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Classification and Regression Trees (CART)

3.1 Introduction

Suppose one had a single quantitative response variable and several predic-
tors. There is interest in ȳ|x. The task is to find the single best predictor.
To do this, two kinds of searches are undertaken. First, for each predictor,
all possible splits of the predictor values are considered. For example, if the
predictor is age, and there are age-values of 21 through 24, all possible splits
maintaining order would be 21 versus 22-24, 21-22 versus 23-24, and 21-23
versus 24. If the predictor is marital status with categories never married,
married, and divorced, all possible splits would be never married versus mar-
ried and divorced, married versus never married and divorced, and divorced
versus never married and married. For categorical variables, there is no order
to maintain.

For each predictor, the best split is selected. The baseline is the sum of
squares of the response variable. For each split of a given predictor, a sum of
squares is computed within each of the two splits and added. Their sum will
be equal to or less than the original sum of squares for the response variable.
The “best” split for each predictor is defined as the split that reduces the sum
of squares the most.

Second, with the best split of each predictor determined, the best split
overall is determined. The same sum of squares criterion is used along with
the results from the previous step. By selecting the best split overall, the best
predictor by this sum of squares criterion is implicitly chosen.

With the two-step search completed, the winning split is used to subset the
data. In other words, the best split for the best predictor defines two subsets.
For example, if the best split were to be 21-22 versus 23-24 years of age, all
individuals 21-22 would form one subset and all individuals 23-24 would form
the other subset.

There are now two partitions of the original data, defined by best split
within and between the predictors. Next, the same two-step procedure is ap-
plied to each partition separately; the best split within and between predictors
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for each subset is found. This leads to four partitions of the data, and once
again, the two-step search procedure is undertaken separately for each. The
process can continue until there is no meaningful reduction in the error sum
of squares.

As we show shortly, the result is a recursive partitioning of the data that
can be represented within a basis function framework. The basis functions
are indicator variables defined by the best splits. With these determined, a
regression of the response on the basis functions yields regression coefficients
and fit statistics as usual. In practice, there is no need to translate the par-
titioning into a regression model; the partitioning results stand on their own
as a regression analysis. But if one wishes, the recursive partitioning can be
seen as a special form of stepwise regression.

The two-step search procedure is easily generalized so that the response
variable can be categorical, and in probably its most visible implementa-
tion, the recursive partitioning is called Classification and Regression Trees
(CART). CART has been in use for about 20 years (Breiman et al., 1984) and
remains a popular data analysis tool. In this chapter, CART is examined in
considerable depth, not just because it can be of practical value, but because
it raises a number of important, broader issues. It also can be a foundation
for statistical learning discussed in three subsequent chapters.

The focus is on CART as it has traditionally been implemented. Although
there are some recent refinements of CART (Chipman et al., 1998; Loh, 2002;
Su et al., 2004), they are peripheral to the aims of this chapter. There are also
CART-like procedures such as C5.0 (Quinlan, 1993) with roots in computer
science. A discussion of these procedures would take us some distance from the
statistical traditions emphasized here, although we later consider a paper by
Hothorn and his colleagues (2006) that is somewhat more than a refinement
of CART.

Chapter 2 was devoted almost entirely to quantitative response variables.
Equal time and more is now given to categorical, and especially binary, re-
sponse variables. As noted earlier, procedures that assign observations to
classes are sometimes called “classifiers.” When CART is used with categorical
response variables, it is an example of a classifier.

Categorical response variables introduce a number of significant complica-
tions that either do not apply to quantitative response variables, or apply only
at a much higher level of abstraction. We now need to get this material on the
table, in part because it is important for classifiers in addition to CART. We
also emphasize the differences among description, estimation, and forecasting.
In CART, these are not just differences in how the tools are used, but go to
the nuts and bolts of how the procedure performs.

This is a long and somewhat tedious chapter. An effort has been made
to include only the material that is really needed. But that’s a lot, and it is
probably necessary to slog through it all.
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3.2 An Overview of Recursive Partitioning with CART

As already noted, classification and regression trees works by a recursive parti-
tioning of the data. Recursive partitioning is a stagewise process that sequen-
tially breaks the data up into smaller and smaller pieces. It is “stagewise,”
not “stepwise,” because earlier stages are not revisited after the results from
later stages are known.

Recursive partitioning can be formulated within the basis function frame-
work discussed in Chapter 2. Recall that

f(X) =
p∑

j=1

Mj∑
m=1

βjmhjm(X). (3.1)

Each of the p predictors has its own set of transformations, and all of the
transformations for all predictors, each with its own weight βjm, are com-
bined in a linear fashion. Recall also that indicator variables were included as
possible transformations. This is a key feature of CART.

To see the relevance of Equation 3.1 for CART, it is necessary to appreciate
how CART implements recursive partitioning. The goal of CART’s recursive
partitioning is to exploit information contained within a set of predictors to
create subsets of the data. Each subset is constructed so that the values of the
response variable in each are as similar as possible. The process proceeds one
partition at a time so that once a partition is constructed, it is not reconsidered
when later partitions are defined.

Figure 3.1 is a three-dimensional scatterplot. There is a binary outcome G
coded “A” or “B,” and predictors x and z. Figure 3.1 is meant to illustrate a
simple classification problem as it might be attacked by CART.

The single vertical line at, say, z = 3 produces the first partition. The
double horizontal line at x = 6 produces the second partition. The triple
horizontal line at x = −4 produces the third partition. CART constructs
partitions with a series of straight-line boundaries perpendicular to the axis
of the predictor being used.

In this simple illustration, the upper-left partition and the lower-right par-
tition are fully homogeneous. This is good. There remains considerable het-
erogeneity in the other two partitions and in principle, their partitioning could
continue. Figure 3.1 reveals that cases with z ≤ 3 and x > 6 are always “A.”
Cases with z > 3 and x ≤ −4 are always “B.” Thus, we are on our way
to describing distribution of the As and Bs conditional upon x and z. The
regression framework still applies.

3.2.1 Tree Diagrams

CART output is often shown as an inverted tree. Figure 3.2 is a simple il-
lustration. The full dataset is contained in the root node. The data are then
broken into two mutually exclusive pieces. Cases with x > c1 go to the right,
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Fig. 3.1. Recursive Partitioning Logic in CART

and cases with x ≤ c1 go to the left. The latter are then in terminal node
1, which is not subject to any more subsetting. The former are then in an
internal node that can be usefully subdivided further. The cases in the inter-
nal node are then partitioned again. Observations with z > c2 go to the right
and into terminal node 3. Observations with z ≤ c2 go to the left and into
terminal node 2.

In this case, all splits beyond the initial split of the root node imply, in
regression language, interaction effects. The split imposed at the internal node,
for instance, only applies to observations with x-values that are greater than
c1. The impact of z depends on a value of x, which is an interaction effect.

When there is no natural order to a predictor’s values, the partitioning
criterion selected is usually represented by the name of the variable along with
the values that go to the right (or left, depending on the software) side. For
example, if ethnicity is a predictor and there are five ethnicities represented by
the letters a though e, the software might represent the partitioning criterion
for a given split as ethnicity=ade. All cases belonging to ethnic groups a,d,
and e are being placed in the right-hand partition.

Splits after the initial split do not have to represent interaction effects. If an
immediately subsequent partitioning of the data uses the same predictor (with
a different breakpoint), the result is an additional step in the step function
for that predictor. A more complicated nonlinear function results, but not an
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Fig. 3.2. CART tree structure.

interaction effect. In practice, however, most partitions of the data represent
interaction effects.

It is easy to show that results such as those shown in Figure 3.2 can
be written within the basis function framework of Equation 3.1. One just
represents all of the terminal nodes with indicator variables, each of which is
a function of one or more predictors (including the constant term). Thus,
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f(X, Z) = β0 + β1[(I(x ≤ c1)]
+ β2[I(x > c1 & z ≤ c2)] + β3[I(x > c1 & z > c2)]. (3.2)

One can see again the importance of interaction effects whenever two or
more predictors are needed to construct the indicator variable. Interaction
effects need to be kept in mind when CART tree diagrams are interpreted.

3.2.2 Classification and Forecasting with CART

There is far more to the output from CART than a tree diagram. Within
each of the terminal nodes, the proportion of “successes” and proportion of
“failures” are calculated. These conditional proportions can be of significant
descriptive interest. For example, if the proportion of successes in terminal
node 3 is .70, one can say for cases with x > c1 and z > c2 that the proportion
of successes is .70. Analogous statements can be made about the other terminal
nodes. Ideally, these proportions will vary substantially, implying that the
partitioning is making important distinctions between different kinds of cases.
If you know for any given case the value of x and the value of z, it really
matters for the proportion of successes.

In addition, the proportions can be used to attach labels to observations.
If the majority of observations in a partition are As, all of the observations in
that partition might be assigned to class A. If the majority of observations in
a partition are Bs, all of the observations in that partition might be assigned
to class B. These labels convey what is most typical in a partition and if
the observations need to be organized into categories, provide a ready way
to determine which observations belong where. When CART is used in this
manner, it is being used explicitly as a classifier.

Often, the assigned classes can also be used for forecasting. Suppose one
knows that observations with certain values for predictors fall in a particular
partition, and that the majority of observations in that partition are, say, of
category A. Then, new observations that would fall in that partition, but for
which the response is unknown, might be predicted to be A as well.

3.2.3 Confusion Tables

At least as important as the tree diagram is a classification table that cross-
tabulates the observed classes and the classes that CART assigns. When the
observed classes and the assigned classes come from the data used to build the
tree, the table can be used to understand how skillful CART has been in fitting
the data. When the observed classes and the assigned classes come from data
not used to build the tree, the table can be used to understand how skillful
CART has been in forecasting. In either case, the cross-tabulation is often
called a “confusion table.” We consider confusion tables many times in the
pages ahead, but a few details are important to introduce now. The confusion
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Failure Predicted Success Predicted Model Error

Failure a b b/(a + b)
Success c d c/(c + d)

Use Error c/(a + c) b/(b + d) Overall Error = (b+c)
(a+b+c+d)

Table 3.1. A confusion table.

tables are structured to contain a bit more information than is customarily
done.

Table 3.1 shows an idealized confusion table. There are two classes for the
response variable: success and failure. The letters in the cells of the table are
cell counts. For example, the letter “a” is the number of observations falling in
the upper-left cell. All of the observations in that cell are characterized by an
observed “failure” and a predicted “failure.” If the observations are from the
data used to build the tree,“predicted” means “assigned.” If the observations
are from data not used to build the tree, “predicted” means “forecasted.”
The difference between fitting and forecasting is critical in the next several
chapters.

There are generally four assessments that are made from confusion tables.

1. The overall proportion of cases incorrectly classified is an initial way to
assess the quality of the fit. The overall proportion of cases incorrectly
forecasted is an initial way to assess forecasting skill. Both are simply the
number of observations in the off-diagonal divided by the total number of
observations. If all of the observations fall on the main diagonal, CART
has, by this measure, performed perfectly; none of the observations are
either classified or forecasted incorrectly. When no cases fall in the main
diagonal, CART is a total failure. All of the observations are either clas-
sified or forecasted incorrectly.

Clearly, a low proportion for this “overall error” is desirable, but how good
is good depends on the baseline of classification or forecasting skill when
no predictors are used. The real issue is how much better one does once
the information in the predictors is exploited. A lot more to is said about
this shortly.

2. The overall error neglects that it will often be more important to be
accurate for one of the response variable classes than for another. For
example, it may be more important to correctly diagnose a fatal illness
than to correctly diagnose good health. This is where the row proportions
shown in the far right-hand column become critical. For each actual class,
the row proportion is the number of observations incorrectly classified or
forecasted divided by the total of observations of that class. Each row pro-
portion characterizes errors made by the statistical procedure or model.
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When the true class is known, how common is it for the procedure to fail
to identify it?

The two kinds of model failures are sometimes called “false positives”
and “false negatives.” Successes incorrectly called failures are false neg-
atives. Failures incorrectly called successes are false positives. The row
proportions that represent the relative frequency of model-generated false
negatives and false positives should, ideally, be small. Just as for overall
error, the goal is to do better using the information contained in the pre-
dictors than could be done ignoring that information. But, the exercise
now is done for each row separately. It is common for the model to per-
form better for one outcome than the other.

3. The column proportions address a somewhat different question. They are
the proportion of times when a particular class is assigned or forecasted
that the assignment or forecast will be wrong. Whereas the row propor-
tions help evaluate how well CART has performed, the column proportions
help evaluate how useful the CART results are likely to be if put to work.
The row proportions condition on the true class. The column proportions
condition on the class assigned or forecasted. The latter, therefore, convey
what would happen if a practitioner used the CART results to classify or
forecast. One conditions on either predicted success or on predicted failure
from which two different estimates of errors in use can be obtained. Just
as for model errors, it is common for the errors in use to differ depending
on the outcome. The goal is much the same as for model error: for each
column, to be wrong a smaller fraction than if the predictors were ignored.

4. The lower-left cell and the upper-right cell contain, respectively, false neg-
atives and false positives. The ratio of the number of false negatives to the
number of false positives shows how the results are trading one kind of
error for the other. For example, if b is 5 times larger than c, there are five
false positives for every false negative. This means that CART is in this
instance treating false negatives as five times more important than false
positives; one false negative is “worth” five false positives. Ratios such as
this play a key role in our discussion later of how to place costs on false
negatives and false positives.

In summary, confusion tables are a critical diagnostic tool. We rely on
them in this chapter and all subsequent ones. They also raise some important
issues that are salient in the pages ahead.

3.2.4 CART as an Adaptive Nearest Neighbor Method

It can be instructive to think about CART within an adaptive nearest neigh-
bor framework. The partitions shown in Figure 3.1 can be viewed as neighbor-
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hoods defined by nearest neighbors. But unlike conventional nearest neighbor
methods, CART arrives at those neighborhoods adaptively.

Consider, for example, terminal node 3 in Figure 3.2. Within that node are
all observations whose values of x are greater than c1, and whose values of z
are greater than c2. For these observations, a conditional mean or proportion
can be computed. In other words, the nearest neighbors for either of these
summary statistics are defined as all cases for which x > c1 and z > c2. Each
of the observations for which this condition holds can be used to arrive at a
single numerical summary for the response variable.

The neighborhood represented by the terminal nodes is adaptive in three
senses. First, information from the response variable is used to determine the
neighborhood. Some measure of fit is exploited. Recall that nearest neighbor
methods that are not adaptive define the nearest neighbors by their similarity
on predictor values alone. Second, because a large number of predictors and
break points are examined, a large number of potential neighborhoods are
evaluated before an actual neighborhood is defined. Third, the terminal node
neighborhoods that result can be defined by different sets of predictors and
different sets of cutpoints. Both are determined inductively by the CART
algorithm. For example, a given predictor can help define one terminal node,
but not another. Even when a given predictor is used to define more than one
terminal node, it may enter at a different stage of the partitioning and use a
different break point.

The terminal node neighborhoods are constructed sequentially by where
in the predictor space some step function for the response is changing most
rapidly. This follows from the desire to make the two resulting subsets as
homogeneous as possible. Then, because for each split the single best predictor
is chosen, each terminal node, and its implied neighborhood, can be defined
using a subset of predictors. That is, one need not define nearest neighbors
using the entire predictor space. This is in contrast to the multivariate lowess
smoother discussed in the last chapter.

But making the subsets as homogeneous as possible does not usually lead
to terminal nodes that are completely homogeneous. We show later that to
make the terminal nodes homogeneous, very large trees can result with very
few cases in each terminal node. Such trees can be very unstable. Thus in
the case of binary outcomes, for example, there will usually be a mix of 1s
and 0s. One clear consequence is classification error. Whatever the label that
is attached to each terminal node, it will be the incorrect label for some
observations.

