reductions are summed. The result is the error sum of squares that
can be attributed to each predictor. These totals, one for each predictor,
are then averaged over trees.

7. The forecasting measure uses the OOB observations. For each tree, the
OOB observations are used to compute the predicted values and the
within-node mean square error around them. Then a given predictor is
shuffled, and the OOB predicted values and mean square error computed
again. An increase in this mean square error is a decrease in accuracy.
These decreases are averaged over trees to get an average decrease in ac-
curacy for that predictor. The standard deviation of these decreases over
trees can be used to standardize the average decrease, if that is desirable.

Despite the tight connection between regression trees and random forests,
there are a few features found in some implementations of regression trees
that have yet to be introduced into random forests. Perhaps most important,
random forests is currently limited to the normal regression model. There are,
for instance, no accommodations for count data, where some form of Poisson
regression might be appropriate. Likewise, there are no accommodations for
bounded response variable distributions such as might be found for survival
data. However, such generalizations are likely to come soon.

For example, there is a new procedure in R called quantregForest() that
computes for each terminal node quantiles of the user’s choosing. Instead
of storing only the mean of each terminal node as trees are grown, the entire
distribution is stored. Recall the earlier discussion surrounding Table 5.3. Once
the user decides which quantiles are of interest, they can be easily computed.

If one is worried about the impact of within-node outliers on the condi-
tional mean, the conditional median can be used instead. If for substantive
reasons there is interest in the first or third quartile, those can be used. Per-
haps most interestingly, the quantile option provides an interesting way to take
the costs of forecasting errors into account. For example, if the 75th quantile is
chosen, the consequences of underestimates are three times more costly than
the consequences of overestimates. However, such calculations only affect what
is done with the information contained in the terminal nodes across trees. This
approach does not require that the trees themselves be grown again with a
linear loss function, let alone a loss function with asymmetric costs. In other
words, the trees grown under quadratic loss are not changed. As a result, the
quantile adjustments are not complete. An example is discussed later in this
chapter.

5.10 Tuning Parameters

Despite the complexity of the random forest algorithm and the large number
of potential tuning parameters, most of the usual defaults work well in prac-
tice. The tuning parameters most likely to require some manipulation are the
following.
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1. Node Size—Unlike in CART, the number of observations in the terminal
nodes of each tree can be very small. The goal is to grow trees with as
little bias as possible. The high variance that would result can be tolerated
because of the averaging over a large number of trees. In the R implemen-
tation of random forests, the default sample sizes for the terminal nodes
are one for classification and five for regression. These seem to work well.
But one must also keep in mind the concerns raised earlier when there
are a large number of predictors weakly related to the response and at
least moderately related to each other. If such predictors are not dropped,
it is usually wise to grow smaller trees. If one is interested in estimating
a quantile, such as in quantile random forests, then terminal node sizes
about twice as large will often be necessary. If there are only five obser-
vations in a terminal node, for instance, it will be difficult to get a good
read on, say, the 90th percentile.

2. Number of Trees—The number of trees used to constitute a forest needs to
be at least several hundred and probably no more that several thousand.
In practice, 500 trees is often a good compromise. It sometimes makes
sense to do most of the intitial development (see below) with about 500
trees and then confirm the results with a run using about 3000 trees.

3. Number of Predictors Sampled—The number of predictors sampled at
each split would seem to be a key tuning parameter that should affect how
well random forests performs. Although it may be somewhat surprising,
very few predictors need to be randomly sampled at each split, and with
sensible bounds on the number sampled, it does not seem to matter much
for the OOB error estimates. With a large number of trees, each predictor
will have an ample opportunity to contribute, even if very few are drawn
for each split. For example, if the average tree in a random forest has ten
terminal splits, and if there are 500 trees in the random forest, there will
be 5000 chances for predictors to weigh in. Sampling two or three each
time should then be adequate.

But a lot depends on the number of predictors and whether all have good
potential or whether some do and some don’t. In the manual for the
FORTRAN version of random forests, Breiman recommends starting with
the number of predictors sampled equal to the square root of the number
of predictors available. Then, trying a few more or a few less as well can
be instructive.

In the R implementation of random forests, one can search for the best
number of predictors to sample using the OOB error statistic as a crite-
rion. This is an excellent tool in principle. In practice, large differences in
performance are rarely found. Also, one must be careful not to overtune
and introduce the overfitting that random forests is designed to prevent.

