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Regression Splines and Regression Smoothers

2.1 Introduction

This chapter launches a more detailed examination of statistical learning
within a regression framework. Once again, the focus is on conditional dis-
tributions. But now, the mean function for a response variable is central. How
does the mean vary with different predictor values? The intent is to begin
with procedures that have much the same look and feel as conventional linear
regression and gradually move toward procedures that do not.

2.2 Regression Splines

A “spline” is a thin strip of wood that can be easily bent to follow a curved
line (Green and Silverman, 1994: 4). Historically, it was used in drafting for
drawing smooth curves. Regression splines, a statistical translation of this
idea, are a way to represent non-linear, but unknown, mean functions.

Regression splines are not used a great deal in empirical work. As we show,
there are usually better ways to proceed. Nevertheless, it is important to
consider them, at least briefly. They provide an instructive transition between
conventional parametric regression and the kinds of smoothers commonly seen
in statistical learning.

2.2.1 Applying a Piecewise Linear Basis

For a piecewise linear basis, the goal is to fit the data with a broken line
(or hyperplane) such that at each break point the left-hand edge meets the
right-hand edge. When there is a single predictor, for instance, the fit is a set
of straight line segments, connected end to end, sometimes called “piecewise
linear.” Figure 2.1 is a simple illustration using three straight lines joined
end to end. There is a response variable represented by y and a predictor
represented by x. For now, only the fitted values are shown.
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Fig. 2.1. An illustration of piecewise linear function with two knots.

Constructing such a function for the conditional means is straightforward
in principle. First, one decides where the break points on x will be. If there is a
single predictor, as in this illustration, the break points might be chosen after
examining a scatter plot of y on x. When possible, subject matter expertise
should also be used to help determine the break points. For example, x might
be years, and then the break points might be determined by specific historical
events. Thus, y might be a measure of a river’s biodiversity, and x might
be time in months, with one breakpoint representing the removal of a major
dam and another breakpoint representing a toxic chemical spill. Let the break
points here be defined at x = a and x = b (with b > a). In Figure 2.1, a = 20
and b = 60. Such break points are often called “knots.”

The second step is to define two indicator variables to represent the break
points. Here, the first (Ia) is equal to 1 if x is greater 20 and equal to 0
otherwise. The second (Ib) is equal to 1 if x is greater than 60 and equal to 0
otherwise. We let xa be the value of x at the first break point, and xb be the
value of x at the second break point.

The third step is to define the mean function. Because at this point de-
scription is the primary goal, the conditional mean of y is represented by ȳ|x
rather than by E(y|x). The latter implies that Y is a random variable. For
now, it does not matter whether Y is a random variable. Then,

ȳ|x = β0 + β1x + β2(x − xa)Ia + β3(x − xb)Ib. (2.1)
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Looking back at Equation 1.15, it is apparent that there are four transforma-
tions of X, hm(X)s, in which the first function of x is a constant.

The mean function for x less than a is

ȳ|x = β0 + β1x. (2.2)

In Figure 2.1, β0 is zero, and β1 is positive.
For values of x greater than a but smaller than b, the mean function

becomes
ȳ|x = (β0 − β2xa) + (β1 + β2)x. (2.3)

For a positive β1 and β2, the line beyond x = a is steeper because the slope
is (β1 +β2). The intercept is lower because of the second term in (β0 −β2xa).
This too is consistent with Figure 2.1. If β2 is negative, the reverse would
apply.

For values of x greater than b, the mean function becomes,

ȳ|x = (β0 − β2xa − β3xb) + (β1 + β2 + β3)x. (2.4)

For these values of x, the slope is altered by adding β3 to the slope of the
previous line segment. The intercept is altered by subtracting β3xb. The sign
and magnitude of β3 determine if the slope of the new line segment is posi-
tive or negative and how steep it is. The intercept will shift accordingly. In
Figure 2.1, β3 is negative and large enough to make the slope negative. The
intercept is increased substantially.
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Fig. 2.2. A piecewise linear basis applied to water use by year.

Figure 2.2 shows a three-piece linear regression spline applied to water use
data from Tokyo over a period of 27 years. Residential water use in 1000s of
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cubic feet is on the vertical axis. Year is on the horizontal axis. The locations
of the break points were chosen after inspecting the scatterplot, with some
reliance on subject matter expertise about residential water use in Japan.

It is clear that water use was flat until about 1980, then increased lin-
early until about 1996, and then flattened out again. The first break point
may correspond to a transition toward much faster economic and population
growth. The second break point may correspond to the introduction of more
water-efficient technology. But why the transitions are so sharp is mysterious.
One possibility is that the break points correspond in part to changes in how
the water use data were collected or reported.

It is perhaps most common to see regression splines fit to data in which
time is used as the sole predictor. The end-to-end connections between line
segments lead naturally to processes that unfold over time. The line segment
on the right side of a knot begins where the line segment on the left side of
the knot ends. But there is nothing about linear regression splines requiring
that time be a predictor. For example, the response could be crop production
per acre and the sole predictor could be the amount of phosphorus fertilizer
applied to the soil. Crop production might increase in approximately a linear
fashion until an excess of phosphorus caused other kinds of nutritional diffi-
culties. At that point, crop yields might decline in roughly a linear manner.

Fitting line segments to data provides an example of “smoothing” a scat-
terplot, or applying a “smoother.” The line segments are used in place of the
data to characterize how x and y are related. The intent is to highlight key
features of any association while removing unimportant details. This can often
be accomplished by constructing fitted values in a manner that makes them
more homogeneous than the set of conditional means of y computed for each
unique value of x.

Imagine a scatterplot in which the number of observations was large
enough so that for each value of x there were at least several values of y. One
could compute the mean of y for each x-value. If one then drew a straight
line between each of the adjacent conditional means, the resulting smoother
would be an interpolation of the conditional means and as rough as possible.
At the other extreme, imposing a single linear fit on all of the means at once
would produce the smoothest smoother possible. Figure 2.2 falls somewhere
in between. How to think about the degree of smoothness more formally is
addressed later.

For a piecewise linear basis, one can simply compute functions such as
Equation 2.1 with ordinary least squares. With the regression coefficients in
hand, fitted values are easily constructed. Indeed, many software packages
compute and store fitted values on a routine basis. Also widely available are
procedures to construct the matrix of regressors, although it is not hard to do
so one term at a time using common transformation capabilities. For exam-
ple, the library spline has a procedure bs() that constructs a B-spline basis
(discussed later) that can be easily used to represent the predictor matrix for
piecewise linear regression.
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In contrast to most applications of conventional linear regression, there
would typically be little interest in the regression coefficients themselves; they
are but a means to an end. The point of the exercise is to superimpose the
fitted values on a scatterplot so that the relationship between y and x can be
more effectively visualized. As we show later, and as was briefly anticipated in
the last chapter, model selection will not necessarily be the same as regressor
selection.

2.2.2 Polynomial Regression Splines

Smoothing a scatterplot using a piecewise linear basis has the great advantage
of simplicity in concept and implementation. And by increasing the number of
break points, very complicated relationships can be approximated. However,
in most applications there are good reasons to believe that the underlying
relationship is much smoother than can be easily represented with a set of
straight line segments.

Greater continuity can be achieved by using polynomials in x for each
segment. Cubic functions of x are a popular choice because they strike a nice
balance between flexibility and complexity. When used to construct regression
splines, the fit is sometimes called “piecewise cubic.” The cubic polynomial
serves as a “truncated power series basis” in x.

Unfortunately, simply joining polynomial segments end to end is unlikely
to result in a visually appealing fit where the polynomial segments meet. The
slopes of the two lines will often appear to change abruptly even when that is
inconsistent with the data. Far better visual continuity usually can be achieved
by constraining the first and second derivatives on either side of each break
point to be the same.

Putting this all together, one can generalize the piecewise linear approach
and impose the continuity requirements. Suppose there are K interior break
points, usually called “interior knots.” These are located at ξ1 < · · · < ξK

with two boundary knots added at ξ0 and ξK+1. Then, one can use piecewise
cubic polynomials in the following regression formulation,

ȳ|x = β0 + β1x + β2x
2 + β3x

3 +
K∑

j=1

θj(x − xj)3+, (2.5)

where the “+” indicates the positive values from the expression inside the
parentheses, and there are K + 4 parameters whose values need to be com-
puted. This leads to a conventional regression formulation with a matrix of
predictor terms having K + 4 columns and N rows. Each row would have the
corresponding values of the piecewise cubic polynomial function evaluated at
the single value of x for that case. There is still only a single predictor, but
now there are K + 4 basis functions.

The output for the far-right term in Equation 2.5 may not be apparent
at first. Suppose the values of the predictor are arranged in order from low
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to high. For example, x = [1, 2, 4, 5, 7, 8]. Suppose also that xj is located at
an x-value of 4. Then, (x − xj)3+ = [0, 0, 0, 1, 27, 64]. The knot-value of 4 is
subtracted from each value of x, the negative numbers set to 0, and the others
cubed. All that changes from knot to knot is the value of xj that is subtracted.
There are K such knots and K such terms in the regression model.

Figure 2.3 shows the water use data again, but with a piecewise cubic
polynomial overlaid that imposes the two continuity constraints. The fit looks
quite good to the eye and captures about 95% of the variance in water use.
But, in all fairness, the scatterplot did not present a great challenge. The point
is to compare Figure 2.2 to Figure 2.3 and note the visual difference. The linear
piecewise fit also accounted for about 95% of the variance. Which plot would
be more instructive in practice would depend on the use to be made of the
fitted values and on prior information about what a sensible f(X) might be.
The regression coefficients ranged widely and, as to be expected, did not by
themselves add any useful information. The story was primarily in the fitted
values.
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Fig. 2.3. A piecewise cubic polynomial applied to water use by year.

2.2.3 Natural Cubic Splines

Fitted values for piecewise cubic polynomials near the boundaries of x can
be unstable because they fall at the ends of polynomial line segments where
there are no continuity constraints, and where there may be little data. By
“unstable” one means that a very few observations, which could vary over
random samples from the same population, produce substantially different
fitted values near the boundaries of x. As a result, the plot of the fitted values
near the boundaries could look rather different from sample to sample.
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Sometimes, constraints for behavior at the boundaries are added to in-
crease stability. One common constraint imposes linearity on the fitted values
beyond the boundaries of x. This introduces a bit of bias because it is very
unlikely that if data beyond the current boundaries were available, their re-
lationship with the response would be linear. However, the added stability
is often worth it. When these constraints are added, the result is a “natural
cubic spline.”
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Fig. 2.4. Natural cubic regression splines applied to water use by year.

Figure 2.4 shows again a plot of the water use data on year, but now
with a smoother constructed from natural cubic splines. One can see that the
fitted values near the boundaries of x are somewhat different from the fitted
values near the boundaries of x in Figure 2.3. The fitted values in Figure 2.4
are smoother, which is the desired result. There is one less bend near both
boundaries. More generally, how one can formulate the boundary constraints
is discussed in Hastie et al. (2001: Section 5.2.1).

The option of including extra constraints to help stabilize the fit provides
an example of the bias–variance tradeoff. This is a topic to which we return
many times in the pages ahead. For now, an informal overview for natural
cubic splines may be useful.

The bias–variance tradeoff addresses some important properties of fitted
values when the data are a random sample from a population or a realization
of a stochastic process. Bias and variance refer to what can happen over a lim-
itless number of hypothetical, independent, random samples or realizations;
the context is the usual frequentist thought experiment. Therefore, the bias–
variance tradeoff is only directly relevant when statistical inference is on the
table and does not formally provide much insight when summary statistics
are being used solely for description.
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When constraints are imposed on a fitting process to make the fitted values
less variable, bias in the fitted values can be introduced. The means of the
fitted values over many samples or realizations will often be farther from
the true conditional means of the response variable, which are the values
one wants to estimate. However, in repeated independent random samples, or
independent realizations of the data, the fitted values will vary less. When the
fit is smoother, each fitted value is constructed, in effect, from a larger number
of y-values. This increases stability in the same way that larger samples in
general provide estimates with a smaller variance. Conversely, but using the
same reasoning, a rougher fit can imply less bias but more variance over
repeated samples or realizations. A tradeoff naturally follows.

Ideally, just the right amount of bias can be combined with just the right
amount of variance so that over repeated random samples or realizations, the
fitted values would be on the average as close to true response variable values
as possible. “Close” can be operationalized in several ways, but it is often
desirable to work with a test sample and then try to minimize the mean of
the squared deviations between the fitted values and the observed values of
the response variable (i.e., the mean squared error in a test sample).

