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Bagging

4.1 Introduction

In this chapter, we make a major transition. We have thus far focused on
statistical learning procedures that produce a single set of results: regression
coefficients, measures of fit, residuals, classifications, and others. Thus, there is
but one regression equation, one set of smoothed values, or one classsification
tree. Most statistical procedures operate in a similar fashion.

The discussion now shifts to statistical learning building on many sets
of outputs that are aggregated to produce results. Such algorithms make a
number of passes over the data. On each pass, inputs are linked to outputs
just as before. But the ultimate results of interest are the collection of all the
results from all passes over the data.

Bayesian model averaging may be a familiar illustration from another sta-
tistical tradition (Madigan et al., 1996; Hoeting et al., 1999). In Bayesian
model averaging, there is an assumed f(X); there is a “true model.” A number
of potentially true models, differing in the predictors selected, are evaluated.
The model output is then averaged with weights determined by model un-
certainty. Output from models with greater uncertainty are given less weight.
From a statistical learning perspective, Bayesian model averaging has a num-
ber of problems, including the dependence that is necessarily built in across
model results (Xu and Golay, 2006). We address shortly how statistical learn-
ing procedures relying on multiple results proceed rather differently.

Aggregate results can have several important benefits. Averaging over a
collection of fitted values can help compensate for overfitting. That is, the
averaging tends to cancel out results shaped by idiosyncratic features of the
data. One can then obtain more stable fitted values and more honest assess-
ments of how good the fit really is. Second, a large number of fitting attempts
can produce very flexible fitting functions able to respond to systematic, but
highly localized, features of the data. In effect, there can be a very large num-
ber of basis functions and the prospect of reducing bias in the fitted values.
Third, putting the averaging and the flexible fitting functions together has the
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potential to break the bias–variance tradeoff. Sometimes you can have your
cake and eat it too.

In this chapter, we focus on bagging, which capitalizes on the averaging
process. Averaging can reduce the variance. There are also some implications
for bias. Later chapters consider statistical learning procedures that in differ-
ent ways address more directly bias in the fitted values as well as the variance.

We emphasize categorical response variables. We are again concentrating
on classifiers. The rationale is largely the same: the exposition is more effective
and the step to quantitative predictors is easy to make. We begin with a return
to the problem of overfitting. Although overfitting has been discussed several
times in earlier chapters, it needs to be linked more directly to CART to help
set the stage for our exposition of bagging.

4.2 Overfitting and Cross-Validation

A long-standing problem in the philosophy of science is whether the credibility
of scientific conclusions is greater if the conclusions are evaluated through
their forecasting skill or their consistency with the data on hand. That is,
what weight should be given to an accurate forecast compared to a good
fit? The answer is not straightforward, but in the end, accurate forecasts are
likely to be more convincing. And one of the reasons is that forecasts are not
vulnerable to overfitting, whether from intentional “fudging” or overzealous
data exploration (Lipton, 2005).

Any attempt to summarize patterns in a dataset risks overfitting. All fit-
ting procedures adapt to the data on hand so that even if the results are
applied to a new sample from the same population, fit quality will likely de-
cline. Hence, generalization can be somewhat risky. And to the degree that
a fitting procedure is highly flexible, overfitting can be exacerbated. There
is a greater opportunity to fit idiosyncratic features of the data. For exam-
ple, Hastie et al. (2001: 200–203) show in a slightly different context that the
unjustified “optimism increases linearly with the number of inputs or basis
functions . . . , but decreases as the training sample size increases.” In other
words, it can be highly desirable to have few parameters to be estimated and
many observations with which to construct the estimates.

Consider CART as a key illustration. The basis function formulation can
be instructively introduced at three points in the fitting process. First, for any
given predictor being examined for its best split, overfitting will increase with
the number of splits possible. In effect, a greater number of basis functions
are being screened (where a given split leads to a basis function). Second, for
each split, CART evaluates all possible predictors. An optimal spilt is chosen
over all possible splits of all possible predictors. This defines the optimal
basis function for that stage. Hence within each stage, overfitting increases
as the number of candidate predictors increases. Third, for each new stage,
a new optimal basis function is chosen and applied. Consequently, overfitting
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increases with the number of stages, which for CART means the number of
optimal basis functions, typically represented by the number of nodes in the
tree.

The overfitting in CART can be misleading in a number of ways. Measures
meant to reflect how well the model fits the data are likely to be too optimistic.
Thus, for example, the number of classification errors may be too small. In
addition, the model itself may have a structure that will not generalize well.
For example, one or more predictors may be included in a tree that really do
not belong. Finally, should statistical inference be introduced, standard errors
can be too small. Overly narrow confidence intervals and falsely powerful tests
follow.

Ideally, one would have two random samples from the same population: a
training dataset and a test dataset. A tree would be built from the training
data, and some measure of fit would be obtained. A simple measure might be
the fraction of cases classified correctly. A more complicated measure might
take the costs of false negatives and false positives into account. Then with
the tree structure in place, cases from the test data would be “dropped down”
the tree, and the fit computed again. It is almost certain that the fit would
degrade, with how much being a measure of overfitting. The fit measure from
the test data would be a better indicator of how accurate the classification
process really is.

Often there is only a single dataset. Enter cross-validation. The data are
split up into several randomly chosen, nonoverlapping, partitions of about
the same size. That is, one samples without replacement. Ten such subsets
are common. CART is applied to the data from nine of the partitions, and
the results are evaluated with the remaining partition. So, if there are 1000
observations, one would build the tree on 900 randomly selected observations
and evaluate the tree using the other 100 observations.