The feature of random forests that will usually make the biggest difference
in the results is how the costs of false negatives and false positives are handled.
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These costs have already been extensively discussed and are not reconsidered
now. At the same time, costs are not really a tuning parameter, but a key
aspect of how the data are to be analyzed.

5.11 An Illustration Using a Binary Response Variable

Industrialized fishing is dramatically reducing the stock of predatory fish
throughout the oceans of the world. Large-scale commercial fishing affects
not just the target species but other species that become the “bycatch.” The
impact on dolphin populations of commercial fishing for tuna is perhaps the
most visible illustration and has been the subject of a National Research
Council committee report (Committee on Reducing Porpoise Mortality from
Tuna Fishing, 1992). Over the past decade, international cooperation to re-
duce dolphin mortality has led to efforts to monitor tuna fishing practices and
penalize offenders. The political and technical issues are very complex.

Dolphin are put at risk in tuna fishing because they are often used to locate
large schools of tuna. For reasons that are not fully understood, dolphin are
often found swimming above schools of tuna and because the dolphin typically
swim close to the surface, they can be seen by fishermen some distance away.
Then, when large nets are deployed to catch the tuna, the dolphin can be
caught as well. Over the past two decades fishing technology and procedures
have been changed so that dolphin mortality can be dramatically reduced,
but the mortality is far from zero.

The Inter-American Tropical Tuna Commission (ITTC), which oversees
the international purse-seine fishery for tuna in the eastern Pacific Ocean,
has provided data on dolphin mortality. The dataset includes over 100,000
observations. An observation is a “set,” defined as placing a large net into
the water to encircle a school of tuna. There are over 200 predictors. Here,
the intent is to determine the circumstances under which dolphin mortality is
likely to be high.

For example, a major cause of dolphin deaths apparently is whether the
net “collapses” as it is drawn to the boat. A net collapse is a relatively rare
event, but one to be actively avoided. For similar reasons, it would be helpful
to learn which other predictors are associated with dolphin mortality so that
preventive actions might be taken by fishermen.

Sanctions can be applied to fishermen if any dolphin are killed. There is
zero tolerance for any dolphin mortality. This suggests treating the response
as a binary outcome: whether any dolphin are killed or not. And this is how
we proceed here.

For this illustration, we use the predictors listed below. In discussions with
the ITCC, these predictors were singled out as by far the most promising. We
could have included well over 100 predictors, but some of the graphics would
have been unnecessarily cluttered and difficult to explain.



5.11 An Illustration Using a Binary Response Variable 237

1. capskill: Captain skill coded “0 for less than 30 dolphin sets/year and “1”
for 30 or more.

2. biomass: The number of animals encircled in the net.
3. cwtunay: Catch weight of yellowfin tuna in metric tons.
4. cwtunao: Catch weight of other tuna in metric tons.
5. encircle: Duration of the encirclement phase of the set in decimal hours.
6. netretrieval: Duration of the prebackdown net retrieval in decimal hours.
7. backdown: Duration of the backdown procedure in decimal hours.
8. netcanopy: Coded “1” if a net canopy present and “0” if a net canopy is

not present. Net canopies are associated with collapsed nets.
9. diver: Coded “1” if divers were used to help dolphin escape and “0” if not.

Using a random sample of 10,000 observations, we consider first the results
under the default costs. A failure to identify correctly a set in which dolphin
were killed has the same costs as a failure to identify correctly a set in which
no dolphin were killed. In addition, the prior used is the empirical distribution
of the binary response variable.

Predict No deaths Predict deaths Model Error

No Deaths 7859 142 .02
Deaths 797 202 .78

Use Error .09 .41 Overall Error = .10

Table 5.5. Confusion table for forecasting dolphin deaths using equal costs.

Table 5.5 shows the confusion table. Overall, random forests is able to fore-
cast with about 90% accuracy. Given the unbalanced nature of the response,
this is not a very impressive feat. It is clear that most of this accuracy comes
from the predictions of true negatives (i.e., no dolphin deaths), which random
forests incorrectly identifies only about 2 times out of 100. About 78 times
out of 100, random forests incorrectly identifies true positives (i.e., dolphin
deaths). Were the random forest results used for forecasting by ITTC ad-
ministrators, ship captains or on-board observers, they would be wrong only
about 9 times out of 100 when they forecasted no dolphin deaths, but about
41 times out of 100 when they forecasting dolphin deaths.

