6

Boosting

6.1 Introduction

One of the reasons why random forests is so effective for complex response
functions is that it capitalizes on very flexible fitting procedures. As a result,
it can respond to highly local features of the data. Such flexibility is desirable
because it can substantially reduce the bias in fitted values compared to the
fitted values from parametric regression, unless based on prior information,
the parametric regression happens to hit upon an appropriate functional form.

The flexibility in random forests comes in part from individual trees that
can find nonlinear relationships and interactions. Another source of the flexi-
bility is large trees that are not precluded from having very small sample sizes
in their terminal nodes. Yet another source of the flexibility is the sampling
of predictors. Predictors that work well, but only for a very few observations,
have the opportunity to participate.

But as now stated many times, that flexibility comes at a price: the risk
of overfitting. Random forests consciously addresses overfitting by using OOB
observations to construct the fitted values and measures of fit, and by averag-
ing over trees. Experience to date suggests that this two-part strategy—very
flexible fitting functions and averaging over OOB observations—can be highly
effective.

But the two-part strategy, broadly conceived, can be implemented in other
ways. An alternative method to accommodate highly local features of the data
is to give the observations responsible for the local variation more weight
in the fitting process. If in the binary case, for example, a fitting function
misclassifies those observations, that function can be applied again, but with
extra weight given to the observations misclassified. Then, after a large number
of fitting attempts, each with difficult-to-classify observations given relatively
more weight, overfitting can be reduced if the fitted values from the different
fitting attempts are combined in a sensible fashion. Ideas such as these lead to
very powerful statistical learning procedures that can compete with random
forests. These procedures are called “boosting.”

R.A. Berk, Statistical Learning from a Regression Perspective,
DOI: 10.1007/978-0-387-77501-2_6, (© Springer Science+Business Media, LLC 2008

258 6 Boosting

Boosting gets its name from its ability to take a “weak learning algorithm,”
which performs just a bit better than random guessing, and “boosting” it into
an arbitrarily “strong” learning algorithm (Schapire, 1999: 1). It “combines
the outputs from many ‘weak’ classifiers to produce a powerful ‘committee’ ”
(Hastie et al., 2001: 299). So, boosting has some of the same look and feel as
random forests.

But, boosting formally differs from random forests in at least four impor-
tant ways. First, in traditional boosting, there are no chance elements built
in. At each iteration, boosting works with the full training sample and all of
the predictors. Some recent developments in boosting exploit random samples
from the training data, but these developments are enhancements that are not
fundamental to the usual boosting algorithms. Second, with each iteration the
observations that are misclassified, or otherwise poorly fitted, are given more
relative weight. No such weighting is used in random forests. Third, the ulti-
mate fitted values are a combination over a large set of earlier fitting attempts.
But the combination is not a simple average as in random forests. Finally, the
fitted values and measures of fit quality are usually constructed from the
“within-sample” data. There are no out-of-bag observations, although some
recent developments make that an option.

To appreciate how these pieces can fit together, we turn to Adaboost,
which is perhaps the most widely known boosting procedure (Freund and
Schapire, 1996). For reasons we soon examine, the “ada” in Adaboost stands
for “adaptive” (Schapire, 1999: 2). Adaboost illustrates well boosting’s key
features and despite a host of more recent boosting procedures is still among
the best classifiers available (Mease and Wyner, 2008).

6.2 Adaboost

Adaboost is the poster child for boosting and provides a useful introduction
to the method. It was designed originally for classification problems, which
once again are discussed first.

Consider a binary response coded as 1 or —1. Adaboost then has the follow-
ing general structure. The pseudocode that follows is basically a reproduction
of what Hastie et al. (2001) show on their page 301.

1. Initialize the observation weights w; = 1/N,i =1,2,... N.

2. Form =1 to M:
a) Fit a classifier Gy, (z) to the training data using the weights w;.
b) Compute: err,, = Loimy Wil 7 Cm(r:))

i=1 Wi

¢) Compute oy, = log[(1 — erry,)/erry].
d) Set w; «— w; - expla, - I(y; # Gm(x;))],i=1,2,...,N.

3. Output G(x) = sign [E;Vf:l oszm(a:)]

6.2 Adaboost 259

There are N cases and M iterations. G,,(x) is a classifier for pass m over
the data. Any number of procedures might be used to build a classifier, but
highly truncated trees (called “stumps”) are common. The operator I is an
indicator variable equal to 1 if the logical relationship is true, and 0 otherwise.
The binary response is coded 1 and —1 so that the sign defines the outcome.
The classification error for pass m over the data is denoted by err,,.

The value of err,, is transformed into a logit, which then defines «a,,. The
new weights, one for each case, are then computed as w;. All cases incorrectly
classified are “up-weighted” relative to the previous pass over the data by
e*m. Consequently, Adaboost will pay relatively more attention in the next
iteration to the cases that were misclassified. In some expositions of Adaboost
(Freund and Schapire, 1999), «,, is defined as %log(l — errmy/erry,). Then,
incorrectly classified cases are up-weighted by e®m and correctly classified
cases are down-weighted by e~®m. In the end, classification is determined by
a vote over the M classifiers G,,,, with each vote weighted by a,.

To summarize, Adaboost combines a large number of fitting attempts of
the data. Each fitting attempt is undertaken by a classifier using weighted
observations. The observation weights are a function of how poorly an obser-
vation was fitted in the previous iteration. The fitted values from each iteration
are then combined as a weighted average. There is one weight for each fitting
attempt, applied to all of the fitted values, which is a function of the overall
classification error of that fitting attempt. The observation weights and the
iteration weights both are a function of the classification error, however, their
forms and purposes are quite different.

There are now several variants on the basic Adaboost algorithm (Friedman
et al., 2000). For example, one can think of Adaboost as “discrete” Adaboost
because the fitting function produces a binary response. “Real” Adaboost ex-
ploits a fitting function that generates class membership probabilities instead.
For these probabilities, the log-odds of class membership can be computed,
which in turn, are used instead of an assigned class when weights are updated.
Because the output from real Adaboost is less lumpy than from Adaboost,
a claim is made that the algorithm may perform a bit better. “Gentle Ad-
aboost” is a more robust version of Adaboost whose loss function gives less
weight to extreme values. Limited experience to date with realistic datasets
suggests that all three procedures classify about equally well. But there are
exceptions, and it is possible to construct datasets in which one or the other
will perform substantially better. More will be said about such performance
assessments later.

6.2.1 A Toy Numerical Example of Adaboost

To help fix these ideas, it is useful to go through a numerical illustration with
very simple data. There are five observations with response variable values for
1=1,2,3,4,50f 1,1,1,—1, —1, respectively.

1. Initialize the observations with each weight w; = 1/5.

260 6 Boosting

2. For the first iteration using the equal weights, suppose the fitted values
for observations ¢ = 1,2,3,4,5 are 1,1,1,1,1. The first three are correct
and the last two are incorrect. The error for this first iteration is:

. . . : 20 x 1
em:(20><0)+(20><0)+(201><0)+(20><1)+(20><) _ w.

3. The weight to be given to this iteration is

1—.40
ap = log% = log(.60/.40) = log(1.5) = .41.

4. The new weights are:
wy = .20 x e41X0) = 90

wy = .20 x t41X0) = 20
ws = .20 x X0 = 20
wy = .20 x 4D = 30
ws = .20 x etHXD) = 30

5. Now we begin the second iteration. We fit the classifier again and for
1=1,2,3,4,5 get 1,1,1,1,—1. The first four are correct and the last one
is incorrect. The error for the second iteration is

[(:20 x 0) + (.20 x 0) + (.20 x 0) + (.30 x 0) + (.30 x 1)]

— =.2
errsy 12)
6. The weight to be given to this iteration is
1-25
= logg =log(.75/.25) = 1.1.

.25

7. We would normally keep iterating, beginning with the calculation of a
third set of weights. But suppose we are done. The classes assigned are:

g1 =sign[(1 x 41)+(1x1.1)]>0=1

y2 =sign[(1 x.41)+ (1 x1.1)]>0=1
=sign[(1 x.41)+ (1 x1.1)]>0=1

g4 =sign[(1 x 41)+(1x1.1)] >0=1

U5 = sign[(1 x .41) + (-1 x 1.1)] < 0 = —1.

One can see in this toy example how in the second iteration, the misclas-
sified observations are given relatively more weight. One can also see that the
class assigned (i.e., +1 or —1) is just a weighted average of the classes assigned
at each iteration. The second iteration had fewer wrong (one out of five rather
than two out of five) and so was given more weight in the ultimate averaging.
These principles would apply even for very large datasets and thousands of
iterations.

6.2 Adaboost 261
6.2.2 A Statistical Perspective on Adaboost

Adaboost has of late been studied by statisticians, (e.g., Ridgeway, 1999;
Friedman et al., 2000; Wyner, 2003; Bithlmann and Yu, 2004; Friedman et
al., 2004; Zhang and Yu, 2005; Mease at al., 2007; Mease and Wyner, 2008)
and in response, by its original inventors (Shapire, 2002). From this recent
work several interesting features of Adaboost have been clarified.

Adaboost fits a stagewise additive model using basis functions in much the
same spirit as CART and random forests. In CART, the basis functions are
indicator variables that determine the optimal splits. Once a split is defined,
it is fixed. Later splits have no impact on earlier splits. Each terminal node
is characterized by a set of indicator variables that define the basis functions
for that node. The weighted sum of the basis functions is the classifier for all
of the data.

In random forests, the basis functions are the individual tree classifiers,
each a function of X. Farlier trees are unaffected by later trees. Classes are
assigned to observations by determining the class most commonly assigned
over trees. Votes are summed over trees, with each tree weighted the same.

