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Notes for Applied Multivariate Analysis: Linear

Algebra Component

0.1 Multiple Regression

One of the most common topics in any beginning statistics class is

multiple regression that we now formulate (in matrix terms) as the

relation between a dependent random variable Y and a collection

of K independent variables, X1, X2, . . . , XK . Suppose we have N

subjects on which we observe Y , and arrange these values into an

N × 1 vector:

Y =



Y1
Y2
...

YN


The observations on the K independent variables are also placed in

vectors:

X1 =



X11

X21
...

XN1


; X2 =



X12

X22
...

XN2


; . . . ; XK =



X1K

X2K
...

XNK


It would be simple if the vector Y were linearly dependent on X1,X2, . . . ,XK

because then

Y = b1X1 + b2X2 + · · · + bKXK
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for some values b1, . . . , bK . We could always write for any values of

b1, . . . , bK :

Y = b1X1 + b2X2 + · · · + bKXK + e

where

e =


e1
...

eN


is an error vector. To formulate our task as an optimization problem

(least-squares), we wish to find a good set of weights, b1, . . . , bK , so

the length of e is minimized, i.e., e′e is made as small as possible.

As notation, let

YN×1 = XN×KbK×1 + eN×1

where

X =
(

X1 . . . XK

)
; b =


b1
...

bK


To minimize e′e = (Y −Xb)′(Y −Xb), we use the vector b that

satisfies what are called the normal equations:

X′Xb = X′Y

If X′X is nonsingular (i.e., det(X′X) 6= 0; or equivalently, X1, . . . ,XK

are linearly independent), then

b = (X′X)−1X′Y

The vector that is “closest” to Y in our least-squares sense, is Xb;

this is a linear combination of the columns of X (or in other jargon,
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Xb defines the projection of Y into the space defined by (all linear

combinations of) the columns of X.

In statistical uses of multiple regression, the estimated variance-

covariance matrix of the regression coefficients, b1, . . . , bK , is given as

( 1
N−K )e′e(X′X)−1, where ( 1

N−K )e′e is an (unbiased) estimate of the

error variance for the distribution from which the errors are assumed

drawn. Also, in multiple regression instances that usually involve an

additive constant, the latter is obtained from a weight attached to

an independent variable defined to be identically one.

In multivariate multiple regression where there are, say, T depen-

dent variables (each represented by an N × 1 vector), the dependent

vectors are merely concatenated together into an N × T matrix,

YN×T ; the solution to the normal equations now produces a matrix

BK×T = (X′X)−1X′Y of regression coefficients. In effect, this gen-

eral expression just uses each of the dependent variables separately

and adjoins all the results.

0.2 Eigenvectors and Eigenvalues

Suppose we are given a square matrix, AU×U , and consider the poly-

nomial det(A−λI) in the unknown value λ, referred to as Laplace’s

expansion:

det(A−λI) = (−λ)U +S1(−λ)U−1 + · · ·+SU−1(−λ)−1 +SU(−λ)0

where Su is the sum of all u × u principal minor determinants. A

principal minor determinant is obtained from a submatrix formed

from A that has u diagonal elements left in it. Thus, S1 is the trace

of A and SU is the determinant.
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There are U roots, λ1, . . . , λU , of the equation det(A− λI) = 0,

given that the left-hand-side is a U th degree polynomial. The roots

are called the eigenvalues of A. There are a number of properties

of eigenvalues that prove generally useful:

(A) det A =
∏U
u=1 λu; trace(A) =

∑U
u=1 λu;

(B) if A is symmetric with real elements, then all λu are real;

(C) if A is positive definite, then all λu are positive (strictly greater

than zero); if A is positive semi-definite, then all λu are nonnegative

(greater than or equal to zero);

(D) if A is symmetric and positive semi-definite with rank R, then

there are R positive roots and U −R zero roots;

(E) the nonzero roots of AB are equal to those of BA; thus, the

trace of AB is equal to the trace of BA;

(F) eigenvalues of a diagonal matrix are the diagonal elements

themselves;

(G) for any U × V matrix B, the ranks of B, B′B, and BB′

are all the same. Thus, because B′B (and BB′) are symmetric and

positive semi-definite (i.e., x′(B′B)x ≥ 0 because (Bx)′(Bx) is a

sum-of-squares which is always nonnegative), we can use (D) to find

the rank of B by counting the positive roots of B′B.

We carry through a small example below:

A =


7 0 1

0 7 2

1 2 3



S1 = trace(A) = 17
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S2 = det(

 7 0

0 7

)+det(

 7 1

1 3

)+det(

 7 2

2 3

) = 49+20+17 = 86

S3 = det(A) = 147 + 0 + 0− 7− 28− 0 = 112

Thus,

det(A− λI) = (−λ)3 + 17(−λ)2 + 86(−λ)1 + 112 =

−λ3 + 17λ2 − 86λ + 112 = −(λ− 2)(λ− 8)(λ− 7) = 0

which gives roots of 2, 8, and 7.

If λu is an eigenvalue of A, then the equations [A − λuI]xu = 0

have a nontrivial solution (i.e., the determinant of A−λuI vanishes,

and so the inverse of A− λuI does not exist). The solution is called

an eigenvector (associated with the corresponding eigenvalue), and

can be characterized by the following condition:

Axu = λuxu

An eigenvector is determined up to a scale factor only, so typically

we normalize to unit length (which then gives a ± option for the two

possible unit length solutions).