For piecewise cubic polynomials and natural cubic splines, the degree of
smoothness is primarily a function of the number of interior knots. In practice,
the smaller the number of knots, the smoother are the fitted values. A smaller
number of knots means that there are more constraints on the pattern of
fitted values because there are fewer end-to-end, cubic line segments used in
the fitting process. Consequently, less provision is made for potential twists
and turns.

But placement matters too. Ideally, knots should be located where it is
thought that the f(X) is changing most rapidly. In some cases, inspection of
the data, coupled with subject matter knowledge, can be used to determine
the number and placement of knots. The water use data just considered were
analyzed in this manner.

Alternatively, the number and placement of knots can be approached as a
model selection problem. Any of the fit statistics discussed in the last chapter,
such as the GCV, can be used to determine the number of knots, given a set
of candidate locations. The number of knots translates into a penalty for the
number of regression parameters whose values are being estimated from the
data. The penalty increases with the number of knots, just as the penalty
would normally increase with the number of regression parameters whose
values were not known a priori. Then, the goal is to choose the knot number
that minimizes the fit statistic. Knot selection is essentially regressor selection.
In other words, a set of potential knots is specified, and fit statistics are used
to determine which knots are really needed.

The fit statistics are largely silent on where to place the knots. Two models
with the same number of knots can produce very different fitted values if
the placement of the knots substantially differs. Two models with a very
different number of knots may fit the data about the same, depending on
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where the knots are placed. Moreover, absent subject matter information, knot
placement has been long known to be a difficult technical problem, especially
when there is more than one predictor (de Boors, 2001). The fitted values
are related to where the knots are placed in a very complicated manner.
Fortunately, methods discussed later sidestep the knot location problem.

Even if a good case for candidate knot locations can be made, one must
be careful about taking any of the fit measures too literally. First, there will
often be several models with rather similar values, whatever the kind of fit
statistic used. Then, selecting a single model as “best” using the fit measure
alone may amplify a small numerical superiority into a large difference in the
results, especially if the goal is to interpret how the predictors are related to
the response. Some jokingly call this “specious specificity.” Second, the same
issues can arise when comparing the models selected by the different kinds of
fit statistics. The impact of very small differences in fit can lead to very large
difference in the results. Third, one must be a very careful to not let small
differences in the fit statistics automatically trump subject matter knowledge.
The risk is arriving at a model that may be difficult to interpret, or effectively
worthless.

In summary, for regression splines of the sort just discussed, there is no
straightforward way to arrive at the best tradeoff between the bias and the
variance because there is no straightforward way to determine knot location.
A key implication is that it is very difficult to arrive at a model that is demon-
strably the best. Fortunately, there are other approaches to smoothing that
are more promising.

2.2.4 B-Splines

In practice, data analyses using piecewise cubic polynominals and natural cu-
bic splines are rarely constructed directly from polynomials of x. They are
commonly constructed using a B-spline basis, largely because of computa-
tional convenience. A serious discussion of B-splines would take us far afield
and accessible summaries can be found in Gifi (1990) and Hastie et al. (2001).
Nevertheless several observations are worth making.

The goal is to construct transformations of x that allow for a cubic piece-
wise fit but that have nice numerical properties and are easy to manipulate.
B-splines do well by all three criteria. They are computed in a recursive man-
ner from very simple functions to more complex ones, and consistent with the
approach to basis functions taken here, can be represented as a linear basis
expansion.

For a series of knots, which usually include several beyond the upper and
lower boundaries of x, indicator variables are defined for each region marked
off by the knots. If a value of x falls within a given region, the indicator
variable for that region is coded 1, and coded 0 otherwise. For example, if
there is a knot at an x-value of 2 and the next knot at an x-value of 3, the
x-values between them form a region with its own indicator variable coded 1
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Fig. 2.5. Degree zero B-splines.

if the value of x falls in that region (e.g., x = 2.3), and coded 0 otherwise.
The result is a set of indicator variables, with values of 1 or 0, for each region.
These indicator variables define a set of degree zero B-splines.

Figure 2.5 is an illustration with interior knots at -2, -1, 0, 1, and 2. Using
the indicator variables as regressors will produce a step function when y is
regressed on x; they are the basis for a step function fit. The steps will be
located at the knots.

Next a transformation can be applied to the degree zero B-splines. (See
Hastie et al., 2001: 160–163). The result is a set of degree one B-splines.
Figure 2.6 shows the set of degree one B-splines derived from the indicator
variables shown in Figure 2.5. The triangular shape is characteristic of degree
one B-splines, and implies that the values for each spline are no longer just 0
or 1, but proportions in between as well.

Degree one B-splines are the basis for linear piecewise fits. Here, the re-
gressor matrix includes eight columns whose values appear in Figure 2.6. The
content of each column is the B-spline values for each value of x. Regressing
a response on that matrix will produce a linear piecewise fit with knots at -2,
-1, 0, 1, and 2.

A transformation of the same form can now be applied to the degree one
B-splines. This leads to a set of degree two B-splines that are the basis for a
quadratic piecewise fit. For this illustration, there is now a matrix with nine
columns that can serve as a regressor matrix. The set of such B-splines is
shown in Figure 2.7 and as before, the shapes are characteristic.
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Fig. 2.6. Degree one B-splines.
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Fig. 2.7. Degree two B-splines.
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Fig. 2.8. Degree three B-splines.

The same kind of transformation can then be applied to the degree two
B-splines. The result is a set of degree three B-splines that are the basis
for a cubic piecewise fit. Figure 2.8 shows the set of degree three splines,
whose shapes are, once again, characteristic. They can be used to construct a
regressor matrix with nine columns.

All splines are a linear combinations of B-splines; B-splines are a basis
for the space of all splines. They are also a well-conditioned basis because
they are fairly close to orthogonal, and they can be computed in a stable and
efficient manner. For our purposes, the main point is that B-splines are a
computational device used to construct cubic piecewise fitted values. When
such smoothers are employed, B-splines are doing the work behind the scenes.

2.3 Penalized Smoothing

The placement of knots, the number of knots, and the degree of the polyno-
mial are subject to manipulation by a data analyst. All three can be used
to construct a highly flexible fitting function that will track the data well.
Because a good fit is typically considered desirable, there is sufficient reason
in practice to worry about overfitting. The pull toward constructing a good
fit can be very strong.

The fit statistics considered earlier can provide some protection against
overfitting. They can help compensate for the amount of flexibility built into
a given fitting function. However, they function indirectly. They are applied
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after a model has been constructed to obtain a more honest measure of fit
quality that can sometimes inform future fitting attempts.

A useful alternative is to alter the fitting process itself so that potential
overfitting of a given model comes at a price. In particular, a penalty can
be introduced into the loss function to be optimized that imposes increasing
losses with increasing flexibility, regardless of how well the model is otherwise
doing. In part because this approach has wide applicability, it is worth our
attention now. Penalized fitting procedures figure significantly in this and
later chapters.

2.3.1 Shrinkage

All of the procedures discussed in this chapter can be formulated as a con-
ventional regression analysis. The procedures vary in the regressor matrix
employed and how that matrix is determined. Whatever the regressor matrix
used, there will be a set of regression coefficients. The larger the absolute value
of these coefficients, other things being equal, the more the fitted values can
vary.

To get some feel for this, consider a conventional regression analysis with
an indicator variable as the sole regressor. If its regression coefficient equals
zero, the fitted values will be a straight line, parallel to the x-axis, located at
the unconditional mean of the response. As the regression coefficient increases
in absolute value, the resulting step function will have a step of increasing size.
The fit becomes more rough. More generally, the potential for rougher fit is
greater with larger regression coefficients. Insofar as the roughness results from
fitting idiosyncratic features of the data, there is overfitting. There are situa-
tions, therefore, in which it can be useful to control how large the regression
coefficients are allowed to become.

A number of proposals have been offered for how to control the magnitude
of regression coefficients. (See Ruppert et al., 2003: Section 3.5 for a very
accessible discussion. Two popular suggestions are

1. Constrain the sum of the absolute values of the regression coefficients to
be less than some constant C (sometimes called an L1–penalty).

2. Constrain the sum of the squared regression coefficients to be less than
some constant C (sometimes called an L2–penalty).

The smaller the value of C is, the smaller the sum. The smaller the sum,
the smaller is the typical magnitude of the regression coefficients. In part
because the units in which the regressors are measured will affect how much
each regressor contributes to the sum, it can make good sense to work with
standardized regressors. The intercept does not figure in either constraint and
is usually addressed separately.

Both constraints lead to “shrinkage methods.” The regression coefficients
can be “shrunk” toward zero, making the fitted values more homogeneous.
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The goal is to introduce a small amount of bias into the computed regression
coefficients in trade for a substantial reduction in their variance. There may
also be subject matter reasons for preferring a smoother set of fitted values.
Subject matter theory and/or past research may suggest that the response is
a relatively smooth function of the predictors.

Shrinkage methods can be applied with the usual regressor matrix or with
regressor matrices of the sorts we have considered in this chapter. With our
focus on statistical learning, the latter is emphasized shortly. We start, how-
ever, within a conventional multiple regression framework and p predictors.
We show that there can be two somewhat different goals: to construct more
stable fitted values and to determine which regressors can be included as pre-
dictors. Shrinkage methods can be viewed as a form of “regularization,” which
figures significantly in later chapters.

One also can recast some measures of fit discussed in the last chapter
within a shrinkage framework. The total number of regression coefficients to
be estimated can serve as a constraint and is sometimes called an L0–penalty.
Maximizing the adjusted R2, for example, can be seen as maximizing the
usual error sum of squares subject to a penalty for the number of regression
coefficients in the model (Fan and Li, 2006).

Ridge Regression

Suppose one adopts the constraint that the sum of the p squared regression
coefficients is less than C. The L2 constraint leads directly to ridge regression.
The task is to obtain values for the regression coefficients so that

β̂ = min
β

⎡⎣ n∑
i=1

(yi − β0 −
p∑

j=1

xijβj)2 + λ

p∑
j=1

β2
j

⎤⎦ . (2.6)

In Equation 2.6, the usual expression for the error sum of squares has a new
component. That component is the sum of the squared regression coefficients
multiplied by a constant λ. When Equation 2.6 is minimized in order to obtain
β̂, the sizes of the squared regression coefficients are taken into account.

For a given value of λ, the larger the
∑p

j=1 β2
j is, the larger the increment

to the error sum of squares. The
∑p

j=1 β2
j can be thought of as the penalty

function. For a given value of
∑p

j=1 β2
j , the larger the value of λ is, the larger

the increment to the error sum of squares; λ determines how much weight is
given to the penalty. In short,

∑p
j=1 β2

j is what is being constrained, and λ
imposes the constraint. C is inversely related to λ. The smaller the value of
C, the larger is the value of λ.

It follows that the ridge regression estimator is

β̂ = (XT X + λI)−1XT y, (2.7)

where I is a p×p identity matrix. The column of 1s for the intercept is dropped
from X.
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In Equation 2.7, λ plays same role as in Equation 2.6, but can now be seen
as a tuning parameter. It is not an estimate of some feature of a population or
a stochastic process. Its role is to help provide an appropriate fit to the data
and can be altered directly by the data analyst. As such, it has a different
status from the regression coefficients, whose values are determined through
the minimization process itself, conditional upon the value of λ.

The value of λ is added to the main diagonal of the cross-product matrix
XT X, which determines how much the estimated regression coefficients are
“shrunk” toward zero (and hence, each other). A λ of zero produces the usual
least squares result. As λ increases in size, the least squares regression coef-
ficients approach zero, and the fitted values are smoother. In effect, the vari-
ances of the predictors are being increased with no change in the covariances
between predictors or with the response variable. This is easy to appreciate in
the case of a single predictor. For a single predictor, the regression coefficient
is the covariance of the predictor with the response divided by the variance of
the predictor. So, if the covariance is unchanged and the variance is increased,
the absolute value of the regression coefficient is smaller.

The results are not invariant to the scales used for the predictors; the re-
gression coefficients obtained will differ in a complicated manner depending
on the units in which the predictors are measured. It is common, therefore,
to standardize the predictors before the estimation begins. However, stan-
dardization is just a convention and does not solve the problem of the results
being scale-dependent. Knowing how much the average response changes in
standard deviation units for a one standard deviation change in a predictor
conveys little unless one also knows the size of the two standard deviations.
And those standard deviations are scale-dependent.

A key issue is how the value of λ is chosen. One option is trial and error.
Different values of λ are tried until the desirable amount of smoothness is
achieved. Alternatively, the value of λ is selected by some measure of predic-
tion error such as the cross-validation statistic. The value of λ is chosen to
maximize prediction accuracy. Both methods can lead to overfitting insofar
as many different models are applied to the training data.