In Adaboost, as with random forests, the basis functions are the individual
“weak” classifiers, each also a function of X. Often these weak classifiers are
trees. Earlier classifications are unaffected by later classifications. Classes are
assigned by a weighted sum over classifiers, with weights determined by the
values of «,.

Given the broad similarities between Adaboost and random forests, it is
not surprising that many of the same concepts can be applied to both. Just
as in random forests, for example, there is in Adaboost a margin, which plays
much the same role as the margin in random forests. Thus, a larger margin
implies less generalization error. There can also be in Adaboost population
generalization error, although unlike random forests, there is no convergence
to that value as the number of iterations increases without limit. The lack
of convergence raises some important issues (addressed shortly) about how
Adaboost should be used in practice.

There also are a number of formal links between Adaboost and a variety
of statistical procedures that provide a very useful bridge between the two
and a statistical framework within which to place boosting (Breiman, 1999;
Friedman et al., 2000). With this framework in place, several important con-
clusions can be derived that have significant implications for work with real
data.

Recall that in conventional parametric regression with a quantitative re-
sponse variable, the goal is to fit conditional means of the response variable.
If the intent is description, the regression hyperplane for the training data
ideally goes right through the conditional means. If the enterprise is estima-
tion, the regression hyperplane provides unbiased estimates of the conditional
means in the population, or the conditional means implied by the underly-
ing stochastic process. As noted in Chapter 1, the same motives can drive

262 6 Boosting

any of the statistical learning procedures we have discussed when there is a
quantitative response. When the response variable is categorical, a similar
motivating framework can be applied, but the units of the response are dif-
ferent. For example, it is common to fit or estimate the conditional log odds
(i.e., conditional logits) of the response categories. What is Adaboost trying
to fit?

Hastie et al. (2001: 306-308) show that the Adaboost iterations are im-
plicitly targeting
P(Y =1|X)
P(Y = -1|X)

This is just one-half the usual log-odds (logit) function for P(Y = 1|X). The
1/2 implies using the sign to determine the class. In other words, the “so-
lution” Adaboost is seeking is the population conditional probabilities, or if
within-sample results are all that matter, the conditional proportions. This
is familiar territory. However, the means to the end shown in Equation 6.1 is
minimizing the loss function e~#/(®) . Adaboost is attempting to minimize ex-
ponential loss with the observed class and the predicted class as its arguments.
This focus on exponential loss raises at least two important issues.

First, relying on the mathematical relationship between the exponential
loss function and conditional probabilities can miss a key point in practice.
Mease and Wyner (2008) show that although at each stage the true conditional
probability is indeed the minimizer, over stages there can be gross overfitting
of the estimated probabilities. Mease et al. (2007) had earlier demonstrated
that because classification depends only on the sign of the classifier, the com-
puted probabilities of class membership are pushed toward 0.0 or 1.0 as the
number of iterations increases. In other words, even when there is no evidence
of overfitting for class membership, there can still be massive overfitting of the
conditional probabilities (Buja et al., 2008). Indeed, the massive overfitting
is desirable because it implies large margins for the fitted classes. Possible
solutions to this form of overfitting are discussed later, but one must be very
cautious about making too much of the estimated conditional probabilities.

Second, the exclusive attachment to the exponential loss function naturally
raises the question of whether there are other loss functions that might per-
form better. Hastie and his colleagues (2001: 306—-309) show that minimizing
negative binomial log likelihood (i.e., the deviance) is also (as in Adaboost) in
service of finding the true conditional probabilities, or the within-sample con-
ditional proportions. Might this loss function, implemented as “Logitboost,”
be preferred?

On the matter of overfitting conditional probabilities, the answer is no.
The same overfitting problems surface (Mease et al., 2007). With respect
to estimating class membership, the answer is maybe. Hastie et al. (2001:
308-312) show that the Logitboost loss function is somewhat more robust to
outliers than the Adaboost loss function. They argue that, therefore, Log-
itboost may be preferred if a significant number of the observed classes on

F(X) = Jlos (6.1)

6.3 Why Does Adaboost Work So Well? 263

the response variable are likely to be systematically wrong or noisy. Biased
or noisy measurement could produce large disparities between the observed
and fitted classes that would tend to dominate the fit. However, Mease and
Wyner (2007) show through simulation counterexamples that this advice can
often be wrong. There is no doubt that exponential loss is more vulnerable
to outliers in principle, but the implications of this for practice are not yet
clear. Perhaps the best advice when analyzing a given dataset is to try both
procedures with the training data, and then with test data see which classifies
more accurately.

Despite these and other controversies, there are some real gains to be had
placing boosting within a statistical framework of loss function minimization.
Statisticians have done a lot of thinking about loss functions. We turn to one
particularly useful approach shortly.

6.3 Why Does Adaboost Work So Well?

There is no formal stopping rule for Adaboost and as a result, Adaboost can
overfit (Jiang, 2004). The number of passes over the data is a tuning parameter
that in practice depends on trial and error, often indexed by a measure of fit.
One such measure is the cross-validation statistic, but there are several others
that each penalize model complexity a bit differently. Often the number of
classification errors will decline up to a certain number of passes over the
data and then begin to increase. The point of inflection can sometimes be
treated as a useful stopping point. But, there is nothing in boosting implying
convergence.

Indeed, for a given sample size, “boosting forever” is not consistent (Man-
nor et al., 2002). But, for a given stopping point, Zhang and Yu (2005) show
that under fairly general conditions, boosting will estimate the population gen-
eralization error as the number of observations increases without limit. The
population characteristic being estimated is essentially the same as Breiman’s
for random forests, but the number of observations rather than the number
of iterations increases without limit. Importantly, the same caveat holds: the
proof of consistency says nothing about the quality of the population classifier
responsible for generalization error.

There are also some interesting twists on the usual problem of what can
be learned from asymptotics about the results from some data on hand. For
example, in a given sample, there may be by random selection no observations
where there are several critical turning points in the f(X). It is likely, there-
fore, that at least those turning points will be fitted in a misleading manner,
which a proof of consistency cannot usefully address. That is, even if an esti-
mator can be shown to be consistent under certain conditions, a given sample
may miss key features of the f(X).

Still, there is broad consensus that Adaboost performs remarkably well.
Part of the reason may be that as does random forests, Adaboost provides an

264 6 Boosting

opportunity for many different predictors to usefully contribute. Rather than
working with random subsets of predictors, Adaboost reweights the data so
that predictors that might have contributed little to the fit in earlier stages
may do so for later stages. In the same spirit, a basis function for a given
predictor that may work poorly at an early stage may work better at a later
stage. Just as in random forests, the result is a very flexible fitting procedure
that can help reduce bias in the fitted values. Then in the weighted averaging
process, the variance can be brought under better control.

6.3.1 Least Angle Regression (LARS)

One can obtain a useful window on this process through Least Angle Regres-
sion (Efron et al., 2004). Although the initial focus for LARS was on model
selection, there are some insights to be had on boosting. LARS proceeds in a
stagewise fashion in the spirit of forward stepwise regression. But rather than
making an all-or-nothing decision about how a prospective regressor should
participate in the model, each variable selected has its role somewhat diluted.

Recall conventional forward stepwise regression. For a given response vari-
able,

1. Find the predictor that has the largest absolute correlation with the re-
sponse.

2. Compute the one-predictor regression equation and the residuals.

3. Find among the remaining predictors the one that has the largest absolute
correlation with the residuals.

4. Add that predictor to the model, and compute the two-predictor regres-
sion equation and the residuals.

5. Keep adding predictors in this fashion until there is an insufficient im-
provement in the model’s performance.

A usual feature of this approach is that the basis function that produces
the largest reduction in the error sum of squares is the one added to the
model. Such algorithms are sometimes characterized as “greedy” because by
a specified criterion they make an optimal decision at each step that does not
necessarily lead to a global optimum. Greedy algorithms have the advantage,
however, of being practical and often give very good results. The alternative
of searching over all possible models for a global optimum is typically far too
taxing and in some cases, effectively impossible.

The full impact of the included predictors is at each step transmitted
through the fitted values to the residuals. One result is residuals that are
uncorrelated with the regressors currently in the model. Another result is
that other predictors correlated with the regressors already selected may have
their chances of being included seriously compromised. Their potential fitting
capabilities may be to some extent pre-empted by predictors already in the
model.

6.3 Why Does Adaboost Work So Well? 265

Consider now stagewise regression. Stagewise regression has some of the
same look and feel as forward stepwise regression, but there are important
differences. As before, there is a response variable and for ease of exposition,
it is common to assume predictors that have been standardized to have a
mean of 0.0 and a standard deviation of 1.0. Then,

1. Find the predictor that has the largest absolute correlation with the re-
sponse.

2. Compute a “regression” coefficient proportional to that correlation coef-
ficient.

3. Compute the fitted values and residuals.

4. Find among the remaining predictors the one that has the largest absolute
correlation with the new residuals.

5. Compute a “regression” coefficient proportional to that correlation coef-
ficient.

6. Update the fitted values and compute new residuals.

7. Keep adding predictors in this fashion until there is an insufficient im-
provement in the model’s performance.

Underneath Steps 3 and 6 is an updating procedure for the fitted values
of the following form,
g — y+e-sign(é)) -z, (6.2)

where ¢ is the fitted values of the response, x; is the predictor selected at a
given stage, c; is proportional to correlation with the residualized response,
and ¢ is a small constant (Efron et al., 2004: 410). Then, residuals are com-
puted as one would expect by subtracting the updated fitted values from the
values of the observed response. These residuals serve as the response variable
for the next stage.