A second consequence is more subtle. Suppose the goal is to estimate the
proportion of 1s for all observations with the same set of x-values; one is
interested in ȳ|x0, where x0 represents the given set of x-values (e.g., Asian,
female, high school students with family incomes of more than $100,000).
Unless the terminal node in which all such cases land contains only those
observations, there will be other observations with different sets of x-values.
When a proportion of 1s is calculated, all of the observations in the node will
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be used. Unless all of the proportions of 1s for each of these different sets of
x-values are the same as for cases with x0, the estimated proportion for the
observations with x0 will be biased. For example, Asian and Anglo female high
school students with family incomes of more than $100,000 may be pooled in
a given terminal node. If the two groups have different proportions of 1s for
the response variable, a biased estimate of the proportion of 1s will follow.
More is said about this later.

In summary, although smoothers, adaptive nearest neighbor methods, and
CART come from very different traditions, they have important similarities.
We show additional and helpful connections to other statistical learning pro-
cedures in subsequent chapters.

3.2.5 What CART Needs to Do

With the overview of CART completed, we can begin a more detailed dis-
cussion. This discussion can be put into a useful context by considering the
technical problems CART must solve. There are six such problems.

1. A criterion for the subsetting is required. By what criteria will the parti-
tions be determined?

2. A criterion for the variable selection is required. At each stage, how will
the variable used to define the new partition be selected?

3. A way is needed to consider how “good” the tree is. Regressionlike fit
measures can be useful, but for classification problems, there will be clas-
sification errors with which to contend. Can a tree that makes lots of
mistakes in classifying or forecasting cases be “good?”

4. A way is needed to influence the size of the tree so that only useful terminal
nodes are constructed. We show that this is related to the bias–variance
tradeoff.

5. A way is needed to protect against overfitting. CART is another example
of high-powered exploratory data analysis. How can the generalizability
of the results be strengthened?

6. Ways are needed to interpret and communicate the results. Tree diagrams
are a start, but by themselves neglect some important features of CART
results.

The specific solutions to these problems depend in part on whether the
response is categorical or quantitative: whether a classification tree or a re-
gression tree, respectively, is desired. Here, we continue with the emphasis on
classification problems for categorical response variables and address each of
the six problems along the way.

Software can matter too. There are several popular implementations of
CART as originally formulated by Breiman and his colleagues (1984). These
differ largely in details, but sometimes more fundamental differences arise, es-
pecially as new approaches to recursive partitioning are developed. Consistent
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with the use of R for all computing in this book, CART implementations in R
are the focus. In addition, the focus is on the traditional CART approach be-
cause this is the structure on which more recent statistical learning procedures
most commonly build.

3.3 Splitting a Node

The first problem that CART needs to solve is how to split each node using
information contained in the set of predictors. For an equal interval predictor
with m distinct values, there are m − 1 splits that maintain the existing
ordering of values. So, m− 1 splits on that variable need to be evaluated. For
example, if there are 50 distinct high school GPA scores possible, there are
49 possible splits that maintain the existing order. However, there are often
algorithmic shortcuts that can capitalize, for instance, on ordering the splits
by the size of the conditional mean or proportion. The same logic holds for
ordinal predictors.

Order does not matter for categorical predictors. Consequently, a categor-
ical variable with k categories has (2k−1 − 1) possible splits. For example, if
there are five ethnic categories, there are 15 possible splits. Hence, although
there are sometimes shortcuts here too, the computational burdens are gen-
erally much heavier for categorical variables. There are no restrictions on how
a categorical predictor is split.

Starting at the root node, CART evaluates all possible splits of all predictor
variables and picks the “best” single split overall. The best split of the variable
selected is better than the best split of any other predictor. The data are then
partitioned according to that best split. The same process is applied to all
subsequent nodes until all cases have been placed in a terminal node. Because
the final partitions do not overlap, each case can only be in one terminal node.
But how is “best” to be defined? It is common to focus on the “impurity” of a
node. The goal is to have as little impurity overall as possible. Consequently,
the “best” split is the one that reduces impurity the most. To help simplify the
exposition that follows, assume a binary response variable coded 1 or 0. The
term “success” for now is used to refer to outcomes coded “1” and “failure”
to refer to outcomes coded “0.”

Many formal expositions of CART assume the data are a random sample
from a well-defined population. Then one can consider, for example, the pro-
portion of times in a limitless number of independent samples that a success
or failure would occur. Proportions computed from the sample data can be
used as an estimate of these probabilities. When the data are a population, the
thought experiment of a limitless number of independent samples no longer
applies, and, therefore, there are no probabilities to estimate. The proportions
stand on their own as descriptive statistics.

If the data are a nonprobability sample, there is the option of invoking
model-based sampling, common in conventional regression (Thompson, 2002:
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section 8.3). However, model-based sampling must be used very cautiously.
There is no a priori model to determine how uncertainty is introduced. If
there is any model at all, it is formulated inductively from the data. Con-
sequently, all of the issues surrounding statistical inference with smoothers
resurface. It can be better in practice to let the proportions computed from a
nonprobability sample stand on their own as summaries of the data, but not
as estimates of anything.

The exposition that follows makes an effort to consistently distinguish
between proportions and probabilities. If the goal is description, a focus on
proportions is sufficient. If the goal is estimation, then estimation of proba-
bilities necessarily enters.

Suppose for now that the data are a random sample from a well-defined
population, and the concept of a probability applies. Consider a given node,
designated as node A. The “impurity” of node A is taken to be a nonnegative
function of the probability that y = 1, written as p(y = 1|A). If A is a terminal
node, ideally it should be composed of cases that are all equal to 1 or all equal
to 0. Then p(y = 1|A) would be estimated as 1.0 or 0.0. Intuitively, impurity
is the smallest it can be. In contrast, if half the cases are equal to 1 and half
the cases are equal to 0, the estimated probability is equal to .50. A is the
most impure it can be because a given case is as likely to be a 1 as it is a 0.

One can more formally build on these intuitions. Let the impurity of node
A be

I(A) = φ[p(y = 1|A)], (3.3)

with φ ≥ 0, φ(p) = φ(1−p), and φ(0) = φ(1) < φ(p). In other words, impurity
is nonnegative, and symmetrical with a minimum when A contains all 0s or
all 1s, and a maximum when A contains half of each. Note that the use of I in
Equation 3.3 for impurity should not be confused with the use of I to represent
an indicator variable. The different meanings should be clear in context.

There remains a need to define φ. Three definitions have been used in the
past: Bayes error, the cross-entropy function, and the Gini index. In order
they are:

φ(p) = min(p, 1 − p); (3.4)

φ(p) = −p log(p) − (1 − p) log(1 − p); (3.5)

and

φ(p) = p (1 − p). (3.6)

All three functions for impurity are concave, having minimums at p = 0
and p = 1 and a maximum at p = .5. Entropy and the Gini index are the
most commonly used, and generally give very similar results except when
there are more than two response categories. Then, there is some reason to
favor the Gini index (Breiman et al. 1984: 111). The Gini index is more likely
to partition the data so that there is one relatively homogeneous node having
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relatively few cases. The other nodes are then relatively heterogeneous and
have relatively more cases. For most data analyses, this is a desirable result.
Entropy tends to partition the data so that all of the nodes for a given split are
about equal in size and homogeneity. This is generally less desirable. But the
choice between the two impurity functions can depend on the costs associated
with classification errors, which is a topics addressed shortly. indexGini index

One might legitimately wonder why CART does not directly minimize
classification error. Direct minimization of overall classification error is dis-
cussed in some detail by Breiman and his colleagues (1984: Section 4.1). One
serious problem is that there can be several splits for a given stage minimizing
classification error. A more subtle problem is that minimizing classification
error at each stage has a tendency, like entropy, to produce a tree structure
that is often more difficult to interpret. For now, we focus on node impurity
as just defined. However, direct minimization of classification error resurfaces
as a useful goal when boosting is considered in Chapter 6.

Building on Zhang and Singer (1999; Chapters 2 and 4), a simple example
may help to make the discussion of impurity more concrete. For any internal
node, we focus on a potential left “daughter” node AL, and a right “daughter”
node AR. We wish to evaluate the usefulness of a potential partitioning of the
data. Table 3.2 provides the information needed. We continue to work with
probabilities, although the same practical lessons follow using proportions
instead. And with no important loss of generality, the illustration uses entropy
as the way impurity is represented.

As before, we let y = 1 if there is a success and 0 otherwise. Because the
data are a random sample, estimation is a legitimate enterprise; we are not
limited to description alone. The estimate of p(y = 1|AL) is given by n12/n1..
Similarly, the estimate p(y = 1|AR) is given by n22/n2..

Failure Success Total

Left Node: x ≤ c n11 n12 n1.

Right Node: x > c n21 n22 n2.

n.1 n.2 n..

Table 3.2. Information used to determine the usefulness of a potential split.

It follows that “entropy impurity” for the left daughter is

I(AL) = −n11

n1.
log(

n11

n1.
) − n12

n1.
log(

n12

n1.
). (3.7)

“Entropy impurity” for the right daughter is

I(AR) = −n21

n2.
log(

n21

n2.
) − n22

n2.
log(

n22

n2.
). (3.8)
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Imagine that for the left daughter there are 300 observations with 100
successes and 200 failures. It follows that the impurity is −.67(−.40) −
.33(−1.11) = .27 + .37 = .64. Imagine now that for the right daughter there
are 100 observations with 45 successes and 55 failures. It follows that this
impurity is −.55(−.60) − .45(−.80) = .33 + .36 = .69.

To put these numbers in context, it helps to consider the smallest and
largest possible values for the impurity. The greatest impurity one could ob-
tain would be for 50% successes and 50% for failures. The computed value
for that level of impurity would be .693. For proportions of 1.0 or 0.0, the
value of entropy impurity is necessarily 0. In short, the minimum value is
0, and the maximum is a little more than .69. The closer one gets to 50-50,
where the impurity is the greatest, the closer one gets to .693. The impurity
numbers computed are rather close to this upper bound and reflect, therefore,
substantial heterogeneity found in both daughter nodes. It is likely that this
split would not be considered to be a very good one.

Once all possible splits across all possible variables are evaluated in this
manner, a decision is made about which split to use. The impact of a split
is not just a function of the impurity of a node, however. The importance of
each node must also be taken into account. It stands to reason that a node
in which few cases are likely to fall should be less important than a node in
which many cases are likely to fall. In the big picture, the former probably
will not matter much, but the latter probably will.

We define the improvement resulting from a split as the impurity of the
parent node minus the weighted left and right daughter impurities. If this is
a large number, entropy impurity is reduced substantially.

More formally, the benefits of the split s for node A,

ΔI(s, A) = I(A) − p(AL)I(AL) − p(AR)I(AR), (3.9)

where I(A) is the value of the parent impurity, p(AR) is the probability of a
case falling in the right daughter node, p(AL) is the probability of a case falling
in the left daughter node, and the rest is defined as before. The two proba-
bilities can be estimated from the information such as provided in Table 3.2;
they are just the marginal proportions n1./n.. and n2./n...

ΔI(s, A) is essentially the reduction in the deviance and thus, there is a
clear link to the generalized linear model that can prove useful when different
fitting procedures are compared. CART finds the best ΔI(s, A) for each vari-
able. The variable and split with the largest value are then chosen to define
the new partition. The same approach is applied to all subsequent nodes.

It makes no difference to the CART algorithm whether the proportions
computed are taken at face value as summary statistics, or as estimates of
probabilities. The partitions that result are the same. What can differ is
whether a given dataset or a random sample is being analyzed. This is up
to the user.

The CART algorithm can keep partitioning until there is one case in each
node. There is then no impurity whatsoever. Such a tree is called “saturated.”
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However, well before a tree is saturated, there will usually be far too many
terminal nodes to interpret, and the number of cases in each will be quite
small. The very small node sizes lead to very unstable results. Small changes in
the data can produce trees with rather different structures and interpretations.
One option is to prohibit CART from constructing any terminal nodes with
sample sizes smaller than some specified value. A second option is considered
shortly. And we show in later chapters that there can be ways to work usefully
with saturated trees, as long as there is a very large number of them.

3.4 More on Classification

For some applications, the data analysis can stop once all of the cases are
assigned to a terminal node. The partitions and the proportions of successes
in each are all that matter. For example, very much within a regression frame-
work, it may be of interest to learn which characteristics of students are as-
sociated with the estimated probability of dropping out of school. How much
higher might the probability be for students whose parents did not graduate
from high school themselves, compared to the probability for students whose
parents did graduate (Thompson, 2002: Section 8.3)?

But often there is an important additional step. That step is classification.
Using the distribution of cases in a given node, the user wants to call all cases
in that node the same thing. For example, if the students in a particular
terminal node have an estimated probability greater than .50 of dropping out
of school, all students in that node might be labeled as high risk, and then be
offered special remedial services. The data partitions constructed by CART
are now fixed. Classification takes the partitions as given and applies a rule
by which all the observations within a given terminal node are assigned to a
single class.

Classification raises a number of new issues that revolve around the con-
sequences of classification errors. What happens to students who are really at
high risk for dropping out of school but who are not identified as such? What
happens to students who are not at high risk for dropping out of school, but
who are labeled as high risk? To consider such questions, we need to be a bit
more clear on what fitted values are in CART.

3.4.1 Fitted Values and Related Terms

We need to broaden the discussion just a bit to consider some ways in which
CART is related some other techniques and to clarify some terms that can be
used in more than one way. In particular, the term “fitted values” can have
several different meanings.

CART is a method to construct, using a set of predictors, a set of condi-
tional distributions. Interest commonly centers on some measure of location
for those conditional distributions. For classification problems, the conditional
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proportion is usually the measure. We show later that for regression problems,
the measure is usually the conditional mean. And we have already discussed
how, using basis functions, explicit links to parametric regression can be made.
It follows that most of the issues raised by parametric regression, and most
of concepts associated with parametric regression, carry over.

But there are also some ways in which CART’s links to parametric regres-
sion can be a bit confusing. To begin, one must be clear about the distinction
between the value of the response variable associated with each case, and
the value of the response variable that CART can assign. The former comes
directly from the data themselves and is unrelated to whatever statistical
procedures are applied. The latter is an output of CART. One can think of
the values assigned to observations by CART as fitted values, much as in
conventional regression analysis.

Quantitative Fitted Values

For classification problems, there are two kinds of fitted values. First, each
terminal node can be characterized by the proportion of cases for each of
the classes. The CART algorithm determines which observations go to which
terminal nodes and stops. Within each node, the proportion of observations
from each of the classes is then computed. Once these are computed, they can
be used to characterize all the observations in a given terminal node.

For example, if the response variable is binary, the proportion of “suc-
cesses” in a given terminal node can be assigned to each observation in that
terminal node. If that proportion is .25, for instance, one can say that for all
the cases in that node, the proportion of successes is .25. This is an illustration
of description.

Sometimes it may be possible to treat the data either as a random sample
from a well-defined population or as a realization of a well-defined stochas-
tic process. Then, the computed proportions for each terminal node can be
viewed as estimates of population values or as estimates of parameters asso-
ciated with the stochastic process. The proportions may then be interpreted
as probabilities. The proportion of successes of, say, .25 becomes an estimate
of some population value or of some parameter defining the stochastic pro-
cesses. When it is then assigned to each case in a given terminal node, it may
be interpreted as an estimate of the probability of a success for that case.

Qualitative Fitted Values

The second kind of fitted value requires CART to take an additional step: a
class must be assigned to each terminal node. As described above, one way
this may be accomplished is by a majority vote within each terminal node
(or plurality if there are more than two response categories). Then the class
assigned to a terminal node is assigned to each observation in that terminal
node. The assigned class can be represented by any set of distinct characters,
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but for binary response variables, values such as “0” and “1” are common and
handy. If, for instance, a given terminal node is assigned a class of “1”, all
observations in the node are assigned a class of “1.”

Much as with the proportions assigned to observations, the classes assigned
to observations may be treated as descriptions of the data on hand and if
justified, as estimates as well. The class assigned is the estimated class. Even
when there is no forecasting involved, the estimated class is often called the
“predicted” class.