Figure 5.15 shows a plot of predictor importance for the response category
in which dolphin were killed. It is clear that the presence of a net canopy is the
dominant predictor, followed by the length of the backdown procedure, and
then two measures of the size of the tuna catch. Given that random forests
identifies correctly on 22% of the time sets in which dolphin are killed, the
accuracy reductions are large. Shuffling the net canopy variable reduces the
model’s forecasting accuracy from .22 to .15.

Figure 5.16 shows a plot of predictor importance for the response category
in which no dolphin are killed. It is here that random forests stumbles badly.
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Fig. 5.15. Variable importance when the outcome is dolphin deaths and the costs
are equal.

In general the same predictors are important, but their contributions to fore-
casting accuracy are trivial. A key reason is that it is very difficult for random
forests to do better than always concluding that no dolphin were killed.

Partial dependence plots can be constructed for each of the predictors. We
will consider just one to illustrate the sorts of insights that can be obtained
and to highlight some important limitations. Thus, Figure 5.17 shows the
empirical response function for the predictor backdown time. Backdown time
is how long it takes for the net, once the tuna are encircled, to be drawn to the
boat. Long backdown times are thought to be dangerous for dolphin because
they increase the risk of dolphin getting caught in the net and drowning.

Figure 5.17 suggests that for very short backdown times, which are rare
and probably reflect serious reporting errors, increases in backdown time are
associated with decreases in dolphin mortality. This is a result that should
not be taken seriously. For backdown times between about 15 minutes and an
hour, increases in backdown time are, as expected, associated with substantial
increases in dolphin mortality. Beyond an hour, where again the number of
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Fig. 5.16. Variable importance when the outcome is no dolphin deaths and the
costs are equal.

observations is very few, the relationship essentially become flat. This too
should not be taken seriously.

Recall that the units on the vertical axis are not probabilities or conven-
tional logits. Thus, it is difficult to judge in subject matter terms whether
the changes in the response shown are large enough to be important. But as
shown earlier, the logit units can be transformed back into probabilities, and
for Figure 5.17, the change in the logits is large enough to be very significant.
When the backdown time is under 20 minutes, the chances of any dolphin
deaths are less than 1 in 20 below what is typical. When the backdown time
is over 40 minutes, the chances of death are around 15 in 20 above what is
typical. So, the probabilities are increased a maximum of about .70.

From the off-diagonal cells in Table 5.5, one can see that there are a little
over five false negatives for every false positive. Therefore, false positives are
being treated as about five times more costly than false negatives. Discussion
with representatives of the ITTC led to the conclusion that false negatives
were actually much more costly than false positives. There were few harmful
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Fig. 5.17. Partial dependence on backdown time when the costs are equal.

consequences from failing to identify sets with no dolphin mortality, but many
from failing to identify sets in which dolphin were killed. They suggested a
ratio of about one to ten for the ratio of false negatives to false positives.

Predict No Deaths Predict Deaths Model Error

No Deaths 5468 2533 .32
Deaths 271 728 .27

Use Error .04 .78 Overall Error = .31

Table 5.6. Confusion table for forecasting dolphin deaths using a cost ratio of one
to ten.

Table 5.6 shows the confusion table when the one to ten cost ratio is used.
The changes are substantial. Just as one would expect, overall forecasting
error increases substantially from .10 to .31.

Consistent with the cost applied, random forests now does a much better
job identifying sets in which dolphin are killed. The proportion of sets incor-
rectly identified drops from .78 to .27. At the same time, random forests does
much worse identifying sets in which dolphin are not killed. The proportion of
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sets incorrectly identified increases from .02 to .32. These changes stem from
the new ratio of false negatives to false positives, which by intent is about one
to ten.

If forecasts of no dolphin deaths are made, they will be incorrect about 4
times out of 100. If forecasts of dolphin deaths are made they will be incorrect
about 78 times out of 100. This properly reflects the new cost ratio. Decision-
makers are now more prepared to predict sets in which dolphin will be killed
because the costs of false positives are relatively low. Table 5.6 indicates that
there will be a bit more than three false positives for every true positive.
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Fig. 5.18. Variable importance when the outcome is dolphin deaths and the costs
are one to ten.