At each stage, therefore, a new fitting equation with a single new predic-
tor is computed from which new residuals follow. The impact of each new
predictor is discounted substantially by the multiplicative factor €. The re-
sult is residuals whose correlation with each newly added predictor is reduced
but not eliminated. Prospective predictors, correlated with the included pre-
dictors are then more likely to remain in play and have a greater chance of
being included in later stages. Also, predictors used in earlier stages can be
used again in later stages. In this sense, the “greediness” of the algorithm is
reduced.

How is the value of £ determined? To date, there is no formal way to
determine the value of . The standard recommendation is that € should be
very small (e.g., .01) and that the fitting process should be allowed to run
for several thousand stages. There is some experience suggesting that in this
manner, a very flexible fitting function will result. In short, the fitted values
should be allowed to very gradually arrive at a satisfactory result.

LARS can be seen in part as a computational shortcut for stagewise re-
gression. Rather than incrementing the fitted values in tiny steps over many

266 6 Boosting

stages, LARS only requires up to as many stages as there are regressors. It ar-
rives more quickly at the desired regression function by using different weights
in the updating process. At any given stage, the residuals from the previous
stage serve as the response varible. But when a new predictor is added to the
model, all of the earlier included predictors, as well as the new one, participate
in the fitting process. Moreover, they are each forced to have equal impact on
the fitted values regardless of what might have happened had, say, forward
stepwise regression been applied to the data.

Like for stagewise regression, the LARS residuals are not forced to be
uncorrelated with the included predictors, and regressors can have more than
one opportunity to contribute to the fitted values. Also, predictor variables
not yet in the model have a better chance of being included in later stages. In
the language we have been using, weak and highly specialized predictors can
participate in the fitting process. The result is a very flexible fitting function.

But, what has all this to do with boosting? In conventional regression,
regressors are either included in the model or not. In some circumstances this
is too ham-fisted. Predictors compete for the opportunity to be included, and
there are clear winners and clear losers. LARS illustrates how that the all-or-
nothing strategy can be improved. Often it will be better to blend the impact
of a wide variety of predictors rather than choose among them. Random forests
and boosting share much the same perspective. And this can be very effective
when highly flexible fitting functions are needed and when there is not a clear
distinction between the regressors that belong in the model and those that
do not. Another benefit is a kind of shrinkage that can increase the stability
of the fitted values. As new predictors are added to the model, their weights
are discounted and their potential impact on the fitted values is spread across
other predictors.

Finally, the links among LARS, the lasso, and boosting mean that one
can see boosting in part as a shrinkage procedure (Bithlmann and Yu, 2006;
Biithlmann, 2006). If one looks backwards from the final boosting pass through
the data, there is shrinkage at work. The shrinkage is more dramatic as one
gets closer to the initial iteration.

In summary, there is no definitive explanation of why Adaboost works as
well as it does. But it is likely that two factors are important: the weighting of
residuals over many passes through the data so that weak and strong predic-
tors can play a role, and the averaging across sets of fitted values that help to
reduce overfitting and to increase stability. These assets carry over to a wider
range of boosting procedures to which we can turn now.

6.4 Stochastic Gradient Boosting

Boosting can be approached from an unusually wide variety of perspectives
(Shapire, 2002). Many different classifiers can be boosted using many differ-

6.4 Stochastic Gradient Boosting 267

ent algorithms and loss functions. It also seems that boosting is related not
just to a number of traditions in statistics but to game theory, linear pro-
gramming, other core areas in applied mathematics, and computer science.
Finally, boosting is “hot.” The half-dozen journals or so that publish work on
statistical learning have in almost every issue a useful paper on boosting or
related approaches.

To have so much new and interesting work is surely a joy for the re-
searchers. But practitioners are faced with the serious problem of needing
stable tools already programmed that reflect the best of these recent develop-
ments. Yet, it is not even clear at this point which procedures work best for
which kinds of data analyses or even any consensus on how “best” is to be
defined. And the availability of software depends as much on happenstance as
a well-considered response to what the user community needs.

In so confused and volatile an environment, moving from discussions of
the various procedures in principle to tools ready for serious practice means
making a number of educated guesses about what will be most productive. To
that end, the material that follows emphasizes boosting additive trees. Just as
in random forests, CART serves as the base classifier. We also limit ourselves
to several rather conventional loss functions. Finally, we stay within R and
what is one of the best implementations of boosting widely available (Ridge-
way 2005), based on stochastic gradient boosting (Friedman, 2001, 2002).
Experience to date suggests that stochastic gradient boosting using trees pro-
vides a very flexible boosting framework without, in general, sacrificing fitting
performance. Moreover, stochastic gradient boosting can be used with either
categorical response variables or quantitative response variables, depending on
the loss function used. Finally, stochastic gradient boosting is closely linked
to a number of common statistical traditions which, given the exposition style
of this book, will seem familiar.

The basic logic behind stochastic gradient boosting is very clever. What
follows is a first approximation of gradient boosting with a few key details
overlooked for now. As has become our didactic practice, we start with a
binary response variable.

Suppose that the response variable is binary and coded as 1 or 0. From a
regression tree, not a classification tree, fitted values 7; can be obtained. For
each observation, there is also the observed value of the response y;. After
applying a monotonic transformation to y; (details later), the transformed
values of 7; are subtracted from the y; to obtain what are, in effect, residuals.
In the next iteration, a regression tree is fit to these residuals. The new set
of fitted values is then added to the old fitted values (details later) to obtain
a new set of fitted values. After a sufficient number of such iterations, the
last set of fitted values can be used to assign classes. Commonly, observations
with ¢; > 0.5 are assigned a “1,” and observations with ¢; < 0.5 are assigned
a “0.”

Larger positive or negative residuals imply that for those observations,
the fitted values are less successful. When the regression tree attempts to

268 6 Boosting

maximize the quality of the fit overall, it will respond more to the observations
with larger positive or negative residuals. In effect, therefore, these residuals
serve as weights and hence, provide a key connection to boosting as originally
proposed.

Now consider gradient boosting more formally. The discussion that follows
on boosting trees draws heavily on Ridgeway (1999) and on Hastie et al. (2001:
Sections 4.9-4.11.

A given tree can be represented as

J
T(x;0) = ijl(x € R;), (6.3)

with, as before, the tree parameters © = {Rj,~;}, where j is an index of
the terminal node, j,...,J, R; a predictor-space region defined by the jth
terminal node, and ~y; is the value assigned in each observation in the jth
terminal node. The goal is to construct values for the unknown parameters
O so that the loss function is minimized. At this point, no particular loss is
specified, and we seek

J
O =argminy | > Ly). (6.4)

Jj=1lz;€ER;

How this can be done for a given tree was discussed when CART was
examined. The problem now is more difficult. We seek to minimize the loss
over a set of trees. We once again proceed in a stagewise fashion so that at
iteration m we need to find

N
Qm = arg H@linnz L(yia fm—l(xi) + T(xtv Q'm))a (65)

i=1

where f,,—1(z;) are the results as of the previous tree. Given the results from
the previous tree, the intent is to reduce the loss as much as possible using the
fitted values from the next tree. This can be accomplished through an astute
determination of ©,,, = [Rjm,Vjm] for j =1,2,...,J,,. Thus, Equation 6.5 is
a way to update the fitted values in an optimal manner.

Equation 6.5 can be reformulated as a numerical optimization task. In this
framework, g;,, is the gradient for the ith observation on iteration m, defined
as the partial derivative of the loss with respect to the fitting function. Thus,

o= - [T |
im Of (x;) F (@)= Ffrm—1(zs)

Equation 6.6 represents for each observation the potential reduction in the
loss as the fitting function f(z;) is altered. The larger the absolute value of
gim, the greater is the change in the loss as f(x;) changes. So, an effective
fitting function would respond most to the larger absolute values of g, .

(6.6)

6.4 Stochastic Gradient Boosting 269

The gin, will generally vary across observations. A way must be found to
exploit the g;,, so that over all of the observations, the loss is reduced the
most it can be. One approach is to use a numerical method called “steepest
descent,” in which a “step length” p,, is found so that

pm = argmin L(f,,—1 — pg,,)- (6.7)
p

In other words, a scalar p,, is determined for iteration m so that when it
multiplies the vector of gradients, the loss function from the previous iteration
is reduced the most it can be.

The link between the method of steepest descent and gradient boosting
is gim- Consider the disparities between tree-generated fitted values and the
actual values of the response. Those disparities are a critical input to the loss
function. The size of the loss depends on all of the N disparities, but larger
disparities make greater contributions to the loss than smaller disparities.
Thus, a fitting function will reduce the loss more substantially if it does an
especially good job at reducing the larger disparities between its fitted values
and the actual values. There is a greater payoff in concentrating on the larger
disparities. Thus, disparities resulting from the fitting process play much the
same role as the gradients in the method of steepest descent.

And now the payoff. Friedman (2002) show that if one uses certain trans-
formations of the disparities as the gradients (details soon), there is a least
squares solution to finding the best parameter values for the fitting function.
That is,

N
O,, = arg m@in ;(—gim —T(z;0))% (6.8)

What this means in practice is that if one fits successive regression trees by
least squares, each time using as the “response variable” a certain transforma-
tion of the disparities produced by the previous regression tree, one can obtain
a useful approximation of the required parameters. For a binary outcome, the
classifier that results, based on a large number of combined regression trees,
is much the same as Adaboost. Moreover, by recasting the boosting process
in gradient terms, many useful variants follow.