To summarize, there are in CART two kinds of fitted values used for
description: the classes assigned to each terminal node and the proportions of
observations that fall into each class. There are also two kinds of fitted values
used for estimation: the estimated class and the estimated probability of one
class versus another. These distinctions are easy enough to remember and are
needed when more advanced procedures are introduced in the next chapter.
There are several new ways to think about fitted values and several new kinds
as well.

3.4.2 An Example

A key issue for prison administrators is understanding which inmates are likely
to place themselves and others in harm’s way. Use of narcotics, assaults on
prison guards, and homicides are examples. Although such events are rela-
tively rare, they carry very serious consequences. It follows that it would be
very useful if such conduct could be anticipated. Then, for the high-risk in-
mates, preventive measures might be taken. For example, inmates from rival
street gangs might be housed in different prisons. A prerequisite, however, is
a way to find useful predictors of misconduct in prison.

Using data from the administrative records of a large state prison system,
Figure 3.3 shows a classification tree for which inmates engage in some form
of reportable misconduct while in prison. A minimum node sample size of
200 was imposed to stabilize the results and for this initial CART example,
to keep the diagram very simple. The two predictor variables in Figure 3.3,
selected by CART from a larger set of 12 predictors, are defined as follows.

1. term: Nominal sentence length in years. (The nominal sentence is the
sentence given by the trial judge. Inmates are often released before their
nominal sentence is fully served.)

2. agerec: Age at arrival at the prison reception center in years with a =
16–20, b = 21–26, c = 27–35, and d = 36 or older.

Terminal nodes are labeled “0” if the majority do not engage in misconduct
and “1” if the majority do. The numbers below each terminal node show the
distribution of no misconduct to misconduct. Thus, for the root node, which
contains all of the data before any partitions are constructed, there are 3807
cases with no reported misconduct and 999 cases with reported misconduct.
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Inmate Classification Example

|

Term< 3.5

AgeRec=bcd

Term>=3.5

AgeRec=a

0
3807/999

0
2810/513

0
997/486

0
900/352

1
97/134

Fig. 3.3. Recursive partitioning of prison data.

Over the 18 months in which the data were collected, about 22% of the inmates
had at least one reported misconduct incident.

Figure 3.3 shows a useful level of skill even using just 2 of the 12 predictors.
For the far-right terminal node, there are 97 cases with no misconduct and
134 cases with misconduct. In this partition of the data, a little over 58% of
the inmates have at least one reported misconduct incident. As a descriptive
matter, misconduct for these inmates is about 2.5 times more common than
for all inmates on the average and much higher than for any of the other
terminal nodes.

All of the cases in the far-right terminal node are inmates who are serving
terms of more than 3.5 years, and who arrived at the prison reception center
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under the age of 21. They are very young offenders sentenced to long prison
terms. It is rather difficult to receive a long prison term at so young an age.
Note also that there is an interaction effect between term length and age at
reception. Age at reception only has its effect for inmates who are serving
terms of 3.5 years or longer.

Generally, crimes committed before the age of 18 do not count when at
sentencing an offender’s criminal record is considered. A long sentence usually
requires several felonies or one very serious felony. So, the inmates in the right
terminal node have either been very active or have engaged in very serious
crimes.

That such inmates are also difficult in prison would surely be no surprise
to criminologists, but Figure 3.3 contains useful information for prison ad-
ministrators. Very young inmates serving long prison terms may need to be
handled somewhat differently from other inmates. One might place them, for
instance, in prisons where the day-to-day supervision is more intrusive.

A conventional analysis using logistic regression would likely not have per-
formed as well by comparison. Consider what form a comparable logistic re-
gression would have to take. The far-right terminal node would be a dou-
ble interaction effect represented by a product variable constructed from two
terms. The node just to its left would as well. The far left terminal node is the
only main effect. It is unlikely that a researcher would have specified such a
model for a logistic regression a priori. When the more likely all-main-effects
model was applied to these data, the fit was dramatically worse and led to
somewhat different conclusions.

But what if prison administrators want to identify a subset of inmates who
are disproportionately likely to engage in misconduct? Then, the classification
step is required. For the moment, we apply a simple rule: if the majority of
inmates in a given node have reported incidents of prison misconduct, all
inmates in that node will be classified as high risk for such behavior. This
is consistent with the labels of “1” or “0” in Figure 3.3, and the resulting
classifications could lead prison administrators to treat differently the inmates
labeled as high risk.

Implicit in the desire to identify high-risk inmates using a set of predic-
tors is to treat the data on hand as a random realization from whatever the
stochastic process is that delivers convicted felons to prison. Then, a CART
analysis of the data on hand may be used to construct estimates of the likely
class for new inmates as they come in the front door and of the probability of
misconduct as well. Descriptors are being treated as estimates and estimates
can then be used as forecasts.

More details on how this might be done are considered later. But the
basic idea is to use the tree diagram. New observations for which the response
is unknown would be assigned to a terminal node based on their particular
predictor values (e.g., term greater than 3.5 years and age under 21). For
each observation, the class previously assigned to each terminal node would
be used as the forecasted class for that observation. And for each observation,
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the proportions previously used to describe each terminal node would be used
as the forecasted misconduct probability for that observation.

But for such forecasts to be fully useful, a way is needed to build in the
consequences of the forecasting process. And in fact, CART is making some
default decisions about those consequences, which a user of the forecasts may
not like. In this example, CART is treating the costs of failing to properly
identify high-risk inmates the same as the costs of falsely identifying high-risk
inmates. This equivalence may be undesirable, so the costs of misclassifications
need further discussion. We turn to that now.

3.5 Classification Errors and Costs

Up to this point, we have proceeded with CART classifying by majority vote.
For each terminal node, CART counts the number of cases in one class and
the number of cases in the other class, and classifies all cases as the class with
the majority of votes. When there are more than two categories, classification
is by the category with the greatest number of votes, which then can be just
a plurality.

Going back to Figure 3.3, and the terminal node in the lower right hand
corner as an illustration, there are 97 votes (i.e., cases) for no misconduct and
134 votes (i.e., cases) for misconduct, so all cases in that node are classified as
“misconduct.” That implies that 97 cases are misclassified. They are classified
as inmates who engaged in misconduct when they actually had not.

The other two terminal nodes in Figure 3.3 would be approached in the
same way. In each of these terminal nodes, a majority vote would produce a
no misconduct classification. Then, each of the cases for which there actually
was misconduct would be misclassified. So, there are 352 classification errors
for the terminal node in the middle and 513 classification errors for the far-left
terminal node.

Whether Figure 3.3 is satisfactory from a user’s point of view, however,
depends on more than the number of classification errors. It depends on how
the classifications will be used. Looking at the far-right terminal node again,
there are 97 “false positives.” If the cost of false positives is very high, the
results in that node may be unsatisfactory.

Suppose the CART analysis were used for forecasting and that for new
inmates classified as high risk, special housing arrangements were desirable.
But such housing, which typically requires closer levels of supervision, can be
very costly. Moreover, there may be a relatively small number of beds within
the prison system that would be appropriate. Yet, the far terminal node in
Figure 3.3 implies that for every ten inmates who really might need the special
housing, there would be about seven who probably do not. Perhaps it would
be better, therefore, if the threshold by which high risk inmates were classified
was higher. For instance, rather than a majority vote, a two-thirds vote might
be required.
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Consider now either one of the other two terminal nodes. All of the new
inmates falling in the middle node would not be candidates for special housing.
Yet, for every ten inmates appropriately classified as low risk, there would be
about four inmates who really were not. Should one of them attack a guard
or another inmate, the costs could be very high. Perhaps it would be better
if the threshold for high-risk inmates were lower. For instance, rather than a
majority vote, a one-third vote might be required.

Thus, there would seem to be conflicting voting rules and no apparent
way to reconcile them. Should the classification assigned to new inmates be
determined by one-third vote, a majority vote, a two-thirds vote, or something
else? And there would seem to be no solution to this problem unless costs are
somehow factored in.

One could also have forecasted the probability of misconduct. But that
would have implied a different kind of forecasting enterprise. At the level of
the individual inmate, the truth that the world could ultimately provide is
whether for that inmate there was or was not a reported incident of miscon-
duct. So, that is what needs to be forecasted. And that is the outcome for
which the costs are forecasting errors can properly be addressed. There is no
observed value of the response at the level of the individual inmate that would
make sense coded as a proportion. Consequently, there is no truth to which a
forecasted probability can be compared.

In contrast, if the goal were to forecast the proportion of inmates in a
particular group (e.g., a particular cell block) who would have a reported
incident of misconduct, then the world could in principle generate a true
proportion, which might be of interest to forecast. But at the level of the
group, determining the conditional proportion is no longer a classification
problem, but a regression problem. We consider regression trees later. Suffice
it for now to say that the way costs are taken into account in regression trees
is quite different.

3.5.1 Default Costs in CART

Without any apparent consideration of costs, CART can make classification
decisions about the misconduct of inmates. But in fact, costs are factored in.
Table 3.4 shows some results.

Predict No Misconduct Predict Misconduct Model Error

No Misconduct 3710 97 .03
Misconduct 865 134 .88

Use Error .19 .42 Overall Error = .20

Table 3.3. CART confusion table for forecasting inmate misconduct
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As noted earlier, tables of the form of Table 3.4 are sometimes called con-
fusion tables. They can summarize in a particular way, the classification skill
(or as we see later, forecasting skill) of a particular classifier. Here, that clas-
sifier has been constructed by CART. The table is a cross-tabulation of the
actual outcome against the outcome classified. There is a row for each of the
two actual outcomes. Each column is for the outcome classified. Correct clas-
sifications are in the main diagonal. Misclassifications are in the off-diagonal
elements. Thus, we learn that 962 out of 4806 cases (i.e., .20) were incorrectly
classified. But, how good this is depends on the baseline.

Had no predictors been used, classification could have been done from
the marginal distribution alone. On the one hand, all cases could have been
classified as having no reported misconduct. Then, about .22 (999/4806) of
the cases would have been incorrectly classified. All cases could have been
classified as having reported misconduct. Then, about .78 (3807/4806) of the
cases would have been classified incorrectly. Clearly, classifying all cases as if
no misconduct had occurred leads to a far lower error proportion and using
no predictors, is as good as one can do. Then, it seems that CART is not
reducing misclassification all that much (.22 to .20).

However, the overall fit ignores how well CART does when the two response
variable categories separated. In this case, the absence of misconduct can
be classified with near perfection. In contrast, instances of misconduct are
misclassified about 88% of the time. Is this a desirable balance?

The columns in Table 3.4 are also instructive. If the class of no misconduct
is assigned, it is wrong for about .19 of the observations. If the class of mis-
conduct is assigned, it is wrong for about .42 of the observations. So, mistakes
are relatively more common when misconduct is assigned. Is this desirable?

For both the row and column proportions, a lot depends on the off-diagonal
cells. In the process of minimizing the heterogeneity for each partition of the
data, CART arrives at a result with 97 instances in which a case is classified
as having reported misconduct when that is false. There are also 865 instances
in which a case is classified as having no reported misconduct when that is
false. Given the concern about inmate misconduct, we call the former false
positives and the later false negatives.

From Table 3.4, one can see that there are 8.9 false negatives for every false
positive (865/97). The default CART solution for these data trades nearly 9
false negatives for 1 false positive. So, for every inmate who might be in-
correctly placed in a high-security setting, for example, there are nearly 9
inmates who might be incorrectly placed in a low-security setting. This im-
plies that whatever the actual costs of false negatives and false positives, false
positives are being treated as if they were about 9 times more costly than
false negatives.

Several important lessons follow. First, CART (and every other classifi-
cation procedure for that matter) must introduce costs when a classification
decision is made. There is no way to circumvent this. Second, even if the data
analyst never considers costs, they are built in. To not consider costs is to
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leave the cost determination to the classification algorithm. Third, the way
cases are classified or forecasted will vary depending on the costs introduced.
As a result, the entire confusion table can change dramatically. The costs used
can make a very big difference. Finally, the costs that matter are the costs
of classification errors. And as the discussion of Table 3.4 illustrates, it is the
ratio of those costs that is critical.

If costs are so important, there is a need to understand how they are
incorporated in CART. And this will set the stage for the data analyst to
introduce costs explicitly into the analysis. A key step is to appreciate the role
of the “prior probabilities” associated with the categorical response variable.

3.5.2 Prior Probabilities and Costs

The marginal distribution of any categorical response variable will have a
proportion of the observations in each response category. In our prison ex-
ample, .22 of the inmates had a reported incident of misconduct, and .88 of
the inmates did not. However, before looking at the data, one might already
hold strong beliefs from past research or other information about what those
marginal proportions should be. For example, the design through which the
data were collected may have over sampled inmates reported for misconduct
in order to have a sufficient number of them in the study. But for many uses of
the results, it would make sense to weight the observations back to the actual
proportion of inmates who engage in misconduct. These actual proportions
can sometimes be conceptualized as the “prior probabilities” associated with
the response variable. The word “prior” comes from Bayesian statistical tra-
ditions in which the “prior” refers to the beliefs of the data analyst, before
the data are examined, about the probability density or distribution of some
parameter.

There has been some recent work within Bayesian traditions that allows
for a “pinball prior” for tree size and some features of tree shape (Wu et al.,
2007). That is, key features of the tree itself are given a prior probability
distribution. The ideas advanced are truly interesting, but in practice it is
not clear whether there would be information available to make the pinball
prior more than a convenient fiction, and there is almost no experience with
this approach to date. It will be some time before we learn whether there is
much payoff for real data analysis. Consequently, when the term “prior” is
used from here forward, reference is being made, unless otherwise stated, to
the prior distribution of the response variable only.

Before we get any farther, we need some additional notation. This nota-
tion and the surrounding discussion draws heavily on Therneau and Atkinson
(1997). Suppose there are N observations, C classes for the response variable,
and K terminal nodes. We define πi for i = 1, 2, . . . , as the prior probability
of being in class i. For the binary cases, i would equal 1 or 2. As just noted,
these marginal probabilities are sometimes called “prior probabilities.”



126 3 CART

L(i, j) is the loss matrix for incorrectly classifying a case that is really an
i as a j. It is this matrix that captures the costs of classification errors. For a
binary outcome, the matrix is 2 by 2, where the cost for correct classification
is, with no loss of generality, taken to be zero.

We let A be some node in the tree and τ(x) be the true class for an
observation x, where x represents the vector of predictor variable values for
that observation. We also let τ(A) be the class assigned to node A if node A
is a terminal node. Finally, Ni and NA are the number of observations in the
sample that are in class i and in node A, respectively, with NiA the number
of observations of class i in node A. The following relationships then hold.

1. P (A) is the probability of cases appearing in node A, which is equivalent
to

∑C
i=1 πiP [x ∈ A|τ(x) = i]. It can be estimated by

∑C
i=1 πi(NiA/Ni).

Note that the prior probabilities figure directly in these calculations and,
as a result, can affect the tree structure.

2. Then, p(i|A) is the probability of class i given that a case is in node A, or
P [τ(x) = i|x ∈ A]. It can be estimated by the number of cases of class i in
node A, divided by the total number of cases in that node. It is instructive
that this probability equals πiP [x ∈ A|τ(x) = i]/P [x ∈ A], which can also
be estimated by πi(NiA/Ni)/

∑C
i=1 πi(NiA/Ni). The priors can make a

real difference because the probability of a case with true class i landing
in A depends in part on the probability that a case is truly of class i to
begin with.

3. R(A) is the “risk” associated with node A, where
∑C

i=1 p(i|A)L(i, τ(A)),
and where τ(A) is chosen to minimize risk. In other words, the risk as-
sociated with node A is for the binary case the probability of a case of
type “1” falling in that node times costs that follow, plus the probability
of a case of type “2” falling in that node times costs that follow. Risk
is, therefore, a function of both the probabilities and the costs. Because
the probabilities depend on the prior probabilities, the prior probabilities
affect risks.