With ten partitions, the building and testing sequence could be undertaken
ten times, each time with nine partitions as the training data and one parti-
tion as the test data. Each of the ten partitions would be part of the training
data for nine of the ten analyses, and would serve as the test data for one of
the ten analyses. From each of the ten test partitions, a measure of fit would
be computed. An instructive measure of fit would be the average fit value over
the ten splits. Relying on the test partitions reduces overfitting. Taken one
at a time, the small test partitions can be vulnerable to sampling error. The
averaging process tends to cancel out some chance variation. There is nothing
magic about using ten random partitions of the data. When there are very
few partitions, each training dataset will have far fewer observations than the
entire sample. Insofar as the CART results are sample size dependent, sub-
stantial bias can be introduced. For example, with a smaller training sample,
a less complex tree might result. However, when there are a great many parti-
tions, largely the same data are used over and over to construct the tree, and
the test datasets have very few observations. Then, the fit measure computed
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from the test data can have high variance (Hastie et al., 2001: Section 7.10).
Using five to ten splits seems to be a good compromise in practice.

Cross-validation is available in many implementations of CART and is
discussed in the seminal book by Breiman and his colleagues (1984: Section
11.5). Often the number of splits of the data can be specified. When the
number of splits is the same as the number of observations in the original
sample, the process is sometimes called “leave-one-out” cross-validation. We
discussed this in Chapter 1 when model evaluation was first addressed. As
noted then, extensions on this basic idea using bootstrap samples are available
(Efron and Tibshirani, 1993: Chapter 17).

Unfortunately, cross-validiation neglects the extracted pattern of associa-
tions between the inputs and the outputs, which may, because of overfitting,
be very misleading. Although one may obtain a more honest measure of over-
all performance, the structure of the associations revealed by the analysis is
not addressed. One may be stuck with a tree that makes little substantive
sense or will not generalize well. But in the use of subsamples of the data and
in averaging over subsamples, there is a very powerful idea. Bagging exploits
that idea to address overfitting in a more fundamental manner.

4.3 Bagging as an Algorithm

The notion of combining fitted values from a number of fitting attempts
has been suggested by several authors (LeBlanc and Tibshirani, 1996; Mo-
jirsheibani, 1997; 1999) In an important sense, the whole becomes more than
the sum of its parts. “Bagging,” which stands for “Bootstrap Aggregation,”
is perhaps the earliest procedure to exploit a combination of fitted values
based on random samples of the data (Breiman, 1996). Bagging may be best
understood initially as nothing more than an algorithm.

Consider the following steps in a fitting algorithm with a dataset having
N observations and a binary response variable.

1. Take a random sample of size N with replacement from the data.
2. Construct a classification tree as usual but do not prune.
3. Assign a class to each terminal node, and store the class attached to each

case coupled with the predictor values for each observation.
4. Repeat Steps 1-3 a large number of times.
5. For each observation in the dataset, count the number of times over trees

that it is classified in one category and the number of times over trees it
is classified in the other category

6. Assign each observation to a final category by a majority vote over the
set of trees. Thus, if 51% of the time over a large number of trees a given
observation is classified as a “1,” that becomes its classification.

7. Construct the confusion table from these class assignments.
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Although there remain some important variations and details to consider,
these are the key steps to produce “bagged” classification trees. The idea of
classifying by averaging over the results from a large number of bootstrap
samples generalizes easily to a wide variety of classifiers beyond CART. Later
we show that bagging can be usefully applied for quantitative responses as
well.

4.3.1 Margins

Bagging introduces some new concepts that need to be addressed, not just to
deepen the understanding of bagging, but for some other procedures consid-
ered in later chapters. One of these concepts is the “margin.”

Operationally, the difference between the proportion of times a case is
correctly classified and the proportion of times it is incorrectly classified is
sometimes called the “margin” for that case. If, over all trees, an observation
is correctly classified 75% of the time and incorrectly classified 25% of the
time, the margin is .75 − .25 = .50. Large margins are desirable because a
more stable classification is implied. In a large number of random samples of
the data, the class assigned to that observation is far more likely than not to
be the same. Ideally, there should be large margins for all of the observations.
This bodes well for generalization to new data. A more formal and extensive
treatment of the concept of the “margin” is provided in the next chapter.

Recall the discussion in the previous chapter on instability in CART fitted
values. Overfitting in CART tends to be more serious when for the terminal
nodes the proportions of observations in each of the response variable classes
tend to be similar. If the split is .51 versus 49, for instance, the movement of a
little more than one percent of the cases from one class to another could change
the class assigned to that node. Then, all of the cases that were correctly
classified are now misclassified, and all of the cases incorrectly classified are
now correctly classified. Were another sample taken, the initial node class
might be reassigned, and the pattern of classification errors would change
again. It follows that for any given observation in this terminal node, the
margin is likely to be very small or even negative. Such observations will not
be classified in a reliable manner. One might say that the vote over trees is
too close to call.

Conversely, if the proportions within each terminal node are quite different,
it would take the movement of relatively many cases to change the classes
assigned. The bagged margins for observations across trees are likely to be
larger and the classifications more stable. More reliable classifications result.
One might say that the vote is a landslide.

4.3.2 Out-Of-Bag Observations

In the steps just described, the tree is built and then the data used to build
the tree are used again to compute the classification error. One way to think
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about this is that training data are “dropped down” the tree to determine
how well the tree performs. The training data are “resubstituted” when tree
performance is evaluated.

In some implementations of bagging, one can do better. For each tree,
observations not included in the bootstrap sample (called “out-of-bag” obser-
vations) can be treated as a test dataset. These are then dropped down the
tree instead of the data used to build the tree. A record is kept of the class
with which each out-of-bag observation is labeled, as well as its values on all of
the predictors. Then in the averaging process, it is these assigned values that
are used as class labels, and based on these, a confusion table contructed. In
other words, the averaging for a given observation over trees is done only using
the trees for which that observation was not used in the fitting process. Thus,
a fitting enterprise has been turned into a genuine forecasting enterprise. This
leads to more honest fitted values and more honest confusion tables.