We turn, then, to the steps involved in gradient boosting as implemented
in ghbm(), the software R we soon apply. The algorithm is also called stochastic
gradient boosting because of the random sampling in Step 2b below.

Consider a training dataset with NV observations and p variables, including
the response y and the predictors z.

1. Initialize fo(2) so that the constant x minimizes the loss function: fo(z) =
. N
argmin, y ", L(ys, k).
2. Formin 1,..., M, do Steps a through e.
a) For ¢ = 1,2,..., N compute the negative gradient as the working
response

270

3.

6 Boosting

Tim = — {W}f=fml '

b) Randomly select without replacement W X p cases from the data set,
where W is less than the total number of observations. Note that this
is a simple random sample, not a bootstrap sample. How large W
should be is discussed shortly.

c¢) Using the randomly selected observations, fit a regression tree with
Jm terminal nodes to the gradients r;,,, giving regions R;,, for each

terminal node 7 =1,2,..., Jp,.
d) For j = 1,2,...,J,,, compute the optimal terminal node prediction
as

Yjm = arg min > Ly, (@) +7),
;i €ERjm

where region Rj,, is denotes the set of z-values that define the terminal
node j for iteration m.
e) Still using the sampled data, update f,,(z) as

Jm

fm(2) = fono1(z) + v - Z’yjml(x € Rjm).

j=1

where v is a “shrinkage” parameter that determines the learning rate.
The importance of v is discussed shortly.

Output f(z) = fu ().
Ridgeway (1999) has shown that by using this algorithmic structure, all

of the procedures within the generalized linear model, plus several extensions
of it, can properly be boosted by the stochastic gradient method. Stochastic
gradient boosting relies on an empirical approximation of the true gradient
(Hastie et al., 2001: Section 10.10). The trick is determining the right r; for
each special case. The “residuals” need to be defined. Among the definitions
of r;,, are the following.

1.
2.

his

Gaussian: y; — f(x;) ... the usual regression residual.
Bernoulli: y; — He—ilfw) ... the difference between the binary outcome
coded 1 or 0 and the fitted (“predicted”) proportion for the conventional

logit link function.

. Poisson: y; — ef(#) | the difference between the observed count and the

fitted count for the conventional log link function.

. Laplace: sign[y; — f(x;)] ... the sign of the difference between the values

of the response variable and the fitted medians.

. Adaboost: —(2y; — 1)e~vi=DF (=) | not within the generalized linear

model so not as easily seen as a kind of “residual.”

There are a number of other gradient boosting possibilities. Hastie and
colleagues (2001: 321) provide the gradient for a Huber robust regres-

sion. Ridgeway (2005) offers boosted proportional hazard regression in gbm().

6.4 Stochastic Gradient Boosting 271

Kriegler (2007) has added to gbm() a Laplace loss function that through an
analogy to quantile regression, allows for asymmetric loss. More is said about
Kriegler’s work later.

Stochastic gradient boosting also can be linked to various kinds of penal-
ized regression of the general form discussed in earlier chapters. One insight,
implied earlier, is that the sequences of results that are produced with each
pass over the data can be seen as a regularization process akin to shrinkage
(Biithlmann and Yu, 2004; Friedman et al., 2004). There is less shrinkage with
each successive pass over the data.

In short, with gradient boosting, each tree is constructed much as a con-
ventional regression tree. The difference is how the “target” for the fitting is
defined. By using disparities defined in particular ways, a wide range of fitting
procedures can be boosted.

6.4.1 Tuning Parameters

The stochastic gradient boosting algorithm just described has two important
innovations beyond the original version of gradient boosting. First, a page is
taken from bagging with the use of random sampling in Step 2b to help control
overfitting. The sampling is done without replacement, but as noted earlier,
there can be an effective equivalence between sampling with and without
replacement, at least for conventional bagging (Buja and Stuetzle, 2006).

The sample size, whether with or without replacement can be a tuning pa-
rameter. The issues are rather like those that arise when the number of folds
in N-fold cross-validation is considered. And as with N-fold cross-validation,
there seems to be no formal and general answer. Practice seems to favor a
conventional sample size of N when sampling with replacement and a con-
ventional sample size of N/2 when sampling without replacement. But it can
make sense for any given data analysis to try sample sizes that also are about
25% smaller and larger and choosing the best sample size based on out-of-
sample performance.

Second, it can be very useful to reduce the rate at which the updating
occurs by setting v to a value substantially less than 1.0 (Step 2e). A value
of .001 often seems to work reasonably well, but values larger and smaller by
up to a factor of 10 are usually worth trying as well. Again, the value of the
tuning parameter is usually determined best by out-of-sample performance.

By slowing down the rate at which the algorithm “learns,” a larger number
of basis functions can be computed. The flexibility of the fitting process is
increased, and the small steps lead to shrinkage at each pass through the
data. A cost is a larger number of passes through the data. Fortunately, one
can usually slow the learning process down substantially without a prohibitive
increase in computing.

Third, a tuning parameter that also affects the flexibility of the fitting
function is the “depth” of the interaction variables desired: no interactions,
two-way, three-way, and so on. In other words, by allowing for what are, in

272 6 Boosting

effect, sets of product variables, one can increase the “dictionary” of basis
functions evaluated. This may seem unnecessary because CART already has
the capacity, at least in principle, for building interaction effects basis func-
tions. But, depending on how the partitioning proceeds and on the ways in
which predictor variables are related to one another, CART may fail to find
some needed interactions or represent them improperly. For example, it may
miss entirely a given two-way interaction or represent it as a three-way interac-
tion. By explicitly building in interaction variables, one increases the chances
that for many passes through the data CART will get it right.

The price, once again, can be computational. For example, one could in-
clude main effects plus all two-way and three-way interaction effects. But even
for a small number of predictors, all two-way interactions alone will dramati-
cally increase the number of terms evaluated at each CART partitioning of the
data. In practice, therefore, it is rare to go beyond all two-way interactions.
And unless the response function is thought to be rather complex, including
only main effects may well suffice.

Fourth, yet another tuning parameter that affects fitting function flexi-
bility is the minimum number of observations in each tree’s terminal node.
Smaller node sizes imply larger trees and a more flexible fitting function. Min-
imum terminal node sizes of between 5 and 15 seem to work reasonably well
in many settings, but it can be worth experimenting with somewhat larger
terminal node sizes if computational constraints are significant and if the
number of observations used to construct each tree is large. The risk is that
with larger terminal node sizes and the smaller trees that can result, some
important nonlinearities may be missed.

Finally, the number of passes over the data needs to be determined. Be-
cause there is no convergence and no clear stopping rule, the usual practice
is to run a large number of iterations and inspect a graph of the fitting er-
ror (e.g., residual deviance) plotted against the number of iterations. Usually,
the error will decline rapidly at first and then level off. It can even start to
increase when the number of iterations is very large. If there is an inflection
point at which the fitting error starts to increase, the number of iterations can
be stopped just short of that number. If there is no inflection point, the num-
ber of iterations can be determined by when reductions in the error effectively
cease.

Determining the number of iterations is rarely a serious problem in prac-
tice. One proceeds in steps. Several hundred iterations are run, and the per-
formance of the fitting procedure examined. There are often useful tools, such
as cross-validation statistics, to help evaluate performance. If the results are
unsatisfactory, more iterations are run. This process stops when the perfor-
mance of the fitting procedures no longer seems to be improving. Stochastic
gradient boosting results can be quite robust to the number of iterations used,
once it is apparent that there are no important gains to be made. But there
are exceptions. In particular, when the response is binary and interest centers

6.4 Stochastic Gradient Boosting 273

on the fitted probabilities, the fitted probabilities can be quite sensitive to the
number of iterations. An example is provided later.

There are some important relationships between the tuning parameters.
The usual goal of a data analysis is to construct a set of fitted values with
low bias and low variance. Larger trees, higher-order interaction variables,
and smaller steps can contribute to reducing the bias. Smaller steps can also
help reduce the variance by not allowing a few sets of widely varying fitted
values to destabilize the procedure, and by indirectly increasing the need
for more passes through the data. Random sampling, which will increase the
independence between the sets of fitted values, also can help increase stability.

But exactly how the possible values for each of the tuning parameters
should be tuned as a group is not apparent. Is one better off, for instance,
to proceed with larger trees and small learning steps? More generally, can
certain values for one tuning parameter compensate for certain values for the
another? At this point, it is difficult to find clear guidance (Buja et al., 2008).

To summarize, there are several tuning parameters associated with stochas-
tic gradient boosting. Fortunately, much of the available software comes with
sensible defaults, and it is often a good idea to stick with these, at least at
first. Then some trial-and-error tuning can also be useful. The only tuning
parameter likely to need immediate attention is the number of trees to grow.
The program gbm(), for example, offers useful information on how many trees
are needed, but the user is free to do what seems appropriate. Perhaps the
most important message is that gradient boosting can be quite forgiving in
general with respect to its tuning parameters.

6.4.2 Output

The key output from stochastic gradient boosting is much the same as the
key output from bagging: predicted classifications, predicted probabilities, er-
ror rates, and confusion tables. However, unlike bagging and random forests,
there are not the usual out-of-bag observations. Therefore, the confusion ta-
bles commonly depend on resubstituted data; the data used to build the model
are also used to evaluate its performance. As a result, it can be important to
have both a training dataset and a test dataset. Confusion tables should be
constructed from the test data set. If a simple random sampling option is
available, a kind of out-of-bag data is available for evaluation. Recall these
are not what is excluded from random samples drawn with replacement, but
a fraction of the total training dataset not chosen when a subset of the obser-
vations is selected for each tree. Exactly how these data are used will depend
on the software.