What one makes of output from a ridge regression depends substantially
on the usual issues. If estimation is an important goal, one must be able to
credibly argue that for each configuration of x-values, one can treat the data
on hand as a random sample or realization, as discussed earlier. Then, one
must meet the usual regression assumptions. If, for example, there are omitted
predictors, whether the resulting biases are likely to be large enough to matter
in practice would need to be addressed on a case-by-case basis.

However, ridge regression introduces some additional complications. The
estimates of the regression coefficients and hence, the fitted values, are biased
by design. If hypothesis tests are undertaken and conventional regression out-
put used, the reported p-values are no longer accurate. And if conventional
confidence intervals are constructed, they do not have their usual coverage.
The regression estimates are necessarily offset by a systematic but unknown
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amount. We return to this matter a little later after other shrinkage procedures
are discussed.

Ridge regression was first developed to address the instability of estimated
regression coefficients when regressors are highly correlated. It is now appreci-
ated that the applications are broader. Here, we are interested at least as much
in description as in estimation, and ridge regression provides one means to al-
ter the smoothness of the fitted values. Also, shrinkage methods can be given
a Bayesian interpretation in which the regression coefficients are shrunk to-
ward a prior joint distribution of the regression coefficients. Some researchers
find this instructive.

The Lasso

Suppose that one now adopts the constraint that the sum of the absolute val-
ues of the regression coefficients is less than some constant. The L1 constraint
leads to a regression procedure known as the lasso (Tibshirani, 1996) whose
estimated regression coefficients are defined by

β̂ = min
β

⎡⎣ n∑
i=1

(yi − β0 −
p∑

j=1

xijβj)2 + λ

p∑
j=1

|βj |
⎤⎦ . (2.8)

Unlike the ridge penalty, the lasso penalty leads to a nonlinear estimator,
and a quadratic programming solution is needed. As before, the value of λ
is a tuning parameter, determined empirically, usually through some measure
of prediction error. Just as with ridge regression, a λ of zero yields the usual
least squares results. As the value of λ increases, the regression coefficients
are shrunk toward zero.

Hastie and his colleagues (2001: Section 3.4.5) place ridge regression and
the lasso in a larger context in order to compare them to each other and
to other procedures. A major interest is the patterns of shrinkage as the λ
changes. Ridge regression tends to shrink the coefficients so that they all reach
zero together as λ gets large. The lasso shrinks the coefficients so that some
reach zero well before others as λ gets large. Thus, the lasso performs in a
manner that has some important commonalities with model selection proce-
dures used to choose a subset of regressors. Rosset and Zhu (2007) consider
the path that the regression coefficients take as the value of λ changes, place
the lasso in a class of regularization processes in which the solution path is
piecewise linear, and then develop a robust version of the lasso. Wang et al.
(2007) combine quantile regression with the lasso to derive another robust
variable selection approach. We show later that the lasso has some interesting
connections to boosting. In short, the lasso is more than a regularization pro-
cedure. It can help to provide useful insights about a wide variety of statistical
tools.

Of late, there has been a lot of interest in the theoretical properties of the
lasso and related procedures (Fan and Li, 2006; Meinshausen and Bühlmann,
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2006). In particular, assuming that one has a set of predictors that includes
all of those that belong in the model, as well as some number of irrelevant
predictors, a key question is whether the lasso selects the correct predictors,
at least as the sample size increases without limit. At this point, the answer
seems to be sometimes it does and sometimes it does not. In particular, cer-
tain patterns of moderate to high correlations between predictors can lead to
inappropriate predictors being selected along with the correct ones. Moreover,
it can be very difficult to know with a real dataset whether or the problem-
atic relationships between the predictors exist. In part as a response, Zou
(2006) has proposed the adaptive lasso, which in theory is an improvement.
The wrinkle is to employ “cleverly chosen” weights for the regression coef-
ficients in the L1 penalty function (Zou, 2006: section 3.1). The weights, in
turn, are determined by another tuning parameter (in addition to λ). Finally,
concerns have been raised about how well the lasso performs when there are
heavy-tailed disturbance distributions or outliers. One response is to combine
the lasso with quantile regression so that larger residuals are given relatively
less weight in the fitting process (Wang et al., 2007).

In practice, the overriding problem with the lasso is the usual one: the
underlying regression formulation has to be effectively correct. The data were
in fact generated by a process represented with sufficient accuracy by a par-
ticular linear regression model. It is just that one has a dataset that includes
not only the correct regressors but some incorrect ones, and the data analyst
does not know which is which. The proper kind of shrinkage will reveal which
regressors belong in the model. Alternatively, one has precisely the correct
predictors in the dataset, but better performing estimates might be obtained
through regularization. In either case, however, statistical inference for the
lasso suffers from the same complications as ridge regression. Conventional
expressions for confidence intervals and hypothesis tests do not apply.

The Elastic Net

If an important goal of a regression data analysis is to reduce the complexity
of the model, the lasso has some advantages over ridge regression. But the
lasso can also run into problems (Zou and Hastie, 2005). For example, when
the number of predictors is larger than the number of observations (which
is common with microarray data), the number of predictors selected cannot
exceed the number of observations. In addition, there are the problems already
noted with the selection of some inappropriate predictors.

In response to these difficulties, Zou and Hastie (2005) combine the penal-
ties from ridge regression and the lasso. The result, called the elastic net,
is

β̂ = min
β

⎡⎣ n∑
i=1

(yi − β0 −
p∑

j=1

xijβj)2 + λ1

p∑
j=1

|βj | + λ2

p∑
j=1

β2
j

⎤⎦ . (2.9)
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Minimization of Equation 2.9 produces what Zou and Hastie (2005) call
“naive” coefficients that need to be adjusted further. The adjustment is simple,
and some initial applications and simulations suggest that the elastic net
can improve on the lasso. Of course, the regression model still needs to be
credible, and even if it is, conventional expressions for confidence intervals
and hypothesis tests are inappropriate.

The Dantzig Selector

The Dantzig Selector is another shrinkage estimator that can be used for
variable selection (Candes and Tao, 2007). It seems to perform especially well
when the number of predictors is large relative to the number of observations
and even allows for the number of predictors to be larger than the number of
observations. One must assume that the true set of regression coefficients is
“sufficiently sparse” so that a substantial number of predictors actually have
regression coefficients of zero. In effect, this guarantees identifiability. If in
practice the linear regression model specified satisfies all of the usual assump-
tions, save for including a relatively large number of unnecessary predictors,
the Dantzig Selector can find the predictors with regression coefficients equal
to zero.

The Dantzig Selector has the following formulation.

β̂ = min
β

p∑
j=1

|βj | subject to
n∑

i=1

|xijri| < λ (2.10)

for j = 1, 2, . . . , p, where the predictors have been standardized to z-scores, ri

is the usual regression residual, λ is a tuning parameter, and p is the number
of predictors.

The Dantzig Selector, like the lasso, uses the sum of the absolute values
of the regression coefficients as an argument. Minimizing the sum of the ab-
solute values of the regression coefficients can produce regression coefficients
that are exactly zero, and therefore, the associated predictors are removed
from the analysis. But the key idea is that

∑n
i=1 |xijri| captures any associa-

tion between the residuals and each predictor in turn. When for each predictor∑n
i=1 |xijri| = 0, one has the usual least squares solution in which by construc-

tion, the predictors are unrelated to the residuals. With
∑n

i=1 |xijri| > 0, bias
is introduced because one or more predictors is associated with the residuals.
By setting the value of λ, one can introduce varying degrees of association
between each predictor and the residuals, and varying degrees of bias in the
estimated regression parameters.

Work by Gareth and Radchenko (2007) extends applications of the Dantzig
Selector to the entire generalized linear model. It may also be a useful tool
when applied to functional linear regression (Gareth and Zhu, 2007). An im-
portant insight is that the Dantzig Selector can be formulated within a maxi-
mum likelihood framework such that the tuning parameter allows the partial
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derivatives of the likelihood function with respect to the regression coefficients
to be nonzero. Consequently, the solution is moved away from the maximum
likelihood result. As before, some bias is introduced that can shrink the ap-
propriate regression coefficients to zero.

To date, hands-on experience with the Dantzig Selector is very limited
and it is not clear how the Dantzig Selector performs compared to obvious
competitors such as the lasso (Efron et al., 2007; Meinshausen, 2007) In ad-
dition, potential insights into statistical learning have yet to be well explored
(Cai and Lv, 2007). However, the ideas built into the Dantzig Selector are
provocative, and it may have a bright future.

Regularization and Derivative Expectation Operator: Rodeo

Rodeo is perhaps the most recent entry into the shrinkage sweepstakes (Laf-
ferty and Wasserman, 2008). It is related to adaptive smoothing, which is
discussed later in this chapter, as a result, and to the lasso. The goal is to
apply shrinkage to nonparametric regression, also discussed shortly, so that
irrelevant predictors can be identified and removed. Rodeo assumes, as before,
that one has in the data all of the correct regressors and some additional ones.
The irrelevant predictors make the full set of predictors “sparse.”

It is difficult to be very specific before nonparametric regression is more
fully discussed, but the basic approach can be easily described. Suppose there
is a single predictor. The degree of smoothness for the computed f(X) is varied
starting with a very smooth f(X) and gradually making it more rough. If on
the average the fitted values are much the same regardless of the degree of
smoothing, that predictor is not meaningfully related to the response. Smooth,
rough or in between, the f(X) does not change significantly. Conversely, if on
the average the fitted values vary substantially as the degree of smoothness
changes, the predictor is meaningfully related to the response. The degree of
smoothness matters for the f(X).

Now imagine having p predictors. If changing the degree of smoothing has
little impact on the average fitted value for a given predictor, one can conclude
that that predictor is not relevant. If changing the degree of smoothing has a
large impact on the average fitted value for a given predictor, one can conclude
that that predictor is relevant.

As a practical matter, rodeo begins with a very smooth version of the
f(X). Gradually, the f(X) is made less smooth for each predictor. For any
predictor and given amount of smoothness, there is an aggregate derivative
over observations representing how much the f(X) changes with infinitesimal
changes in the amount of smoothing. When for any predictor the derivative is
smaller than some threshold for that predictor, the predictor is deleted from
the model. Ideally, the irrelevant predictors are deleted first leaving behind
the relevant predictors.

It is far too early to know how effective rodeo will be in practice. More
important for now is its conceptual structure. All of the shrinkage proce-
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dures considered thus far place constraints on regression coefficients, which
as derivatives represent how the average response changes as a function of
an infinitesimal change in predictor values. Rodeo places constraints on how
much the average response changes with infinitesimal changes in the amount
of smoothing. More generally, rodeo addresses shrinkage for nonparametric
regression. This provides a useful transition to smoothing splines, which are
addressed shortly.

2.3.2 Shrinkage and Statistical Inference

If the data used in a shrinkage procedure have been generated by random
sampling or by a known stochastic process, statistical inference may be called
for. As mentioned earlier, however, shrinkage estimates present special prob-
lems. Even if the regression model meets the requisite assumptions, shrinkage
introduces bias by design. If the regression estimates are biased, conventional
confidence intervals will not have their advertised coverage. For example, the
95% confidence interval for a particular regressioncoefficient will not contain
the true value for that regression coefficient 95% of the time. The estimate is
offset by some unknown amount so that the actual coverage will be less than
95%. Similar problems exist for hypothesis tests. The disparity between the
null hypothesis and the sample statistic will be either too large or too small
because of the offset caused by the bias. As a result, the computed p-values
will be too large or too small as well.

Recall that the traditional goal of shrinkage is to construct sample es-
timates as close as possible to their population counterparts by the mean
squared error criterion. The uncertainty estimates, therefore, risk confounding
the variance with the bias. This can mean that a sensible confidence interval
needs to take both into account if the usual coverage is to be represented.
Likewise, sensible tests need to produce p-values that respond to both.

Because the nature of the bias is unknown, there is no easy fix. All one
can know for sure is that the conventional procedures by which one constructs
confidence intervals or performs hypothesis tests will be incorrect and that
statistical inference reported by the regression software is likely to be incorrect
as well.

In some settings, it can be prudent to reduce aspirations. One can focus
on the variance alone. If the question solely is how much instability there is
in the estimates of the regression coefficients or the fitted values, the bias is
not longer formally relevant (Buja and Rolke, 2007). It follows that bootstrap
samples of the observations (i.e., of Y and of X) can be used, much as with the
simple percentile method, to construct useful intervals, which are in theory
covering properly the values of the population parameters shifted up or down
by the shrinkage. The target is no longer the “truth.”