It is important to emphasize that the improvement will usually be seen in
forecasting accuracy. If bagged CART results are compared to the results from
a single classification tree, the single tree may seem to perform better. But this
is misleading. If resubstituted values are used to construct the confusion tables
for both the single tree and the bagged trees, the bagged trees should look
worse. The bagging results have been adjusted for overfitting, at least in part.
When out-of-bag data are used to construct the confusion table for the bagged
trees, the bagged results will appear to suffer even more by comparison. A fair
competition between the performance of a single tree and a set of bagged trees
requires confusion tables for both procedures constructed from test data. On
this level playing field, bagged trees will usually perform better than single
trees. Some exceptions are considered shortly.

In summary, by assigning cases to categories using a majority vote over
a set of bootstrapped classification trees, overfitting can be dramatically cur-
tailed. Forecasting accuracy is improved because generalization error is re-
duced. Using the out-of-bag observations can further curb the potential over-
fitting.

4.4 Some Thinking on Why Bagging Works

The core of bagging’s potential is found in the averaging over results from
a substantial number of bootstrap samples. As a first approximation, the
averaging helps to cancel out the impact of random variation. However, there is
more to the story, some details of which are especially useful for understanding
a number of statistical learning procedures discussed in subsequent chapters.

4.4.1 More on Instability in CART

One can get an initial sense of the need for bagging from Figures 4.1 to 4.3.
The three figures are three classification trees constructed from the same data,
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but each uses a different bootstrap sample (i.e., sampled with replacement
from the data). The data were collected to help forecast incidents of domes-
tic violence within households served by a sheriff’s department from a large
metropolitan area. For a sample of households to which sheriff’s deputies were
dispatched for domestic violence incidents, the deputies collected information
on a series of possible predictors of future domestic violence. For example,
they determined whether police officers had been called to that household in
the recent past. Then, the households were followed for two months and any
new incidents of domestic violence recorded. The data were used to construct
a forecasting algorithm so that when information was collected on new house-
holds, forecasts of the likelihood of more domestic violence incidents could be
made.

It is clear that the three figures are very different. Although each tree’s
initial splitting variable is the number of times the police had been called
to that household before, different break points are chosen. More important,
the subsequent splits vary widely across the three trees. It is clear that in
this instance, CART does not produce trees that are likely to be stable under
different random samples from the same population. It would follow that
interpretations of the results would be unreliable.

This is a very important lesson. Interpretations from the results of a single
tree can be quite risky when CART performs in this manner. And recall from
the previous chapter that CART can produce unstable results because of
any number of common problems: small sample sizes, heterogeneous terminal
nodes, or highly correlated predictors.

Also problematic may be the classes that CART assigns to nodes. For
each of the figures, the sample sizes in the terminal nodes are generally quite
small. This can increase substantially the instability of the classes assigned.
With node distributions such as 4 to 3, 5 to 4, or even 9 to 6, changes in
the composition of the data from sample to sample could easily alter how the
observations in a node are classified or even whether the node is constructed
at all.

However, if over trees the different nodes in which a given case might fall
tend to classify that case in the same manner, instability in tree structure does
not necessarily translate into instability in the class assigned. In other words,
when CART is used solely as a classification tool, the classes assigned may be
relatively stable even if the tree structure is not. Experience suggests that such
is sometimes the case. Recall that much the same phenomenon can be found in
conventional regression when predictors are highly correlated. The regression
coefficients estimated for particular predictors may be very unstable, but it
does not necessarily follow that the fitted values will be unstable as well.

Finally, each tree has many terminal nodes. As a result, each tree repre-
sents a very flexible fitting function; there are a large number of conditional
proportions estimated. As a result, the number of classification errors is likely
to be relatively few for each tree individually. Each fit, therefore, may be quite
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Domestic Violence Sample 1

|
policecalled< 6.5

policecalled< 1.5

arrest>=0.5

job>=0.5

threats>=0.5

phone< 0.5

a
317/56

a
50/7

a
23/2

a
9/6

b
5/11

a
7/2

b
6/15

Fig. 4.1. Tree diagram for first bootstrap sample.

good. Were the original data a random sample from a well-defined population,
one might be able to argue that the bias in the assigned classes is small.

At the same time, one must be clear about what is being estimated. Sup-
pose there is a real population and CART were applied to all of the data in
that population. Then, if CART is applied to a random sample of observations
from that population, one might be able to grow a tree providing unbiased
estimates of the splits and the fitted values. A requirement would be to have
a large enough sample so that a sufficiently large tree could be grown with
the sample data. That is, all of the terminal nodes in the population tree
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Domestic Violence Sample 2

|
policecalled< 3.5

medicare< 2.5

gun>=0.5

dependence>=0.5

damage< 0.5

job>=0.5

friend< 0.5

convict< 0.5

policecalled< 2.5

jealous>=0.5

a
41/3

a
54/1

a
50/7

a
34/7

a
27/9

b
2/5

a
166/39

b
4/6

b
4/5

a
27/14

b
3/8

Fig. 4.2. Tree diagram for second bootstrap sample.

could be reproduced with the sample data. The deeper problem is that there
is no guarantee whatsoever that the population tree, let alone the sample
tree, captures the way in which the population data were generated. In the
most obvious case, there may be no information in the population about all
predictors that in fact were relevant.