Figures 5.18 and 5.19 show the two importance plots. It is again apparent
that the predictors matter far more for forecasts of dolphin deaths than for
forecasts of no dolphin deaths. But the change in a cost ratio of one to ten has
altered a bit the importance of some variables. For example, in predictions
of dolphin deaths, the presence of a net canopy and backdown time are now
about equally important. Under equal costs, backdown time was a little less
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Fig. 5.19. Variable importance when the outcome is no dolphin deaths and the
costs are one to ten.

important. And under the new cost ratio, the biomass of the tuna caught has
moved up somewhat in importance.

It is not unusual to see the importance of variables change with changes
in relative costs. In effect, there is a new weighting of observations. Variables
that predict well the observations now given more weight will increase in
importance.

Finally, Figure 5.20 shows the partial dependence plot for backdown time
under the one to ten cost ratio. The overall shape of the curve is basically the
same, but the increase in dolphin mortality is not quite as large.

5.12 An Illustration Using a Quantitative Response
Variable

A recent effort was made to count the number of homeless in Los Angeles
County (Berk et al., 2008). There are over 2000 census tracts in the county,
and enumerators were sent to a sample of a little over 500. The details of the
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Fig. 5.20. Partial dependence on backdown time when the costs are one to ten

sampling need not trouble us here, and in the end the overall county total was
estimated to be about 90,000.

In addition to countywide totals, there was a need to have estimated counts
for tracts not visited. Various stakeholders might wish to have estimates at
the tract level for areas to which enumerators were not sent. Random forests
was used with tract-level predictors to impute the homeless counts for these
tracts. About 21% of the variance in the homeless counts was accounted for
by the random forests model.

Figure 5.21 is an importance plot for three of the most useful predictors.
When the response variable is quantitative, the “external” and “internal” mea-
sures of importance differ from when the response variable is qualitative. The
external measure, based on the OOB observations, is the average percentage
increase in mean square forecasting error over trees when a given predictor is
randomly shuffled. The internal measure is the average reduction in the error
sum of squares over trees when a given predictor is used to define a split,
which can also be called the increase in node purity.

For example, when median household income is shuffled, the mean square
forecasting error increases about 7%. For the percentage of dwellings in a tract
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Fig. 5.21. Variable importance when the outcome is the number of homeless in a
census tract.

that is vacant, shuffling increases forecasting error about 6%. For the percent-
age of land that is devoted to residential use, shuffling increases forecasting
error about 5%. In this case, therefore, all three variables have about the same
impact on forecasting skill. The rank ordering of importance is the same when
the contribution to fit is used, but it is far more difficult to tell whether the
contributions are large or small. It is difficult to think in raw error sum of
squares units.

Figures 5.22 to 5.24 show the partial dependence plots for each predic-
tor. For a quantitative response, the vertical axis is the conditional mean of
the response for different values of the predictor in question, with all other
variables fixed. Compared to the categorical response variable case, the only
feature of the partial dependence algorithm that has changed is the units in
which the response is represented.

From Figure 5.22, one can see that the fitted values for the number of
homeless individuals in a census tract drops from a high of around 150 when
median income is less than about $20,000 a year to around 30 when median
income is $50,000 or more. Overall, the relationship is strongly negative. But
the drop is precipitous, implying what some have called a “tipping effect.”

The visual story is much the same in Figure 5.23. When most of the land
in a census tract is not used for residential dwellings, the number of homeless
individuals is about 130. That figure drops to about 30 when a quarter of
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Fig. 5.22. The response function when median household income is the predictor.

the land or more is used for residents. Overall, the relationship is strongly
negative with more evidence of a tipping effect.

Figure 5.24 shows a positive association between the percentage of the res-
idential dwellings that are vacant and the number of homeless. When vacancy
is near zero, the average number of homeless is about 10 per tract. When the
vacancy percent is above approximately 10%, the average count increases to
between 60 and 70 (with a spike right around 10%). Once again the change is
very rapid.