We continue our simple example and find the corresponding eigen-

values: when λ = 2, we have the equations (for [A− λI]x = 0)
5 0 1

0 5 2

1 2 1




x1
x2
x3

 =


0

0

0


with an arbitrary solution of 

−1
5a

−2
5a

a


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Choosing a to be + 5√
30

to obtain one of the two possible normalized

solutions, we have as our final eigenvector for λ = 2:
− 1√

30

− 2√
30
5√
30


For λ = 7 we will use the normalized eigenvector of


− 2√

5
1√
5

0


and for λ = 8, 

1√
6
2√
6
1√
6


One of the interesting properties of eigenvalues/eigenvectors for a

symmetric matrix A is that if λu and λv are distinct eigenvalues,

then the corresponding eigenvectors, xu and xv, are orthogonal (i.e.,

x′uxv = 0). We can show this in the following way: the defining

conditions of

Axu = λuxu

Axv = λvxv

lead to

x′vAxu = x′vλuxu
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x′uAxv = x′uλvxv

Because A is symmetric and the left-hand-sides of these two expres-

sions are equal (they are one-by-one matrices and equal to their own

transposes), the right-hand-sides must also be equal. Thus,

x′vλuxu = x′uλvxv ⇒

x′vxuλu = x′uxvλv

Due to the equality of x′vxu and x′uxv, and by assumption, λu 6= λv,

the inner product x′vxu must be zero for the last displayed equality

to hold.

In summary of the above discussion, for every real symmetric ma-

trix AU×U , there exists an orthogonal matrix P (i.e., P′P = PP′ =

I) such that P′AP = D, where D is a diagonal matrix containing

the eigenvalues of A, and

P =
(

p1 . . . pU
)

where pu is a normalized eigenvector associated with λu for 1 ≤ u ≤
U . If the eigenvalues are not distinct, it is still possible to choose the

eigenvectors to be orthogonal. Finally, because P is an orthogonal

matrix (and P′AP = D ⇒ PP′APP′ = PDP′), we can finally

represent A as

A = PDP′

In terms of the small numerical example being used, we have for

P′AP = D:
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
− 1√

30
− 2√

30
5√
30

− 2√
5

1√
5

0
1√
6

2√
6

1√
6




7 0 1

0 7 2

1 2 3




− 1√

30
− 2√

5
1√
6

− 2√
30

1√
5

2√
6

5√
30

0 1√
6

 =


2 0 0

0 7 0

0 0 8


and for PDP′ = A:

− 1√
30
− 2√

5
1√
6

− 2√
30

1√
5

2√
6

5√
30

0 1√
6




2 0 0

0 7 0

0 0 8




− 1√

30
− 2√

30
5√
30

− 2√
5

1√
5

0
1√
6

2√
6

1√
6

 =


7 0 1

0 7 2

1 2 3


The representation of A as PDP′ leads to several rather nice

computational “tricks.” First, if A is p.s.d., we can define

D1/2 ≡


√
λ1 . . . 0
... . . . ...

0 . . .
√
λU


and represent A as

A = PD1/2D1/2P′ = PD1/2(PD1/2)′ = LL′, say.

In other words, we have “factored” A into LL′, for

L = PD1/2 =
( √

λ1p1

√
λ2p2 . . .

√
λUpU

)
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Secondly, if A is p.d., we can define

D−1 ≡


1
λ1

. . . 0
... . . . ...

0 . . . 1
λU


and represent A−1 as

A−1 = PD−1P′

To verify,

AA−1 = (PDP′)(PD−1P′) = I

Thirdly, to define a “square root” matrix, let A1/2 ≡ PD1/2P′. To

verify, A1/2A1/2 = PDP′ = A.

There is a generally interesting way to represent the multiplication

of two matrices considered as collections of column and row vectors,

respectively, where the final answer is a sum of outer products of

vectors. This view will prove particularly useful in our discussion of

principal component analysis. Suppose we have two matrices BU×V ,

represented as a collection of its V columns:

B =
(

b1 b2 . . . bV
)

and CV×W , represented as a collection of its V rows:

C =



c′1
c′2
...

c′V


The product BC = D can be written as
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BC =
(

b1 b2 . . . bV
)


c′1
c′2
...

c′V


=

b1c
′
1 + b2c

′
2 + · · · + bV c′V = D

As an example, consider the spectral decomposition of A consid-

ered above as PDP′, and where from now on, without loss of any gen-

erality, the diagonal entries in D are ordered as λ1 ≥ λ2 ≥ · · · ≥ λU .

We can represent A as

AU×U =
( √

λ1p1 . . .
√
λUpU

)

√
λ1p

′
1

...√
λUp′U

 =

λ1p1p
′
1 + · · · + λUpUp′U

If A is p.s.d. and of rank R, then the above sum obviously stops at

R components. In general, the matrix BU×U that is a rank K (≤ R)

least-squares approximation to A can be given by

B = λ1p1p
′
1 + · · · + λkpKp′K

and the value of the loss function:
U∑
v=1

U∑
u=1

(auv − buv)2 = λ2K+1 + · · · + λ2U

0.3 The Singular Value Decomposition of a Matrix

The singular value decomposition (SVD) or the basic structure

of a matrix refers to the representation of any rectangular U × V

matrix, say, A, as a triple product:
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AU×V = PU×R∆R×RQ′R×V

where the R columns of P are orthonormal; the R rows of Q′ are

orthonormal; ∆ is diagonal with ordered positive entries, δ1 ≥ δ2 ≥
· · · ≥ δR > 0; and R is the rank of A. Or, alternatively, we can “fill

up” this decomposition as

AU×V = P∗U×U∆∗U×VQ∗
′
V×V

where the columns of P∗ and rows of Q∗
′

are still orthonormal, and

the diagonal matrix ∆ forms the upper-left-corner of ∆∗:

∆∗ =

 ∆ ∅
∅ ∅


here, ∅ represents an appropriately dimensioned matrix of all zeros.