4. R(T ) is the risk of the entire tree T , which equals
∑K

j=1 P (Aj)R(Aj),
where Aj are the terminal nodes of the tree. We are now just adding the
total risk associated with each node, weighting by the probability of cases
falling in that node. This can also be called the “expected cost” of the
entire tree.

And now the punch line. If L(i, j) = 1 for all i �= j, and the prior proba-
bilities πi are taken to be the observed class proportions in the sample, then
p(i|A) = NiA/NA, and R(T ) is the proportion misclassified. The same applies
to the R(A), the risk associated with any particular terminal node. Replac-
ing L(i, j) = 1 with L(i, j) = m, where m is some constant, just scales up
or down the risk by some arbitrary amount and makes no difference to the
CART algorithm.

Therefore, if we just let the data determine everything, it is the same as
(a) making the costs of all classification errors represented in the loss function
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the same and (b) taking the empirical distribution as the appropriate prior
distribution. The partitions that follow depend on two conditions. Classifica-
tion by a majority vote of the cases in each terminal node also depends on
these conditions. If either of these conditions is different, it can easily lead to
different partitions and different classifications.

We are now ready to revisit the tree diagram in Figure 3.3 and the num-
bers in Table 3.2. These are the tree and classifications that result when the
researcher does not consciously introduce the relative costs of false negatives
and false positives. Figure 3.3 assumes equal costs for all classification errors
in the loss function and the empirical distribution of the response variable as
the prior distribution.

But what does one do if as in Table 3.2 the balance of false negatives to
false positives is unsatisfactory? It would seem that the easiest thing to do
would be to alter the costs in the loss matrix. That way, one might be able to
produce a more acceptable ratio of false negatives to false positives.

However, recall that the risk associated with a node is scaled by the prod-
uct of the prior probabilities and the entries in the loss matrix. To see the
consequences of this, suppose there exist a π̃ and an L̃ so that

π̃iL̃(i, j) = πiL(i, j). (3.10)

Then the risk associated with that node are unchanged, and it does not matter
what the particular values of π̃ and L̃ happen to be as long as the equality
holds. This opens the door for lots of possibilities. If one just thinks of the
right-hand side as the weight given to the classification errors for class i in
a given node, and if more or less weight is desired, one can alter either the
priors or the costs or both. In practice, it is less work to alter one of them, and
the choice can depend on how the software is written. In the binary response
case, if one wanted to alter the weights by altering just the prior distribution
to π∗

i , one would use

π̃∗
i =

πiL
∗
i

πiL∗
i + πjL∗

j

. (3.11)

The index i would take on one value for the no misconduct class (e.g., 1) and
another value for the misconduct class (e.g., 2). The values of πi would be the
probabilities associated with the empirical prior distribution. The values of
L∗

i would be the new costs. Note that because of the normalization, all that
matters in the loss matrix is relative costs. Thus, one just has to know, for
example, that the cost of one kind of classification error is three times the
cost of another kind of classification error, not their actual costs.

Let’s try an example so that the reasoning is clear. Suppose for the prison
data one were to let the data determine everything. Then, the empirical prior
distribution is about .8 for no misconduct and about .2 for misconduct. The
cost of a false negative or a false positive is 1.0.

Suppose we now wanted the cost of a false negative to be twice the cost
of a false positive: the 1 to 1 ratio would be 1 to 2. For no misconduct, we let
π1 × 1.0 = .80 × 1.0 = .80. For misconduct, we let π2 × 1.0 = .20 × 2.0 = .40.
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But then we need to normalize these values so that as probabilities they
sum to 1.0. Normalizing π∗

1 , we compute (4/5)/(4/5+2/5) = .67. Normalizing
π∗

2 , we compute (2/5)/(4/5 + 2/5) = .33. So a 1 to 2 cost ratio for a false
positive to a false negative can be obtained using for the prior distribution
.67 and .33. There is no need to change the values in L(i, j), which in effect,
still have diagonal cost elements L(i �= j) = 1. Finally, you can get the same
results by using Equation 3.11 with π1L

∗
1 = .80 × 1.0 and π2L

∗
2 = .20 × 2.0.

It would also be handy if analogous procedures were available for categori-
cal response variables with more than two response categories. However, with
more than two response categories, there is likely to be more information in
the loss matrix than can be properly captured by a prior distribution. More
specifically, for any given observation, the cost of all misclassifications must
be the same for there to be a prior distribution that can properly represent
the costs of classification errors.

For example, suppose there were three inmate misconduct categories: no
misconduct, rule violations, and activities that would be crimes if committed
outside of prison. Then, if an inmate actually had no incidents of reported
misconduct, the costs of incorrectly placing him or her in either the rule vio-
lation category or the crime category would have to be the same. In practice,
it is rare that such constraints on the loss matrix would be appropriate. As
a result, relative costs would have to be introduced directly using the loss
matrix. This presents no problems when the software permits such input. But
it is common for there to be no allowance for a loss matrix, especially for the
more sophisticated forms of statistical learning to be considered in the next
two chapters. Fortunately, there are then other options, many of which are
rather clever. We consider these later.

To summarize, when the CART solution is determined solely by the data,
the prior distribution is empirically determined, and the costs in the loss ma-
trix of all classification errors are the same. Costs are being assigned even if
the data analyst makes no conscious decision about them. Should the bal-
ance of false negatives to false positives that results be unsatisfactory, that
balance can be changed. Either the costs in the loss matrix can be directly
altered, leaving the prior distribution to be empirically determined, or the
prior distribution can be altered leaving the default costs untouched. Much
of the software currently available makes it easier to change the prior in the
binary response case. When there are more than two response categories, it
will usually be easier in practice to change the costs in the loss matrix directly.

3.6 Pruning

With the discussion of costs behind us, we can now return to the problem of
overly complex trees and what can be done. Recall that setting a minimum
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sample size for each terminal node is one strategy. A second strategy to con-
strain the size of the tree is called “pruning.” The pruning process removes
undesirable branches by combining nodes that do not reduce heterogeneity
sufficiently for the extra complexity added. The process starts at the termi-
nal nodes and works back up the tree until all of the remaining nodes are
satisfactory.

Of late, pruning has not gotten a lot of attention. The problem that prun-
ing addresses is very real. But, as CART has become superceded, pruning
has become less salient. Consequently, the discussion of pruning is relatively
short. The main objective is to highlight some important issues raised in the
previous chapter that figure significantly in the pages ahead.

For a tree T , recall that the overall risk is

R(T ) =
K∑

j=1

P (Aj)R(Aj). (3.12)

This is the sum over all terminal nodes of the risk associated with each node
times the probability of cases falling in that node. It might seem that a rea-
sonable pruning strategy would be to simply minimize Equation 3.12. What
could be better than that? Unfortunately, that would leave a saturated tree
untouched. CART would construct enough terminal nodes so that all were
homogeneous, even if that meant one node for each observation. With all ter-
minal nodes homogeneous, the risk associated with each would be zero. The
result would be unstable nodes, serious overfitting of the data, and far too
much detail to usefully interpret.

The solution is much like what was seen in the previous chapter. A penalty
is introduced for complexity, and we are back into the bias–variance tradeoff.
With larger trees, there will be fewer classification errors, implying less bias.
But larger trees will have terminal nodes with fewer cases in each, which
implies greater instability and hence, greater variance. The trick is to find a
sensible balance.

To take complexity into account in CART, a popular solution is to define
an objective function, called “cost complexity,” for pruning that includes an
explicit penalty for complexity. The penalty is not based on the number of pa-
rameters, as in conventional regression, or on the effective degrees of freedom
used, as in smoothing. For CART, the penalty is a function of the number of
terminal nodes. More precisely, we try to minimize

Rα(T ) = R(T ) + α|T̃ |. (3.13)

Rα has two parts, the total costs of the classification errors for the tree as a
whole, and a penalty for complexity. For the latter, α ≥ 0 is the complexity
parameter playing much the same role as λ in regression smoothers. In place
of the effective degrees of freedom, |T̃ | is the number of terminal nodes in tree
T.
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The value of α quantifies the penalty for each additional terminal node.
The larger the value of α, the heavier is the penalty for complexity. When
α = 0, there is no penalty and a saturated tree results. So, α is the means by
which the size of the tree can be determined.

Breiman et al. (1984: Section 3.3) prove that for any value of the com-
plexity parameter α, there is a unique smallest subtree of T that minimizes
cost complexity. Thus, there cannot be two subtrees of the same size with the
same cost complexity. Given α, there is a unique solution.

In many CART implementations, there are ways the software can select a
reasonable value for α or for parameters that play the same role (Zhang and
Singer, 1999: Section 4.2.3). These defaults are often a good place to start,
but will commonly lead to results that are unsatisfactory. The tree selected
may make a tradeoff between the variance and the bias that is undesirable for
the particular analysis being undertaken. For example, there may be far too
much detail to be usefully interpreted. Moreover, overfitting or measurement
error can produce trees that make very little subject matter sense.

Alternatively, one can specify by trial and error a value of α that leads to
terminal nodes, each with a sufficient number of cases and that can be sensibly
interpreted. Interpretation will depend on both the number of terminal nodes
and the kinds of cases that fall in each, so a substantial number of different
tree models may need to be examined.

In practice, whether one determines tree complexity by using α (or some
other complexity parameter), or an explicit argument to the CART procedure
determining the minimum terminal node sample size, seems to make little
difference. The goal is to construct a useful classification tree. How exactly
that is accomplished is less important as long as the steps undertaken and the
various results evaluated are recorded so that the work can be replicated.

The major risk from examining a larger number of tree models leads to
overfitting. Overfitting is already a potential problem in CART and drawing
on information from many trees can only make matters worse. We turn to
overfitting and useful responses to it in the next chapter. Suffice it to say, it
is always good to have a training dataset and a test dataset.

3.6.1 Impurity Versus Rα(T )

At this point, one might wonder why CART does not use Equation 3.13 from
the start when a tree is built, instead of some measure of node impurity. Rα(T )
would seem to have built in all of the end-user needs very directly.

The rationale for not using a function of classification errors as a fitting
criterion is discussed in Breiman et al. (1984: Section 4.1). As a technical
matter, there can be at any given node, no single best split. But perhaps a
more important reason is that less satisfactory trees can result. Consider two
splits. For the first, there are two nodes that are about equally heterogeneous.
For the second, one node is far more heterogeneous than the other. Suppose
the two splits reduce impurity about the same. Yet, minimizing some function
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of classification errors could lead to the first split being chosen even though
the second split was preferable. For the second split, the less heterogeneous
node might serve as a terminal node, or might readily lead to one. The more
heterogeneous node would be more subject to further partitioning. For the
first split, both nodes would likely be partitioned substantially further. In
general, therefore, more complicated tree structures will follow.

There can be good subject matter reasons as well. Thinking back to the
prison example, finding a single node that was filled almost completely with
misconduct cases would be a very useful result, even if the other terminal
nodes were quite heterogeneous. In contrast, having all of the terminal nodes
with roughly the same proportions of misconduct and no misconduct cases,
would not be very useful. Using node impurity as a splitting criterion will
largely prevent this kind of problem.

3.7 Missing Data

Missing data are a problem for all statistical analyses, and CART is no excep-
tion. Unfortunately, missing data are all too common and they create, broadly
stated, the same kind of difficulties they create for conventional linear regres-
sion. There is the loss of statistical power with the reduction in sample size
and real likelihood of bias insofar as the observations lost are not effectively
a random sample of the total.

There is one and only one ironclad solution to missing data regardless of
the form of data analysis: don’t have any. The message is that it pays to invest
heavily in the data collection so that missing data do not materialize or are
very rare. There are alternatives to be sure, but all are risky.

A general discussion of missing data is beyond the scope of this book,
and excellent treatments are easily found (Little and Rubin, 2002). But it is
important to consider how missing data can affect CART and what some of
the more common responses are.

If the data are really missing “completely at random,” the only loss is
statistical power. By “missing completely at random” one means that the
mechanism by which the data are lost is equivalent to simple random sam-
pling. And if the number of cases lost is not large, the reduction in power is
not likely to matter much. It cannot be overemphasized, however, that the
burden is on the researcher to make a convincing argument that the data are
missing completely at random. Proceeding simply “as if” this were true is a
ruse. The results are then conditional upon the missing completely at ran-
dom assumption, and may be of little interest unless the credibility of that
assumption can be determined.

A fallback position is that the data are missing “conditionally at random.”
One can subset the data based on the values of observable variables so that
for each such subset, the data are missing completely at random. By “missing
conditionally at random,” one means that the mechanism by which the data
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are lost is equivalent to stratified random sampling. If this assumption is cor-
rect, at least to a reasonable approximation, the analysis can be conducted
separately for each of the subsets and the results pooled. But again, assump-
tions made about the manner in which the data are missing must be argued
convincingly.

If either of these assumptions can be justified, it will sometimes useful to
impute the values of the missing data. It is rarely sensible to impute missing
values for the response variable. One would usually exploit information in
the predictors and in so doing, the relationship between the response and
the predictors can be fundamentally altered; one builds in a new relationship
between Y and X. But sometimes it can be helpful to impute missing data
for predictors.

For example, suppose age is a predictor. Then, one might compute the
mean value of age over all of the data available and use that value of age when
age is missing. If age is related to other predictors, one can use conditional
means for the missing data (i.e. conditioning on the values of those predictors)
as the imputed values for the missing data. For example, if age is related to
education, one can impute the value of age based on whether a person has
a college degree. There would be one imputed value for age for those with
no college degree and another imputed value for age for those with a college
degree.

The key problem with such imputation procedures is when the data are
ultimately analyzed, using the real data and the imputed data, the statistical
procedures cannot tell which is which and necessarily treat all of the obser-
vations alike. At the very least, therefore, it is likely that estimates of the
uncertainty in the results will be wrong.

In particular, the imputed values come with sampling error, and this source
of uncertainty will be overlooked. Another difficulty is that the imputed val-
ues, which are just fitted values, will have less variability than the original
variable itself. Consequently, the data analyzed will be too homogeneous. To-
gether, these two features of imputed values can seriously undermine statisti-
cal inference.

There are a number of very interesting procedures that attempt to get the
statistical inference right when some of the data are imputed. They need not
trouble us here. We will focus on how missing data can be addressed within
CART.

3.7.1 Missing Data with CART

If data are missing for the response variable, the only viable strategy is “list-
wise deletion.” Observations with missing data on the response variable are
dropped totally from the analysis. If the data are missing completely at ran-
dom, the main loss is statistical power. If not, bias of unknown size and di-
rection can be introduced.



3.7 Missing Data 133

When the data are missing for one or more predictors, there are more
options. Listwise deletion remains a possible choice, especially if there are not
a lot of missing data (e.g., less than 5% of the total number of observations)
Listwise deletion is not fancy, but it is also easy to implement and understand.

A second option is to impute the data outside of CART itself. To take a
simple illustration, one might employ conventional regression in which for the
complete data a predictor with the missing data is regressed on other predic-
tors with which it is likely to be related. The resulting regression equation can
then be used to impute what the missing values might be.

For example, suppose that for employed individuals there are some miss-
ing data for income. But income is strongly related to education, age, and
occupation. For the observations with no missing data, income is regressed on
education, age, and occupation. Then, for the observations that have missing
income data, the values for the three predictors are inserted into the estimated
regression equation. Predicted values are computed, which are used to fill in
the holes in the income data.

However, even if reasonably unbiased estimates can be constructed, this
strategy ignores the reduced variability of the predicted values and treats the
imputed values as fixed. One response is to impute several values for each
observation drawing at random, in effect, from the conditional distributions
implied by the regression equation. It is then possible to get a better handle on
the uncertainty associated with the imputed values. Little and Rubin (2002)
is the canonical reference. An application to CART can be found in a PhD
dissertation by He (2006).

A third option is to address the missing data problems for predictors within
CART itself. There are a number of ways this might be done. We consider
here one of the better approaches, and the one available with rpart() in R.