At a more abstract level, the same concerns apply to data said to be
a product of a particular stochastic process. If that stochastic process really
functions through mechanisms that comport with a classification or regression
tree, and if the inputs to that stochastic process are included in the dataset
being analyzed, there is again the possibility of obtaining unbiased tree esti-
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Domestic Violence Sample 3

|
policecalled< 3.5

policecalled< 1.5

medicare< 1.5 threats>=0.5

ro>=0.5

arrest< 0.5

friend< 0.5 convict>=0.5

hospital>=0.5

a
314/61

b
5/8

a
27/5

a
6/1

a
11/5

b
3/5

a
4/3

b
4/9

a
11/6

b
7/21

Fig. 4.3. Tree diagram for third bootstrap sample.

mates. But if the stochastic process does not comport with a classification or
regression tree, or if the requisite predictors are unavailable, bias will likely
result.

In short, it is not clear how much bias exists in the three trees. But it
is clear that the variance across trees is large. Bagging can help with the
variance.
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4.4.2 How Bagging Can Help

Consider the classifications that would follow from each tree. Suppose that
for each observation one averaged over trees to determine the class assigned.
With a binary outcome, the averaging would take form of a vote across trees.
Because there are three trees in this illustration, a majority vote would be
two out of three or three out of three. If an observation were classified as
having a new incident of domestic violence (i.e., “b”) in two of the three trees
or in three of the three trees, it would be classified as a high-risk domestic
violence household. If an observation were classified as having a new incident
of domestic violence in none of the three trees or one of the three trees, it
would not be classified as a chronic domestic violence household.

As an averaging process, voting over trees tends to cancel out the impact
of random sampling error on the classes assigned to observations (Brieman,
1996; 2000). Idiosyncratic results from tree to tree can be averaged away and
more stable estimates can follow. The variance in the assigned classes can be
reduced as a consequence.

The idea of independent random samples from a population must not be
confused with bootstrap samples from the data. Independent random samples
from a population are the conceptual foundation for conventional (frequentist)
statistical inference. One works within the thought experiment of a limitless
number of independent random samples from a population or a limitless num-
ber of independent realizations of a stochastic process. The definitions of the
bias and variance for a statistic computed from the data on hand follow from
this thought experiment.

Bootstrap samples are probability samples with replacement from the data
on hand. Often such procedures are justified as an effort to simulate the
thought experiment. For bagging, however, the bootstrap samples serve an-
other purpose: they are the foundation for the averaging process by which the
bias–variance tradeoff may be constructively addressed. Statistical inference is
not the motivation. One can think of the averaging as a kind of shrinkage that
can, as before, increase the stability of the fitted values. For each observation,
fitted values are pulled toward their mean over bootstrap samples.

There is actually no requirement in bagging that the samples drawn from
the training data be with replacement. It seems that in general, one can use
samples without replacement and obtain virtually the same results as long as
a particular relationship is maintained between the size of the larger samples
with replacement and the size of the smaller samples without replacement
(Buja and Stuetzle, 2006). If there are N observations in the training data, a
sample without replacement of N/2 effectively will produce the same bagged
results as a sample with replacement of size N . So, the key idea is working with
a large number of random samples of the training data. Whether the sampling
is with or without replacement does not by itself seem to be a critical factor.

The results developed by Buja and Steutze (2006) make clear that when
sampling with replacement, the nominal sample size can be larger than N , and
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as that sample size increases, the equivalent sample size for sampling without
replacement can approach N . However, there is no definitive message about
what the ideal sample size should be, whether with or without replacement.
Therefore, the discussion that follows emphasizes a sample of size N sampling
with replacement, consistent with the traditional bootstrap.

Finally, bagging can have implications for the bias (Bühlmann and Yu,
2002). The basic concern is this: bagging acts as a smoother for the step
functions CART produces. If the underlying f(X) is smooth, bagging will
tend to reduce bias by “sanding off” the corners of the step functions. If the
underlying f(X) has the same jagged structure as step functions, “sanding off”
the corners can increase the bias. Apparently, neither of these consequences
were anticipated in the initial work on bagging but were eventually recognized
as a byproduct of the averaging that bagging employs. More is said about
bagging and bias shortly.

4.4.3 A Somewhat More Formal Explanation

We can now formalize these ideas a bit (Breiman, 1996) by applying con-
cepts from conventional regression analysis. We begin with a discussion of the
variance and a simple illustration to set the stage.

Bagging and Variance

Consider first a given predictor value x0 and an associated response. Imagine
a single random draw from a population, conditional on x0. The value of the
response for that draw is an unbiased estimate of the mean response for all
observations in the population with the same value of x, x0. But because that
estimate is constructed from a single observation, the estimate can vary a lot
from sample to sample if the response is not homogeneous at x0. Had a random
sample of, say, ten observations at x0 been drawn instead, the mean of those
10 values would still be an unbiased estimate of the mean of the responses at
x0. But now, the sampling variability would likely be much smaller because
the sample size is much larger. With more observations one can shrink the
variance, and in this case, still have an unbiased estimate.

Consider now a more complicated illustration. We assume for the moment
that the response variable is quantitative. We focus on a single observation.
For that observation, assume there is a true function of the predictor f(x0)
through which the response is related to x0. That true function can be found
in the population or in the stochastic process responsible for the data. What
is the mean squared error of an observed value of the response variable y with
respect to the fitted value f̂(x0)?

The mean squared error over repeated random samples (or realizations)
can be decomposed into the sum of three parts: !1) an irreducible error, (2)
the bias in the fitted value, and (3) the variance of the fitted value. More
explicitly (Hastie et al., 2001: 197),
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E[(y− f̂(x0))2|x = x0] = σ2
ε +[Ef̂(x0)−f(x0)]2 +E[f̂(x0)−Ef̂(x0)]2. (4.1)

There is nothing that can be done about the σ2
ε . It reflects the variance of y

around its true conditional mean at x0. Generally, the more complex the model
f̂ , the smaller the squared bias, shown in Equation 4.1 as [Ef̂(x0) − f(x0)]2.
A more complex model will generally fit the data better. But with greater
complexity, a greater number of degrees of freedom is used up. The likely
result is greater variance, shown in Equation 4.1 as E[f̂(x0) − Ef̂(x0)]2. Put
another way, the available information in the sample is being spread more
thinly over the fitted values being estimated. The bias–variance tradeoff is
with us again.