Just as for bagging and random forests, the use of multiple trees means that
it is impractical to examine tree diagrams to learn how individual predictors
perform. The solutions currently available are much like those implemented
for random forests. There are partial dependence plots that are effectively the
same as those used in random forests. However, these plots must be treated

274 6 Boosting

cautiously when the outcome variable is binary. Recall that in an effort to
classify well, boosting can push the fitted probabilities away from .50 toward
0.0 and 1.0, and in the case of stochastic gradient boosting, the fitted proba-
bilities can be very sensitive to values of the tuning parameters. Consequently,
the fitted probabilities can be misleading. For partial dependence plots with
binary predictors, the vertical axis is a function of these fitted probabilities,
usually in a logit metric. If the probabilities are suspect, so are the logits.
There are also importance measures for each predictor. The exact form
these importance measures can take depends on the software used. But one
common option is the reduction of the loss function normalized to 100. The
software stores how the loss decreases when each predictor is chosen for partic-
ular splits over trees. The average decrease over trees is the raw contribution
each predictor makes to the fit. Then these contributions are summed, and
each contribution is reported as a proportion of the total. In gbm(), there
is on a somewhat experimental basis a random shuffling approach to impor-
tance based on predictive skills, but to date it does not use the out-of-bag
observations. So it does not represent true forecasting accuracy. Recall that
for random forests, importance is defined by contributions to forecasting skill.

6.5 Some Problems and Some Possible Solutions

Because there are so many different kinds of boosting, it is difficult to arrive
at any overall assessments of strengths and weaknesses. Moreover, the menu
of boosting options continues to grow partly in response to concerns about
the performance of older boosting methods. Nevertheless, a few provisional
observations may be useful for practitioners.

6.5.1 Some Potential Problems

Boosting is a very powerful tool whose reach will no doubt expand in the
near future. For many data analysis problems, it performs well and can be
a legitimate competitor to random forests when either approach could be
properly applied. But boosting also has some serious drawbacks.

As with random forests, the existing proofs of consistency are not fully
satisfying. Suppose in the population there is some function of X, h(X), con-
structed that links inputs of outputs. Under certain reasonable conditions,
including a training dataset that is a random sample from that population,
boosting will provide a consistent estimate of h(X). But unless h(X) is the
same as the true mechanism f(X) linking inputs to outputs, the function esti-
mated from the training data will not be a consistent estimate of f(X). That
is, in large samples boosting can get the wrong function approximately right.

6.5 Some Problems and Some Possible Solutions 275

Boosting also can overfit the data. Unlike random forests, there is no mech-
anism in boosting for capitalizing on random samples of the data and then
averaging the results over these samples. Some implementations of boosting
have the option of cross-validation measures of fit or other measures that can
provide useful guidance on when to stop the boosting process. But even a very
good cross-validation stopping rule does not necessarily imply that all is well.
The problems with binary outcomes and the fitted probabilities noted earlier
are an instructive example.

A related matter is that costs are addressed solely within the functional
form of the loss. In Adaboost, for example, classification errors are weighted
exponentially but symmetrically. There is no distinction between false posi-
tives and false negatives and hence, no way to take their different costs di-
rectly into account. In stochastic gradient boosting, classification problems are
transformed into regression problems when the residuals are defined. Thus,
fitting errors as used in the algorithm are no longer categorical, and there are
no longer false negatives and false positives. And the loss functions are once
again symmetric. A positive residual of a given size is treated the same as a
negative residual of the same size.

Similar issues carry over when the response is quantitative. Although the
concepts of false negatives and false positives no longer apply, one might
still wish for an asymmetric loss function. If the intent, for instance, is to
characterize how the number of homeless people in a census tract is related
to features of that tract, overestimates of the number of homeless might have
very different consequences from underestimates of the number of homeless.
Homeless advocates would perhaps see underestimates as more costly than
overestimates. Local public officials might take the opposite view. But neither
would like see the costs of overestimates and underestimates treated the same
(Berk et al., 2008)

In short, the inability to take asymmetric costs into account means that
symmetric costs are being assumed. In practice, this can be untenable. A
closely related consequence is that there is no principled way to address the
problems that can follow when a response variable is highly skewed. For clas-
sification exercises, then, it can be very difficult for boosting to perform better
than assigning classes solely from the modal response variable category.

Finally, tuning parameters on occasion can make an important difference
in the results. Then, one has no choice but to experiment with different sets of
tuning parameter values. Unfortunately, this can be at best a trial-and-error
process with too often no definitive resolution.

6.5.2 Some Potential Solutions

Many of boosting’s vulnerabilities, just as for any statistical procedure, are
exposed by inadequate data. Stated a bit differently, it will be rare indeed, for
boosting to be able to solve problems stemming from weaknesses in the infor-
mation on which it operates. Little more need be said about the importance

276 6 Boosting

of large samples, a rich set of predictors, and accurate measurement. Better
data are always better, and data analysis difficulties that may seem to result
from the boosting procedure applied, can be remedied if by data of higher
quality.

The difficulties that can arise by assuming symmetric costs and/or work-
ing with highly skewed response variables can be addressed within the same
broad framework. The key is to allow for asymmetric costs. For stochastic
gradient boosting and quantitative response variables, Kriegler (2007) sug-
gests attaching weights to the loss functions that can capture asymmetric
costs. These weights, in turn, are carried forward when the empirical gradi-
ents are constructed so that the CART fitting process at each pass through the
data takes them into account. To date, this idea has been employed for the
Laplace, Gaussian, and Poisson distributions. Applications to real datasets
look promising. One can use the weights to make the costs of forecasting er-
rors responsive to policy and where appropriate, use such costs to adjust for
skewed distributions. Asymmetric weighting for the Laplace distribution has
been implemented in ghm(). An illustration is provided later.

When the response variable is binary, Mease and his colleagues (2007)
argue for weighting the classification errors directly and asymmetrically within
an Adaboost (not stochastic gradient boosting) framework. Imagine that one
can estimate accurately the probability that a given case is in a given class. It
is common to assign that case to a particular class if the associated probability
is greater than .50. As noted in earlier chapters, the .50 threshold implies that
the costs of false positives and false negatives are the same, and by raising
the threshold above or below .50, asymmetric costs can be taken into account.
For example, if the threshold were placed at .75, it would imply that the costs
of falsely placing a case in the specified class are three times higher than the
costs of incorrectly failing to place a case in that class. If one thinks of these
thresholds as quantiles, there is a direct connection between the use of such
quantiles and the use of costs in classification exercises. Using the quantiles
to classify has been called quantile classification (Mease et al., 2007).

In practice, quantile classification is undertaken by oversampling or under-
sampling in much the same way it is done in random forests. The algorithm is
called Jous-Boost and is available in R. The direct links between asymmetric
costs, quantile classification, and disproportional stratified sampling allow one
to implement costs sensitive boosting within an Adaboost framework. More-
over, one can then obtain appropriate estimates of the probability function.
The details can be found in a paper by Mease and his colleagues (2007).

About all that can be said about problems with determining the values
of tuning parameters is that it is important to be systematic in one’s search
of the parameter space. Increasingly, there is software to aid in this process.
The procedure tune() in the el071 library is one example. It can also be
important to appreciate at a deeper level that one usually tunes in response
to some function of fit quality. For many applications this is appropriate.
But there is no necessary connection between fit quality and scientific or

6.6 Some Examples 277

policy responsiveness. As noted several times in earlier chapters, a better-
fitting model may be less instructive than a worse-fitting model. Tuning for
fit quality, therefore, is no assurance of sensible results. Finally, one must
be cautious about boosting output that is highly sensitive to values of the
tuning parameters. For example, one might reasonably decide that the fitted
probabilities from a binomial model should not be used or interpreted. And, it
would not be a good idea under these circumstances to use fitted probabilities
to construct propensity scores (McCaffrey et al., 2004).

6.6 Some Examples

6.6.1 A Garden Variety Data Analysis

Among the most common kinds of analyses in the social sciences are regres-
sions of wages on various biographical variables. We turn to some survey data
from the Panel of Income Dynamics to do just such an analysis. We boost us-
ing a Gaussian loss function in gbm() to provide a relatively straightforward
illustration.

Figure 6.1 shows a boosting performance plot. On the horizontal axis is
the number of iterations. On the vertical axis is the change in the normal
log-likelihood computed, in this case, from out-of-bag observations. These are
the observations not used when the fractional simple random samples were
drawn for each tree. They can provide a more conservative assessment of how
well the iterations are doing than the resubstituted data. Because the point
is to determine how well the interations are doing with the data actually
being processed, it is not clear that a more conservative estimate is called for.
No measure of fit is being computed that will be generalized to out-of-sample
data. In this instance, and as expected, the big improvements come early with
no substantial gains after about iteration 4000.

The purpose of Figure 6.1 is to see how the fitting proceeds as the number
of iterations increases and to choose a cutoff point. If there is evidence that the
performance has not bottomed out, additional iterations can be undertaken.
If the performance curve has become effectively flat, there is important in-
formation about the useful number of additional iterations needed. Iterations
beyond the cutoff point can be discarded.

Commonly, there is statistic a computed from OOB data or through cross-
validation that evaluates whether the improvement in performance in a given
iteration is worth the increase in complexity. Recall that each additional it-
eration can be viewed as adding another basis function, which makes the
fitting procedure more complex. In this case, the cutoff was determined to be
iteration 7746.