In summary, a larger number of homeless are to be found in low income
census tracts with relatively few occupied dwellings. Perhaps more interesting
is that the transition from tracts with few homeless individuals to tracts with
many homeless individuals occurs over a very small range of predictor val-
ues. An important methodological point is that the highly nonlinear response
functions would not likely have been found using conventional regression pro-
cedures unless there were a strong a priori belief in a tipping effect and the
the ability to specify a functional form that would find it. Given the sharp
transition for predictor values that would have been difficult to anticipate,
determining the functional form would have probably been difficult.
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Fig. 5.23. The response function when residential land use is the predictor.

Unfortunately, even with the power of random forests, there is a marked
tendency to underestimate the few very largest homeless counts. These census
tracts matter a great deal in the overall amount of resources allocated to
take care of homeless individuals and how those resources are allocated. As
suggested earlier, this is precisely where quantiles might be more instructive
than the mean.

Figure 5.25 shows a plot of the actual census tract counts against the
fitted census tract counts using the conditional .05 quantile. Overestimates
are being treated as far more important than underestimates: about 19 to 1.
A 1-to-1 line is overlaid.

The mean absolute disparity between the fitted values and the actual val-
ues is 29.4. This is quite large considering that most of the measured homeless
counts are under 50. Ideally, moreover, all of the points should fall to the 1-to-
1 line. Most of the points fall above the 1-to-1 line, indicating underestimated
counts much of the time. Finally, one can see that although the actual counts
are sometimes larger than 400, the largest fitted count is a little over 80.

Figure 5.26 shows a plot of the actual census tract counts against the fitted
census tract counts using the conditional .50 quantile: the median. Using the
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Fig. 5.24. The response function when vacant dwellings is the predictor.

median implies that the costs of overestimates are the same as the costs of
underestimates. Again, a 1-to-1 line is overlaid.

Overall the fit looks quite good. The mean absolute disparity is only 3.5.
In addition, the fitted counts can now be as large as about 450, which is
a clear improvement if large underestimates are a serious concern. However,
the very largest counts are still substantially underestimated. Allowing the
overestimates and underestimates to have the same costs produces results
much like those produced by the conditional mean.

Figure 5.27 shows a plot of the actual census tract counts against the
fitted census tract counts using the conditional .95 quantile. Now the costs of
underestimates are 19 times larger than the costs of overestimates. A 1-to-1
line is again overlaid.

Virtually all of the points fall below the 1-to-1 line, and the mean absolute
disparity is 36.0. Overestimates dominate the plot. There are several fitted
counts in excess of 800, which in most cases are also overestimates. On the
other hand, the very highest count is fitted perfectly. Clearly, one can have
very different fitted values depending on which quantiles are used.

Much as in our earlier discussion, there is no purely statistical way to de-
termine what costs should be used. The costs need to be determined by how
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Fig. 5.25. Actual counts plotted against fitted counts using the .05 quantile: MAD
= 29.4.

the results are to be used and by how various stakeholders view the conse-
quences of those uses. For example, although using the conditional median
minimizes the sum of the absolute deviations between the actual values and
the fitted values, the mean absolute deviation assumes that underestimates
have the same costs as overestimates. As such, it will be a misleading measure
of fit when equal costs do not apply.

Figure 5.28 shows the results when the conditional .80 quantile is used.
Underestimates are taken to be four times more costly than overestimates.
Stakeholders might find these results the most congenial. The mean abso-
lute disparity of 7.4 is relatively small, and the very largest counts are fitted
values about as well as possible, given their variability. For our purposes, how-
ever, the statistical point is that quantile regression provides a way to employ
asymmetric cost functions with random forests.

Quantile random forests is hardly the final answer to the need for asym-
metric cost functions in statistical learning for quantitative response variables.
As noted earlier, the trees are grown as usual using the random forests algo-
rithm. Also, one has to be happy with linear loss. Finally, the importance
plots and partial dependence plots currently available in the quantile random
forests procedure are still those from the underlying random forest algorithm.
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Fig. 5.26. Actual counts plotted against fitted counts using the .50 quantile: MAD
= 3.5.

5.13 Software Considerations

At the moment, there are three species of random forests available. One can
obtain from Leo Breiman’s Web site (http://stat-www.berkeley.edu/users/
breiman/RandomForests/) a FORTRAN version of random forests and some
supporting documentation. Leo Breiman and Adele Cutler are the software’s
authors. There are some features that are otherwise not available and some
features available elsewhere that are not included. It is perhaps the least user-
friendly of the three.