In analogy to the least-squares result of the last section, if a rank K

(≤ R) matrix approximation to A is desired, say BU×V , the first K

ordered entries in ∆ are taken:

B = δ1p1q
′
1 + · · · + δKpKq′K

and the value of the loss function:
V∑
v=1

U∑
u=1

(auv − buv)2 = δ2K+1 + · · · + δ2R

This latter result of approximating one matrix (least-squares) by

another of lower rank, is referred to as the Eckart-Young theorem in

the psychometric literature.

Once one has the SVD of a matrix, a lot of representation needs

can be expressed in terms of it. For example, suppose A = P∆Q′;
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the spectral decomposition of AA′ can then be given as

(P∆Q′)(P∆Q′)′ = P∆Q′Q∆P′ = P∆∆P′ = P∆2P′

Similarly, the spectral decomposition of A′A is expressible as Q∆2Q′.

0.4 Common Multivariate Methods in Matrix Terms

In this section we give brief overviews of some common methods of

multivariate analysis in terms of the matrix ideas we have introduced

thus far in this chapter. We come back to a few of these topics later

and develop them in more detail.

0.4.1 Principal Components

Suppose we have a data matrix XN×P = {xij}, with xij referring as

usual to the observation for subject i on variable or column j:

XN×P =



x11 x12 · · · x1P
x21 x22 · · · x2P

... ... . . . ...

xN1 xN2 · · · xNP


The columns can be viewed as containing N observations on each of

P random variables that we denote generically by X1, X2, . . . , XP .

We let A denote the P×P sample covariance matrix obtained among

the variables from X, and let λ1 ≥ · · · ≥ λP ≥ 0 be its P eigenvalues

and p1, . . . ,pP the corresponding normalized eigenvectors. Then,

the linear combination

p′k


X1
...

XP


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is called the kth (sample) principal component.

There are (at least) two interesting properties of principal compo-

nents to bring up at this time:

A) The kth principal component has maximum variance among

all linear combinations defined by unit length vectors orthogonal to

p1, . . . ,pk−1; also, it is uncorrelated with the components up to k−1;

B) A ≈ λ1p1p
′
1 + · · · + λKpKp′K gives a least-squares rank K

approximation to A (a special case of the Eckart-Young theorem for

an arbitrary symmetric matrix).

0.4.2 Discriminant Analysis

Suppose we have a one-way analysis-of-variance (ANOVA) layout

with J groups (nj subjects in group j, 1 ≤ j ≤ J), and P measure-

ments on each subject. If xijk denotes person i, in group j, and the

observation of variable k (1 ≤ i ≤ nj; 1 ≤ j ≤ J ; 1 ≤ k ≤ P ), then

define the Between-Sum-of-Squares matrix

BP×P = {
J∑
j=1

nj(x̄·jk − x̄··k)(x̄·jk′ − x̄··k′)}P×P

and the Within-Sum-of-Squares matrix

WP×P = {
J∑
j=1

nj∑
i=1

(xijk − x̄·jk)(xijk′ − x̄·jk′)}P×P

For the matrix product W−1B, let λ1, . . . , λT ≥ 0 be the eigen-

vectors (T = min(P, J − 1), and p1, . . . ,pT the corresponding nor-

malized eigenvectors. Then, the linear combination

p′k


X1
...

XP


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is called the kth discriminant function. It has the valuable property

of maximizing the univariate F -ratio subject to being uncorrelated

with the earlier linear combinations. A variety of applications of

discriminant functions exists in classification that we will come back

to later. Also, standard multivariate ANOVA significance testing is

based on various functions of the eigenvalues λ1, . . . , λT and their

derived sampling distributions.

0.4.3 Canonical Correlation

Suppose the collection of P random variables that we have observed

over theN subjects is actually in the form of two “batteries,”X1, . . . , XQ

andXQ+1, . . . , XP , and the observed covariance matrix AP×P is par-

titioned into four parts:

AP×P =

 A11 A12

A′12 A22


where A11 is Q×Q and represents the observed covariances among

the variables in the first battery; A22 is (P − Q) × (P − Q) and

represents the observed covariances among the variables in the second

battery; A12 is Q× (P −Q) and represents the observed covariances

between the variables in the first and second batteries. Consider the

following two equations in unknown vectors a and b, and unknown

scalar λ:

A−111 A12A
−1
22 A′12a = λa

A−122 A′12A
−1
11 A12b = λb
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There are T solutions to these expressions (for T = min(Q, (P −
Q))), given by normalized unit-length vectors, a1, . . . , aT and b1, . . . ,bT ;

and a set of common λ1 ≥ · · · ≥ λT ≥ 0.

The linear combinations of the first and second batteries defined

by ak and bk are the kth canonical variates and have squared cor-

relation of λk; they are uncorrelated with all other canonical variates

(defined either in the first or second batteries). Thus, a1 and b1

are the first canonical variates with squared correlation of λ1; among

all linear combinations defined by unit-length vectors for the vari-

ables in the two batteries, this squared correlation is the highest it

can be. (We note that the coefficient matrices A−111 A12A
−1
22 A′12 and

A−122 A′12A
−1
11 A12 are not symmetric; thus, special symmetrizing and

equivalent equation systems are typically used to obtain the solutions

to the original set of expressions.)