There also seems to be the prospect of useful alternative procedures based
on Stein estimators and empirical Bayes methods (Carlin and Louis, 1996).
The basic idea is that if one computes the conditional mean for a small region
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defined by predictor values, that estimate will likely be reasonably unbiased
with respect to the true conditional mean in that region. The difference be-
tween that value and the average of the shrunken fitted values in the region
can provide a useful approximation of the direction and size of the bias. That
approximation can then be combined with an estimate of the variance to con-
struct improved confidence intervals and tests (Brown et al., 2005). To date,
this approach has only been developed for single predictors, but extensions to
multiple predictors seem possible.

In summary, statistical inference for shrinkage estimates is largely an un-
solved problem. At the very least, there seems to be no consensus on how best
to undertake statistical inference on shrinkage estimates when there is a need
to consider the impact of the bias. Similar issues can arise for a number of the
procedures considered in later chapters.

2.3.3 Shrinkage: So What?

When shrinkage is applied to conventional regression estimates there can be,
as noted earlier, two goals. First, one might be interested in model selection.
The lasso and the elastic net can provide useful alternatives to conventional
model selection procedures, such as nested statistical tests, if their assump-
tions are approximately met. Shrinkage is used to select the regressors and
then a conventional regression equation is estimated. However, problems dis-
cussed earlier about postmodel selection statistical inference remain, and there
is never any guarantee, regardless of the method, that the model selected will
make scientific or policy sense. There is no necessary correspondence between
the statistical criteria and good science or good policy. The models that result
should be seen as highly provisional.

Second, one might be interested in striking a good balance between the
bias and the variance; the problem is not model selection in the usual sense.
Then, whether ridge regression, the lasso, or the elastic net (or some other
penalty formulation) should be strongly preferred is less clear. A lot depends
on the properties of the data on hand (Zou and Hastie, 2005).

In short, shrinkage procedures at this point look to be primarily niche
players in routine data analysis. They have some promise for model selection
and for addressing the bias–variance tradeoff in conventional regression. The
major reason why shrinkage has been discussed here is that imposing penal-
ties on the fitting process to smooth the fitted values is more generally useful.
In addition, the issues that shrinkage raises, and the concepts shrinkage intro-
duces, play an important role in more advanced smoothers, and in procedures
considered in later chapters. There are also some interesting applications that
are beyond the scope of this book. For example, Zou, Hastie, and Tibshirani
(2006) apply the elastic net to principal components analysis.
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2.4 Smoothing Splines

For the spline-based procedures considered thus far, the number and location
of knots had to be determined a priori or in the case of the number of knots,
by some measure of fit. We now consider an alternative that does not require
a priori knots. A key feature of this approach is to effectively saturate the
predictor space with knots and then protect against overfitting by constraining
the impact the knots can have on the fitted values. The influence that knots
can have can be diluted; the initial number of knots does not have to change
but the impact of some can be shrunk to zero. The key is a somewhat different
kind of penalty for undue complexity.

We begin by requiring that for our single predictor and response variable,
there is a function f(X) with two derivatives over its entire surface. This is a
common assumption in the statistical learning literature and in practice does
not seem to be particularly restrictive. The goal is to minimize a “penalized”
error sum of squares of the form

RSS(f, λ) =
N∑

i=1

[yi − f(xi)]2 + λ

∫
[f ′′(t)]2dt, (2.11)

where λ is, as before, a tuning parameter. The first term on the righ-hand
side captures how close the fitted values are to the actual values of y. It is just
the usual error sum of squares. The second imposes a cost for the complexity
of the fit. The integral quantifies the roughness penalty, and λ determines
the weight given to that penalty in the fitting process. At one extreme, as
λ increases without limit, the fitted values approach the least squares line.
Because no second derivatives are allowed, the fitted values are as smooth
as they can be. At the other extreme, as λ decreases toward zero, the fitted
values approach an interpolation of the values of the response variable.

Equation 2.11 addresses the bias–variance tradeoff head-on. When λ is
larger, the fitted values are smoother, with the likely consequence of more
bias and less variance. When λ is smaller, the fitted values are rougher with
the likely consequence of less bias and more variance. Thus, the value of λ can
be used in place of the number of knots to tune the bias–variance tradeoff.

For a given value of λ, Equation 2.11 can be minimized. Hastie et al. (2001:
Section 5.4) explain that a unique solution results, based on a set of natural
cubic splines with N knots. This assumes that there are N distinct values of
x. There will be fewer knots if there are less than N distinct values of x.

It follows that

f(x) =
N∑

j=1

Nj(x)θj , (2.12)

where θj is a set of weights, Nj(x) is an N -dimensional set of basis functions
for the natural cubic splines being used, and j stands for the number of knots,
of which there can be a maximum of N .
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Consider the following toy example, in which x takes on values 0 to 1 in
steps of .20. In this case, j = 6, and Equation 2.12, written as f(x) = Nθ,
takes the form of

f(x) =

⎛⎜⎜⎜⎜⎜⎜⎝
−.267 0 0 −.214 .652 −.429
.591 .167 0 −.061 .182 −.121
.158 .667 .167 −.006 .019 −.012
0 .167 0.667 .155 .036 −.024
0 0 .167 .596 .214 .024
0 0 0 −.143 .429 .714

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
θ1

θ2

θ2

θ4

θ5

θ6

⎞⎟⎟⎟⎟⎟⎟⎠ . (2.13)

Equation 2.11 can be rewritten using a natural cubic spline basis and then
the solution becomes

θ̂ = (NT N + λΩN )−1NT y, (2.14)

with [ΩN ]ij =
∫

N ′′
j (t)N ′′

k (t)dt, where the second derivatives are for the func-
tion that transforms x into its natural cubic spline basis. [ΩN ] has larger
values where the predictor is rougher, and given the linear estimator, this is
where the fitted values are rougher as well. The penalty is the same as in
Equation 2.11.

Equation 2.14 can be seen as a generalized form of ridge regression. With
ridge regression, for instance, [ΩN ] is an identity matrix. In practice, N is
replaced by a basis of B-splines that is used to compute the natural cubic
splines.

The requirement of N knots may seem odd because it appears to imply
that N degrees of freedom are used up. However, for values of λ greater than
zero, the resulting smoother is shrunk toward a linear fit. In other words,
whenever the penalty for complexity comes into play, it makes the fitted values
more smooth, and in so doing, reduces the number of degrees of freedom
actually used up. Larger values of λ mean that fewer degrees of freedom are
lost.

As with the number of knots, the value of λ can be determined a priori
or through model selection procedures. One common approach is based on
N -fold (drop-one) cross-validation, briefly discussed in the last chapter. The
value of λ is chosen so that

CV(f̂λ) =
N∑

i=1

[yi − f̂
(−i)
i (xi)]2 (2.15)

is as small as possible. Recall that f̂
(−i)
i (xi) is the fitted value with case i

removed. Using the CV to select λ is one automated way to find a promising
balance between the bias and the variance in the fitted values. However, all
of the earlier caveats apply.
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2.4.1 An Illustration

To help fix all these ideas, we turn to an application of smoothing splines.
Figure 2.9 shows a smoothed scatterplot based on equations 2.11 and 2.15.
The data come from seven Japanese cities from 1973 through 1999. The re-
sponse variable is residential water use in 1000s of cubic feet. The predictor
is population size. The standard thinking about water consumption is that it
increases linearly with population.
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Fig. 2.9. An application of penalized regression splines.

In Figure 2.9, population is on the horizontal axis, and the fitted values
are on the vertical axis. The smoother is represented by the solid line, and
a point-by-point 95% confidence interval by the broken line, assuming that
estimation is at least in principle justified. If S is the smoother matrix, the
covariance of f̂(x) = SST σ2. With σ2 estimated by the error sum of squares
divided by N − tr(S), the main diagonal of cov[f̂(x)] contains point-by-point
estimates of the error variance. Then, with Gaussian errors and negligible
bias, plus or minus twice the square root of the variances can be viewed as a
point-by-point 95% confidence interval. (Hastie and Tibshirani, 1990: Section
3.8). We consider statistical inference for smoothers in more depth shortly.

The rug plot at the bottom of the plot shows where the population data
tend to be located. One implication is that there are no data over the range
where the curve starts to bend downward. As one would expect, the confidence
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interval widens substantially around the large bend in the fitted values because
there are very little data providing support. Although this makes good sense,
we consider below why it would be risky to treat the band plotted in Figure 2.9
as a 95% confidence interval.

Figure 2.9 shows a positive relationship for the smaller population centers
that is approximately linear, and a negative relationship for larger popula-
tion centers that is also approximately linear. The latter results from factors
in the biggest cities, such as affluence and the use of water-efficient technol-
ogy, that are not considered when population is the sole predictor (Berk and
Rothenberg, 2004).

Figure 2.9 was constructed with the gam() procedure in the mgcv library.
The symbol “s” in the label on the vertical axis means that a smoother
has been applied. In this case, the smoother is based on penalized regres-
sion splines of the sort just discussed with the value of λ determined by the
GCV statistic. The “8.8” in the label is the effective degrees of freedom (or
the equivalent number of parameters) used up by the smoother. Clearly, 8.8
is a lot smaller than the number of observations, but some distance from 1.0.
The result is a rather smooth function that is substantially nonlinear. One
degree of freedom would have been used up had a linear smooth materialized.
With a greater effective degrees of freedom, the fitted values are less smooth.

2.5 Locally Weighted Regression as a Smoother

2.5.1 Nearest Neighbor Methods

Thus far, the discussion of smoothing has been built upon a foundation of
conventional linear regression. Another approach to smoothing is from the
perspective of nearest neighbor methods. Consider Figure 2.10 in which the
shaded ellipse represents a scatter of points for values for x and y.

There is a target value of x, labeled x0, for which a conditional mean ȳ0 is
to be computed. There may be only one such value of x or a relatively small
number of such values. As a result, a conditional mean computed from those
values alone risks being very unstable. One possible solution is to compute
ȳ0 from observations with values of x close to x0. The rectangle overlaid on
the scatterplot illustrates a region of “nearest neighbors” that might be used.
Insofar as the conditional means for x are not changing systematically within
that region, a useful value for ȳ0 can be obtained. If that conditional mean
is to be used as an estimate, it will be unbiased and likely be more stable
than the conditional mean estimated only for the observations with x = x0.
In practice, however, some bias is often introduced. As before, the hope is that
the increase in the bias is small compared to the decrease in the variance.

A key issue is how the nearest neighbors are defined. One option is to
take the k closest observations using the metric of x. For example, if x is age,
x0 is 24 years old, and k is 10, the ten closest x-values may range from 23
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Fig. 2.10. A conditional mean for a target value of X.

to 27 years of age. Another option is take the some fixed fraction f of the
observations that are closest to x0. For example, if the closest 25% of the
observations were taken, k might turn out to be 31, and the age-values might
range between 21 and 29. Yet another option is to vary either k or f depending
on the variability in y within a neighborhood. If there is more heterogeneity
that is likely to be noise, larger values of k or f can be desirable to improve
stability. Note that for any of these approaches, the neighborhoods will likely
overlap. For another target value near x0, some near neighbors will likely be
in both neighborhoods. There also is no requirement that the neighborhood
be symmetric around x0.

Suppose now that for each unique value of x a nearest neighbor condi-
tional mean for y is computed using one of the approaches just summarized.
Figure 2.11 shows a set of such means connected by straight lines. The pat-
tern provides a visualization of how the means of y vary with x. As such, the
nearest neighbor methods can been seen as a smoother.

Figure 2.11 will change depending on the size of the neighborhood. Larger
neighborhoods will tend to make the smoothed values less variable. If the
smoothed values are to be treated as estimates, they will likely be more biased
and more stable. Smaller neighborhoods will tend to make the smoothed values
more variable. If the smoothed values are to be treated as estimates, they will
likely be less biased and less stable.

Nearest neighbor methods can be very effective in practice and have been
elaborated in many ways. There can be more than one predictor, for example,
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Fig. 2.11. Interpolated conditional means.

which raises some difficult issues about how to best define the neighborhood
(e.g., Hastie and Tibshirani, 1996). This is a matter to which we return.

For our purposes, perhaps the major weakness of nearest neighbor methods
is they are not derived as a way to represent how Y is related to X; they are
not explicitly linked to some f(X). One consequence is that when there are
more than two predictors, there is little guidance on how to represent the
manner in which the predictors are related to the response.

Nevertheless, nearest neighbor methods introduce some very important is-
sues and procedures that figure significantly in this and later chapters. Indeed,
the line between nearest neighbor methods and a number of other techniques
can be pretty fuzzy. Readers interested in learning more about nearest neigh-
bor methods should consult Ripley (1996) and Shakhnarovich (2006).