The version of random forests available in R is far more user friendly,
has better documentation, and has the key advantage of an R computing
environment. It has features that are unique but lacks some of the highly ex-
perimental tools found in the FORTRAN version. The R port was undertaken
by Andy Liaw and Matthew Weiner. Andy Liaw (andy liaw@merck.com) is
the maintainer.

Quantile random forests, which draws so heavily on conventional random
forests, is also an R-based procedure. Quantile random forests (quantregFor-
est) was written and is maintained by Nicolai Meinshausen.

The version of random forests available from Salford Systems (http://
www.salford-systems.com/) is by far the most user-friendly. But, the user
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Fig. 5.27. Actual counts plotted against fitted counts using the .95 quantile: MAD
= 36.0.

gives up considerable control and in general, the features included are sev-
eral iterations behind those that can be found in the R version. And unlike
the FORTRAN and R implementations, there is a substantial charge for the
software.

It is important to stress that random forests is a new procedure still very
much under development. Although it is unlikely that its main algorithm will
change significantly, lots of the special routines and displays of output will. If
history is any measure, one can expect significant updates of random forests at
least once a year, often sooner. And unfortunately, it is often difficult for the
documentation to keep up. There are also likely to be spinoffs from random
forests, such as quantile random forests and others. One can imagine some of
these being very handy for certain kinds of problems.

For example, Geurts and his colleagues (2006) propose what they call
“extremely randomized trees.” No bootstrap sample is used; the full training
sample is used to grow each tree. Then the algorithm proceeds as follows.

1. For each potential partitioning, choose a random sample of predictors
without replacement.

2. For these selected predictors, choose the break points at random.
3. Compute the reduction in heterogeneity for each predictor at its randomly

chosen break point.
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Fig. 5.28. Actual counts plotted against fitted counts using the .80 quantile: MAD
= 7.4.

4. Choose the predictor that reduces the heterogeneity the most.
5. Repeat Steps 1–4 for each subsequent split.
6. Average over trees as usual.

The underlying rationale is that by selecting break points at random,
greater independence is achieved across the trees in a forest compared to
conventional random forests. That is, the sets of fitted values will be less de-
pendent. As a result, instability is more effectively controlled. The price for
this reduction in instability can be an increase in the bias because the ran-
dom break points are not likely to be the optimal break points. Ideally, the
reduction in the instability will more than offset the increase in the bias.

When the set of predictors is weak, extremely randomized trees may per-
form at least as well as random forests; the tradeoff works because random
break points do not perform much worse than optimal break points. When the
predictors are not weak, extremely randomized trees is not likely be a good
choice.

There will also in the future likely be important improvements in how the
results from random forests are visualized. For example, it might be useful to
have a receiver operating characteristic (ROC) curve that would depend on
such things as the relative costs for false negatives to false positives or the val-
ues of tuning parameters. Such a plot would have the number of true positives
on the vertical axis and the number of false positives on the horizontal axis.
The best result would fall in the upper-left hand corner: all true positives and
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no false positives. The worst result would be in the lower-right hand corner:
no true positives and all false positives. Locations between these extremes
would represent different tradeoffs between the two, and one could see how
these tradeoffs changed with alterations of the model’s features. Drummond
and Holte (2006) have suggested an interesting alternative, consistent with
much of the earlier discussion, in which on the vertical axis is the (normal-
ized) expected total cost of the classification errors. This too could come in
handy.

5.14 Summary and Conclusions

There is growing evidence that random forests is a very powerful statistical
learning tool. If forecasting accuracy is one’s main performance criterion, there
are no other tools that have been shown to consistently perform any better.
We consider a chief competitor in the next chapter.

Random forests seems to get its leverage from five features of the algo-
rithm:

1. Growing large, low bias trees
2. Using bootstrap samples as training data when each tree is grown
3. Using random samples of predictors for each partitioning of the data
4. Constructing fitted values and output summary statistics from the out-

of-bag data
5. Averaging over trees.

At the same time, very few of random forest’s formal properties have been
proven, and there remains the nettlesome problem that if one is interested in
knowing the f(X), a random forest estimate is not consistent. At a deeper
level, the precise reasons why random forests performs so well and why it does
better with some datasets than others is fully understood. There is some hard
work ahead for theoretical statisticians.