Figure 6.2 is an importance plot. Importance is measured by the reduction
in the log-likelihood attributable to each predictor, then normalized so that
the contributions to the fit add to 100. Recall that for CART the contribution

278 6 Boosting

Performance Plot

0.010 0.015 0.020
| | |

Change in Log-Likelihood

0.005
|

0.000

0 2000 4000 6000 8000 10000

Iteration Number

Fig. 6.1. Performance of Gaussian boosting for wages.

of each predictor to the fit of a given tree can be easily calculated. When a
predictor is chosen as the splitting variable, the reduction in heterogeneity is
determined. The sum of such reductions over the entire tree is that predictor’s
importance. Random forests averages each predictor’s importance over trees.
Stochastic gradient boosting, as implemented in gbm(), does the same. In
Figure 6.2, a little more than 50% of the fit can be attributed to age. Education
accounts for about 35% of the fit. Sex accounts for about 12% of the fit.
Language spoken makes almost no contribution.

Finally, Figure 6.3 is the partial dependence plot for age. The vertical axis
is in dollars per hour. The horizontal axis is in years of age. One can see that
after about age 20, increases in age are associated with increases in wages,
but that after about age 40, the relationship flattens out and after age 60,
may even decline a bit. Note how one would have been misled had a linear
relationship been assumed, and a quadratic form would have only done a
little better. Even a cubic polynomial, had that been anticipated, would have
missed some of the more interesting features of the relationship, such as the
flat part up to about age 20.

6.6 Some Examples 279

Predictor Importance for Wages

[}

=)

) _

C _

o

©

o

=}

S

i}

x

o}

) -

)

=)

©

3

=)

<

<

4
l T T T T 1
0 10 20 30 40 50

Relative influence

Fig. 6.2. Predictor importance for Gaussian boosting for wages.

In general, it is useful to construct partial dependence plots for all quanti-
tative predictors as long as there are a sufficient number of different predictor
values and a substantial number of observations for each. Recall that there is
often no point in trying to overlay a smoother when the predictor values are
few. But, a lot depends on the complexity of the partial response function. If
the function is simple, a partial dependence plot based on few unique predictor
values can be helpful. One must also consider whether there are a sufficient
number of observations for each unique predictor value. Regions where the
data are sparse risk unstable results that can make the response function look
more complex than it really is.

It is not appropriate to construct dependence plots for the categorical
variables such as sex and language. The values on the horizontal axis would
be meaningless. Bar charts are a more useful option. For each category, the
conditional mean is plotted. Recall that this is the strategy employed by
random forests.

There are no confusion tables for quantitative response variables. But in
principle, one has access to all of the usual regression diagnostics. For this

280 6 Boosting

Partial Dependence for Age

14 16 18
| |

f(Age)

10

T T T T T T
20 30 40 50 60 70

Age

Fig. 6.3. Partial dependence on age for Gaussian boosting for wages.

boosted Gaussian regression, about 35% of the variance is accounted for by
functions of the predictors. A conventional linear regression accounted for
about 29% of the variance. Boosting clearly improves the fit in this example,
although it also uses a larger effective number of parameters. Most of the
improvement comes from the nonlinear relationship between age and income.
Boosting can help most when one or more relationships between the response
variable and predictors is complex.

Figure 6.4 shows four common plots used to evaluate the quality of a
regression fit. Beginning with the plot in the upper-left corner, it is clear that
the variance in wages increases with the average wage. This is confirmed by
the plot at the lower left corner. In both, there also seems to be some evidence
of a cluster of outliers suggesting an omitted categorical predictor. The plot on
the upper-right corner indicates that the residuals are quite close to normal.
The plot on the lower-right hand corner initially gives the impression that
there are several influential observations, but the values they have for Cook’s
distance are very small.

6.6 Some Examples 281

Residuals vs Fitted Normal Q-Q plot

64038 F2© © 61348

10 20 30 40

Residuals
Standardized residuals

-10 0

-30

5 10 15 20 25 -2 0 2
Fitted values Theoretical Quantiles
Scale-Location plot Cook's distance plot

25

0.015
]

1782

15

1.0
Cook's distance
0.010
|

[Standardized residuals!

0.005
]

0.5

0.0
0.000
1

T T T
5 10 15 20 25 0 1000 2000 3000 4000

Fitted values Obs. number

Fig. 6.4. Diagnostic plots for Gaussian boosting of wages.

We make more of such diagnostics in a later example. For now it may suffice
to note that the importance of these diagnostics depends in part on the goals
of the analysis. Just as in conventional regression, whether the residuals are
normal, for instance, will typically not matter much unless the sample is small
and traditional hypothesis tests and/or confidence intervals are desired.

6.6.2 Inmate Misconduct Again

Although boosting can be expected in general to perform at least as well as
Gaussian regression models, it will sometimes shine when such a conventional
regression model does not fit the data very well. The boosting process can im-
prove the fit, sometimes dramatically. The same holds for binomial regression
models. But when the response variable is highly unbalanced, there can be
serious problems. To make this point, we return to the prison inmate data. We
once again consider inmate misconduct using the same predictors as before.

282 6 Boosting
Figure 6.5 shows a boosting performance plot. As expected, the big im-

provements come early with few real gains after about iteration 4000. The
cutoff was determined to be iteration 6148.

Performance Plot

Change in Log-Likelihood
2e-05 3e-05 4e-05
!

1e-05

0e+00

0 2000 4000 6000 8000

Iteration Number

Fig. 6.5. Performance of binomial boosting for inmate misconduct.

Table 6.1 shows the confusion table using the training data, not OOB data
or test data. Overall, the fit is quite good. Only about a fifth of the data are
misclassified. However, all of the success comes from predicting the nomiscon-
duct class well. And this is pretty easy to do with no predictors all because
if the marginal distribution alone is used, and no misconduct is predicted,
about 21% of the cases will be identified incorrectly. Moreover, boosting fails
miserably when trying to identify inmates who engage in misconduct. Out
of every 100 inmates who engaged in misconduct, only about 9 are correctly
identified as such.

Table 6.1 is not necessarily an accurate rendering of how the classifier
would perform in practice because only training data are used to construct
the table. But it is likely from the reported use errors that if no misconduct
was predicted, the forecast would be correct the vast majority of time. If
misconduct was predicted, the forecast would be correct somewhat more than
half the time.

6.6 Some Examples 283

None Predicted|Misconduct Predicted Model Error
No Misconduct 3745 62 0.01
Misconduct 900 99 0.91
Use Error .19 .39 Overall Error = .21

Table 6.1. Confusion table for binomial boosting of inmate misconduct.

But the errors in use, as well as the model errors, depend on the costs
of classification errors. And one can see where at least part of the problem
lies. The cost ratio of false negatives to false positives is approximately .02.
About one false positive is equal to about 50 false negatives. Recall that this
is completely upside down from the point of view of corrections officials. And
there is currently no way to intervene in the stochastic gradient boosting
process and alter these relative costs.

In short, this is about the best that boosting is likely to do and indeed,
probably overly optimistic because the confusion table is constructed from the
training data. On these same data with the same predictors, random forests
performs a bit better, but neither really shines with the default ratio of false
negatives to false positives. Costs must be better taken into account. Then,
using the cost ratio favored by prison administrators, random forests does
dramatically better predicting the true positives.

Figure 6.6 shows predictor relative importance through their contribu-
tions to the fit. Sentence length dominates, followed by the two age variable,
and gang activity is close behind. This is roughly consistent with our earlier
random forest results but difficult to compare directly because Figure 6.6 is
derived from contributions to the fit, not forecasting accuracy.

As one illustration of an estimated response function, Figure 6.7 shows the
partial dependence plot for sentence length. The vertical axis is in logits as
previously defined for partial dependence plots. Recall, fi.(X) = log[px(X)] —
+ Zszl log[pr (X)], where pg(X) is the proportion of observations in category
k. However, because of the sensitive nature of the conditional probabilities,
it is not clear how seriously one can take the logit values shown. For what
it may be worth, inmate misconduct increases rather linearly with sentence
length up to a sentence of around six years and then levels off.

We now repeat the analysis using very serious misconduct as the response.
Recall that such behavior is very rare. A bit less than 3% of the inmates are
reported for incidents of very serious misconduct. Figure 6.8 shows how the
boosting algorithm performs. Many fewer iterations are required this time.
Also, it is clear from the wider vertical spread of the points that the boost-
ing results are much less stable than before. A likely explanation is that the
margins associated with each iteration are substantially smaller and if so, it
suggests that the boosted model is not faring well.

Indeed, boosting binomial regression fares quite badly in this case. The
confusion table reproduces the marginal distribution of the response because

284 6 Boosting

Predictor Importance for Inmate Misconduct

CDC Psych CYA Gang AgeArr AgeRec Term

Jail

o
o
n
o
(]
o

Relative influence

Fig. 6.6. Predictor importance for binomial boosting for inmate misconduct.

not a single inmate is identified as have engaged in very serious misconduct
although 138 actually had. Figure 6.9 underscores how bad the performance
is. The figure is a histogram for the subset of cases in which there actually was
an incident of very serious misconduct. On the horizontal axis are the fitted
probabilities. The largest of these values is less than .20, whereas a value of
more than .50 is needed for an inmate to be classified as a serious risk. About
the best that can be said about the analysis is that because no cases of very
serious misconduct are correctly identified, the potential problems with fitted
probabilities pushed toward 0 and 1 do not materialize.

Figure 6.10 shows the relative importance of each predictor for the quality
of the fit. The pattern is largely the same, but gang activity has moved up
to second place, and the gap in importance between sentence length and the

6.6 Some Examples 285

Partial Dependence for Sentence Length

-0.6

f(Term)
-1.4 -1.2 -1.0

-1.6

-1.8

Term

Fig. 6.7. Partial dependence on sentence length in years for binomial boosting for
inmate misconduct

other predictors has increased. Thus, sentence length and gang activity are
more important for the fit of very serious misconduct compared to the full
range of inmate misconduct.