The first place where missing data will matter is when a split is chosen.
Recall that

ΔI(s, A) = I(A) − p(AL)I(AL) − p(AR)I(AR), (3.14)

where I(A) is the value of the parent impurity, p(AR) is the probability of
a case falling in the right daughter node, p(AL) is the probability of a case
falling in the left daughter node, I(AR) is the impurity of the right daughter
node, and I(AL) is the impurity of the left daughter node. CART tries to find
the predictor and the split for which ΔI(s, A) is as large as possible.

Consider the leading term on the right-hand side. One can calculate its
value without any predictors and so, there are no missing values to worry
about. However, to construct the two daughter nodes, predictors are required.
Each predictor is evaluated as usual, but using only the predictor values that
are not missing. That is, I(AR) and I(AL) are computed for each optimal
split for each predictor using only the data available. The associated proba-
bilities p(AR) and p(AL) are re-estimated for each predictor based on the data
actually present. This approach is undertaken with the equivalent of pairwise
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deletion; calculations are undertaken with the complete data available for that
operation alone.

But determining the split is only half the story. Now, observations have
to be assigned to one of the two daughter nodes. How can this be done if the
predictor values needed are missing? CART employs a sort of “CART-lite” to
impute those missing values by exploiting “surrogate variables.”

Suppose there are ten other predictors x1 − x10 that are to be included
in the CART analysis, and suppose there are missing observations for x1

only, which happens to be the predictor chosen to define the split. The split
necessarily defines two categories for x1.

The predictor x1 now becomes a binary response variable with the two
classes determined by the split. CART is applied with x1 as the response
and x2 −x10 as potential splitting variables. Only one partitioning is allowed;
a full tree is not constructed. The nine predictors are then ranked by the
proportion of cases in x1 that are misclassified. Predictors that do not do
substantially better than the marginal distribution of x1 are dropped from
further consideration.

The variable with the lowest classification error for x1 is used in place of
x1 to assign cases to one of the two daughter nodes when the observations
on x1 are missing. That is, the predicted classes for x1 are used when the
actual classes for x1 are missing. If there are missing data for the highest
ranked predictor of x1, the second highest predictor is used instead. If there
are missing data for the second highest ranked predictor of x1, the third
highest ranked predictor is used instead, and so on. If each of the variables
x2 − x10 have missing data, the marginal distribution of the x1 split is used.
For example, if the split is defined so that x1 < c sends observations to the
left and x1 ≥ c sends cases to the right, cases with data missing on x1, which
have no surrogate to use instead, are placed along with the majority of cases.

This is a reasonable, but ad hoc, response to missing data. One can think
of alternatives that might perform better. But the greatest risk is that if there
are lots of missing data and the surrogate variables are used, the correspon-
dence between the results and the data, had they been complete, can become
very tenuous. In practice, the data will rarely be missing “completely at ran-
dom” or even “conditionally at random.” Then, if too many observations are
manufactured, rather than collected, a new kind of generalization error will
be introduced. The irony is that imputation can fail just when it is needed
the most.

Perhaps the best advice is to avoid the use of surrogate variables. The
temptations for misuse are great, and there is no clear missing data threshold
beyond which imputation is likely to produce misleading results. Imputation
of the missing values for the predictors will usually be a software option, not
a requirement. (But check what the default is.)

Alternatively, one should at least look carefully at the results with and
without using surrogates. Results that are substantially different need to be
reported to whomever is going to use the findings. There may then be a way to
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choose on subject matter grounds which results are more sensible. Sometimes
neither set will be sensible, which takes us back to where we began. Great
efforts should be made to avoid missing data.

There is one situation, however, in which using surrogate variables is prob-
ably necessary. As becomes more clear in the pages ahead, a number of statis-
tical difficulties can follow when the response variable is highly skewed. The
danger with missing data is that the skewing can be made worse. One may
then have little choice but to impute the missing data.

3.8 Statistical Inference with CART

An initial question for statistical inference is what features of a CART model
might be of interest. To date, attention has centered on an overall assessment
of the CART model, and by implication, some measure of fit quality. The
enterprise is model selection.

But just as with smoothers, a key issue that must be addressed before
statistical inference with CART is considered is whether estimation is a rea-
sonable activity to begin with. As before, there are three scenarios.

1. There is assumed to be a f(X), and the data are a random sample from
a well-defined population or a random realization from a well-defined
stochastic process. Estimation is worth a good hard look and so are ways
to represent uncertainty.

2. There is no f(X) assumed, but the intent is to construct a best guess of
the values of a set of conditional proportions in a population or as features
of a stochastic process. Estimation is again in play, at least in principle.
Ways to represent uncertainty are as well.

3. The sole goal is description of the data on hand. Estimation is not relevant
even in principle.

We begin with the first case: there is a f(X) and the data were generated
in a manner required for statistical inference. For this first case, statistical
inference can be problematic in CART. Perhaps the most obvious reason is
the need to assume negligible bias in the results. Mentioned earlier in this
chapter was the likely bias in the estimated proportions about which more is
said later. More important in practice is the absence of some key predictors
and/or substantial measurement error in those that are available.

There are more subtle difficulties as well. For binary response variables,
it might seem natural to use the deviance (or a good approximation) as a
measure of fit quality and then compare two CART models using a likelihood
ratio test. Recall, two models are required, the smaller one nested within the
larger one. The smaller model is the model under the null hypothesis. For
both, the deviance is computed. Then, the difference in the two deviances
has a χ2 distribution with degrees of freedom equal to the degrees of freedom
for the smaller model subtracted from the degrees of freedom for the larger
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model. When quantitative response variables for CART are discussed below,
an F -test is the natural procedure. Although one can compute the deviance
for both models, it would be rare to find one CART model nested within
another. Therefore the very logic of the comparison is undermined, and it
would also be possible to have two models with different deviances that used
the same degrees of freedom.

But what are the degrees of freedom for a CART model? For a parametric
regression with p regression coefficients, p + 1 is the number of degrees of
freedom used up. The degrees of freedom remaining is N −(p+1). For CART,
sometimes the number of terminal nodes plus one is assumed to play the same
role as p + 1 for a parametric regression. This is because the CART results
can be re-expressed as a regression model with an indicator variable for each
terminal node. However, using the number of terminal nodes to arrive at the
degrees of freedom lost fails to take into account all of the searching done
as the tree is grown. Many more degrees of freedom are actually used up.
Moreover, it is not clear how to make appropriate adjustments, although some
simulation results suggest the true degrees of freedom used up is between 5
and 10 degrees of freedom per split of the data (Hastie et al., 2001: 297). An
additional complication is that often many trees are examined as the output
is “tuned” to the particular needs of the analyst. Whatever the number of
degrees of freedom lost when the tree is grown, they will not include the
degrees of freedom lost growing prior trees.

Confidence intervals suffer from similar difficulties. The negligible-bias as-
sumption remains an important hurdle, and one needs a value for the degrees
of freedom in order to estimate of any standard errors. Thus, even obtain-
ing an appropriate estimate of the point-by-point standard error of the fitted
values is tricky.

The degrees of freedom problems spill over into the fit statistics that can
be used instead of tests for model evaluation and selection. Among the most
common goodness-of-fit measures used with CART are the AIC and the BIC.
For a binary response variable,

AIC = D + 2p; (3.15)

and
BIC = D + log(n)p, (3.16)

where D is the deviance, n is the sample size, and p is the degrees of freedom
used up in the calculations. Unfortunately, we are once again stuck with the
problem of finding a credible value for p. The prospects are really no better
under the second scenario when no f(X) is assumed but there is interest in
one or more several conditional proportions of corresponding terminal nodes.
The nodes are just subsets of the data defined by the fixed values of predictors.
But, there remains the problem of how one defines the degrees of freedom and
the likely bias in the estimated proportion noted earlier.
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Recently, Hothorn and his colleagues (2006) have suggested another ap-
proach to tree construction that builds on and then provides some hypothesis
tests. A number of statisticians have observed that other things being equal,
predictors with more possible breaks have a greater chance of being selected
as a partitioning variable. As a result, there is bias built into the tree structure
and implicitly, the results summarized in the terminal nodes. Hothorn and his
colleagues suggest a tree-building procedure that has much the same look and
feel of conventional stepwise regression.

1. With a null hypothesis that each predictor is unrelated to the response,
conduct a global hypothesis test.

2. If the test is not rejected, stop.
3. If the test is rejected, select as the splitting variable the predictor having

the strongest relationship with the response.
4. Choose the best split using the selected predictor.
5. Repeat Steps 1–4 until no further splits are indicated.

All of the tests are based on permutation distributions in which the re-
sponse is shuffled. Each predictor is subjected to a permutation test under the
null hypothesis of no association. An overall p-value is also computed adjusting
for multiple tests (e.g., a Bonferroni correction). If the global null hypothesis
is rejected, the predictor with the smallest p-value is chosen. Then, the split
can be determined as usual. The same process is applied for each subsequent
partitioning of the data.

There is excellent software in R implementing these procedures. Because
recursive partitioning can be an intermediate step in other statistical learning
procedures, there are also interesting extensions built into the software. The
procedure can be found in the library party.

Hothorn and his colleagues argue that selecting predictors in this fashion
leads to an unbiased recursive partitioning of the data. However, some caution
is warranted. First, this approach assumes, as before, that there is a true f(X)
one is trying to estimate with f̂(X), that all of the predictors in X are in the
dataset, and that all are well measured.

Second, the tests also take the predictors as fixed. Sampling variation
comes only from the response variable. The motivating thought experiment
envisions all possible assignments of the response variable values to existing
cases within a given marginal distribution of the response variable. There is,
therefore, an issue of how well the permutation thought experiment corre-
sponds to the manner in which the data were actually generated and whether
one’s inferences are really to be limited only to the x-values that were realized.

Third, the results depend on the sample size; other things being equal,
larger samples will lead to larger trees. Larger trees will usually perform quite
differently from smaller trees, as we have seen. And one does not normally
seek to determine the correct model conditional on the sample size. That is,
it is at least unconventional to proceed as if there were many correct models,
one for each sample size.
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Fourth, there will still be bias in the estimates coming from terminal nodes
insofar as there is remaining heterogeneity in predictor values associated with
the response variable. This too was addressed earlier.

But more generally, for a very large number of applications, these sorts of
concerns are moot. The third motivating scenario is likely to be the operational
one in practice. There is no f(X), or no population or stochastic process, or
no appropriate data-generation mechanism, or the data may be of insufficient
quality (e.g., key predictors are missing). Then, the goal is far more likely to be
description than estimation. There are only, then, descriptions that are more
or less useful. Furthermore, there is no requirement that a single description be
chosen. Different descriptions may highlight different, but instructive, features
of the data. Then, it can be appropriate to report more than one set of results.

3.9 Classification Versus Forecasting

In most of the discussion of CART so far, and all of the examples, the emphasis
has been on fitting the data on hand. With categorical response variables, this
has been a classification exercise. A key objective of the analysis is to minimize
some aggregate measure of fit that depends substantially on classification
errors and their costs. References to forecasting have typically been indirect
and/or brief.

As a technical matter, however, the step to true forecasting is relatively
easy. One applies the results from the data analyzed to new data not used
in the fitting process. A key difference is that for the data used to build the
tree, both the predictor values and response values are known. For the data
to be used in the forecasting exercise, only the predictor values are known.
The key assumption is that the relationships between the predictors and the
response for the data analyzed would be the same for the new data, within
chance error, were the values of the response variable known.

Sometimes forecasts into the future are desired. Sometimes forecasts into
the past as desired (often called “backcasting”). And for some forecasts, time
plays no role. A CART analysis undertaken on inmates in one prison, for ex-
ample, may be used to forecast the misconduct of inmates in another prison.
And to confuse things a bit more, we saw in the last section that when miss-
ing data are imputed, the enterprise looks like forecasting. In each of these
applications, the key idea is that some or all of the values of a variable are
unknown, and there is a need for some “best-guess” values. However, although
there are some important parallels with forecasting, imputation does not in-
volve a second dataset.

In CART, the classes assigned to terminal nodes are used as the best-
guess values. In CART-speak, one “drops” new cases “down” the classification
tree. Each case will “land” in one (and only one) terminal node. The earlier
classification of each terminal node determines the prediction for all of the
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new cases when they arrive. Thus, if a given terminal node is classified as
class “1,” all of the observations that come to rest in that terminal node are
classified as a “1,” and the class represented by that “1” is the forecasted class
(e.g., misconduct).

But how is the quality of those forecasts determined if the response is not
yet known? There are four steps.

1. Build a classification tree as usual using a training dataset taking the costs
of classification errors into account.

2. Forecast using a test dataset in which the outcomes are known.
3. Determine forecasting skill from an analysis of the forecasting errors, per-

haps using the percentage of cases incorrectly forecast conditioning on the
truth. Usually, this is presented in the form of a confusion table.

4. Assume that the forecasting skill demonstrated with the test data applies
to new data for which forecasts are desired. This assumption can be sup-
ported if the new data are a random sample from the same population as
the training and test data.

Forecasting is an important application for CART and all of the proce-
dures discussed in the pages ahead. Moreover, the difference between classifi-
cation and forecasting, often confused when the term “prediction” is used for
both, figures significantly in the next chapter. We show that forecasting er-
rors, rather than classification errors, are better tools for refining algorithmic
models.

3.10 Varying the Prior, Costs, and the Complexity
Penalty

Figure 3.4 shows again the tree diagram for the CART analysis of inmate
misconduct. The tree diagram has been simplified a bit anticipating the need
to show more complicated structures shortly. Recall that the empirical dis-
tribution of the response variable was used as the prior distribution, and the
costs were assumed to be the same for false negatives and false positives. For
the earlier figure, the number of terminal nodes was constrained by explicitly
setting the minimum terminal node sample size. Now, for reasons that are
apparent shortly, we get to the very same place by setting the value of the
penalty for complexity instead.

Recall also that a confusion table was presented as part of the earlier
analysis. It is now reproduced as Table 3.4. One questionable feature of the
table was that there were about eight false negatives for each false positive,
implying that false positives were far more costly than false negatives. At that
time, there was no justification given for these or any other ratio of relative
costs.

Conversations with prison officials indicated that from their point of view,
false negatives were much worse than false positives. Failing to anticipate
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Inmate Classification Example Using Empirical Priors

|Term< 3.5

AgeRec=bcd

0
3807/999

0
2810/513

0
997/486

0
900/352

1
97/134

Fig. 3.4. Inmate misconduct example with empirical priors.

Predict No Misconduct Predict Misconduct Model Error

No Misconduct 3710 97 .03
Misconduct 865 134 .88

Use Error .19 .42 Overall Error = .20

Table 3.4. CART confusion table for forecasting inmate misconduct.
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inmate misconduct, which could involve fatal violence, was of far greater con-
cern than incorrectly labeling an inmate as high risk. When pushed, a prison
official said that the cost of a false negative was at least five times greater
than the cost of a false positive. Hence, the earlier analysis got things upside
down.

Inmate Classification Example Using 1 to 5 Cost Ratio

|Term< 3.5

AgeRec=cd

Term< 1.5

AgeArr=cde

CDC=a

AgeRec=d

Gang=a

Term< 1.5

AgeArr=cde

Psych=a

1
3807/999

0
2810/513

0
1928/237

0
693/46

0
1235/191

0
526/51

0
709/140

0
372/57

1
337/83

0
201/35

1
136/48

1
882/276

1
618/144

0
201/31

1
417/113

1
264/132

1
997/486

0
333/66

0
303/52

1
30/14

1
664/420

Fig. 3.5. Inmate misconduct example with one to five cost ratio.

Figure 3.5 shows the tree diagram that results when the same value for
the complexity penalty is used, but the empirical prior is replaced by a new
prior representing the one to five cost ratio for false positives to false neg-
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atives elicited from prison officials. The new prior was calculated using the
procedures described earlier.