What if within each neighborhood the conditional means of y vary sys-
tematically? At the very least, there is information being ignored that could
improve the estimate of ȳ0. Just as in conventional linear regression, if y is re-
lated to x in a systematic fashion, there can be less variation in the regression
residuals than around the neighborhood mean of y. More stable estimates can
follow. The idea of applying linear regression within each neighborhood leads
directly to a smoothing procedure known as locally weighted regression.

2.5.2 Locally Weighted Regression

Although spline smoothers are widely used, lowess (Cleveland, 1979) is a useful
alternative that was developed before penalized regression smoothers. It is
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comparatively easy to understand and remains a very handy tool. Lowess also
has a more “algorithmic” feel than penalized regression smoothers and is,
therefore, a useful didactic device for the material that follows. Lowess stands
for “Locally Weighted Scatterplot Smoothing,” although there seem to be a
number of translations of “lowess.”

We stick with the one predictor case a bit longer. For any given value of the
predictor x0, a polynomial regression is constructed only from observations
with x-values that are nearest neighbors of x0. Among these, observations
with x-values closer to x0 are weighted more heavily. Then, ŷ0 is computed
from the fitted regression and used as the smoothed value of the response y at
x0. The process is repeated for all other values of x. Although the polynomial
is often of degree one (linear), quadratic and cubic polynomials are also used.
It is not clear that much is gained in practice using the quadratic or cubic
form. In some implementations, one can also employ a degree zero polynomial,
in which case no regression is computed, and the conditional mean of y in the
neighborhood is used as ŷ0. This is the nearest neighbor approach discussed
above except for the use of distance weighting.

The precise weight given to each observation depends on the weighting
function employed. The normal distribution is one option. That is, the weights
form a bell-shaped curve centered on x0 that declines with distance from x0.
The tricube is another option. Differences between x0 and each value of x in
the window are divided by the length of the window along x. This standardizes
the differences. Then the differences are transformed as (1− |z|3)3, where z is
the standardized difference. Values of x outside the window are given weights
of 0.0. As an empirical matter, most of the common weighting functions give
about the same results.

As discussed for nearest neighbor methods, the amount of smoothing de-
pends on the proportion of the total number of observations used when each
local regression line is constructed. Proportions between .25 and .75 are com-
mon. The proportion has been given various names in the smoothing lit-
erature; “window” or “span” or “bandwidth” are all used. The larger the
proportion of observations included, the smoother are the fitted values. The
bandwidth plays the same role as the number of knots in regression splines
or λ in smoothing splines. Some software also permits the bandwidth to be
chosen in the units of the regressor. For example, if the predictor is population
size, the span might be defined as 10,000 people wide.

More formally, each local regression at each x0 is constructed by minimiz-
ing the weighted sum of squares with respect to the intercept and slope for
the M ≤ N observations included in the window. Thus,

RSS∗(β) = (y∗ − X∗β)T W∗(y∗ − X∗β). (2.16)

The asterisk indicates that only the observations in the window are included.
The regressor matrix X∗ can contain polynomial terms for the predictor
should that be desired. W∗ is a diagonal matrix conforming to X∗, with
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diagonal elements w∗
i , which are a function of distance from x0. This is where

the weighting-by-distance gets done. The algorithm then operates as follows.

1. Choose the smoothing parameter such as bandwidth, f , which is a pro-
portion between 0 and 1.

2. Choose a point x0 and from that the (f × N = M) nearest points on x.
3. For these M nearest neighbor points, compute a weighted least squares

regression line for y on x.
4. Construct the fitted value ŷ0 for that single x0.
5. Repeat Steps 2 through 4 for each value of x. Near the boundary values of

x, constraints are sometimes imposed much like those imposed on cubic
splines and for the same reasons.

6. Connect these ŷs with a line.

There is also a robust version of lowess. After the entire fitting process is
completed, residuals are computed in the usual way. Weights are constructed
from these residuals. Larger residuals are given smaller weights and smaller
residuals larger weights. Using these weights, the fitting process is repeated.
This, in turn, can be iterated until the fitted values do not change much
(Cleveland, 1979) or until some predetermined number of iterations is reached
(e.g., three). The basic idea is to make observations with very large residuals
less important in the fitting.

Whether the “robustification” of lowess is useful will be application-specific
and depend heavily on the window size chosen. Larger windows will tend
to smooth the impact of outlier residuals. Equally important, because the
scatterplot being smoothed is easily plotted and examined, it is usually easy
to spot the possible impact of outlier residuals and if necessary, take them
into account when the results are reported. In short, there is no automatic
need for the robust version of lowess when there seem to be a few values of
the response that perhaps distort the fit.

An Illustration

Figure 2.12 shows for a set of Japanese cities over 21 years a (nonrobust)
lowess smooth of residential water consumption on the average price of water.
Economic theory says the slope should be negative, other things being equal.
It is difficult to make much of Figure 2.12. The window is set at .10 (10% of
the data) so the fitted values are highly variable.

In Figure 2.13, the span is increased to .50 (50% of the data). Clearly,
the result is a much smoother fit. In Figure 2.14, the span is still .50, but
the fitting is based on an M -estimator (to “robustify” the fitted values), not
conventional least squares. The change of the fitting function makes little
difference in this example, and that seems to be a common outcome.

Figure 2.15 uses a span of .90 (90% of the data) and returns to the Gaussian
weighting function. Clearly, this produces by far the smoothest fit. But which
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Fig. 2.12. Lowess Gaussian smooth of water consumption on average price: span
= .10.

500 1000 1500 2000 2500 3000 3500

50
00

0
10

00
00

15
00

00
20

00
00

25
00

00
30

00
00

LOWESS Gaussian Smooth with Span of .50

Average Price

R
es

id
en

ta
l W

at
er

 U
se

 in
 1

00
0 

C
ub

ic
 F

ee
t

Fig. 2.13. Lowess Gaussian smooth of water consumption on average price: span
= .50.

fit is best? The answer depends heavily on subject matter knowledge. In this
case, one would anticipate a rather smooth, monotonically declining curve.
All of the fitted values but the final set seem unduly variable and inconsistent
with the way consumers should respond to price. Figure 2.15 is, therefore,
probably the most informative.

However, the smoothed values are quite flat, with a slight upward trend
followed by a slight downward trend. When water is relatively cheap, higher
prices lead to more water consumption. When water is relatively expensive,
higher prices lead to less water consumption. It is difficult to think of an
explanation consistent with economic theory and more likely the positive seg-



2.5 Locally Weighted Regression as a Smoother 79

500 1000 1500 2000 2500 3000 3500

50
00

0
10

00
00

15
00

00
20

00
00

25
00

00
30

00
00

LOWESS M-Estimator Smooth with Span of .50

Average Price

R
es

id
en

ta
l W

at
er

 U
se

 in
 1

00
0 

C
ub

ic
 F

ee
t

Fig. 2.14. Lowess M-estimator smooth of water consumption on average price: span
= .50.
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Fig. 2.15. Lowess Gaussian smooth of water consumption on average price: span
= .90.

ment (at least) of the curve is an artifact caused by omitted predictors such
as income. (For further discussion see Berk and Rothman, 2004.)

It may be important to underscore that even though the smoothed values
in Figures 2.12 through 2.15 do not represent causal models, any interpre-
tations resting on cause-and-effect claims need to consider many of the same
issues that arise in conventional causal modeling. Omitted variables are surely
one key concern. If the goal is description alone, then it is not even clear what
an “omitted variable” is. The statistical definition requires that for a potential
predictor to be an “omitted variable,” it must be correlated with the response
variable and any predictors already included in the analysis. But it is diffi-
cult to attach much import to the word “omitted” except in a causal context.
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Perhaps the strongest statement that could be made is that the description is
not complete.

In any case, the main message here is not meant to be substantive. The
main message is that the bandwidth specified for lowess can make a big dif-
ference. The choice of bandwidth really matters. Because of this, there have
been, in much the same spirit as the choice of λ in penalized regression, many
attempts to automate and rationalize the selection of bandwidth size. For
example, the generalized cross-validation statistic can be used to select the
bandwidth (Loader, 2004: Section 4).

Such procedures can work well as a place to start. But once again, au-
tomation takes no notice of subject matter knowledge, and more useful visu-
alizations are often produced when the choice of bandwidth is informed, at
least in part, by information brought to the analysis from outside the data.
It is doubtful that an automated procedure would have selected Figure 2.15.
More likely, something close to Figure 2.13 would have been chosen. There is
also the risk of overfitting, especially if a large number of bandwidths is tried.

2.6 Smoothers for Multiple Predictors

The last set of figures is only the most recent example in which the limitations
of a single predictor were apparent. Many more things could be related to
water consumption than price alone. The time has come to consider smoothers
when there is more than one predictor.

In principle, it is a simple matter to include many predictors and then
smooth a multidimensional space. However, there are three significant com-
plications in practice. The first problem is the “curse of dimensionality.” As
the number of predictors increases, the space the data need to populate in-
creases as a power function. Consequently, the demand for data increases very
rapidly, and one risks data that are far too sparse to produce a meaningful fit.
There are too few observations, or those observations are not spread around
sufficiently to provide the support needed. One must, in effect, extrapolate
into regions where there is little or no information. To be sensible, such ex-
trapolations would depend on knowing the f(X) quite well. But it is precisely
because the f(X) is unknown that smoothing is undertaken to begin with.

The second problem is that there are often conceptual complications asso-
ciated with multiple predictors. In the case of lowess, for example, how is the
neighborhood near x0 to be defined (Fan and Gijbels, 1996: 299-300)? One
option is to use Euclidian distance. But then the neighborhood will depend on
the units in which predictors happen to be measured. The common practice
of transforming the variables into standard deviation units does not really
seem to solve the problem, especially when coupled with the need to weight
observations by proximity to x0.
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Consider the case of two predictors. Suppose the standard deviation for
one predictor is five years of age, and the standard deviation for the other
predictor is two years of education. Now suppose one observation falls at x0’s
value of education, but is five years of age higher than x0. Suppose another
observation falls at x0’s value for age, but is two years higher in eduction than
x0. Both are one standard deviation unit away from x0 in Euclidian distance.
But do we really want to say they are equally close?

Another approach to neighborhood definition is to use the same span for
both predictors, but apply it separately in each direction. Why this is a better
definition of a neighborhood is not clear. And one must still define a distance
metric by which the observation in the neighborhood will be weighted.

Yet another alternative is to define a neighborhood by the importance of
each dimension of the predictor space or a transformed predictor space. Where
in that space the response is changing more rapidly, the neighborhood should
be smaller. That way, significant variation in the fitted values is not smoothed
away. We show later in this chapter that locally adaptive smoothers take a
related approach. We learn that significant computation problems can follow.

The third problem is that gaining meaningful access to the results is no
longer straightforward. When there are more than two predictors, one can no
longer graph the fitted surface in the usual way. How does one make sense of
a surface in more than three dimensions?

2.6.1 Smoothing in Two Dimensions

With only two predictors, there are some fairly straightforward extensions of
conventional smoothers that can be instructive, even in the face of the three
problems just discussed. For example, with smoothing splines, the penalized
sum of squares in Equation 2.11 can be generalized. The solution is a set of
“thin plate splines,” and the results can be plotted. Thin plate splines are a
two-dimensional generalization of the one-dimension cubic splines considered
earlier. More specifically, Equation 2.11 can be generalized as

min
f

N∑
i=1

{yi − f(xi)}2 + λJ [f ], (2.17)

where J is an appropriate penalty functional of f . For the two-dimensional
case,

J [f ] =
∫ ∫

�2

[(
∂2f(x)

∂x2
1

)2

+ 2
(

∂2f(x)
∂x1x2

)2

+
(

∂2f(x)
∂x2

2

)2
]

dx1dx2. (2.18)

Equation 2.18 captures the roughness of the fitted values in a two-dimensional
predictor space. The fitted values are rougher when the two second derivatives
are larger. As before, the weight of this penalty is determined by the value of
λ.
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Fig. 2.16. Perspective plot of smoothed values of homelessness constructed from
smoothing splines.

An Illustration

Figure 2.16 shows for a particular urban area a two predictor smooth of the
homeless counts for census tracts by longitude and latitude. The value of
λ was determined by the generalized cross-validation statistic. One can see
that homelessness varies substantially by census tract. For example, the peak
toward the middle of the plot is the downtown skid row area. The immediately
surrounding areas have relatively low numbers of homeless individuals.