0.4.4 Algebraic Restrictions on Correlations

A matrix AP×P that represents a covariance matrix among a collec-

tion of random variables, X1, . . . , XP is p.s.d.; and conversely, any

p.s.d. matrix represents the covariance matrix for some collection of

random variables. We partition A to isolate its last row and column

as

A =

 B(P−1)×(P−1) g(P−1)×1
g′ aPP


B is the (P − 1) × (P − 1) covariance matrix among the variables

X1, . . . , XP−1; g is (P − 1) × 1 and contains the cross-covariance

between the the first P −1 variables and the P th; aPP is the variance

for the P th variable.
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Based on the observation that determinants of p.s.d. matrices are

nonnegative, and a result on expressing determinants for partitioned

matrices (that we do not give here), it must be true that

g′B−1g ≤ aPP

or if we think correlations rather than merely covariances (so the

main diagonal of A consists of all ones):

g′B−1g ≤ 1

Given the correlation matrix B, the possible values the correlations

in g could have are in or on the ellipsoid defined in P −1 dimensions

by g′B−1g ≤ 1. The important point is that we do not have a “box”

in P − 1 dimensions containing the correlations with sides extending

the whole range of ±1; instead, some restrictions are placed on the

observable correlations that gets defined by the size of the correlation

in B. For example, when P = 3, a correlation between variables

X1 and X2 of r12 = 0 gives the “degenerate” ellipse of a circle for

constraining the correlation values between X1 and X2 and the third

variable X3 (in a two-dimensional r13 versus r23 coordinate system);

for r12 = 1, the ellipse flattens to a line in this same two-dimensional

space.

Another algebraic restriction that can be seen immediately is based

on the formula for the partial correlation between two variables,

“holding the third constant”:
r12 − r13r23√

(1− r213)(1− r223)
Bounding the above by ±1 (because it is a correlation) and “solving”

for r12, gives the algebraic upper and lower bounds of
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r12 ≤ r13r23 +
√

(1− r213)(1− r223)

r13r23 −
√

(1− r213)(1− r223) ≤ r12

0.4.5 The Biplot

Let A = {aij} be an n × m matrix of rank r. We wish to find a

second matrix B = {bij} of the same size, n × m, but of rank t,

where t ≤ r, such that the least squares criterion,
∑
i,j(aij − bij)2, is

as small as possible overall all matrices of rank t.

The solution is to first find the singular value decomposition of A

as UDV′, where U is n × r and has orthonormal columns, V is

m× r and has orthonormal columns, and D is r× r, diagonal, with

positive values d1 ≥ d2 ≥ · · · ≥ dr > 0 along the main diagonal.

Then, B is defined as U∗D∗V∗′, where we take the first t columns of

U and V to obtain U∗ and V∗, respectively, and the first t values,

d1 ≥ · · · ≥ dt, to form a diagonal matrix D∗.

The approximation of A by a rank t matrix B, has been one mech-

anism for representing the row and column objects defining A in a

low-dimensional space of dimension t through what can be generi-

cally labeled as a biplot (the prefix “bi” refers to the representation

of both the row and column objects together in the same space).

Explicitly, the approximation of A and B can be written as

B = U∗D∗V∗′ = U∗D∗αD(1−α)V∗
′
= PQ′ ,

where α is some chosen number between 0 and 1, P = U∗D∗α and

is n× t, Q = (D(1−α)V∗
′
)′ and is m× t.
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The entries in P and Q define coordinates for the row and column

objects in a t-dimensional space that, irrespective of the value of α

chosen, have the following characteristic:

If a vector is drawn from the origin through the ith row point and

the m column points are projected onto this vector, the collection of

such projections is proportional to the ith row of the approximating

matrix B. The same is true for projections of row points onto vectors

from the origin through each of the column points.

0.4.6 The Procrustes Problem

Procrustes (the subduer), son of Poseidon, kept an inn benefiting

from what he claimed to be a wonderful all-fitting bed. He lopped off

excessive limbage from tall guests and either flattened short guests by

hammering or stretched them by racking. The victim fitted the bed

perfectly but, regrettably, died. To exclude the embarrassment of an

initially exact-fitting guest, variants of the legend allow Procrustes

two, different-sized beds. Ultimately, in a crackdown on robbers

and monsters, the young Theseus fitted Procrustes to his own bed.

(Gower and Dijksterhuis, 2004)

Suppose we have two matrices, X1 and X2, each considered (for

convenience) to be of the same size, n × p. If you wish, X1 and

X2 can be interpreted as two separate p-dimensional coordinate sets

for the same set of n objects. Our task is to match these two con-

figurations optimally, with the criterion being least-squares: find a

transformation matrix, Tp×p, such that ‖ X1T−X2 ‖ is minimized,

where ‖ · ‖ denotes the sum-of-squares of the incorporated matrix,

i.e., if A = {auv}, then ‖ A ‖ = trace(A′A) =
∑
u,v a

2
uv. For conve-
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nience, assume both X1 and X2 have been normalized so ‖ X1 ‖ =

‖ X2 ‖ = 1, and the columns of X1 and X2 have sums of zero.