Clearly, the results have changed substantially. Increasing dramatically the
costs of false negatives relative to false positives (and it is only the relative
costs that matter) leads to a very different result. There are many more termi-
nal nodes reflecting the impact of several more variables. These now include:

1. Gang activity (Gang) with a = gang activity and b = no gang activity.
2. Age at first arrest (AgeArr) with a = 0–17, b = 18–21, c = 22–29, d =

30–35, and e = older than 35.
3. Age at arrival at the reception center (AgeRec) with a = 16–20, b = 21–26,

c = 27–35, and d = 36 older than 35.
4. Mental illness (Psych) with a = ill and b = not ill.
5. Previously served time under the state’s Department of Corrections

(CDC) with a = served time and b = did not serve time.
6. Sentence length (Term) in years.

A larger number of predictors were included in the analysis. Figure 3.5
shows the predictors that CART selected.

We do not interpret Figure 3.5. It is quite complicated and would take us
far afield. We consider a more simple CART analysis shortly. For now, the
main point is that from Figure 3.5 one can see that the labeling of a terminal
node with a “1” or a “0” is not the result of a majority vote of the cases
in each node. The vote now takes costs into account captured by the altered
prior distribution of the response. This leads directly to Table 3.5.

First, examine the off-diagonal cells. The balance of false negatives to false
positives has been reversed. The ratio of false negatives to false positives now
reflects approximately the one to five cost ratio of false negatives to false
positives. The ratio is not exact because the cost ratio is but one input into
the CART algorithm. CART is trying to respond to several features of the
data and the analysis requested.

Second, the more desirable balance of false negatives to false positives
seems to come with a price. Overall, there is an increase in the number of
classification errors. The sum of the off-diagonal cells divided by the total
number of cases is about .20 for Table 3.4 and about .37 for Table 3.5. The
number of cases incorrectly classified has increased by 17%. So, by that yard-
stick we are doing substantially worse. This is a general result. Introducing
any cost ratios other than one to one will increase the overall proportion of
cases misclassified.

But the yardstick of correct classifications can be misleading. Once one
abandons the assumption that the costs of false negatives and false positives
are the same, the proportion of cases misclassified is not by itself responsive to
the way the analysis has been undertaken. Classification errors are now being
weighted to take differences in costs into account, but these weights are ignored
when the proportion of cases misclassified is computed. All classification errors
are being treated the same, even though they are not.
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Third, a far more instructive way to consider how well CART has fit the
data is to look at the classification errors conditional upon the actual outcome.
This means focusing on the rows in Tables 3.4 and 3.5. Within a row, there
is only one kind of classification error (false positives or false negatives), so
the weighting problem disappears. One can then see that the proportion of
misconduct cases misclassified has dropped from .88 to .27. At the same time,
the proportion of no misconduct cases has increased from .03 to .40. A tradeoff
between false negatives and false positives is generally to be expected and is
plainly seen here.

A analogous tradeoff can be seen in the column proportions. When a case
is assigned the no misconduct label, that label is now wrong for .11 of the
observations. With equal costs, that proportion is .19. When a case is assigned
the misconduct label, the proportion of cases labeled in error increases from
.42 to .67.

To get some practical sense of what these changes mean, suppose 100
inmates are classified either as misconduct cases or no misconduct cases. For
inmates given a no misconduct label, the number of inmates labeled in error
drops from 19 to 11 when the equal costs assumption is replaced by the one
to five costs assumption. Clearly, this would be a desirable result for prison
administrators.

For inmates given a misconduct label, the number of inmates labeled in
error increases from 42 to 67 when the equal costs assumption is replaced by
the one to five costs assumption. For both of the assumptions about costs,
far more errors are made when inmates are assigned to the misconduct class.
And the one to five cost ratio makes things worse.

But, the increase in false positives is precisely the result mandated by the
one to five cost ratio provided by prison administrators. The first analysis had
too many false negatives relative to false positives. The second analysis was
motivated by a need to correct this perceived imbalance. When the one to
five cost ratio was determined, prison administrators were making a conscious
decision to live with a greater number of false positives.

Predict No Misconduct Predict Misconduct Model Error

No Misconduct 2296 1511 .40
Misconduct 272 727 .27

Use Error .11 .67 Overall Error = .37

Table 3.5. CART confusion table for forecasting inmate misconduct using a one to
five cost ratio.

The key point is this: although it is always desirable to have a small number
of false negatives and false positives, a decision-maker may be better off with
increases in either if relative costs of false negatives to false positives are more
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accurately represented. More errors can actually lead to better decisions when
costs are taken into account.

Figure 3.6 represents a third analysis of the same data. The one to five cost
ratio is maintained, but a larger penalty is given for complexity. The intent is
to simplify the tree so that only the most important and meaningful terminal
nodes are included. At the same time, there is certainly nothing definitive
about Figure 3.6. Another data analyst might quite properly construct a tree
that was either more or less complicated.

Inmate Classification Example Using 1 to 5 Cost Ratio and Larger Penalty
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Fig. 3.6. Inmate misconduct example with one to five cost ratio and larger penalty.
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Despite the use of weighted votes, the branches in the tree are interpreted
exactly as before. We learn for instance, that individuals with sentences equal
to 3.5 years or longer and under the age at 18 when first arrested are classified
as prone to misconduct. And these inmates pose the highest risk. We also
learn that individuals with sentences less than 3.5 years who are 27 years
or older when they arrive at the prison reception center are not classified
as prone to misconduct and pose the lowest risk. If one is interested in the
proportion of inmates in each terminal node who were actually reported to
have engaged in misconduct, that is available in the CART output, at least
in the R implementation rpart().

The other combinations fall in between. Thus, (working down the tree)
individuals who have been sentenced to less than 3.5 years, who are younger
than 27 years, who have a history of gang activity, and who are actually
serving very short sentences of less than 18 months, are not classified as prone
to misconduct. Having a very short sentence seems to trump youth and gang
activity, which are normally useful predictors of misconduct in prison. Note
that if all of these factors are the same except that the sentence is between
18 months and 3.5 years, the inmate is classified as prone to misconduct.

The confusion table is not presented. Overall, there is an increase in the
errors, as one would expect from a less complex classification tree. However,
the smaller tree may be more stable, a topic to which we return later. Because
the one to five cost ratio is maintained, the various tradeoffs associated with
false negatives and false positives are essentially unchanged.

3.11 An Example with Three Response Categories

There is no formal problem in extending CART to three or more response
variable categories. We return to the prison data once again and use the same
predictors as before. But this time, there are three categories to the response:
no misconduct, minor misconduct, and serious misconduct. These are coded
as “0,” “1,” and “2,” respectively. About 78% of the cases have no reported
misconduct, about 20% have minor reported misconduct, and about 2% have
serious reported misconduct. As required, these are mutually exclusive and
exhaustive categories. The 2% represents very rare cases, which creates some
special difficulties we address in more depth later. For now we ignore the
problem.

The three response classes can be viewed as qualitatively different. In
particular, most minor infractions are violations of prison rules and would,
by and large, not be considered crimes if committed outside of prison. Most
of the serious misconduct represents acts that would be felonies anywhere:
drug trafficking, sexual assault, robbery, homicide, and the like. On the other
hand, if one thinks of prison misconduct as arrayed on some scale of serious-
ness, the three classes are perhaps ordered. However, just as in conventional
multinomial regression, CART take no account of such ordering. Whatever
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information is contained in the ranks is ignored. In short, the three classes of
misconduct are treated by CART as unordered categories whatever the truth
may be.

The first job in the data analysis is to specify a loss matrix. Recall that
when there are more than two response categories, costs cannot usually be
captured in a prior distribution. So, the empirical distribution is taken as the
prior distribution and costs are introduced directly with the loss matrix.

Table 3.6 shows a loss matrix containing costs roughly consistent with
information provided by corrections officials. They were especially concerned
about inmates who were a serious safety threat but not classified as such. In
particular, if an inmate actually had an incident of reported serious miscon-
duct (e.g., assault on a guard) and was classified as having no misconduct at
all, the cost assigned is 20. If an inmate actually had an incident of reported
minor misconduct (e.g., failure to report to a job assignment) and was classi-
fied as having no misconduct at all, the assigned cost is 10. The former error
has twice the cost of the latter error, which in turn is substantially higher
than any of the other costs. The costs of incorrectly classifying an inmate as
misconduct free are relatively small.

None Predicted Minor Predicted Serious Predicted

No Misconduct 0 2 5
Minor Misconduct 10 0 3
Serious Misconduct 20 10 0

Table 3.6. Costs of classification errors for three misconduct categories.

Figure 3.7 shows the resulting classification tree. It can be read just as
when there were two response categories, but now the numbers associated with
each node are the counts (left to right) for no misconduct, minor misconduct,
and serious misconduct. When the unequal costs are used, the classification
assigned to each terminal node is not by a plurality of votes. Some votes, in
effect, have more weight than others.

In this instance, the very high relative costs for misclassifying serious inci-
dents of inmate misconduct dominate the results. Of the six terminal nodes,
four are classified as a “2,” the coded value for serious misconduct. The two
other terminal nodes are all classified as a “0,” the coded value for no mis-
conduct. And none of the terminal nodes are classified as a “1,” the value for
minor misconduct. The loss matrix led to only two kinds of classification: no
misconduct and serious misconduct.

It is important to stress that these results are neither “right” nor “wrong.”
Their usefulness would depend in part on whether in retrospect, prison offi-
cials liked the values in the loss matrix that in this instance produced just
two classifications: good inmates and bad inmates. Had the costs of failing
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Inmate Classification Example With Three Outcome Categories
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Fig. 3.7. Inmate misconduct with three response categories.

to properly classify the serious misconduct inmates been reduced relative to
the other costs of misclassification, a very different set of results would have
materialized, including the appearance of all three classification categories for
the terminal nodes.

The roles that the predictors play are also shown, but sometimes imply
complicated and even counter intuitive interpretations. One reason may be
that distinctions are now being made among three kinds of inmate behavior,
not two. Moreover, what some may think is an ordered set of classes is be-
ing treated as categorical only. Different patterns of association can result.
Another possibility is that some of the breaks represent unstable distinctions
that should not be taken seriously, a point discussed in more depth shortly.
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If corrections officials were directly involved in discussions of how such
results might be used, it is likely that several different patterns of costs and
several different values for the complexity penalty would be applied. Trees re-
quiring complicated and counter-intuitive interpretations might then be elim-
inated. For example, even if the costs in Table 3.6 were maintained, a tree
pruned back to the first two breaks might well be preferable.

Predict None Predict Minor Predict Serious Model Error

No Misconduct 2709 0 1098 .29
Minor Misconduct 349 0 512 1.0
Serious Misconduct 38 0 100 .28

Use Error .12 Undefined .94 Overall Error = .42

Table 3.7. CART confusion table for forecasting three categories of inmate mis-
conduct.

Another factor that would have to be taken into account is the confusion
table. Table 3.7 shows the confusion table from Figure 3.7. The error percent-
ages are computed combining the two sources of error in each row or column.
Then row and column proportions are computed as before. Thus, Table 3.7 is
interpreted in virtually the same manner as the binary outcome case.

Corrections officials would have to examine each row and column in Ta-
ble 3.7 and decide if the numbers for the different kinds of false negatives and
false positives were reasonable for their purposes. To take the most extreme
example, no inmates are assigned to the minor misconduct class. It follows
that all inmates who had engaged in minor misconduct are misclassified as
being misconduct free or having engaged in serious misconduct. This would
likely be unacceptable because in fact, minor misconduct is relatively com-
mon, can be quite disruptive, and can be a precursor to more serious incidents.
In response, prison officials might favor altering the relative costs of classifi-
cation errors for minor misconduct. For example, the cost of classifying cases
of minor misconduct as if there were no misconduct might be increased.

There are perhaps two main messages from the analysis just summarized.
First, there are in principle no logical or computational obstacles moving from
two response categories to three or more response categories. But there can
be problems from sparse data that will undermine a wide variety of statistical
procedures, including CART. For example, some of the row proportions may
be computed from very few observations. Important instabilities can result.

Second, moving from two response variable categories to three response
variable categories complicates matters significantly. The CART algorithm is
being implemented exactly as before. But, the loss matrix has more elements,
the confusion table has more entries, and the tree diagram can be difficult to
interpret. Compared to the binary case, these changes can be dramatic. For
example, going from two to three response categories doubles the number of
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elements in the loss matrix that need to be specified and doubles the kinds of
classification error that need to be evaluated. Trial-and-error tuning that is
likely to follow will usually require juggling many different parts of the output,
which will be a challenge to data analysts and practitioners alike.

3.12 CART with Highly Skewed Response Distributions

Response variables that are highly skewed (often called “unbalanced”) can
create serious problems for any form of regression analysis. One problem can
be sparse data, which can lead to unstable results or even an inability of the
software to provide any results at all. Another problem is that the rare obser-
vations may have a disproportionate impact on the findings. Generalizations
to the mass of the data can then be problematic. Yet another problem is that
with highly skewed response variables, it can be very difficult to find predictors
that are able to improve the overall fit. Thus, if the response is binary, and
the marginal distribution is 95% 0s and 5% 1s, very accurate classifications
can be determined from this information alone. If the 0 category is always
assigned, the classifications will be correct 95% of the time without using any
predictors whatsoever. It is difficult to do better than this.

There are hints in the material presented earlier of how these sorts of
problems may sometimes be addressed. For example, if a prior distribution
places heavy weight on the misclassification of rare cases, it is a bit like saying
there are many more rare cases to be considered than the data indicate. And
in fact, CART will behave as if this were so. We explore this matter in depth in
the chapters to come and find that there are several other promising options.
In the meantime, the message is that when the response variable is highly
skewed, one must examine all CART output very carefully.

3.13 Some Cautions in Interpreting CART Results

Just as for any data analysis procedure, the output from CART always de-
mands scrutiny before substantive conclusions are reached. There are com-
monly three kinds of potential problems: inappropriate response functions,
unstable tree structures, and unstable classifications. All can produce results,
which if taken at face value, risk serious interpretive errors.

3.13.1 Model Bias

If the goal of a CART analysis is to determine the f(x), whether the function
is part of a causal model or a feature of a conditional distribution, there is no
guarantee that in a given sample CART will even come close. As noted more
broadly in Chapter 1, there are no formal mathematical results indicating
that CART will find the correct function from a given sample, even if all of
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the requisite predictors are provided and even if these predictors are very well
measured.

Indeed, there is good evidence, as noted earlier, that CART will tend to
select predictors in a manner that introduces bias (Hothorn et al., 2006).
Other things being equal, predictors with a larger number of distinct x-values
are favored over predictors with a smaller number of distinct x-values when
all possible splits are evaluated. In addition, the use of surrogate variables in
response to missing data will further bias the selection of predictors.

Of at least equal concern is the matter of functional form. If f(X) is
smooth, each CART basis function, necessarily relying on indicator variables,
will be incorrect. The hope is that the indicator variables will provide a useful
f(X) approximation. Typically, it is difficult to determine if the approxima-
tion is good, but as a formal matter, some bias is likely.

If the goal is to obtain estimates of the response conditional probabilities
and classifications, there are related difficulties. If the functional form esti-
mated is substantially in error, it likely the terminal node proportions and
the classifications that follow will be substantially biased. And as discussed
earlier, unless the terminal nodes are homogeneous, probability and classifi-
cation estimates for individual cases will likely be biased.

In summary, even under the best of circumstances, unless the f(X) is
a step function, there will be biases in any CART estimates. The practical
question is how serious the biases are likely to be. This is one important
reason why CART has been largely superseded by procedures considered in
later chapters.

3.13.2 Model Variance

CART partitions the data into more and more homogeneous subsets and then
assigns a class label to each terminal node. The class that CART assigns to
each case depends on the terminal node where that case comes to rest and
the class label assigned to that node. There are several ways in which these
steps can lead to unstable results.

The most obvious cause of instability is a small number of observations
in any node. Then, a very few observations can send CART down one kind
of branching structure rather than another. There can be a tipping effect in
which a split relatively high up in the tree structure that depends on a few
data points has cascading impacts on later splits. If those few observations
are removed from the data, or if they are replaced with different observations,
a different tree structure with different terminal nodes can follow.