Figure 2.17 repeats the analysis with a two-predictor lowess smoother. The
extension of lowess from one predictor to two proceeds as one would expect.
A neighborhood and the within-neighborhood weighting are defined by Eu-
clidian distance. Each neighborhood is now a solid rather than a plane so the
local regression has two predictors rather than one. In this application, both
predictors are in the same units, which makes the use of Euclidian distance
far less controversial.

There is again a concentration of homeless in the skid row area, but now
the spike is far more pronounced. It is difficult to determine precisely why
the two plots differ. One possible explanation involves the manner in which
the degree of smoothing is determined. For Figure 2.16, the value of λ was
computed as part of the fitting algorithm. For Figure 2.17, the size of the span
was determined in part by subject matter knowledge that made some results
more credible than others. It is hard to know if the amount of smoothing in
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Fig. 2.17. Perspective plot of smoothed values of homelessness constructed from
lowess.

the two figures is the same, but plots with somewhat different span values
never eliminated the clear difference in the skid row effect.

The two smoothing procedures also differ substantially in their internal
machinery. Smoothing splines, as do natural cubic splines, place a premium
on fitted values that possess great continuity. Lowess does not build in such
continuity so that sharp changes in direction can appear, especially when the
span is small. Therefore, it would not be surprising to find that Figure 2.17
has a more jagged appearance. In short, a likely reason for the lower peak in
homelessness for skid row in Figure 2.16 is that the sharp spike is rounded off.

Is there a way to choose between Figure 2.16 and Figure 2.17? The spatial
patterns of homelessness show sharp differences over a distance of just a few
blocks. Skid row, for example, is only two blocks from a cluster of modern,
high rise office buildings where the number of homeless on the streets is very
low. As a result, it is misleading to round off most of the transitions between
areas with many homeless individuals and areas with few. Reality is closer to
a two-dimensional step function. On these grounds, Figure 2.17 is probably a
more accurate (if less elegant) visualization.

With more than two predictors, one generally needs another strategy. The
data are often too sparse, and visualization is a major obstacle. The gen-
eralized additive model is one popular approach that meshes well with an
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emphasis on regression and the use of a linear combination of basis functions.

2.6.2 The Generalized Additive Model

The Generalized Additive Model (GAM) is superficially an easy extension
of the Generalized Linear Model (GLM). GAM tries to defeat the curse of
dimensionality by assuming that the conditional mean of the response is a
linear combination of functions of each predictor. Thus, the mean function for
the generalized additive model with p predictors can be written as

Ȳ |X = α +
p∑

j=1

fj(Xj), (2.19)

where α is a conventional intercept term.
In the same manner as the generalized linear model, the generalized ad-

ditive model permits several different “link functions” and disturbance distri-
butions. For example, with a binary response, the link function can be the
log of the odds (the “logit”) of the response, and the disturbance distribution
can be logistic. This is analogous to logistic regression within the generalized
linear model. But, there are no regression coefficients associated with the pre-
dictors. Regression coefficients would just scale up or scale down the functions
of predictors, and so they are unnecessary. Whatever impact they would have
is absorbed in the function itself. The role of the regression coefficients can-
not be distinguished from the role of the transformation and therefore, the
regression coefficients are not identified.

Each predictor can have its own functional relationship to the response.
These functions can be estimated using single-predictor smoothers of the sort
addressed above. Hence, the term nonparametric is usually applied despite
the a priori commitment to an additive formulation. Alternatively, all of the
functions may be specified in advance with the usual linear model as a special
case. All of the common regression options are available, including the wide
range of transformations one sees in practice: logs, polynomials, roots, product
variables (for interaction effects), and indicator variables. As a result, GAM
can be parametric as well and in this form is really no different from the
generalized linear model. The parametric and nonparametric forms can be
mixed so that some of the functions are derived empirically from the data, and
some are specified in advance. Then the model is often called semiparametric.

With the additive form, one can use for GAM the same conception of
“holding constant” that applies to conventional linear regression. The rela-
tionship between a given predictor and the response is constructed with (1)
the linear dependence between the response and all other predictors removed,
and (2) with the linear dependence between the given predictor and all other
predictors removed. It is important to recall that the linear dependence re-
moved is between the variables in whatever their transformed states happen to
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be. Thus, there is no requirement of linear relationships between the variables
in their original units.

More formally, consider for now the case of predictors x and z. Let

(ȳ|x, z) = α + f1(x) + f2(z). (2.20)

For now, assume that the f1(x) and f2(z) have been determined. For nota-
tional convenience f1(x) is denoted by x∗, and f2(z) is denoted by z∗. We
focus first on f1(x).

Suppose that we estimate the regression parameters (i.e., intercepts and
slopes) of the following two equations,

(ȳ|z∗) = β0 + α1z
∗, (2.21)

(x̄∗|z∗) = γ0 + γ1z
∗. (2.22)

For each, we compute the residuals ey|z∗ and ex∗|z∗ . Finally, we estimate δ
and f3(ex∗|z∗) in

(ēy|z∗ |ex∗|z∗) = δ + f3(ex∗|z∗). (2.23)

The function f3(ex∗|z∗) should be identical to the function f1(x). A similar
logic applies to f2(z). In other words, with the two functions determined, the
usual covariance adjustments apply. “Holding constant” means to residualize
precisely as Equations 2.20 through 2.23 specify. This is exactly the same logic
that lies beneath added variable plots, sometimes called “partial plots” (Cook
and Weisberg, 1999: Section 10.5).

But what if the transformations of all of the predictors are not known in
advance? What if at least one of the functions (and usually several) is to be
constructed empirically from the data? How does one estimate the function
when the function needs to take the covariance adjustments into account?
And one cannot apply the covariance adjustments unless the functions are
known. To solve this problem, we turn to a computational algorithm called
“backfitting.”

A GAM Fitting Algorithm

The backfitting algorithm is a common way to estimate the functions and
coefficients in Equation 2.19 (Hastie and Tibshirani, 1990: Section 4.4). The
basic idea is to cycle through one function at a time in the following manner.

1. Initialize with α = ȳ, fj = f0
j , j = 1, . . . , p. Each predictor is given an

initial functional relationship to the response such as a linear one. The
intercept is given an initial value of the mean of y.

2. Repeat for j = 1, . . . , p, 1, . . . , p, . . . ,

fk = Sj(y − α −
∑
j �=k

fj(xk)). (2.24)
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A single predictor j is selected. Fitted values are constructed using all of
the other predictors. These fitted values are subtracted from the response.
A smoother Sj is applied to the resulting “residuals,” taken to be a func-
tion of the single excluded predictor. The smoother updates the function
for that predictor. Each of the other predictors is, in turn, subjected to
the same process.

3. Continue Step 2 until the individual functions do not change.

Within any backfitting algorithm, a wide variety of smoothers can be ap-
plied and in the past have been. For example, both lowess and penalized
regression splines have been available in R. Some procedures also permit the
use of functions of two predictors at a time, so that the smoothed values rep-
resent a surface rather than a line, just as in Figures 2.16 and 2.17. That is,
one can work with a linear combination of bivariate smoothed values.

In recent work (Wood, 2000, 2003, 2004), a somewhat different algorithm
has been developed. The basic idea is to represent each of the functions to be
determined empirically by a set of B-splines so that there is a single matrix of
regressors for all of the unknown functions. This can then be combined with a
regressor matrix for any terms whose functions are taken to be known a pri-
ori. The result is a multivariate generalization of penalized regression splines
considered earlier when Equation 2.11 was discussed. Claims have been made
that this approach has several advantages including more stable estimates,
direct links to penalized fitting, and more straightforward extensions to con-
ventional statistical inference. Whether any of these advantages would make
much difference in practice is still to be determined.

The procedure gam() in R from the mgcv library is now implemented using
this new algorithm. There are two GAM procedures in R, both called gam().
GAM using the traditional backfitting algorithm can be found in the R library
gam.

An Illustration

We return now to the data used earlier on the possible deterrence impact of
the death penalty. Recall that the data are a pooled cross-section time series
of 50 states over 20 years. As before, the homicide rate is the response and
the number of executions lagged by one year is a predictor. To control for
the average differences between states, the homicide rate in each state, just
before the beginning of each time series (1977), is used as a control variable.
The multivariate penalized regression smoother just described is employed
with the size of the penalty for each (λ) determined by the generalized cross-
validation statistic.

The fit is excellent. About 90% of the variance is accounted for. Nearly
all of this can be attributed to the values of the homicide rate when used as
a control. Figure 2.18 shows the fitted values as a function of each predictor.
If one ignores the very few values for the homicide rate that represent a very



2.6 Smoothers for Multiple Predictors 87

0 5 10 15

-0
.0

6
-0

.0
4

-0
.0

2
0.

00
0.

02
0.

04
0.

06

GAM Analysis of Homicide Rate on Executions and Lagged Values of Homicide Rate

ExecutesL1

s(
E

xe
cu

te
sL

1,
5.

98
)

0.00 0.05 0.10 0.15

-0
.0

6
-0

.0
4

-0
.0

2
0.

00
0.

02
0.

04
0.

06

GAM Analysis of Homicide Rate on Executions and Lagged Values of Homicide Rate

Homicides77

s(
H

om
ic

id
es

77
,8

.8
)

Fig. 2.18. GAM homicide results for executions controlling for the homicide rate
in 1977.

few states over a very few years, the homicide rate over time is strongly and
positively related to the homicide rate just before the beginning of the time
series (i.e., Homicides77). Whatever the social processes in states that caused
variation in the homicide rate in 1977, those same processes appear to persist
over the next 20 years. The negative slope at the far left of the curve is much
more difficult to understand and would need to be examined further. The
likely explanation is the role of one or more predictors not included in the
analysis.

The relationship between the number of executions lagged by one year
(i.e., ExecutesL1) and the homicide rate is not strong overall. When there
are five or fewer executions, which reflects 99% of the data, the relationship
starts out being slightly negative and then turns more strongly positive. Net,
the relationship is positive: more executions, more homicides a year later. The
relationship when there are more than five executions, which reflects 1% of
the data, is moderately negative. However, in part because there are so few
observations, the nominal 95% point-by-point confidence interval (more on
that shortly) is very wide and encloses a region that would easily allow for
a flat or even positive slope. In short, there is no evidence whatsoever for
deterrence for most of the states in most of the years, and evidence in favor
of deterrence for the few outliers is not much stronger. (For more details see
Berk, 2005a.)
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One might wonder why there was no discussion of any regression coeffi-
cients. Recall that there are none. The fitted values for each predictor capture
the average change in the response variable Y for small changes in a predic-
tor. Because the fitted values have a nonlinear relationship with the response,
there is not a single slope. In a sense, the graphs are the “slope.” Or more
formally, the derivative at any value of a predictor is the slope at that point.

Finally, both graphs in Figure 2.18 plot the fitted values centered on zero.
This follows from the residualizing process described earlier. Recall that when
there is an intercept, residuals have a mean of zero. Note also that the vertical
axes have the same scales. This facilitates making comparisons between the
response functions for different predictors.

2.7 Smoothers with Categorical Variables

As discussed in Chapter 1, smoothers can be used with categorical variables.
When a predictor is categorical, however, there is really nothing to smooth.
A binary predictor can take on only two values. The smoother is then just
a straight line connecting the two conditional means of the response. For a
predictor with more than two categories, there is no way to order the categories
along the predictor axis. Any imposed order would imply assigning numbers
to the categories. How the numbers were assigned could make an enormous
difference in the resulting fitting values, and these assigned numbers would
necessarily be arbitrary.

When the response is categorical and binary, smoothing can be a very
useful procedure. All of the earlier benefits apply. In addition, because it
is very difficult to see much in a scatterplot with a categorical response, a
smoother may be the only way to gain some visual leverage on what may be
going on.

2.7.1 An Illustration

We return now to the admissions data from a large public university. We apply
GAM with admitted or not as the response. The predictors for each applicant
are (1) mathematics SAT score, (2) verbal SAT score, (3) grade point average
in high school, and (4) self-identified ethnic background. Figures 2.19 through
2.21 show the plots for the first three predictors. The residualized data are
also shown. In each case, the vertical axis is in logits, just as it would be with
logistic regression.

Figure 2.19 shows that beginning with SAT math scores of about 600 or
higher, SAT math scores are positively, but modestly, related to the log-odds
of admission. For lower math scores, there seems to be no relationship with
the log-odds of admission.

Figure 2.20 shows that beginning with SAT verbal scores of about 450, SAT
verbal scores are positively, but modestly, related to the log-odds of admission.
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Fig. 2.19. Admission as a function of SAT math score.

400 500 600 700 800

-1
5

-1
0

-5
0

5

GAM Analysis of College Admission

SAT1.VERB

s(
S

A
T

1.
V

E
R

B
,7

.1
8)

Fig. 2.20. Admisson as a function of SAT verbal score.
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Fig. 2.21. Admission as a function of high school GPA.