Bagging can, in principle, usefully address the link between the bias and
the variance. For any given amount of bias, averaging over many bootstrap
samples produces a far more stable collection of fitted values than is likely
from any single sample. It is as if one had a large number of samples (or real-
izations) generated by the frequentist thought experiment. Moreover, because
bagging helps to produce more stable estimates, one is more free to fit com-
plex functions to the data. If there is a subject matter rationale for fitting a
tree with a large number of terminal nodes, for example, concerns about high
variance need not automatically be a serious constraint.

Equation 4.1 should be understood as illustrative. In particular, it does
not literally apply when the response variable is categorical. When models
for categorical data are used, the bias of the fitted values is related to the
variance of the fitted values. The simple partitioning shown in Equation 4.1
does not follow. Nevertheless, the same general implications apply.

Bagging and Bias

Having addressed the variance, we turn to the bias. Figure 4.4 illustrates how
bagging can affect the bias. To keep the graph simple, there is a single predictor
with the f(X) the smooth S-shaped function shown linking the predictor to
a binary 0/1 response. Imagine now that CART is applied one time to each
of four different bootstrap samples of the data. Each time, only one break in
the predictor is allowed. (Such trees are sometimes call “stumps.”) The four
step functions that result are overlaid.

Consider now a single value of the predictor x0 of 14. At x0, the value
of f(X) is about .8. If only the single step function on the far right were
available, f̂(X) would be around .9. If only the single step function just to
the left were available, f̂(X) would be around .75. Yet, the average of the two
would be pretty close to .8. More generally, with a greater number of CART
step functions averaged, the S-shaped f(X) is better approximated. Bagging
can reduce bias by what is, in effect, smoothing (Bühlmann and Yu, 2002).
The key is that f(X) is a smooth function to begin with.
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Fig. 4.4. How bagging smooths.

4.5 Some Limitations of Bagging

Bagging has been used recently in a number of interesting ways beyond classi-
fication and regression trees (Hothorn and Lausen, 2003). The principles that
bagging exploits are quite general. But there are also important limitations.

4.5.1 Sometimes Bagging Does Not Help

Bagging only returns different fitted values from those that could be obtained
from one pass over the original data if the fitting procedure is a nonlinear or
an adaptive function of the data. For example, all of the smoothers considered
earlier were, with the predictors treated as fixed, linear in the data. Recall
that the fitted values were just a linear combination of the original values
of the response variable. There are no gains from bagging such estimators.
The fitted values from bagging would be effectively the same as the fitted
values from the original data with no sampling (and identical if the number
of bootstrap samples increases without limit).
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4.5.2 Sometimes Bagging Can Make the Bias Worse

Look again at Figure 4.4. Suppose f(X) is really very jagged, much like a step
function. Then, the smoothing that bagging accomplishes can increase bias
because the smoothing on the average moves the fitted values away from the
correct f(X). One does not want the sharp corners of the CART estimates
sanded off. Classification can also be adversely affected.

Weak classifiers can also create problems, especially when the distribution
of the response is highly unbalanced. Weak classifiers are sometimes defined as
those that do no better than the marginal distribution. Suppose the marginal
distribution of the response is unbalanced so that it is very difficult for a
model using the predictors to perform better than the marginal distribution.
Under those circumstances the rare class will likely be misclassified most of
the time because votes will be typically be won by the class that is far more
common.

To illustrate this point, suppose there is a binary response variable, and
for the moment, we are interested in a single observation that happens to
be a “success.” For a given set of trees, that observation is classified as a
success about two times out of ten. So, the classification for that observation
will be wrong about 80% of the time. But if one classifies by majority vote,
the class assigned would be a failure and that would be wrong 100% of the
time. Because the classifier does a poor job, the majority vote produces a
disappointing result. And if the other observations in the training data tend
to be affected by the same difficulty, bagging will perform less well than CART.
Bias is increased.

In practice, such problems will be rare if the data analyst pays attention
to how the classifier performs before bagging is applied. A key question is
how the estimated functions being bagged correspond to the function being
estimated. If serious mismatches are avoided, one important source of bias
can be reduced. In addition, one should always proceed with great caution if
one has very weak classifiers. We show in later chapters that if one has weak
classifiers, alternative procedures may be called for.

4.5.3 Sometimes Bagging Can Make the Variance Worse

Bagging sometimes can also perform poorly with respect to the variance
(Grandvalet, 2004). Figure 4.5 shows a scatterplot with a binary outcome.
The observations are represented by shaded rectangles. Two are far darker
than the rest. Both are outliers in x. Consider now their role for the fitted
values.

Suppose that the response is a linear function of the x. The fitted values,
therefore, should also be a linear function of x. Working with a linear function
makes the exposition much easier, and the general lessons from the discussion
that follows apply when the response and the fitted values are a nonlinear
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Fig. 4.5. The role of influence in bagging.

function of x. The lessons carry over as well to fitting exercises when there is
more than one predictor.

The solid line shows the fitted values with the lower-right outlier excluded
from the data. The dotted line shows the fitted values with the lower-right
outlier included. The lines are rather different, implying that whether that
value is included in the analysis alters the response function substantially.
Therefore, the outlier is influential.

In contrast, whether the outlier in the upper-right part of the scatterplot
is included makes little difference in the fitted values. It happens to fall very
near the line generated by the other fitted values. Deleting it does not change
the fit a great deal. Therefore, it is not influential.