Finally, Figure 6.11 shows the partial dependence plot for sentence length.
The response function is now roughly linear over all sentence lengths and does
not flatten out for very long sentences. This may help to explain why sentence
length has gained in its relative importance. For the reasons discussed earlier,
however, it is may not be wise to make much of the response function shown.

In summary, in this application and for the default symmetric costs, boost-
ing does a bit worse than random forests for incidents of general misconduct
and much worse than random forests for very serious incidents of misconduct.
Boosting, just as conventional regression can stumble badly with highly un-
balanced response variables. Moreover, for a binary outcome and stochastic
gradient boosting, there is currently no direct way to build asymmetric costs
into the fitting process. Consequently, the views of corrections administrators
cannot be taken into account. The best one can do is change the classification
threshold so that fitted probabilities other than .50 determine the assigned
class. This assumes that one has confidence in those probabilities.

286 6 Boosting

Performance Plot

1e-05

5e-06

Change in Log-Likelihood

0e+00

-5e-06

0 2000 4000 6000 8000

Iteration Number

Fig. 6.8. Performance of binomial boosting for very serious inmate misconduct

6.6.3 Homicides and the Impact of Executions

Boosting cannot be expected to improve on conventional Gaussian regression
if that regression already fits the data very well. There is nothing to boost.
To see how this plays out when the conventional regression already performs
with near perfection, and to raise some new issues, we return to the homicides
data.

Once again, there are for all 50 states over a 21-year period, the number
of homicides per year. As predictors we use the number of executions lagged
by one year and then state and year as factors. The key question is whether
once one controls for the average number of homicides in a state over the 21
years and the average number of homicides by year over each of the states,
the number of executions is related to the number of homicides. For purposes
of this illustration, we assume that the number of homicides is conditionally
Poisson. Using the generalized additive model we are able to account for well
over 95% of the deviance.

6.6 Some Examples 287

Histogram for Cases of Very Serious Misconduct

60
|

Frequency

I

I T T 1
0.00 0.05 0.10 0.15

Predicted Values

Fig. 6.9. Predicted probability of very serious misconduct.

Figure 6.12 shows how gradient boosting performs in this application. As
usual, the changes in the log-likelihood are large early and after about 2000
iterations, the gains are small. Still, the optimal number of iterations is a little
less than 10,000.

Figure 6.13 shows that virtually all of the fitting story belongs to the state
categorical variable. Its relative contribution is 99.6 out of 100. In contrast,
the relative contribution of the number of executions is .008 out of 100.

In Figure 6.14 is plotted the partial dependence of the number of homicides
on the number of executions. For less than five executions in a given state in
a given year, the relationship is flat. For five or more executions in a given
state in a given year, the relationship is negative. But as pointed out earlier,
only about 1% of the states have five or more executions in a given year. The
apparent evidence for a deterrent effect can only be found where there are
almost no data. There is no evidence for deterrence for most states in most
years, and too little data to tell when the number of executions is five or more.

288 6 Boosting

Predictor Importance for Inmate Misconduct

AgeArr Gang Term

AgeRec

Jail Psych

CYA

CDC

T T T 1
10 20 30 40 50 60

o —

Relative influence

Fig. 6.10. Predictor importance for binomial boosting for very serious inmate mis-
conduct.

A confusion table makes no sense for count data. But we have access to
most of the usual regression diagnostics. To begin, the predictors as a group
account for about 98% of the deviance. So, the fit is excellent. In addition,
Figure 6.15 shows in clockwise order beginning at the upper left 1) the actual
number of homicides plotted against the predicted number of homicides, 2)
a normal-normal plot of the residuals, 3) a plot of the transformed residuals
against the predicted number of homicides, and 4) a plot of Cook’s distance
by observation number.

From these plots we learn that there are three clumps of fitted values.
The two clumps on the right side of the first plot suggest that two smaller
subsets of years and /or states may differ from the rest. There is lots of daylight
between the clumps. From the first and third plot, we learn that roughly
consistent with the Poisson model, the conditional variance of the residuals
increases with the conditional mean. However, there is also ample evidence
of overdispersion. The second graph indicates that, as one would expect, the

6.6 Some Examples 289

Partial Dependence for Sentence Length

f(Term)

Term

Fig. 6.11. Partial dependence on sentence length in years for binomial boosting for
very serious inmate misconduct.

residuals are far from normal, especially at the tails. In fact, the residuals
are strongly skewed to the right. This is to be expected given an outcome
assumed to be conditionally Poisson. However, the skewing may be linked to
a few influential variables. The fourth graph reveals that there are several
large influential observations that may well be affecting the fit in significant
ways. All of these diagnostics suggest problems with the model, even though
most of the variation is accounted for by the predictors.

Figure 6.16 reproduces the partial dependence plot but from data reana-
lyzed with observations having five executions or more removed. A little more
than 1% of the data are lost. Even with only five values for the predictor,
the plot is instructive; the plot is a flat straight line. If the response function
is even a little more complex, the plot would not have been helpful, even if
the computer agreed to construct the plot. There are too few values for the
predictor.

290 6 Boosting

Performance Plot

Change in Log-Likelihood

T T T T T T
0 2000 4000 6000 8000 10000

Iteration Number

Fig. 6.12. Performance of Poisson boosting for the number of homicides

There is no evidence whatsoever of any deterrence. So, the few influential
observations really did affect the boosting results. This is an important lesson.
Just as in conventional regression, outliers can make a very big difference. Not
surprisingly, the four diagnostic plots (not shown) now look a lot better.

One can in this case obtain virtually the same story using the generalized
additive model, including the story about the influential observations. Boosted
Poisson regression fits the data slightly better, but not enough to matter;
both models fit the data nearly perfectly. And the subject matter conclusions
are the same; the gains from boosting compared to parametric regression are
slight. The intent in boosting is to take weak predictors and make them strong.
There is not much point in boosting predictors that are already very strong.

6.6.4 Imputing the Number of Homeless

Consider again the problem of imputing the number of homeless individuals
in Los Angeles County census tracts (Berk et al., 2008). Recall that when

6.6 Some Examples 291

Predictor Importance for The Number of Homicides

State

Year

Executions

[T T T 1
0 20 40 60 80

Relative influence

Fig. 6.13. Predictor importance for Poisson boosting for the number of homicides.

random forests was discussed, quantile random forests was applied in order
to respond to a few especially high counts. At that time, it was noted that
quantile random forests takes the composition of the forest as given, and
only adjusts for the summary statistics extracted. A key problem with that
approach was that variable importance measures and partial dependence plots
were unaltered because they rely on the random forest.

Kriegler (2007) has developed a procedure to weight the loss function in
stochastic gradient boosting so that asymmetric costs can be taken into ac-
count, not just at the end when summary statistics are constructed, but as the
boosting procedure proceeds. Consequently, measures of predictor importance
and partial dependence plots are altered accordingly. To date, cost-weighting
has been applied to linear (Laplace) loss, Gaussian loss, and Poisson loss, and
linear loss has been implemented in gbm().

Figure 6.17 shows for the homeless data, observed street counts plotted
again predicted street counts for the weighted linear loss function. Smoothers
are overlaid. For the 1/11th quantile, corresponding to weighting overesti-
mates as ten times more costly than underestimates, the fitted values change
little, and counts larger than about ten are captured poorly. For the 1/2 quan-
tile, corresponding to equal costs, the overall fit is quite good, but observed
counts larger than 50 are not captured well. For the 10/11th quantile, cor-

292 6 Boosting

Partial Dependence for The Number of Executions

f(Executions)
5.352 5.353
! !

5.351
|

5.350
|

T T T T
0 5 10 15

Executions

Fig. 6.14. Partial dependence on Executions for Poisson Boosting for the Number
of Homicides

responding to costing underestimates as ten times more than overestimates,
the overall fit is disappointing, but the larger observed counts are much more
effectively fitted. However, still larger relative costs for underestimates would
be needed if the very highest observed counts were to be fitted well.

In this instance, the partial dependence plots for key predictors do not
change shape materially across different cost ratios. One would tell pretty
much the same story about how the predictors are related to the response for a
wide range of cost ratios. However, there are some rearrangements of variable
importance suggesting that several predictors vary in their forecasting skill
depending on which quantile in the response distribution is the target. The
details need not concern us here.

As before, there is no statistical answer to the question of which set of
fitted values should be preferred. That decision depends on which relative
costs are appropriate for the decisions to be made. But it is likely that for
counts of the homeless, homeless advocates would see underestimates as far
more costly than overestimates. It is less clear what position public officials
would take. Larger counts might lead to criticisms to their policies but might
also help generate increased funding.

Residuals vs Fitted

6.6 Some Examples 293

Normal Q-Q plot

960 960
8 o
o
w e} o
o o 0
Yo 0| 1
® 2
o o
g . 58° .| &
S o o 3 ,
2 Tao X : "
o o 8 ° o -Ua
& o g
o o 8
g o8 ® v &
8600 S
° 8600
640
6100
T T T T T T T T T T T T T T T
0 500 1000 1500 2000 2500 3000 3500 -3 -2 -1 0 1 2 3
Fitted values Theoretical Quantiles
Scale-Location plot Cook's distance plot
g 6400 © _|
8600 960 °
0
o O% o
2 &
g o o0 ®o © g 7
S & o 0 4)
7 ° o e
<4 ° @ o © s o6
E o o O [} o 5 <
5 7 o » o
5 5og o °| %
2 o o 8 o
s = 7 3 o %
[} ®o o
© o © o <
o 7 o
s ° o |
° T T T T T T T ° T T T T T T
0 500 1000 1500 2000 2500 3000 3500 0 200 400 600 800 1000

Fitted values Obs. number

Fig. 6.15. Fit diagnostics for Poisson boosting for the number of homicides.