Two results are central:

(a) When T is unrestricted, we have the multivariate multiple

regression solution

T∗ = (X′1X1)
−1X′1X2 ;

(b) When T is orthogonal, we have the Schönemann solution done

for his thesis in the Quantitative Division at Illinois in 1965 (pub-

lished in Psychometrika in 1966):

for the SVD of X′2X1 = USV′, we let T∗ = VU′.

0.4.7 Matrix Rank Reduction

Lagrange’s Theorem (as inappropriately named by C. R. Rao, be-

cause it should really be attributed to Guttman) can be stated as

follows:

Let G be a nonnegative-definite (i.e., a symmetric positive semi-

definite) matrix of order n×n and of rank r > 0. Let B be of order

n×s and such that B′GB is non-singular. Then the residual matrix

G1 = G−GB(B′GB)−1B′G (1)

is of rank r − s and is nonnegative definite.

Intuitively, this theorem allows you to “take out” “factors” from a

covariance (or correlation) matrix.

There are two somewhat more general results (from Guttman) on

matrix rank reduction that prove useful:
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Let S be any matrix of order n×N and of rank r > 0. Let X and

Y be of orders s × n and s × N , respectively (where s ≤ r), and

such that XSY′ is nonsingular. Then the residual matrix

S1 = S− SY′(XSY′)−1XS

is exactly of rank r − s.
If S is of order n×N and of rank r, F of order n× r (and of rank

r), and SS′ = FF′, then there is a unique matrix P of order r ×N
such that

S = FP .

The matrix P = (F′F)−1F′S satisfies PP′ = I (i.e., P has orthonor-

mal rows).

0.4.8 Torgerson Metric Multidimensional Scaling

Let A be a symmetric matrix of order n × n. Suppose we want

to find a matrix B of rank 1 (of order n × n) in such a way that

the sum of the squared discrepancies between the elements of A and

the corresponding elements of B (i.e.,
∑n
j=1

∑n
i=1(aij − bij)2) is at a

minimum. It can be shown that the solution is B = λkk′ (so all

columns in B are multiples of k), where λ is the largest eigenvalue of

A and k is the corresponding normalized eigenvector. This theorem

can be generalized. Suppose we take the first r largest eigenvalues

and the corresponding normalized eigenvectors. The eigenvectors are

collected in an n×r matrix K = {k1, . . . ,kr} and the eigenvalues in

a diagonal matrix Λ. Then KΛK′ is an n×n matrix of rank r and

is a least-squares solution for the approximation of A by a matrix of

rank r. It is assumed, here, that the eigenvalues are all positive. If
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A is of rank r by itself and we take the r eigenvectors for which the

eigenvalues are different from zero collected in a matrix K of order

n× r, then A = KΛK′. Note that A could also be represented by

A = LL′, where L = KΛ1/2 (we factor the matrix), or as a sum of

r n× n matrices — A = λ1k1k
′
1 + · · · + λrkrk

′
r.

Metric Multidimensional Scaling – Torgerson’s Model (Gower’s

Principal Coordinate Analysis)

Suppose I have a set of n points that can be perfectly repre-

sented spatially in r dimensional space. The ith point has coordi-

nates (xi1, xi2, . . . , xir). If dij =
√∑r

k=1(xik − xjk)2 represents the

Euclidean distance between points i and j, then

d∗ij =
r∑

k=1
xikxjk,where

d∗ij = −1

2
(d2ij − Ai −Bj + C); (2)

Ai = (1/n)
n∑
j=1

d2ij;

Bj = (1/n)
n∑
i=1
d2ij;

C = (1/n2)
n∑
i=1

n∑
j=1

d2ij.

Note that {d∗ij}n×n = XX′, where X is of order n × r and the

entry in the ith row and kth column is xik.

So, the Question: If I give you D = {dij}n×n, find me a set of

coordinates to do it. The Solution: Find D∗ = {d∗ij}, and take its

Spectral Decomposition. This is exact here.
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To use this result to obtain a spatial representation for a set of

n objects given any “distance-like” measure, pij, between objects i

and j, we proceed as follows:

(a) Assume (i.e., pretend) the Euclidean model holds for pij.

(b) Define p∗ij from pij using (2).

(c) Obtain a spatial representation for p∗ij using a suitable value

for r, the number of dimensions (at most, r can be no larger than

the number of positive eigenvalues for {p∗ij}n×n):

{p∗ij} ≈ XX′

(d) Plot the n points in r dimensional space.

0.4.9 A Guttman Multidimensional Scaling Result

If B is a symmetric matrix of order n, having all its elements non-

negative, the following quadratic form defined by the matrix A must

be positive semi-definite:

∑
i,j
bij(xi − xj)2 =

∑
i,j
xiaijxj,

where

aij =


∑n
k=1;k 6=i bik (i = j)

−bij (i 6= j)

If all elements of B are positive, then A is of rank n − 1, and has

one smallest eigenvalue equal to zero with an associated eigenvector

having all constant elements. Because all (other) eigenvectors must

be orthogonal to the constant eigenvector, the entries in these other

eigenvectors must sum to zero.
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This Guttman result can be used for a method of multidimensional

scaling (mds), and is one that seems to get reinvented periodically

in the literature. Generally, this method has been used to provide

rational starting points in iteratively-defined nonmetric mds. More

recently, the Guttman strategy (although not attributed to him as

such) has been applied to graphs and the corresponding 0/1 adja-

cency matrix (treated as a similarity measure). In this case, we have

what are called Laplacian eigenmaps, where the graphs are imbed-

ded into a space by using the coordinates from the smallest nonzero

eigenvectors.