Why might the new observations be different? They are likely to be dif-
ferent if there is a second random sample from the same population; random
sampling error can make them different. They are also likely to be different
if the predictor with which the split was constructed was measured with ran-
dom error. This implies that a new realization of the data created by a new
round of measurements can easily produce very different results. For example,
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if SAT score is a predictor, the scores from the test taken in the junior year of
high school will likely differ, at least a bit, from the scores taken in the senior
year of high school at least because of noise alone.

Fortunately, small samples in particular nodes are easily spotted, and there
are several good remedies within the usual CART software. One can, for
example, increase the minimum number of observations in all nodes or increase
the value of the complexity penalty. Larger node sizes will result, and the
stability of the output will tend to increase.

A less apparent source of instability derives from terminal nodes that re-
main relatively heterogeneous. If the split in a given terminal node is near the
50–50 threshold, the movement of just a few cases across terminal nodes can
change the classes assigned to each terminal node and dramatically alter the
classes assigned to observations within them. Note that this is not a problem
caused by a small number of observations in terminal nodes, although if there
are few observations in terminal nodes, the instability caused by near-even
proportions is made worse.

Instability resulting from heterogeneous terminal nodes is relatively easy
to spot when the empirical distribution is used for the prior distribution and
when the costs of false negatives and false positives are taken to be the same.
For each terminal node, the numbers of observations in each response class
can be easily inspected and compared. But when the classifications assigned
to terminal nodes depend on more than the within-node counts, it is necessary
to dig deeply in CART output to determine what is going on.

Even if one is able to conclude that heterogeneous terminal nodes are
problematic, there is often little to be done. The cause lies in weak predictors
that are unable to partition the data so that relatively homogeneous subsets
result. And under such conditions, it may not be wise to take the tree structure
or fitted values very seriously.

A related problem affects how a splitting variable is chosen. That vari-
able may be the predictor from the preceding split, or another predictor. If
the same variable, one has a step function representing nonlinear features of
the relationship between that predictor and the response variable. If a new
variable, one has an interaction effect representing a different kind of step
nonlinearity. One predictor’s relationship with the response variable depends
on the value of the other predictor. The subject matter interpretations can
also be very different. Yet, the choice between the two may be precarious,
especially when predictors are highly correlated with each other.

Figure 3.8 shows possible partitions of the data when predictors x and z
are highly correlated. In this illustration, CART constructs an initial partition
with the solid vertical line. To the left of that line, B-values dominate. To
the right of the line, A-values dominate. Both partitions are, therefore, more
homogeneous than the dataset as a whole. The partitioning is a success.

But what should the next partition be? Consider a partition on the right
side of Figure 3.8. There is clearly a cluster of all A-values in the upper right-
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Fig. 3.8. High instability in CART.

hand corner. But because the two predictors are highly correlated, there are
two ways to isolate them, which lead to very similar reductions in impurity.

The horizontal dashed line constructs a partition based on x. That parti-
tion isolates three of the four target values and implies an interaction effect.
Given the previous split on z, the next split should be on x. An interaction
effect results.

The other partitioning is accomplished using the vertical dotted line. This
one uses z, and may be slightly preferred because now all four of the target
values are isolated. As a result, a second step is introduced in the step function
through which z is related to the response.

Both splits address nonlinearities in how the response is related to predic-
tors. But one solution is a more complicated step function, and the other is
an interaction effect. The choice between the two in this illustration depends
on a single observation. With CART, there is always the possibility of insta-
bilities of this sort. But just as in linear regression, potential instabilities are
more likely to materialize if the predictors are highly correlated. Two or more
predictors can more readily compete for the same partition of the data.

Figure 3.9 illustrates how a lower correlation between the two predictors
can help. With a less clustered scatterplot, it is more difficult to find a small
number of observations that both x and z can isolate. Notice that either of the
competing partitions in Figure 3.8 now include many observations that fall
into one partition but not the other. The two predictors are not competing
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Fig. 3.9. Low instability in CART.

any longer for nearly the same set of observations. The choice between the
two is now less likely to be made on a stray observation or two.

An unstable tree structure does not automatically mean that the assigned
classes are unstable as well. In the case of two highly correlated predictors,
for example, one can obtain rather different tree structures depending on
which variable is chosen. And the different tree structure can certainly lead
to different interpretations of how the response is related to the predictor.
However, the classes assigned to observations, once they come to rest in a
terminal node, may be much the same. A very different tree structure does
not necessarily imply very different classifications. There may be two or more
ways to get essentially the same classification results.

More generally, if the goal is accurate classification with little concern
about describing how inputs are related to outputs, an unstable tree structure
may not matter. What matters is whether under an alternative tree structure,
observations tend to land in terminal nodes that classify those observations in
the same way. It is not important whether there are more terminal nodes or
fewer. The path taken to those nodes is not important either. And from that
perspective, which highly correlated predictors are actually used to define the
splits is formally irrelevant. The goal is stable classification.

In summary, just as in parametric regression, tree instability can result
from small samples, weak predictors, or highly correlated predictors. Tree
structure and/or the classes assigned to observations can be adversely affected.
However, because of CART’s stagewise structure, the particular tree that
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results can be far more fragile than the output from a parametric regression.
A single tweak near the top of the tree can fundamentally alter all that follows.

Two recommendations follow. First, there is (once again) no substitute
for careful examination of the classification tree to make sure the tree makes
sense. Splits that violate common sense, well-accepted theory, or past research
may need to be discounted and may even call the entire tree into question.

Second, it can be very useful to get some empirical sense of how stable
the results really are. As shown in the next chapter, a good strategy is to
construct several bootstrap samples of the data and apply CART to each. If
the tree structures are substantially different, interpreting the results from any
one tree is risky. It is also important to compare the classifications from each
of the trees. Substantial differences imply that the classifications assigned to
observations cannot be relied upon.

A good place to start an examination of the classes assigned is with con-
fusion tables. One question is whether the confusion tables for the different
trees are alike. Another question is whether the same classes were assigned to
the same cases over bootstrap samples; how consistently were the observations
classified. One can compare the assigned classes for cases selected in two or
more of the bootstrap samples. This idea is closely related to the “margin”
an observation has and is discussed at some length in later chapters.

A related approach is to use the proportion of cases of a particular class in
each terminal node. Sometimes these proportions can be considered estimates
of the probability that an observation in a given terminal node is a member
of the assigned class for that node. Then, for cases that appear in any pair
of bootstrap samples, a scatterplot can be constructed using the terminal
node proportions from two different trees. Substantial departures from the
45-degree line indicate meaningfully different assigned probabilities.

A more compelling approach is to determine if the different CART models
classify test data in the same manner. When no test sample is available, there
are creative approaches that depend on resampling, in much the same spirit
as cross-validation. How such data may be obtained and exploited is a very
important topic that is addressed in later chapters.

If one concludes that CART results are unstable, it can sometimes be
helpful to apply CART to the original data again after setting the tuning
parameters to produce more stable results. Once again, increasing minimum
sample sizes for all nodes or increasing the value of the complexity penalty
can be helpful. In the next chapter we consider other alternatives.

3.14 Regression Trees

The emphasis in this chapter has been on categorical response variables. Clas-
sification was the goal. The reasons were both pedagogical and practical. By
concentrating on categorical response variables, the full range of fundamental
issues surrounding CART are raised.
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But CART is certainly not limited to categorical response variables. Quan-
titative response variables are also fair game. And with the discussion of cat-
egorical response variables largely behind us, a transition to quantitative re-
sponse variables is relatively straightforward. It is possible to be brief.

A key difference with regression trees is the splitting criterion employed.
For the conventional regression case, the impurity of a node is represented by
the within-node sum of squares for the response:

i(τ) =
∑

(yi − ȳ(τ))2, (3.17)

where the summation is over all cases in node τ , and ȳ(τ) is the mean of those
cases. Then, much as before, the split s is chosen to maximize

Δ(s, τ) = i(τ) − i(τL) − i(τR). (3.18)

No cost weights can be used because there is no reasonable way to consider
false positives and false negatives without a categorical response variable.
Then, to get the impurity for the entire tree, one sums over all terminal
nodes to arrive at R(T ). Regression trees can be pruned, but usually with
a penalty based on the AIC or some other statistic that takes the number
of estimated parameters into account. Overall fit quality is then based on a
summary statistic, such the root mean squared error or a measure that adjusts
the degrees of freedom, much as in conventional parametric regression.

There is no classification as such. Each observation is placed in a terminal
node and is then assigned the mean of that node. The assigned mean indicates
how a case is “classified.” The collection of means for all of the terminal nodes
are, therefore, fitted values analogous to the fitted values from conventional
parametric regression. They represent how the numerical response is related
to the predictors.

Just as in parametric regression, it is fitted values that are typically used
in forecasting. With these conditional means in hand, each new observation
for which the outcome is unknown is placed in a terminal node, depending on
its predictor values. The conditional mean of that node is generally taken as
the “best guess” of what the value of the response variable should be.

All of the earlier concerns about CART still apply, save for those linked to
the classes assigned. Potential bias and instability remain serious problems.
And possible remedies are also effectively the same.

3.14.1 An Illustration

Key output of a regression tree is usually presented as a tree diagram, much
as in the categorical response variable case. And as before, interaction effects
can dominate. There are often easy extensions to the generalized linear model
so that a response measured in counts, for example, can be used.
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Correlates of High School GPA
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Fig. 3.10. Predictors of grade point average in high school.

Figure 3.10 shows a regression tree for correlates of high school grade point
average for applicants to the large public university discussed earlier. Predic-
tors include verbal SAT scores, mathematics SAT scores, and ethnicity. Grade
point average can be as high as 5.0 because the scoring gives performance in
advanced placement classes extra weight. The mean GPA in each node is
shown along with the number of cases. The mean GPA for each terminal node
is the fitted value assigned to all observations in that node.

The CART tree indicates that high school GPA is a nonlinear function of
performance on the SATs. Ethnicity also seems to matter a bit. Only about
30% of the variance in high school GPA is accounted for with the available
predictors. Clearly, GPA is measuring a lot in addition to whatever the SATs
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measure, at least among applicants to this university. This is important be-
cause it implies that the high school GPA by itself contains potentially im-
portant information that cannot be obtained from the SATs.

The means in the terminal nodes range from a high of 4.202 to a low of
3.021. Interpretation follows directly from the tree. At each break point, the
cases that meet the split criterion go to the left daughter node. For illustrative
purposes, an indicator variable is constructed for each ethnic group. Because
these are coded so that the value “1” means the presence of a given ethnicity
and “0” the absence, splits are characterized by the halfway point of .5.

Just as in the classification case, many of the break points after the first
can represent interaction effects For example, applicants in the node with an
average GPA of 3.607 score below 515 on the verbal SAT and between 585
and 495 on the mathematics SAT. Applicants in the node with the highest
average GPA score above 685 on the verbal SAT and 655 on the mathematics
SAT. The race effect found for applications with middling verbal and math
SATs is small and makes little intuitive sense. It may be a chance artifact.

3.14.2 Some Extensions

Save for some details, regression trees can be interpreted much as are classifi-
cation trees. CART output can be represented in part by a tree diagram that
shows how the predictors are related to the response. There are clear links to
conventional linear regression as well, with conditional means as fitted values,
variation around the fitted values as a product of within-node residuals, and
familiar measures of fit.

For regression trees, costs are addressed with the fitting function itself,
which in this case is the error sum of squares. Just as with conventional
regression, therefore, the fitting assumes a quadratic loss function. Overes-
timates of the conditional mean are treated the same as underestimates of
the conditional mean, and large residuals are given especially heavy weight
(thanks to squaring).

We have already seen that when CART is used for classification, symmet-
ric costs are often inappropriate. Yet they are required when the response
variable is quantitative. For example, if an admissions officer is trying to fore-
cast how well a student will do in college, a prediction that pegs the student’s
freshman GPA one full point too high has the same costs as a prediction that
pegs the student’s freshman GPA one full point too low. One consequence
of the first error may be that the student actually struggles in college and
then flunks out. Another consequence is that a student who might have done
much better was not admitted instead. One consequence of the second error
is not admitting a student who might have done very well in college. Another
consequence is that a weaker student may have been admitted instead. None
of these considerations can be easily introduced in the fitting process when
the response variable is quantitative.
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The heavy weight given to the largest residuals means that the fitting pro-
cess can be greatly affected by influential observations, just as in conventional
regression. A residual equal to 2.0 is only one point farther away from the
conditional mean than a residual of 1.0, but the squaring weights the two
observations four to one when the fitting is undertaken. One implication is
that a few very atypical observations that are away from the mass of the data
may dominate the results, which may then not characterize the bulk of the
data appropriately. So, the results may not be an accurate description of the
data on hand. A second implication is that the results can be very unstable
with respect to random samples of the data. The story can change depend-
ing on whether the random sample analyzed happens to include the outliers.
Generalization may be seriously compromised.

There are in principle all of the usual ways to “robustify” the CART
fitting process. In particular, one can use a linear loss function instead of a
quadratic, which implies fitting conditional medians rather than conditional
means. Medians will not be affected by outliers and the linear loss function
weights larger residuals less heavily than the quadratic loss function. An easier
but less elegant fix is to fit a trimmed response so that, for instance, the largest
5% and the smallest 5% of the values for the response variable are dropped
before the analysis begins. Some implementations of CART allow for these and
other options. When they are available, their usefulness should be carefully
assessed in the context of the data to be analyzed and the empirical questions
being asked. At the moment, rpart() in R does not allow for linear loss.

Even if concerns about a few influential observations are not significant, it
may be appropriate to abandon quadratic loss on other grounds. If there is in-
terest in the conditional medians, linear loss follows naturally. If the response
is a count, a Poisson formulation may be appropriate. Then the Poisson de-
viance is used as the splitting criterion. In R, rpart() currently allows for the
Poisson. A rather different set of problems is generated because of CART’s
well-known proclivity to overfit and favor predictors with many possible splits.
The former can lead to generalization error and the latter can lead to bias in
the tree structure. As noted earlier, Hothorn et al. (2006) have proposed some
novel means to address both problems. There are some important questions
about how well their approach will work in practice, but the requisite software
is available in R (in the library party) and is certainly worth trying.

3.14.3 Multivariate Adaptive Regression Splines (MARS)

Multivariate Adaptive Regression Splines (MARS) can be viewed as another
kind of smoother, in the traditions of the last chapter, or as a twist on classi-
fication and regression trees. For ease of exposition, this discussion builds on
CART, and it is brief. An excellent and more extensive examination of MARS
can be found in Hastie et al. (2001: Section 9.4).

A key difference between CART and MARS is in the nature of the basis
functions used. The MARS formulation is the broadly familiar



3.14 Regression Trees 159

f(X) = β0 +
M∑

m=1

βmhm(X), (3.19)

where as before, there are M weighted basis functions hm(X). Likewise, the
basis functions are still determined for each split by searching over all predic-
tors and thresholds on those predictors before the best partition is selected.
But in CART, the result is a step function. In MARS, the result is a V-shaped
function composed of two linear splines, with its point at the threshold value.
The two spline functions are mirror images of each other; hence the V-shape.
Hastie et al. (2001: 283) call the two splines a “reflected pair.”

Another important difference is that nodes may be split more than once.
To take a simple example, the root node is initially split in two as usual. But
at a later step, the root node may be revisited and split again through a new
product variable. This capacity exists for all internal nodes as well.

In short, a MARS model takes the form of Equation 3.19, where the basis
functions can be reflected pairs or the product of reflected pairs. Thus, MARS
can fit increasingly higher-order interaction terms, just as CART does, but
these are the product of linear splines not the product of indicator variables.

Estimation is done by least squares. There are often various tuning param-
eters that can help determine, for instance, how complex a model is permit-
ted. The output of MARS can include the equation actually estimated, and
an ANOVA-type partitioning of the explained variance to represent predictor
“importance.” A lot more is said about variable “importance” in the next
several chapters.