However, because the upper-left outlier increases substantially the vari-
ance of x without increasing the variance of the residuals very much, it helps
to anchor the fitted values. Within the thought experiment of independent
random samples of training data from a well-defined population, the fitted
values will be more stable if values such as the upper-left outlier are present.
Recall that to have substantial influence, an observation needs to be away
from the mass of the data in the space defined by the predictors and also
needs to have a large disparity between its fitted value of the response and its
actual value. For an accessible discussion in the case of linear regression see
Cook and Weisberg (1999: 360) and Peña (2005).

Now think about a set of bootstrap samples of the data. If there is an
observation like the lower-right outlier, the fitted values will vary a great deal
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depending on whether that influential observation happens to be in the sam-
ple. But then, averaging over bootstrap samples can help to stabilize the fitted
values. This means that in the canonical thought experiment, the variance over
random samples from the same population will be reduced. Bagging is doing
just what it is supposed to do; the bagged results are an improvement.

The outlier observation in the upper right is not influential but helps to
stabilize the fitted values. As a result, bootstrap sampling tends to destabilize
the fitted values. When that outlier is by chance not included in the bootstrap
sample, the fitted values derived from the other observations will tend to vary
more over bootstrap samples. An observation that helps to anchor the fit is
absent.

In practice, instances in which bagging can increase the variance some-
times can be spotted. A good place to start is with the univariate statistics
for all predictors and the usual search for outliers and highly skewed or un-
balanced distributions. Insofar as outliers can be excluded from the analysis
on subject matter grounds (e.g., an observation is so atypical that it proba-
bly represents some kind data of error), the risks to bagging can be reduced.
In the same spirit, highly skewed distributions might be transformed toward
more symmetric distributions.

For highly unbalanced, categorical predictor variables with three or more
classes, it can help to collapse classes. In the binary case, sometimes it is
possible to combine two or more predictors in a way that still makes subject
matter sense and restores some balance. For example, people with a PhD
could be combined with people holding other advanced degrees to define a
new variable equal to 1 if there is any post college education, and 0 otherwise.
And there is always the option of dropping highly unbalanced predictors from
the analysis.

However, problems with univariate distributions may not prove to have
serious consequences. The predictor in question may not figure importantly
in the fit because its relationship with the response is weak. Indeed, it may be
excluded from the model altogether. In addition, the region in the predictor
space where the instability is most manifest may be of little subject matter
interest. For example, there may be little interest in the fitted values near the
tails of the predictor distribution. Finally, where the mass of the data are, the
impact of the instability may be modest. Thus in Figure 4.5, the two lines are
much the same toward the middle of the distribution of x. In short, some trial
and error can be useful before a final decision is made to exclude outliers.

There are extensions of conventional influence statistics that can be applied
to bagging before the bagging begins (Grandvalet, 2004: 267–268). Although
they have yet to be battled tested, they may be able to help in finding ob-
servations that are likely to be influential. But, the problem for bagging is
somewhat different. One needs to find observations that ought to be influ-
ential because they are outliers in the space defined by the predictors, but
that are actually not influential because they fall on the path of the fitted
values constructed from the other observations. In Grandvalet’s words, such



186 4 Bagging

values provide “good” influence. Unfortunately, good influence leads to “bad”
bagging.

The problems with bagging just described have their analogues for quan-
titative responses. Bagging is at its best when the problem to overcome is
instability. Bagging when the fitted values are already very stable (or when
the fitted values contain large amounts of bias) can make things worse. It is
important to examine the data carefully before bagging is applied.

4.5.4 Losing the Trees for the Forest

Even when bagging performs as advertised, the price for averaging over trees
can be high. There is no longer a single tree structure to interpret and, there-
fore, no tree diagram. Consequently, there is no direct way to consider how
the inputs are related to the output. This is a very serious problem to which
we return in the next chapter.

With no tree to interpret, the basic output from bagging is the predicted
class for each case. Commonly there is an estimate of the classification error
and a cross-tabulation of the classes predicted by the classes observed. This is
nothing more than a confusion table but now based on averaging over trees.
In addition, there can be separate error calculations for the different response
classes, and a comparison of the number of false negatives to the number of
false positives. If out-of-bag data are used, the confusion table is an even more
honest representation of the results. Sometimes the software will store each of
the trees as well, although these are rarely of any interest because the amount
of information is typically overwhelming.

4.5.5 Bagging Is Only an Algorithm

Bagging may be seen less as an extension of CART and more as an illustration
of what Breiman (2001b) calls “algorithmic modeling.” Algorithmic models
are computer algorithms designed to solve very particular data analysis prob-
lems. Linking inputs to outputs so that classification errors are small is a key
example. Although there may also be an interest in describing how the in-
puts are linked to outputs, there is no effort to represent in the algorithm the
mechanisms by which the linkage occurs. Thus, algorithmic models are not
causal models. For researchers who want causal models, bagging is not the
procedure.

4.6 An Example

Table 4.1 shows the bagged confusion table for the domestic violence data.
Before bagging was applied, some CART results were examined to determine
if in general CART might be appropriate for these data. Taking the empirical
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distribution as the prior and using the default of equal costs for false negatives
and false positives, CART seemed to help.

According to the bagged results in Table 4.1, there are 516 observations
overall with .29 of them misclassified. About .15 of the households are in-
correctly classified as having chronic domestic violence problems, and about
.82 of the households are incorrectly classified as not having chronic domestic
violence problems. The proportion of incorrect no DV classifications is .22,
and the proportion of incorrect DV classifications is .75. Table 4.1 uses the
out-of-bag (OOB) data to construct the fitted values, so the confusion table
is more honest than the CART confusion tables in which the test data are
the same as the training data. A confusion table was constructed from CART
output using the same data, but with no bagging applied. The proportion
of misclassified cases overall was .24, down from .29. CART was a bit too
optimistic.