The relationship seems to flatten out around a score of about 700 and even
turn slightly negative. The negative relationship for SAT verbal scores below
450 is difficult to understand, but the data in that region are very sparse.

Figure 2.21 shows that over its full range, high school GPA is positively
and strongly related to the log-odds of admission. It seems that the admissions
process is weighting high school GPA far more heavily than SAT scores.

There are no plots for the categorical variable ethnicity. But for GAM,
conventional regression coefficients are provided for all predictors whose func-
tional forms are determined a priori. And that includes categorical variables.
In this case, the regression coefficients reveal that holding constant SAT scores
and high school GPA, the odds that an Anglo or Asian student will be admit-
ted are substantially lower than for Hispanic and African-American students.

In short, there is certainly no lockstep relationship between earlier aca-
demic performance, as measured by SAT scores and high school GPA, and
admission. Other factors are taken into account. This means that the appar-
ent impact of ethnicity needs to be unpacked. Are there other predictors that
would eliminate ethnicity as a useful explanatory variable? And if not, one
cannot know without further study how an applicant’s ethnicity comes into
play. Is it directly used in the admission decision and/or is the impact really
explained by characteristics of the applicant that are associated with ethnicity
but not part of the official record?

As noted earlier, if the point is to explain why response functions come
out as they do, causal thinking is often unavoidable. But there is nothing in
any of the results that conveys what would happen if, for example, a given
applicant’s reported SAT scores were altered. To learn that, one would have to
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actually alter the scores used in the admissions process. Such an experiment
could perhaps be done if humansubject concerns could be overcome. What the
analysis indicates thus far is that SAT scores, high school GPA, and ethnicity
would probably need to be among the factors manipulated. And there would
surely be others. The analysis also implies that if the purpose was to forecast
admissions, SAT scores, high school GPA, and ethnicity might well provide
considerable forecasting skill.

The statistical message is much the same as before. Allowing the data to
determine how predictors are related to the response can be very instructive,
even when (or perhaps especially when) the response variable is categorical.
A natural question, however, is how restrictive the GAM’s additive form is in
practice. Experience to date suggests that the additive restriction is often not a
serious obstacle. For instance, if there is an interest in interaction effects, these
can be represented by a two-dimensional smoother (for two-way interactions)
or by including product variables. This comes up often with spatial data,
for example, where location is measured by variables such as longitude and
latitude. If the response surface is substantially torqued, the additive terms
are insufficient. One needs either a two-dimensional smoother or a product of
the two spatial dimensions as another term in the model.

2.8 Locally Adaptive Smoothers

Under some circumstances, regression splines and regression smoothers can
stumble when relationships with the response have sharp inflection points or
steps. If all of the sharp inflection points or steps are about the same size,
smoothing parameters can be set to either remove them all or to show them
all. But when they are substantially different sizes, the risk is that some will
be removed and some will not, even if all are equally informative.

One potential solution is to allow the smoothing parameters to vary locally
so that they can adapt to sharp changes in the response function. For exam-
ple, the bandwidth can be made smaller where the mean function seems to be
changing most rapidly. This is very hard to do by hand without an imprac-
tical amount of trial and error. But there are a number of “locally adaptive”
procedures that can automate the process. (Fan and Gijbels, 2006; Loader,
1999).

Figure 2.22 shows an example based on simulated data taken from Loader’s
instructive book (Loader, 1999). The simulated data have several telling fea-
tures. First, the signal-to-noise ratio is very high. Second, the apparent pattern
is far more variable in some regions than others. Third, the number of obser-
vations is relatively large. Finally, the mean function is extremely nonlinear.
Taken together, these four features make it relatively easy to see what the
mean function looks like without the aid of any smoother whatsoever.

The adaptive smoother that is overlaid clearly performs very well. A
smoother with a single smoothing parameter would likely wash out the cycles
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Fig. 2.22. Loader’s illustration of a locally adaptive smoother.

at the far left while retaining those in the middle and far right. Important in-
formation would be lost. But how often will real data have the four properties
that characterize these data? Many disciplines such as engineering have data
in which such features may be common. But in the social and life sciences,
these kinds of data are rare.

Latitude
Longitude

Tuna

Fig. 2.23. Adaptive smoothed values of tuna caught in the southeastern Pacific.

Figure 2.23 presents some real data. The response is the number of tuna
netted at various locations in the south eastern Pacific Ocean. The predictors



2.9 The Role of Statistical Inference 93

are longitude and latitude. Because of the flow of ocean currents and the clus-
tering of smaller fish that tuna eat, the good fishing grounds have relatively
sharp, nonlinear boundaries. Moreover the data are quite good. Because of
international concern about the risks to dolphin when nets are used to catch
tuna, there are official observers on tuna boats to record the size and loca-
tions of all catches. In short, the data themsleves are probably not seriously
distorted by measurement error.

Once again the adaptive smoother does a good job. The productive fishing
grounds are dramatically shown with some being far better than others. The
smoothing process does not seem to be sacrificing the smaller spikes.

When the data are of just the sort required, adaptive smoothers can be
very effective. Using them when they are not needed may not cause any sci-
entific harm because adaptive procedures will, in effect, revert to a single
smoothing parameter approach. But there can be significant computational
costs. Existing software can seriously challenge the capacity of desktop com-
puters, will usually require that several tuning parameters be specified, and
are typically limited to no more than two predictors.

2.9 The Role of Statistical Inference

Many of the smoothers we have considered in this chapter rest upon a set
of regression equations constructed for partitions of the data. The partitions
are defined as functions of predictor values. Then, for any given partition, the
fitted value is determined by a conventional parametric regression equation
(sometimes with weights). Alternatively, the smoother results from a regres-
sion equation with a penalty attached for complexity. In either case, it might
seem that conventional expressions for the standard error of fitted values
would follow as usual. So, let’s pursue that for a bit.

2.9.1 Some Apparent Prerequisites

A key issue that must be addressed before statistical inference with smoothers
is undertaken is whether estimation itself is a reasonable activity. There are
three scenarios.

1. There is an assumed f(X), and the data are a random sample from a well-
defined population or a random realization from a well-defined stochastic
process. Estimation is at least on the table accompanied by assessments
of uncertainty.

2. No f(X) is assumed, but a goal is to arrive at a best guess of the values of
a set of conditional means or proportions in a population or as features of a
stochastic process. Estimation is again on the table along with assessment
of uncertainty.
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3. The sole goal is description of the data on hand. Estimation is taken off
the table and with it, assessments of uncertainty.

We begin with the first scenario. We show that superficially all looks well.
We also show, as the saying goes, that looks can be deceiving.

2.9.2 Confidence Intervals

As before we let

Y = f(X) + ε, (2.25)

but where ε ∼ NIID(0, σ2). One estimates f(X) with f̂(X), which for the
smoothers we have considered is Sy. Then

cov(f̂(X)) = S cov(y)ST = SSTσ2. (2.26)

The square root of the diagonal elements of SST σ2 are the standard errors
for each fitted value. To make it operational, one needs σ̂2.

The error sum of squares can be computed as the sum of the squared
differences between the fitted values and the observed values. The denominator
is where there can be complications: what is one to use as the degrees of
freedom lost to the fitting function? One popular definition, noted earlier, is
the trace of the smoother matrix S, which is related to the number of basis
functions and to the number of parameters in the model (Hastie et al., 2001:
130). This definition is intuitively pleasing, broadly applicable to a variety of
smoothers, and works well with hypothesis tests (considered shortly).

The larger the trace, the less smooth are the fitted values. This is because
more relative weight is given to the values of the response variable actually
being fitted and less relative weight is given to other (usually nearby) values
of the response. Consider again the toy example from Chapter 1. Because the
rows sum to 1.0, making the elements in the main diagonal larger makes the
weights off the main diagonal smaller. The result is that the weighted average
more heavily counts the value of the response being smoothed. The fitted
values are relatively less smooth.⎛⎜⎜⎜⎜⎝

1.0 0 0 0 0
.25 .50 .25 0 0
0 .25 .50 .25 0
0 0 .25 .50 .25
0 0 0 0 1.0

⎞⎟⎟⎟⎟⎠
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3.0
5.0
6.0
9.0
10.0

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
3.00
4.75
6.50
8.50
10.00

⎞⎟⎟⎟⎟⎠ . (2.27)

With the effective degrees of freedom defined, σ̂2 is computed by dividing
the error sum of squares by N −trace(S). The denominator, in the same spirit
as the usual regression estimate of σ̂2, represents the degrees of freedom “left
over” by the model. Then σ̂2 is used in place of σ2, making Equation 2.26
operational. Adding ±1.96 times the square root of the diagonal to the fitted
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value results leads to what looks like a 95% confidence interval at that point.
All other points are treated in a similar fashion.

Because σ2 is assumed to be constant, and because N − trace(S) is a con-
stant for any given dataset and model, the size of the standard error depends
substantially upon the diagonal elements of SST . These, in turn, depend on
the diagonal elements in S. So, larger estimated standard errors for a given
dataset are found in regions where the fitted values are less smooth. And it
is here that the fitted values may be a less effective stand-in for the values of
the response variable. Taken at face value, this would seem to make sense.

However, there are several problems. First, the value of λ (or the analogous
tuning parameter) is assumed to be known. When it needs to be determined
from the data, there is an additional source of uncertainty that is not taken
into account. Second, trying different possible values for λ is a form of data
snooping and will often lead to estimates of uncertainty that are too opti-
mistic. Third, unless the data were generated by probability sampling, the
usual confidence intervals depend on model-based sampling, here, centered on
how the values of ε are supposed to be generated (Thompson, 2002; Berk,
2003). Constructing a plausible story is usually very difficult, especially when
the fitting function is to be inductively determined. Finally, the smoother
tuned by λ is assumed to provide unbiased estimates of the true conditional
means. In practice, this is very unlikely to be true. In particular, it will often
be desirable to introduce bias to reduce the variance. And if there is bias, a
95% confidence interval will not cover the true value 95% of the time. The
interval will be shifted higher or lower by the unknown value of the bias.

Recalling our earlier discussion of statistical inference for shrinkage esti-
mators, one response can be to settle for estimates of the instability of the
fitted values; the impact of the bias is ignored. Then to address instability,
a bootstrap resampling of cases can lead to helpful results (Buja and Rolke,
2007) for such instability. But any intervals constructed in this manner are
unlikely to be defensible as true confidence intervals.

If potential bias is to be addressed as well, there are some recent advances
that have promise (Goldenshluger and Tsybakov, 2001; Zhang, 2005; Brown et
al., 2005). Just as in the shrinkage case briefly addressed earlier, one can often
obtain reasonably unbiased estimates of the true conditional means using the
estimated conditional means for small regions of the predictor space. The dis-
parity between those estimated conditional means and the conditional means
produced by the smoother can provide important information on the direction
and size of the bias in each region. When this information is combined with
estimates of the variance, approximately correct confidence intervals can fol-
low. There is not yet much formal mathematics behind these approaches and
it is not clear at this point how well the procedures will perform in practice.
There is also the current limitation to a single predictor.

The prospects might seem somewhat brighter under the second scenario:
there is no f(X), but there are population or stochastic process parameters,
and the data were generated in a manner allowing for statistical inference, such
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as random sampling. With no f(X) to steer the analysis, interest centers only
on a set of conditional means. If one treats the predictor values as fixed, this
may seem like business as usual. However, the smoothing will likely introduce
bias in the fitted values and the same problems surface. Confidence intervals
risk being seriously misleading. In short, we are back to the previous scenario.

In practice, the third scenario is likely to be the operational one. There
may be no credible f(X), no population or stochastic process, or the data may
be of insufficient quality (e.g., key predictors are missing). Then, the goal is
likely to be description, and estimation is inappropriate. Whether any of these
obstacles are recognized is often for subjectmatter experts to determine.

2.9.3 Statistical Tests

The statistical tests associated with conventional parametric regression have
a structure that can be ported to the smoothers we have been considering.
Consider the usual F -test used with the conventional linear regression model.
Recall that the F -ratio is constructed in part from the error sum of squares
under the null hypothesis and the error sum of squares from the alternative
hypothesis, with their difference adjusted for the difference degrees of freedom.
The ratio is meant to capture how much worse the fit becomes under the
null hypothesis. The same kind of formulation can be applied with regression
splines and regression smoothers.