MARS can be extended to classification tasks, where logistic regression
replaces linear regression as the primary engine. For both regression problems
or classification problems, MARS will sometimes perform better than CART.
Its main comparative advantage is the ability to better capture additive mod-
els. At the same time, MARS suffers from many of the same weaknesses as
CART.

One must be very clear that when MARS is used to describe how predictors
are linked to a response, MARS is an exploratory tool. There is no pretense
of producing a causal model despite the fact that Equation 3.19 can have
much the look and feel of a conventional regression equation. The weights
represented by the βm are regression coefficients to be sure, but they have no
necessary causal interpretation. MARS is in the same tradition as all of the
procedures we have been considering.

MARS has its advocates, but it does not seem to have the same popularity
as CART. One reason may be that MARS is not available in the more pop-
ular, large software packages such as STATA or SPSS, nor in free computing
environments such as R. A license for MARS must be obtained from Salford
Systems. And like CART, MARS seems to have been superseded by newer
procedures (Friedman, 1991) that are discussed in the pages ahead.
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3.15 Software Issues

All of the computing done is this book was implemented in R. Within R, the
best CART implementation arguably is in the procedure rpart() in the R li-
brary rpart. It is a very powerful and flexible implementation, especially given
all of the other capabilities available in R. CART is also available in a number
of conventional statistical packages (e.g., SPSS), although the algorithms em-
ployed, the options provided, and user interfaces can vary dramatically. For
those readers who have not tried to use CART, it may be helpful to briefly
consider what the required inputs are likely to be.

1. The response variable needs to be specified, usually with information
about whether it is to be treated as quantitative or categorical. CART
software can sometimes get confused if the response is binary and repre-
sented by an indicator variable or some other numeric values. The safest
way to proceed in rpart(), for example, is to explicitly label binary out-
comes as a categorical variable (i.e., a factor).

2. The predictor variables, which can be quantitative, categorical, or both,
need to be specified. If categorical, it may be important to indicate that
explicitly. Otherwise, numerical values, really meant to be just category la-
bels, may be treated as an equal interval scale. Among the issues that usu-
ally need to be thought through is whether any product variable for inter-
action effects should be constructed and entered as predictors or whether
it is preferable to let CART construct interaction terms as needed.

3. The method, which usually means either a regression tree or a classifi-
cation tree, needs to be determined. There are sometimes other options
available for count data or survival data. Although some programs can
determine the proper method from the nature of the response variable
specified, it is usually a good idea to specify the method explicitly in a
separate argument. That way, the user knows for certain what method is
being used. Moreover, sometimes a CART algorithm will make the wrong
choice.

4. The fitting function to be minimized needs to be specified. Sometimes this
is determined when the method of analysis is selected and sometimes not.
In rpart() with a categorical response variable, one has to specify whether
the Gini index or the entropy is to be used.

5. The costs of false negatives and false positives need to be determined,
sometimes with an appropriate prior distribution, a loss matrix, or some
other means. It is also very important to understand what the defaults on
these costs are.

6. A penalty for complexity is often required. It may be the value of α or
some transformation of it. In rpart(), for example, the relevant parameter
is cp, a standardization of α. In the regression case, the value of cp is α
divided by the error sum of squares in the root node. In the classifica-
tion case, α is divided by the cost complexity R(T0) of the root node.
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The standardization makes the cp-value a fraction and allows for better
comparisons across the results from different response variables.

7. Other tuning parameters are often available, such as the maximum num-
ber of splits and the minimum sample size for terminal nodes. It is very
important to learn what the default values of the tuning parameters are.
Although they are usually set to reasonable values, one should not assume
that they are.

8. Often one can request predicted values either for the training data or
for test data, and specify what form they should take. For classification
trees, one usually has a choice between the predicted class or the predicted
probability of membership in a class.

9. There are usually a number of output options for different kinds of graph-
ics and summary tables. Which mix of outputs is appropriate depends on
the data analysis task. For example, a richer mix of tabular outputs will
often be needed the first time a training dataset is analyzed or if there
are suspicions about the quality of the data. Output issues also arise for
graphical output. For example, getting tree diagrams into a form that is
aesthetically pleasing and easy to read can take some doing.

10. It is also likely that any CART software will have its fair share of quirks.
With rpart(), for example, priors are entered as a list of the form c(.30,.70).
But which element of the list is for which category? Perhaps the arguments
should be entered as c(.70,.30). In rpart(), the proper sequence is deter-
mined by numerical or alphabetical order. For example, if the response is
coded “1” or “2”, c(.30,.70) assumes a prior distribution in which 30% of
the cases are 1s and 70% of the cases are 2s. If the response is coded “yes”
or “no,” c(.30,.70) assumes a prior distribution in which 30% of the cases
are no and 70% of the cases are for yes.

11. Programs will differ in how well they check for errors and how clearly they
communicate with the user when problems are discovered. Continuing
with the example of specifying priors, rpart() checks to see if they add
to 1.0 and if not, tells the user very clearly. It is far less apparent from
CART rpart() output if the loss matrix is constructed incorrectly.

3.16 Summary and Conclusions

CART can sometimes be an effective statistical learning tool. It is relatively
easy to use, builds directly on familiar regression procedures, does not demand
great computing power, and generates output that can be presented in an
accessible manner. CART also provides a useful way to introduce the costs of
classification errors. However, CART also has some important limitations.

First, if there is a true f(X) outside of the data on hand, there is no rea-
son to believe that CART’s f̂(X) will provide an unbiased estimate. Despite
the flexible ways in which CART can respond to data, substantial bias is a
real possibility. As noted many times already, if one is interested in the f(X),
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one needs X. And X must be well measured. But even if these demanding
prerequisites are met, the CART algorithm introduces some important con-
straints. The step functions used can badly misrepresent smooth functions of
X, and the conditional proportions or means in terminal nodes will usually
be determined in part by nearest neighbors that do not necessarily have the
same population value for the response variable. One’s best hope is that the
flexibility CART provides will produce a f̂(X) that is less biased than an
alternative derived from a parametric procedure.

Second, the splitting decisions can be very unstable. A few observations
can in some situations dramatically affect which variables are selected and the
precise values used for partitioning the data. Then, all subsequent partitions
can be affected. This instability is closely related to overfitting, which can
substantially limit the generalizability of the results. The findings from the
data examined may not generalize well to other random samples from the
same population (let alone to data from other populations). The problem of
overfitting is addressed head-on in the next chapter.

Third, even moderately elaborate tree diagrams will seriously tax substan-
tive understanding. The problem is not just complexity. CART is trying in a
single-minded manner to use associations in the data to maximize the homo-
geneity of its data partitions. How those associations come to be represented
may have nothing remotely to do with subject matter understandings or how
subject matter experts think about those associations.

For example, well-accepted theory and past empirical research may argue
strongly for a relatively smooth nonlinear relationship between a predictor
and a response. CART may represent the relationship as a complicated step
function. Even more confusing, the nonlinearities may be picked up in interac-
tion effects with other predictors, thanks to associations in the data among all
of the predictors and between the predictors and the response variable. The
splitting process imposes no subject matter constraints on how the nonlinear-
ities are captured. The subsetting can unfold within a single predictor (i.e.,
a step function) or within two more more predictors (i.e., interaction effects)
without regard for what can be sensibly interpreted.

More troubling, if there is no well-accepted theory or strong empirical
research to guide interpretation, the data analyst can be at the mercy of
the CART algorithm. Thus, interaction effects empirically revealed may force
interpretations that are essentially artifacts of how the subsetting was done.
In this case, researchers will not just be confused, but risk being led astray.

Fourth, the exploratory nature of CART and the substantial likelihood of
bias mitigates against the sensible use of statistical inference. Thus, the role
of random sampling error can be very difficult to integrate into any subject
matter conclusions. Assessments of the stability of the results can be very
helpful, but these are somewhat different from the familiar confidence intervals
and hypothesis test p-values.

In summary, it is important to distinguish between conditional means or
proportions and the tree structure. Using the tree structure to interpret how
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inputs are related to outputs is often a bad idea. Or put more constructively,
there needs to be strong subject matter information to protect against mis-
leading interpretations. If interest centers on the conditional means or pro-
portions alone, however, one can sometimes be more hopeful. Trees that differ
because of instability will often produce similar sets of fitted values. Thus if
CART is used solely as a classifier, the results may be helpful. But if there is
a need to explain why cases are classified as they are, the instability may be
debilitating.

Fortunately, there is more in the bag of statistical learning tricks than
CART. As we soon show, there is really no need to risk CART’s significant
limitations. One can do better and in the next chapter, we begin to consider
how.

Exercises

Problem Set 1

The purpose of this exercise is to provide an initial sense of how CART com-
pares to conventional linear regression.

1. To begin, construct a regression dataset with known properties:

x1=rnorm(300)
x2=rnrom(300)
error=2*rnorm(300)
y1=1+(2*x1)+(3*x2)+error

Apply conventional linear regression using lm(). Then apply rpart(), and
print the tree using text(). Compare the regression output to the way
in which the data were actually generated. Compare the tree diagram to
the way in which the data were actually generated. Compare how well
linear regression and CART fit the data. (This may take a little doing
depending on what summary measures of fit rpart() provides. One easy
option is to construct the fitted values with predict() and then regress
the fitted values on the observed values to get fit measure comparable to
those from the linear regression analysis.) What do you conclude about the
relative merits of linear regression and CART when the f(X) is actually
linear and additive?

2. Now, redefine the two predictors as binary factors and reconstruct the
response variable.

x11=(x1 > 0)
x22=(x2 > 0)
y=1+(2*x11)+(3*x22)+error
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Proceed as before comparing linear regression to CART. How do they com-
pare? What do you conclude about the relative merits of linear regression
and CART when the f(X) is actually a step function and additive?

3. Under what circumstances is CART likely to perform better than linear
regression? Consider separately the matter of how well the fitted values
correspond to the observed values and the interpretation of how the pre-
dictors are related to the response.

Problem Set 2

The goal of the following exercises is to give you some hands-on experience
with CART in comparison to some of the procedures covered in earlier chap-
ters. An initial hurdle is getting R to do what you want. Make generous use
of help(). Also, I have provided a number of hints along the way. However, I
have tried to guide you to results in the least complicated way possible and as
a consequence, some of the more subtle features of CART are not explored.
Feel free to play with these in addition. You can’t break anything.

Load the data set called “frogs” from the DAAG library. The data are
from a study of ecological factors that may affect the presence of certain frog
populations. The binary response variable is pres.abs. Use the help command
to learn about the data. For ease of interpretation, limit yourself to the fol-
lowing predictors: altitude, distance, NoOfPools, NoOfSites, avrain, meanmin
and meanmax.

1. Use logistic regression from glm() to consider how the predictors are re-
lated to whether frogs are present. Which predictors seem to matter? Do
their signs make sense?

2. Using the procedure stepAIC() from the MASS library with the default
for stepwise direction, find the model that minimizes the AIC. Which
predictors remain? Do their signs make sense?

3. Using table() or xtabs(), construct a confusion table for the model ar-
rived at by the stepwise procedure. The observed class is pres.abs. You
will need to assign class labels to cases to get the “predicted” class. The
procedure glm() stores under the name “fitted.values” the estimated con-
ditional probabilities of the presence of frogs. If the probability is greater
than .5, assign a “1” to that case. If the probability is equal to or less
than .5, assign a “0” to that case. Now cross-tabulate the true class by
the assigned class. What fraction of the cases is classified incorrectly? Is
classification more accurate for the true presence of frogs or the true ab-
sence of frogs? What is a rationale for using .5 as the threshold for class
assignment?

4. Using your best model from the stepwise procedure, apply the general-
ized additive model. Use smoothers for all of the predictors. Look at the
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numerical output and the smoothed plots. How do the results compare to
those from logistic regression?

5. Construct a confusion table for the model arrived at through GAM. Once
again, the observed class is pres.abs. Use the same logic as applied pre-
viously to determine the assigned class. What fraction of the cases is
classified incorrectly? Is classification more accurate for the true presence
of frogs or the true absence of frogs? How do these results compare to the
GLM results?

6. Going back to using all of the predictors you began with, apply CART
to the frog data via the procedure rpart() in the library rpart. For now,
accept all of the default settings. But it is usually a good idea to specify
the method (here, method= “class”) rather than let rpart() try to figure
it out from your response variable. Use the print() command to see some
key numerical output. Try to figure out what each piece of information
means. Use the plot() and text() commands to construct a tree diagram.
What predictors does CART select as important? How do they compare
with your results from GLM and GAM? How do the interpretations of
the results compare?

7. Use predict() to assign class labels to cases. You will need to use the help
command for predict.rpart() to figure out how to do this. Then construct a
confusion table for the assigned class and the observed class. What fraction
of the cases is classified incorrectly? Is classification more accurate for the
true presence of frogs or the true absence of frogs? How do these results
compare to the GLM and GAM results? If the three differ substantially,
explain why you think this has happened. Alternatively, if the three are
much the same explain why you think this has happened.

8. Run the CART analysis again with different priors. Take a close look at the
information available for rpart() using the help command. For example, for
a perfectly balanced prior in rpart() you would include parms=list(prior=
c(.50.50)). Try a prior of .5 for presence and then a prior of .30 for presence.
(For this rpart() parameter, the prior probability of 0 comes first and the
prior probability of 1 comes second.) What happens to the amount of
classification error overall compared to the default? What happens to the
ratio of false negatives to false positives? (To understand better what is
going on look again at Section 3.5.2.)

9. Using Equation 3.11 set the prior so that false negatives are ten times
more costly than false positives (with pres.abs = 1 called a “positive” and
pres.abs = 0 called a “negative”). Apply CART. Study the output from
print(), the tree diagram using plot() and text(), and the confusion table.
What has changed enough to affect your interpretations of the results?
What has not changed enough to affect your interpretations of the results?
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10. Construct two random samples with replacement of the same size as the
dataset. Use the sample() command to select at random the rows of data
you need and use those values to define a new sample with R’s indexing
capability, x[r,c]. For the two new samples, apply CART with the default
parameters. Construct a tree diagram for each. How do the two trees
compare to each other and to your earlier results with default settings?
What does this tell you about how stable your CART results are and
about potential problems with overfitting.

11. Repeat what you have just done, but now set the minimim terminal
node size to 50. You will need the argument control=rpart.control (min-
bucket=50)) in your call to rpart(). How do the three trees compare now?
What are the implications for overfitting in CART?

Problem Set 3

Here is another opportunity to become familiar with CART, but this time
with a quantitative response variable. From the library car, load the data
set “Freedman.” The dataset contains for 100 American cities the crime rate,
population size, population density, and percent nonwhite of the population.
The goal is to see what is associated with the crime rate.

1. Using the generalized additive model (GAM) from the library gam, regress
the crime rate on the smoothed values of the three predictors. Examine
the numerical output and the plots. Describe how the crime rate is related
to the three predictors.

2. Repeat the analysis using rpart() and the default settings. Describe how
the crime rate is related to the three predictors. How do the conclusions
differ from those using the generalized additive model?

3. Plot the fitted values from the GAM analysis against the fitted values from
the CART analysis. The fitted values for gam() are stored automatically.
You will need to construct the fitted values for CART using predict().
What would the plot look like if the two sets of fitted values corresponded
perfectly? What do you see instead? What does the scatterplot tell you
about how the two sets of fitted values are related?

4. Overlay on the scatterplot the least squares line for the two sets of fitted
values using abline(). If that regression line had a slope of 1.0 and an inter-
cept of 0.0, what would that indicate about the relationship between the
two sets of fitted values? What does that overlaid regression line indicate
about how the two sets of fitted values are related?

5. Using scatter.smooth(), apply a lowess smoother to the scatterplot of the
two sets of fitted values. Try several different spans. What do you conclude
about the functional form of the relationship between the two sets of fitted
values?
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6. For the GAM results and the CART results, use cor() to compute sepa-
rately the correlations between the fitted values and the observed values
for the crime rate. What procedure has fitted values that are more highly
correlated with the crime rate? Can you use this to determine which mod-
eling approach fits the data better? If yes, explain why. If no, explain why.