Predict No DV Predict DV Model Error

No DV 347 60 .15
DV 89 20 .82

Use Error .22 .75 Overall Error = .29

Table 4.1. Bagged CART confusion table for estimates of domestic violence.

4.7 Bagging a Quantitative Response Variable

Bagging works by the same general principles when the response variable is
quantitative. Recall that CART constructs a regression tree by maximizing
the reduction in the error sum of squares at each split. Each case is placed in
a terminal node with a conditional mean. That mean is the predicted value
for all cases of that terminal node.

All of the concerns about overfitting apply, especially given the potential
impact that outliers can have on the fitting process when the response variable
is quantitative. Recall that with the sum of squares fitting function, a few cases
that fall a substantial distance from the mass of the data can produce results
that do not characterize well the data on hand and do not generalize well
either.

At the same time, overfitting is not always a problem. The consequences
of overfitting can be unimportant if

1. The number of observations is large.
2. The number of predictors is small.
3. The number of terminal nodes is small.
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4. There are no observations that fall some distance away from the mass of
the data for the joint distribution of response variable and the predictors.

With a numerical response variable, bagging averages over trees in much
the same way it averages over trees when the response variable is categorical.
For each tree, each observation is placed in a terminal node and assigned the
mean of that terminal node. Then, the average of these assigned means over
trees is computed for each observation. This average value for each case is
the bagged fitted value used. It is an average of conditional means for a large
number of regression trees. The averaging process will tend to cancel out the
impact of trees producing extreme conditional means and in so doing, helps
to reduce the impact of overfitting. If for each tree, it is the OOB data that
are placed in terminal nodes, the overfitting problems can be reduced even
more.

As just noted however, overfitting is not necessarily a problem for CART
analyses. To illustrate, the CART regression analysis undertaken earlier for
high school grade point average was done again with bagged regression trees.
Recall that there were approximately 8000 observations. This time eight pre-
dictors were used.

There was no evidence of outliers in the joint distribution of the predictors
and the response. A series of bivariate scatterplots was first examined, and no
apparent outliers were spotted. However, a series of bivariate plots is not the
same as a single multivariate plot. So, the model implied by the CART results
was re-estimated using linear regression with appropriate interaction terms.
Then Cook’s distance was computed for each observation. As expected, with
so large a sample and relatively few predictors, no single observation stood
out as problematic. Taken together, these two approaches are not iron clad
proof that all is well, but make it a reasonable working premise.

It was not surprising, therefore, that bagging did not make an important
difference. The root mean squared error (i.e., the standard deviation of the
residuals) was .4136 for the CART results and .4132 for the bagged CART
results. The grade point average response variable ranged from 1.0 to 5.0,
therefore a difference of the root mean square error in the fourth decimal
place is effectively noise.

4.8 Software Considerations

In R, the bagging procedure (i.e., bagging() in the ipred library) can be ap-
plied to classification, regression, and survival trees. The arguments from these
procedures can be passed to ipred(). For example, one set the prior in rpart()
to take misclassification costs into account, and this information is used in
ipred(). The library was written by Andrea Peters (Andrea.Peters@imbe.
imed.uni-erlangen.de) and Torsten Hothorn (Torsten.Hothorn@rzmail.uni-
erlangen.de). The package maintainer is Andrea Peters. Perhaps the key con-
cern is that when confusion tables are constructed, or when other measures of
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performance are computed, one must be clear on what is being done. There
are at least three possibilities.

1. Trees are bagged as usual, and bagged classifications or bagged conditional
means constructed. These are then compared to the actual classifications
or response variable values in the original data from which bootstrap
samples were drawn.

2. Trees are bagged as usual, and bagged classifications or bagged conditional
means constructed. The software stores the predictor values leading to
each terminal node. New data (from a test sample) are dropped down the
bagged tree and assigned to terminal nodes based on the values of their
predictors. Each of the new observations is assigned a class or conditional
mean determined by the class or conditional mean of the terminal node
in which it lands. These fitted values for the new data are compared to
the actual values of the response in the new data.

3. CART is used to grow a single tree using a bootstrap sample of the data.
As usual, classifications or conditional means are constructed for each
terminal node. The set of predictor values leading to each terminal node
is stored. Observations not included in the bootstrap sample are noted.
These are the out-of-bag observations for that tree. The out-of-bag obser-
vations are then dropped down the tree and assigned the class or condi-
tional mean of the terminal node in which they land. The same process
is repeated for a number of trees. When the votes are cast to determine
class membership or when conditional means over trees are averaged, the
only trees considered for a given observation are the ones for which that
observation was not in the training data. That is, for a given case i, the
only trees that count are the trees for which case i was not used (i.e., it
was among the out-of-bag observations). Generally about one-third of the
original data are not chosen to be included in each training sample. Even
with a relatively small number of trees, therefore, each of the observations
will have several votes or conditional means to average.

The third method was used for analysis of grade point average, just re-
ported. The second and third methods are generally more honest than the
first because the separation between training data and the test data is more
complete. But all three methods are often better than no bagging at all. The
drawback to the second method is that a second random sample from the
same population is needed. The drawback to the third method is that it will
often be useful to construct a larger number of trees because for each tree,
only about a third of the data figure in the voting. For example, although
25 trees may be good enough for methods one and two, 100 trees may be a
good number for method three. But usually, 100 trees will not be a prohibitive
computational burden.