0.4.10 A Few General MATLAB Routines to Know About

For Eigenvector/Eigenvalue Decompositions:

[V,D] = eig(A), where A = VDV′, for A square; V is or-

thogonal and contains eigenvectors (as columns); D is diagonal and

contains the eigenvalues.

For Singular Value Decompositions:

[U,S,V] = svd(B), where B = USV′; the columns of U and

the rows of V′ are orthonormal; S is diagonal and contains the non-

negative singular values (ordered from largest to smallest).

The help comments for the Procrustes routine in the Statistics

Toolbox are given verbatim below. Note the very general transfor-

mation provided in the form of a MATLAB Structure that involves

optimal rotation, translation, and scaling.

help procrustes

procrustes Procrustes Analysis

D = procrustes(X, Y) determines a linear transformation (translation,
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reflection, orthogonal rotation, and scaling) of the points in the

matrix Y to best conform them to the points in the matrix X. The

"goodness-of-fit" criterion is the sum of squared errors. procrustes

returns the minimized value of this dissimilarity measure in D. D is

standardized by a measure of the scale of X, given by

sum(sum((X - repmat(mean(X,1), size(X,1), 1)).^2, 1))

i.e., the sum of squared elements of a centered version of X. However,

if X comprises repetitions of the same point, the sum of squared errors

is not standardized.

X and Y are assumed to have the same number of points (rows), and

procrustes matches the i’th point in Y to the i’th point in X. Points

in Y can have smaller dimension (number of columns) than those in X.

In this case, procrustes adds columns of zeros to Y as necessary.

[D, Z] = procrustes(X, Y) also returns the transformed Y values.

[D, Z, TRANSFORM] = procrustes(X, Y) also returns the transformation

that maps Y to Z. TRANSFORM is a structure with fields:

c: the translation component

T: the orthogonal rotation and reflection component

b: the scale component

That is, Z = TRANSFORM.b * Y * TRANSFORM.T + TRANSFORM.c.

[...] = procrustes(..., ’Scaling’,false) computes a procrustes solution

that does not include a scale component, that is, TRANSFORM.b == 1.

procrustes(..., ’Scaling’,true) computes a procrustes solution that

does include a scale component, which is the default.

[...] = procrustes(..., ’Reflection’,false) computes a procrustes solution

that does not include a reflection component, that is, DET(TRANSFORM.T) is

1. procrustes(..., ’Reflection’,’best’) computes the best fit procrustes

solution, which may or may not include a reflection component, ’best’ is

the default. procrustes(..., ’Reflection’,true) forces the solution to

include a reflection component, that is, DET(TRANSFORM.T) is -1.

Examples:

% Create some random points in two dimensions

n = 10;

X = normrnd(0, 1, [n 2]);

% Those same points, rotated, scaled, translated, plus some noise
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S = [0.5 -sqrt(3)/2; sqrt(3)/2 0.5]; % rotate 60 degrees

Y = normrnd(0.5*X*S + 2, 0.05, n, 2);

% Conform Y to X, plot original X and Y, and transformed Y

[d, Z, tr] = procrustes(X,Y);

plot(X(:,1),X(:,2),’rx’, Y(:,1),Y(:,2),’b.’, Z(:,1),Z(:,2),’bx’);
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Notes on Discrimination and Classification

The term “discrimination” (in a nonpejorative statistical sense)

refers to the task of discrimination among groups through linear com-

binations of variables that maximize some criterion, usually F -ratios.

The term “classification” refers to the task of allocating observations

to existing groups, typically to minimize the cost and/or probability

of misclassification. These two topics are intertwined, but it is most

convenient to start with the topic of classification.

In the picture to follow, we have two populations, called π1 and

π2; π1 is characterized by a normal distribution with mean µ1, and

variance σ2X (the density is denoted by f1(x)); π2 is characterized by

a normal distribution with mean µ2, and (common) variance σ2X (the

density is denoted by f2(x)). I have an observation, say x0, and wish

to decide where it should go, either to π1 or π2. Assuming implicitly

that µ1 ≤ µ2, we choose a criterion point, c, and allocate to π1 if

x0 ≤ c, and to π2 if > c. The probabilities of misclassification can

be given in the following chart (and in the figure):

True State

π1 π2
π1 1− α β

Decision

π2 α 1− β
If I want to choose c so that α + β is smallest, I would select the

point at which the densities are equal. A more complicated way of

saying this decision rule is to allocate to π1 if f1(x0)/f2(x0) ≥ 1; if

< 1, then allocate to π2. Suppose now that the prior probabilities
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of being drawn from π1 and π2 are p1 and p2, where p1 + p2 = 1. I

wish to choose c so the Total Probability of Misclassification (TPM)

is minimized, i.e., p1α + p2β. The rule would be to allocate to π1 if

f1(x0)/f2(x0) ≥ p2/p1; if < p2/p1, then allocate to π2. Finally, if we

include costs of misclassification, c(1|2) (for assigning to π1 when ac-

tually coming from π2), and c(2|1) (for assigning to π2 when actually

coming from π1), we can choose c to minimize the Expected Cost of

Misclassification (ECM), c(2|1)p1α + c(1|2)p1β, with the associated

rule of allocating to π1 if f1(x0)/f2(x0) ≥ (c(1|2)/c(2|1))(p2/p1); if

< (c(1|2)/c(2|1))(p2/p1), then allocate to π2.