Exercises

The goal of this first exercise is to compare the performance of linear regres-
sion, CART, and random forests. Construct the following dataset in which
the response is a quadratic function of a single predictor.

x1=rnorm(500)
x12=x1^2
y=1+(-5*x12)+(5*rnorm(500))

5.14.1 Problem Set 1
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1. Plot the 1 + (−5 × x12) against x1. This is the “true” relationship be-
tween the response and the predictor without the complication of the
disturbances. This is the f(X) you hope to recover from the data.

2. Proceed as if you know that the relationship between the response and
the predictor is quadratic. Fit a linear model with x12 as the predictor.
Then plot the fitted values against x1. The results show how the linear
model can perform when you know the correct function form.

3. Now suppose you do not know that the relationship between the response
and the predictor is quadratic. Apply CART to the same response vari-
able using rpart() and x1 as the sole predictor. Use the default settings.
Construct the predicted values, using predict(). Then plot the fitted val-
ues against x1. How do the CART fitted values compare to the linear
regression fitted values? How well does CART seem to capture the true
f(X)?

4. Apply random forests to the same response variable using randomForests()
and x1 as the sole predictor. Use the default settings. Construct the pre-
dicted values using predict(). Then plot the fitted values against x1. How
do the random forest fitted values compare to the linear regression fitted
values? How well does random forests seem to capture the true f(X)?

5. How do the fitted values from CART compare to the fitted values from
random forests? What feature of random forests is highlighted?

6. Construct a partial dependence plot with x1 as the predictor. How well
does the plot seem to capture the true f(X)?

7. Why in this case does the plot of the random forest fitted values and the
partial dependence plot look so similar?

Load the dataset SLID from the car library. Learn about the data set using
the help() command. Treat the variable “wages” as the response and all other
variables as predictors. The data have some missing values you will want to
remove. Try using na.omit().

1. Using the default settings, apply random forests and examine the fit qual-
ity.

2. Set the argument mtry at 4. Apply random forests again and examine fit
quality. What if anything of importance has changed?

3. Now set ntrees at 100 and then at 1000 applying random forests both
times. What if anything of importance has changed?

5.14.2 Problem Set 2
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4. Going back to the default settings, apply random forests and examine the
variable importance plots with no scaling for each predictor’s standard
deviation. Explain what is being measured on the horizontal axis on both
plots when no scaling for the standard deviation is being used. Interpret
both plots. If they do not rank the variables in the same way, why might
that be? Now scale the permutation-based measure and reconstruct that
plot. Interpret the results. If the ranks of the variables differ from the
unscaled plot, why might that be? Focusing on the permutation-based
measures (scaled and unscaled) when might it be better to use one rather
than the other?

5. Construct partial dependence plots for each predictor and interpret them.

Load the MASS library and the dataset called Pima.tr. Read about the data
using help().

1. Apply random forests to the data using the diagnosis of diabetes as the
response. Use all of the predictors and random forest default settings.
Study the confusion table.
a) How accurately does the random forests procedure forecast overall?
b) How accurately does the random forests procedure forecast each of

the two outcomes?
c) If the results were used to forecast either outcome, what proportions

of the time would each of the forecasts be incorrect?

2. Construct variable importance plots for each of the two outcomes. Use
the unscaled plots of forecasting accuracy. Compare the two plots.
a) Which predictors are the three most important in forecasts of the

presence of diabetes compared to forecasts of the absence of diabetes?
Why might they not be the same?

b) Why are forecasting contributions for the less common outcome gen-
erally larger than the forecasting contributions for the more common
outcome?

3. Construct and interpret partial dependence plots of each predictor.

4. Suppose now that medical experts believe that the costs of failing to iden-
tify future cases of diabetes are four times larger than the costs of falsely
identifying future cases of diabetes. For example, if the medical treatment
is to get overweight individuals to lose weight, that would likely be benefi-
cial even if the individuals were not at high risk for diabetes. But failing to
prescribe a weight loss program for an overweight individual might be an
error with very serious consequences. Repeat the analysis just completed
but now taking the costs into account by using the stratified bootstrap
sampling option in random forests.

5.14.3 Problem Set 3
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a) How has the confusion table changed?
b) How have the two variable importance plots changed?
c) How have the partial dependence plots changed?