Assume that Equation 2.25 holds. Then, drawing on Loader’s discussion
(2004: 17–18) — see also Hastie and Tibshirani (1990: 65–67) — suppose be-
fore looking at the data one decides that the null hypothesis is a conventional
linear fit, and the alternative hypothesis is any smoother-based fit. Is the fit
produced by the smoother “statistically significant” compared to the linear
fit? This may not be a very interesting or instructive comparison, however, it
comports well with conventional regression practice.

Let H be the hat matrix for a linear regression fit of the data, and S be
the smoother matrix for some alternative fit. From this, one can construct the
usual sort of test statistic as follows,

F =
(Sy − Hy)2/df

σ̂2
, (2.28)

where df = trace((S−H)T (S−H)), and σ̂2 is usually estimated from the larger
model. Loader points out that the F -ratio in Equation 2.28 does not quite have
an F distribution, although there are ways to make the approximation better.
Such tests are approximate and insofar as the assumed normality is incorrect,
the test may not live up to its billing. Alternatively, the bootstrap can be
applied. The idea is to work with the residuals in much the same manner as
done for parametric regression (Efron and Tibshirani, 1993: 111–112).

1. Apply a smoother to the data.
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2. Compute the residuals as the differences between the fitted values and
observed values of the response variable (i.e., y − ŷ).

3. Draw with replacement a random sample of residuals the same size as the
number of observations in the data.

4. Construct new values for the response by adding to each fitted value from
Step 1, a sampled value from the residuals.

5. Compute the F -statistic of interest as in Equation 2.28. This will mean
applying the null model and the alternative model to the reconstituted
data.

6. Repeat Steps 2–5 a large number of times (e.g., 1000).
7. The histogram of the F -statistics provides an estimate of the true distri-

bution of the F ratio.

But in the end, all such tests must be treated with caution. All of the
concerns noted about confidence intervals apply. In particular, the smoothing
process will typically lead to bias. If there is bias in the fitted values, the p-
values computed will capture not just the variance but the bias. The distance
between the null hypothesis and the estimated fitted values will be too large
or too small, depending on the nature of the bias, and the p-values will be
either too large or too small as well.

2.9.4 Can Asymptotics Help?

The asymptotics for the smoothers we have considered require that the num-
ber of observations must increase without limit and the number of unique
values of the predictors (i.e., “design points”) must increase without limit.
That is, in order to obtain consistent estimates of the conditional means, both
these conditions must apply. The number of design points must increase with-
out limit so there are no “holes” in the fitted values. If there are holes, some
form of interpolation or averaging is necessary, which means that the true
conditional means in that hole will probably not be accurately represented.

In some very large datasets with relatively few predictors, these require-
ments may be approximately met. But for many datasets, the approximation
to the requisite thought experiment is poor so that it is very difficult to rely
on the asymptotic results. Equally important, if any smoothing is undertaken,
there is the risk of nonnegligible bias that remains even asymptotically. To
take an extreme case, if a linear fit is forced on a nonlinear f(X), increasing
the sample size does not overcome the bias introduced.

In short, even if estimation is a worthy goal, the associated statistical
inference can be highly problematic. If one cares only about the stability of the
fitted values, resampling procedures can be instructive. But if one cares about
taking the bias into account, it is currently not clear how best to proceed. The
good news is that statistical inference for smoothers is being addressed by
some very talented statisticians. There may be some useful procedures soon.
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2.10 Software Issues

All of the computing done is this chapter was implemented in R. Within R,
the following smoothing and regression procedures were used.

1. Linear Regression: lm()—a very flexible and very powerful procedure for
implementing the general linear model.

2. Generalized Linear Model: glm()—a very flexible and very powerful proce-
dure for implementing the generalized linear model. Its structure is much
like lm().

3. Scatterplot Smoothing: scatter.smooth()—a very flexibile and rich imple-
mentation of a two-dimensional lowess smoother of a scatter plot. The
output is the scatter plot with the fitted values overlaid.

4. Local Adaptive Smoothing: locfit()—a generalization of lowess to allow
for up to two predictors with local adaptation for bandwidth. The code
is powerful and sophisticated, but the documentation is spotty. It can be
found in the R library locfit.

5. Generalized Additive Model: gam()—it comes in two implementations.
One can be found in the library (gam) and uses the backfitting algorithm.
A second implementation uses penalized regression and can be found in
the R library mgcv. They perform broadly the same, but differ a bit in
the options offered to users.

6. Spline Basis Construction: bs(), ns()—two procedures that are used to
construct b-spline bases for smoothers, bs() for B-splines and ns() for
natural cubic splines. These are automatically called by some smoothing
procedures or can be used as an intermediate step for more hand-tailored
smoothing. They can be found in the R library splines.

7. Two-Dimensional Plotting: plot()—this can be used as a standalone or
when paired with an R object produced by procedures such as lm(), loc-
fit(), or gam().

8. Three-dimensional plotting: contour(), persp() for contour plotting and
perspective plotting, respectively—both are slick and powerful, but a bit
tricky to use. There is a need to construct the plotting grid before points
and any fitted values are overlaid. Alternatively one can work with the
graphing procedures in the library lattice. For example, wireframe() is a
very elegant improvement over contour().

Perhaps the major operational problem for smoothing is sparse data. In
the simplest case, there may be only a few distinct values for a predictor
so that there is really nothing to smooth. For example, if a predictor only
has observations at three of its values, there is not much that can be done.
The choice is between no smoothing at all (i.e., just connecting the three
conditional means of the response), or a single straight line. There is no clear
lower limit to the number of predictor values for which there must be data,
but smoothing when there are fewer than about ten values is not likely to be
instructive. There can be few unique values for a predictor either because the
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data are lumpy or because of how the predictor is defined and measured. For
example, the number of children in a household for a given sample may have
only five distinct integer values.

In addition, the curse of dimensionality can rapidly turn an adequate
dataset into an inadequate one. The data may become far too thin over-
all, so that the large variance associated with the fitted values will negate any
possibility of seeing what the mean function is likely to be. Or, important
partitions of the data may suffer from the same problem. Most frustrating of
all, some procedures will abort with sparse data, sometimes taking down the
statistical procedures being used and even the entire operating system.

Many of the smoothing procedures have tuning parameters that can be
used for taking relatively large bites of the data. For data that are potentially
sparse, it will often be helpful to begin an analysis with large bites so that
within each window there are a sufficient number of observations. If the fitted
values seem stable, smaller bites may be tried.

A good sense of how stable the fitted values are can sometimes be ob-
tained from a point-by-point confidence interval, as long as one does not take
the attached probability very seriously. As noted earlier, bias will offset the
intervals so that the coverage is unknown. But, if the point-by-point intervals
are so large that the fitted values could plausibly range very widely, the fitted
values do not provide a useful fix on the mean function. This is very important
to take into account when the fitted values are interpreted.

2.11 Summary and Conclusions

Regression splines and regression smoothers can be very useful tools for de-
scribing relationships between a response variable and one or more predictors.
As long as one is content to “merely” describe, these methods are consistent
with the goals of an exploratory data analysis.

Experience suggests that for most datasets, it does not make a great dif-
ference which brand of smoother one uses. The dominant factor is usually
bandwidth or other parameters that determine the bias–variance tradeoff.
Likewise, all of the measures of fit that take model complexity into account
lead to largely the same substantive results, especially when data are noisy.

There are also several important caveats that need to be kept in mind.
First, as with any regression analysis, there is no necessary connection between
the computer output and how the data were generated. There is, therefore,
no necessary connection to causal inference. Although the output can be very
helpful when considering matters of cause and effect, regression splines and
regression smoothers are usually not meant to represent how manipulating
one or more predictors will change the response.

Second, statistical inference should be approached with great care. Smoothers
are often meant to be exploratory and as such can easily jeopardize formal
tests and confidence intervals. Moreover, they typically introduce bias into
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the fitted values with the goal of reducing their variance. It is also impor-
tant to look beneath the computer output and understand how the statistical
inference was undertaken.

Third, overfitting can be a serious problem. The results from the data
examined may not generalize well to other random samples from the same
population. We consider overfitting in depth in later chapters. For now, caveat
emptor.

Finally, for a wide range of problems, there are statistical learning tech-
niques that arguably perform better than the procedures discussed in this
chapter. They can fit the data better, are less subject to overfitting, and per-
mit a wider range of information to be brought to bear. One price, however,
is that the links to conventional regression analysis become far more tenuous.
In the next chapter, we start down this path.

Exercises

Problem Set 1: Smoothers with a Single Predictor

1. Load the dataset called airquality using the command data(airquality).
Attach the data with the command attach(airquality). Use gam() from the
gam library with Ozone as the response and Temp as the sole predictor.
Estimate the following three models assigning the output of each to its
own name (e.g., output1 for the first model).

gam(Ozone ~ Temp)
gam(Ozone ~ as.factor(Temp) )
gam(Ozone ~ s(Temp) )

The first model is the smoothest model possible. Why is that? The second
model is the roughest model possible. Why is that? The third model is a
compromise between the two in which the degree of smoothing is deter-
mined by the GCV statistic. (See the gam() documentation followed by
the smoothing spline documentation.)

For each model, examine the numerical output and plot the fitted values
against the predictor. For example, if the results of the first model are as-
signed to the name “output1,” use plot.gam (output1, residuals=TRUE).

Which model has the best fit judging by the residual deviance? Which
model has the best fit judging by the AIC? Why might the choice of the
best model differ depending on which measure of fit is used? Which model
seems to be most useful judging by the plots? Why is that?
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2. Overlay a lowess smooth on a scatterplot with the variable Ozone on the
vertical axis and the variable Temp on the horizontal axis. Vary three
tuning parameters: span: .25, .50, .75; degree: 0, 1, 2; family as Gaussian
or symmetric. Describe what happens to the fitted values as each tuning
parameter is varied. Which tuning parameter seems to matter most?

3. The relationship between temperature and ozone concentrations should
be positive and monotonic. From the question above, select a single set
of tuning parameter values that produces a fit you like best. Explain why
you like that fit best. If there are several sets of fitted values you like about
equally, explain what it is about these fitted values that you like.

4. For the overlay of the fitted values you like best (or select a set from
among those you like best) describe how temperature is related to ozone
concentrations.

5. One can address the stability of the fitted values using the bootstrap per-
centile method. Load the library simpleboot. The procedure first requires
that you run lowess and then you apply the bootstrap. For example: assign
loess(Ozone ∼ Temp) to a name such as “smooth.” Then assign loess.boot
(smooth) to a name such as“bo.” Finally use plot(bo). The point-by-point
interval is constructed by taking the standard deviations of the fitted val-
ues for each point over bootstrap samples, multiplying each by two, and
adding that product to the fitted values at each point and subtracting
that product from the fitted values at each point.

For what values of temperature does the instability appear to be about
the largest? For what values of temperature does the instability appear
to be the smallest? What in the data accounts for these differences?

Problem Set 2: Smoothers with Two Predictors

1. From the library assist load the dataset TXtemp. Load the library gam.
With mmtemp as the response and longitude and latitude as the predic-
tors, apply gam(). Construct the fitted values using the sum of a 1-D
lowess smooth of longitude and a 1-D smooth of latitude. Try several dif-
ferent values for the degrees of freedom of each. Try different values for
the degree of the polynomial. You can learn how to vary these tuning pa-
rameters with help(gam) and help(lo). Use the summary() command to
examine the output and the plot.gam() to plot the two partial response
functions. To get both plots on the same page use par(mfrow=c(1,1)).
How are longitude and latitude related to temperature?
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2. Repeat the analysis in 1, but now construct the fitted values using a sin-
gle 2-D smoother of longitude and latitude together. Again, try several
different values for the span and degree of the polynomial. Examine the
tabular output with summary() and the plot using plot.gam(). How do
these results compare to those using two 1-D predictor smooths?

Problem Set 3: Smoothers with More Than Two Predictors

1. Now build an additive model for mmtemp with the predictors longitude,
latitude, year, and month. Use a lowess smooth for each. Try different
spans and polynomial degrees. Again use the summary() and plot.gam()
command. To get all four graphs on the same page use par(mfrow=c(2,2)).
How is temperature related to each of the four predictors?

2. Repeat the analysis done for 1, but with penalized smoothing splines. The
operator in front of each predictor is now s and not lo. Read the help doc-
umentation for gam(), and s(). How is temperature related to each of the
four predictors? How do the conclusions from 1 compare with the conclu-
sions drawn here? Why?

Problem Set 4: Smoothers with a Binary Response Variable

1. From the car library, load the dataset Mroz. Using the glm(), regress labor
force participation on age, income, and the log of wages. From the library
gam, use gam() to repeat the analysis, smoothing each of the predictors.
Note that labor force participation is a binary variable. Compare and
contrast your conclusions from the two sets of results. Which procedure
seems more appropriate here? Why?