Using logs, the last rule can be restated: allocate to π1 if log(f1(x0)/f2(x0)) ≥
log((c(1|2)/c(2|1))(p2/p1)). The left-hand-side is equal to (µ1 −
µ2)(σ

2
X)−1x0 − (1/2)(µ1 − µ2)(σ

2
X)−1(µ1 + µ2), so the rule can be

restated further: allocate to π1 if

x0 ≤ {(1/2)(µ1 − µ2)(σ2X)−1(µ1 + µ2)

− log((c(1|2)/c(2|1))(p2/p1))}{
σ2X

−(µ1 − µ2)
}

or

x0 ≤ {(1/2)(µ1+µ2)− log((c(1|2)/c(2|1))(p2/p1))}{
σ2X

(µ2 − µ1)
} = c .

If the costs of misclassification are equal (i.e., c(1|2) = c(2|1)),

then the allocation rule is based on classification functions: allocate

to π1 if

[
µ1
σ2X

x0 − (1/2)
µ21
σ2X

+ log(p1)]− [
µ2
σ2X

x0 − (1/2)
µ22
σ2X

+ log(p2)] ≥ 0 .
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Moving toward the multivariate framework, suppose population

π1 is characterized by a p × 1 vector of random variables, X ∼
MVN(µ1,Σ); population π2 is characterized by a p × 1 vector of

random variables, X ∼ MVN(µ2,Σ). We have a similar allocation

rule as in the univariate case: allocate to π1 if ax0−a[(µ1+µ2)/2] ≥
(c(1|2)/c(2|1))(p2/p1), where

a = (µ1 − µ2)′Σ−1 .

Or, if the misclassification costs are equal, allocate to π1 if ax0 −
a[(µ1 + µ2)/2] ≥ [log(p2) − log(p1)]. In effect, we define regions of

classification, say R1 and R2; if an observation falls into region Ri,

it is allocated to group i, for i = 1, 2 There are a number of ways

of restating this last rule (assuming equal misclassification costs, this

is choosing to minimize the Total Probability of Misclassification

(TPM)):

A) Evaluate the classification functions for both groups and assign

according to which is higher: allocate to π1 if

[µ′1Σ
−1x0 − (1/2)µ1Σ

−1µ1) + log(p1)]−

[µ′2Σ
−1x0 − (1/2)µ2Σ

−1µ2) + log(p2)] ≥ 0 .

B) Define the posterior probability of being in group i, for i = 1, 2,

P (πi|x0) as (fipi)/(f1p1 + f2p2). We allocate to the group with the

largest posterior probability.

C) We can restate our allocation rule according to Mahalanobis

distances: define the squared Mahalanobis distance of x0 to µi, i =

1, 2, as

(x0 − µi)
′Σ−1(x0 − µi) .
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Allocate to πi for the largest quantity of the form:

−(1/2)[(x0 − µi)
′Σ−1(x0 − µi)] + log(pi) .

When the covariance matrices are not equal in the two populations

(i.e., Σ1 6= Σ2), the allocation rules get a little more complicated.

The classification rules are now called “quadratic”, and may produce

regions of allocation that may not be contiguous. This is a little

strange, but it can be done, and we can still split the allocation rule

into two classification functions (assuming, as usual, equal costs of

misclassification):

Assign to π1 if

−(1/2)x′0(Σ
−1
1 −Σ−12 )x0 + (µ1

′Σ−11 − µ2
′Σ−11 )x0 − k ≥

log((c(1|2)/c(2|1))(p2/p1)) ,

where

k = (1/2) log(
|Σ1|
|Σ2|

) + (1/2)(µ1
′Σ−11 µ1 − µ2

′Σ−12 µ2) .

Moving to the sample, we could just use estimated quantities and

hope our rule does well — we use Spooled, assuming equal covariance

matrices in the two populations, and sample means, µ̂1 and µ̂2. In

fact, we can come up with the misclassification table based on the

given sample and how they allocate the given n observations to the

two groups:
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Group

π1 π2
π1 a b

Decision

π2 c d

n1 n2

The apparent error rate (APR) is (b + c)/n, which is overly op-

timistic because it is optimized with respect to this sample. To

cross-validate, we could use a “hold out one-at-a-time” strategy (i.e.,

a sample reuse procedure commonly referred to as the “jackknife”):

Group

π1 π2
π1 a∗ b∗

Decision

π2 c∗ d∗

n1 n2

To estimate the actual error rate (AER), we would use (b∗ + c∗)/n.

Suppose we have g groups; pi is the a priori probability of group i,

1 ≤ i ≤ g; c(k|i) is the cost of classifying an i as a k. The decision

rule that minimizes the expected cost of misclassification (ECM) is:

allocate x0 to population πk, 1 ≤ k ≤ g, if
g∑

i=1;i 6=k
pifi(x0)c(k|i)

is smallest.

There are, again, alternative ways of stating this allocation rule;
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we will assume for convenience that the costs of misclassification are

equal:

Allocate to group k if the posterior probability,

P (πk|x0) =
pkfk(x0)∑g
i=1 pifi(x0)

,

is largest.

If in population k, X ∼ MVN(µk,Σk), we allocate to group k if

log(pkfk(x0)) =

−(1/2) log(|Σk|)−(1/2)(x0−µk)
′Σ−1k (x0−µk)+log(pi)+constant ,

is largest.

If all the Σk = Σ for all k, then we allocate to πk if

µ′kΣ
−1
k x0 − (1/2)µ′kΣ

−1
k µk + log(pk) ,

is largest.