6.6.5 Estimating Conditional Probabilities

As a final illustration, consider a random sample of American female adults
and whether they are in the labor force. The data come from the “Mroz” data
in the car library in R. The response variable is binary. For this example, the
predictors are age, the log of expected wage, household income, and whether
there is a child under six in the household.

Two different fit statistics were used to determine when to stop iterating:
one based on the OOB data and one based on the data used to build the
model. The former indicated that 4000 iterations would be about right. The
latter indicated that 10,000 iterations would be about right.

Both stopping rules led to 72% of the observations being correctly clas-
sified; classification accuracy was virtually identical. However, the fitted pro-
portions that might be used as estimates of conditional probabilities differed

294 6 Boosting

Partial Dependence for The Number of Executions

f(Executions)

T T T T
0 1 2 3 4

Executions

Fig. 6.16. Partial dependence on executions for Poisson boosting for the number
of homicides—outliers excluded.

substantially. Figure 6.18 is a scatterplot of the two sets of fitted proportions
with a 1-to-1 line overlaid. Because of the stochastic content in the algorithm,
the two sets of fitted proportions cannot be exactly the same, but they should
cluster tightly around the 1-to-1 lines. The plot shows that fitted proportions
are significantly more spread out when there are 10,000 iterations rather than
4000 iterations. On the average the two sets of values differ most at the tails,
especially the lower tail.

There is some craft lore arguing that determining the number of iterations
using the OOB data can lead to underfitting, which implies that the fitted
proportions based on 10,000 iterations should be preferred. Even if this is true,
the sensitivity of the fitted proportions to at least one tuning parameter when
classification skill is nearly the same, is a bit unsettling. And although craft
lore can be very helpful, it comes with no guarantees. If there is a keen interest
in the fitted proportions, perhaps as estimates of conditional probabilities,
it may be important to consider using Jous-Boost, described briefly earlier
(Mease et al., 2007). .

6.7 Software Considerations 295

300
|

250
|

-G 1/11th Quantile
—A— 1/2 Quantile
10/11th Quantile

Observed Street Count
100 150 200
| | |

50

Predicted Street Count

Fig. 6.17. Observed and fitted values for different quantiles.

6.7 Software Considerations

As noted earlier, boosting is in a great state of flux, and nowhere is this more
evident than in the software available. The boosting analyses reported in this
chapter were done with the procedure gbm() in R. It performs very well using
gradient boosting, allowing for a wide variety of loss functions. It also has
a number of useful tuning parameters and several helpful forms of graphical
output. The name “gbm” stands for Generalized Boosted Models. The package
is written by Greg Ridgeway, who also is the maintainer (gregr@rand.org).
There are several other boosting procedures in R. The procedure mboost(),
for example, does gradient boosting for the generalized linear model and
the generalized additive model. GAMBoost() boosts the generalized addi-
tive model using likelihood based approaches. The procedures boost() and
ada() implement Adaboost, Logitboost, and other classification procedures.
To date, an important advantage that ghm() has over the alternatives in R

296 6 Boosting

A Comparison Between Fitted Probabilities

e]
£
© io‘b
@ @an@
g&@ & o
o
o &
G on000f S
@ & oo 4 o©
9 m%@o
‘é o
s © o
2 oS o 09 od)o
8 P
3 % 0
- o
5 ® °
8 @7008
=
s ¥]
> o
el
Q
£ S
8
o
o
o
8o
&o
o
2 4
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Fitted Values for 4,000 Interations

Fig. 6.18. Fitted proportions for two different stopping rules.

is a better range of outputs. The documentation that goes with ghm() is also
especially good.

The only visible private sector provider currently is, once again, Salford
Systems. Salford Systems offers a program called Multiple Additive Trees
(MART), which is essentially gradient boosting. As with all Salford System
products, the user interface is very friendly and the documentation excellent.
But the price is substantial and the advertising hype a bit offputting.

6.8 Summary and Conclusions

Boosting is a very slick approach to statistical learning. The underlying con-
cepts are interesting and their use to date creative. Boosting has also stim-

6.8 Summary and Conclusions 297

ulated very productive interactions among researchers in statistics, applied
mathematics, and computer science. Perhaps most important, boosting has
been shown to be very effective for certain kinds of data analysis.

However, there are important limitations to keep in mind. First, boosting
is designed to improve the performance of weak predictors. Trying to boost
predictors that are already strong is not likely to be productive. A set of strong
predictors can lead to an effective fit within a conventional regression model.
Then, the residuals are essentially noise. Then, there is no more information
to extract.

Unfortunately, there is no convincing way from the data alone to know if
the residuals really lack any systematic information. But if the list of variables
represents all the predictors known to be important, if these predictors are
well measured, and if the partial response plots are consistent with widely
accepted and detailed theory, the chances are good that boosting will not
help much.

Second, if the goal is to fit conditional probabilities, boosting can be a
risky way to go. One useful alternative was discussed, but it has yet to be
extensively field-tested with real data. It follows that calculations using the
fitted probabilities can be highly suspect.

Third, boosting is not alchemy. Boosting can improve the performance of
many weak fitting procedures, but the improvements may fall far short of the
performance needed. Boosting cannot overcome variables that are measured
poorly or important predictors that have been overlooked. The moral is that
(even) boosting cannot overcome a seriously flawed measurement and badly
executed data collection. The same applies to all of the statistical learning
procedures discussed in this book.

Finally, when compared to other statistical learning procedures, especially
random forests, boosting will often allow for a wider range of applications, and
for the same kinds of applications, perform competitively. In addition, its clear
links to common and well-understood statistical procedures can help make
boosting understandable. However, boosting’s usual reliance on symmetrical
loss functions is a major difficulty, especially for research results that will be
used to inform practical decisions and broader public policy.

Exercises

Problem Set 1

Generate the following data. The systematic component of the response vari-
able is quadratic. If 1000 observations are too large for your computer to easily
handle, work with a sample of 500 observations.

x1=rnorm(1000)
x12=x1"2

298

6 Boosting

ysys=1+(-5*x12)
y=ysys+(5*rnorm(1000))
dta=data.frame(y,x1,x12)

. Plot the the systematic part of y against the predictor x1. This represents

the f(z) you are trying to recover. Plot y against x1. This represents the
data to be analyzed. Why do they look different?

. Apply gbm() to the data. There are a lot of tuning parameters and pa-

rameters that need to be set for later output so, here is some code to get
you started.

out<-gbm(y~x1,distribution="gaussian",n.trees=10000,
data=dtal,cv.folds=5)
gbm.perf (out,method="cv")

Construct the partial dependence plot using
plot(out,n.trees=777)

where the 777 is the number of trees, which is the same as the number
of iterations. Make five plots, one each of the following number of itera-
tions: 100, 500, 1000, 5000, and the number recommended by the cross-
validiation method in the second step above. Study the sequence of plots
and compare them to the plot of the true f(X). What happens to the
plots as the number of iterations approaches the recommended number?
Why does this happen?

Problem Set 2

From the car library load the data “Leinhardt.” Analyze the data using gbm().
The response variable is infant mortality.

1.

Plot the performance of ghm(). Interpret the two lines that are plotted
and explain what their divergence implies.

. What is the recommended number of iterations?

Construct a graph of the importance of the predictors. Which variables
seem to affect the fit substantially and which do not?

Construct the marginal partial dependence plot for each predictor Inter-
pret each plot.

Construct all of the two-variable plots (see examples in help(gbm)). In-
terpret each plot.

Construct the three-variable plot (see examples in help(ghm)) Interpret
the plot.

6.8 Summary and Conclusions 299

7. Consider the quality of the fit. How large is the improvement compared
to when no predictors are used?

8. Write a paragraph or so, on what the analysis of these data has revealed
about correlates of infant mortality at a national level.

9. Now repeat the analysis using random forests. How do the results com-
pare to the results from stochastic gradient boosting? Would you have
arrived at substantially different conclusions depending on whether you
used random forests or stochastic gradient boosting?

Problem Set 3

From the MASS library, analyze the dataset called Pima.tr. The outcome is
binary: diabetes or not (coded as “Yes” and “No”). Assume that the costs of
failing to identify someone who has diabetes are three times higher than the
costs of falsely identifying someone who has diabetes. The predictors are all
of the other variables in the dataset.

The goal is to analyze these data using several different procedures and
then make comparisons across the results. The statistical procedures to com-
pare are logistic regression, the generalized additive model, random forests,
and stochastic gradient boosting. You will need to make a number of decisions
so that the methods are as comparable as possible (e.g., what loss function to
use for stochastic gradient boosting). But also feel free to try several differ-
ent versions of each procedure (e.g., “Adaboost” v. “bernoulli” for stochastic
gradient boosting).

1. Construct confusion tables for each model. Be alert for whether the fitted
values are for “resubstituted” data. Do some procedures fit the data better
than others? Why or why not?

2. Cross-tabulate the fitted values for each model against the fitted values
for each other model. How do the sets of fitted values compare?

3. Compare the “importance” assigned to each predictor. This is tricky. For
example, how can sensible comparisons be made between the output of a
logistic regression and the output of random forests?

4. Compare partial response functions. This too is tricky. For example, what
can you do with logistic regression?

5. If you had to make a choice to use one of these procedures, which would
you select? Why?