A rather different set of issues can sometimes be raised by the bootstrap
sampling process. In particular, a given sample may produce predictors or
response variables that are constants. This is more likely when predictor or
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response observations are categorical and unbalanced. For example, if in a
sample of 300 inmates only 30 are Asian-Americans, a bootstrap sample may
include no Asian-Americans whatsoever.

The problem for the software is what to do in such situations. One ap-
proach would be to discard samples in which any of the variables were con-
stants. Another approach would be to throw out the offending variables. How-
ever, discarding variables is not an option if the response variable is one of
the set. In any case, the worst outcome is for the software to crash. It can be
well worth the time to read the software documentation especially carefully if
there are highly unbalanced variables in the dataset.

4.9 Summary and Conclusions

Bagging is an important conceptual advance and a useful tool in practice.
The conceptual advance is to aggregate fitted values from a large number of
bootstrap samples. Ideally, many sets of fitted values, each with low bias but
high variance, may be averaged in a manner than can effectively reduce the
bite of the bias–variance tradeoff. Thanks to bagging, there can be a way to
usefully address this long-standing dilemma in statistics. Moreover, the ways
in which bagging aggregates the fitted values is the basis for other statistical
learning developments.

In practice, bagging can generate fitted values that often reproduce the
data well and forecast with considerable skill. Both masters are served without
making unrealistic demands on available computing power. Bagging can also
be usefully applied to a wide variety of fitting procedures.

But bagging also suffers from several problems. Perhaps most important,
there is no way within the procedure itself to depict how the predictors are
related to the response. One can obtain a more honest set of fitted values
and a more honest evaluation of how good the fitted values really are. But as
a descriptive device, bagging is pretty much a bust. Other tools are needed,
which are considered in the next chapter.

A second problem is that because the same predictors are available from
tree to tree, the sets of fitted values are not fully independent. The averaging
is not as effective as it could be if the sets of fitted values were closer to
independent. This too is addressed shortly.

Third, bagging can stumble badly if the fitting function is consistently and
substantially inappropriate. Large and systematic errors in the fitted values
are just reproduced a large number of times and do not, therefore, cancel out
in the averaging process. For categorical response variables, bagging a very
weak classifier can sometimes make things worse.

Fourth, the bootstrap sampling can lead to problems when categorical
predictors or outcomes are highly unbalanced. For any given bootstrap sample,
the unbalanced variable can become a constant. Depending on the fitting
function being bagged, the entire procedure may abort.
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Finally, bagging can actually increase instability if there are outliers that
help to anchor the fit. Such outliers will be lost to some of the bootstrap
samples. Bagging can be extended so that many of these problems are usefully
addressed, even if full solutions are not available. We turn to some of these
solutions in the next chapter. And in their potential solutions is found another
form of statistical learning, still farther away from conventional regression
analysis.

Exercises

Problem Set 1

The goal of this first exercise is to compare the performance of linear regres-
sion, CART, and bagging applied to CART. Construct the following data set
in which the response is a quadratic function of a single predictor.

x1=rnorm(500)
x12=x1^2
y=1+(2*(x12))+(2*rnorm(500))

1. Plot the 1 + (2 × x12) against x1. This is the “true” relationship between
the response and the predictor without the complication of the distur-
bances. This is the f(X) you hope to recover from the data.

2. Proceed as if you know that the f(X) is quadratic. Fit a linear model
with x12 as the predictor. Then plot the fitted values against x1. You can
see how well linear regression does when the functional form is known.

3. Now suppose that you do not know that the f(X) is quadratic. Apply
linear regression to the same response variable using x1(not x12) as the
sole predictor. Construct the predicted values and plot the fitted values
against x1. How do the fitted values compare to what you know to be the
correct f(X)? (It is common to assume the functional form is linear when
the functional form is unknown.)

4. Apply CART to the same response variable using rpart() and x1(not x12)
as the sole predictor. Use the default settings. Construct the predicted
values, using predict(). Then plot the fitted values against x1. How do the
CART fitted values compare to what you know to be the correct f(X)?
How do the CART fitted values compare to the fitted values from the
linear regression with x1 as the sole predictor?

5. Apply bagging to the same response variable using ipred() and x1 as the
sole predictor. Use the default settings. Construct the predicted values
using predict(). Then plot the fitted values against x1. How do the bagged
fitted values compare to the linear regression fitted values?
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6. You know that the relationship between the response and x1 should be a
smooth parabola. How do the fitted values from CART compare to the
fitted values from bagging? What feature of bagging is highlighted?

Problem Set 2

Load the dataset “Freedman” from the car library. For 100 American cities,
there are four variables: the crime rate, the population, population density,
and proportion nonwhite. As before, the crime rate is the response and the
other variables are predictors.

1. Use rpart() and its default values to fit a CART model. Compute the
root mean square error for the model. One way to do this is to use pre-
dict.rpart() to obtain the fitted values and with the observed values for
the variable “crime,” compute the root mean square error in R. Then use
bagging() from the library ipred and the out-of-bag observations to obtain
a bagged value for the root mean square error for the same CART model.
Compare the two estimates of fit and explain why they differ.

2. Using sd(), compute the standard deviation for the CART fitted values
and the bagged fitted values. Compare the two standard deviations and
explain why they differ.

Problem Set 3

Load the dataset “frogs” from the library DAAG Using “pres.abs” as the
response build a CART model under the default settings.

1. Construct a confusion table with “pres.abs” and the predicted classes from
the model. Now, using bagging() from the library ipred, bag the CART
model using the out-of-bag observations. Construct a confusion table with
“pres.abs” and the bagged predicted classes from the model. Compare the
two confusion tables and explain why they differ.

2. Cross-tabulate using table() or xtab() the fitted classes from CART and
the bagged CART. Examine the two cells for cases in which the two sets
of fitted classes do not agree. Why is the number of observations in each
about the same?