It is interesting that we can do this in a pairwise way as well:

allocate to πk if

(µk − µi)
′Σ−1k x0 − (1/2)(µk − µi)

′Σ−1k (µk + µi) ≥ log(pi/pk) ,

for all i = 1, . . . , g.

0.4.11 Discriminant Analysis

Suppose we have a one-way analysis-of-variance (ANOVA) layout

with J groups (nj subjects in group j, 1 ≤ j ≤ J), and p measure-

ments on each subject. If xijk denotes person i, in group j, and the
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observation of variable k (1 ≤ i ≤ nj; 1 ≤ j ≤ J ; 1 ≤ k ≤ p), then

define the Between-Sum-of-Squares matrix

Bp×p = {
J∑
j=1

nj(x̄·jk − x̄··k)(x̄·jk′ − x̄··k′)}p×p

and the Within-Sum-of-Squares matrix

Wp×p = {
J∑
j=1

nj∑
i=1

(xijk − x̄·jk)(xijk′ − x̄·jk′)}p×p

For the matrix product W−1B, let λ1, . . . , λT ≥ 0 be the eigen-

vectors (T = min(p, J − 1), and p1, . . . ,pT the corresponding nor-

malized eigenvectors. Then, the linear combination

p′k


X1
...

Xp


is called the kth discriminant function. It has the valuable property

of maximizing the univariate F -ratio subject to being uncorrelated

with the earlier linear combinations.

There are a number of points to make about (Fisher’s) Linear

Discriminant Functions:

A) Typically, we define a sample pooled variance-covariance ma-

trix, Spooled, as ( 1
n−J )W. And generally, the eigenvalues are scaled

so that p′kSpooledpk = 1.

B) When J = 2, the eigenvector, p′1, is equal to (µ̂1− µ̂2)′Spooled.

This set of weights maximized the square of the t ratio in a two-group

separation problem (i.e., discriminating between the two groups). We
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also maximize the square of the effect size for this linear combination;

the maximum for such an effect size is

(x̄1 − x̄2)
′S−1pooled(x̄1 − x̄2)

′ ,

where x̄1 and x̄2 are the sample centroids in groups 1 and 2 for the

p variables. Finally, if we define Y = 1 if an observation falls into

group 1, and = 0 if in group 2, the set of weights in p′1 is proportional

to the regression coefficients in predicting Y from X1, . . . , Xp.

C) The classification rule based on Mahalanobis distance (and as-

suming equal prior probabilities and equal misclassification values),

could be restated equivalently using plain Euclidean distances in dis-

criminant function space.
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Notes on Principal Component Analysis

A preliminary introduction to principal components was given in

our brief discussion of the spectral decomposition (i.e., the eigen-

vector/eigenvalue decomposition) of a matrix and what it might be

used for. We will now be a bit more systematic, and begin by making

three introductory comments:

(a) Principal component analysis (PCA) deals with only one set of

variables without the need for categorizing the variables as being in-

dependent or dependent. There is asymmetry in the discussion of the

general linear model; in PCA, however, we analyze the relationships

among the variables in one set and not between two.

(b) As always, everything can be done computationally without

the Multivariate Normal (MVN) assumption; we are just getting

descriptive statistics. When significance tests and the like are desired,

the MVN assumption becomes indispensable. Also, MVN gives some

very nice interpretations for what the principal components are in

terms of our constant density ellipsoids.

(c) Finally, it is probably best if you are doing a PCA, not to

refer to these as “factors”. A lot of blood and ill-will has been spilt

and spread over the distinction between component analysis (which

involves linear combinations of observable variables), and the esti-

mation of a factor model (which involves the use of underlying latent

variables or factors, and the estimation of the factor structure). We

will get sloppy ourselves later, but some people really get exercised

about these things.
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We will begin working with the population (but everything trans-

lates more-or-less directly for a sample):

Suppose [X1, X2, . . . , Xp] = X′ is a set of p random variables, with

mean vector µ and variance-covariance matrix Σ. I want to define p

linear combinations of X′ that represent the information in X′ more

parsimoniously. Specifically, find a1, . . . , ap such that a′1X, . . . , a
′
pX

gives the same information as X′, but the new random variables,

a′1X, . . . , a
′
pX, are “nicer”.

Let λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 be the p roots (eigenvalues) of the

matrix Σ, and let a1, . . . , ap be the corresponding eigenvectors. If

some roots are not distinct, I can still pick corresponding eigenvectors

to be orthogonal. Choose an eigenvector ai so a′iai = 1, i.e., a

normalized eigenvector. Then, a′iX is the ith principal component of

the random variables in X′.

Properties:

1) Var(a′iX) = a′iΣai = λi

We know Σai = λiai, because ai is the eigenvector for λi; thus,

a′iΣai = a′iλiai = λi. In words, the variance of the ith principal

component is λi, the root.

Also, for all vectors bi such that bi is orthogonal to a1, . . . , ai−1,

and b′ibi = 1, Var(b′iX) is the greatest it can be (i.e., λi) when

bi = ai.

2) ai and aj are orthogonal, i.e., a′iaj = 0

3) Cov(a′iX, a
′
jX) = a′iΣaj = a′iλjaj = λja

′
iaj = 0
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4) Tr(Σ) = λ1 + · · · + λp = sum of variances for all p principal

components, and for X1, . . . , Xp. The importance of the ith principal

component is

λi/Tr(Σ) ,

which is equal to the variance of the ith principal component di-

vided by the total variance in the system of p random variables,

X1, . . . ,Xp; it is the proportion of the total variance explained by

the ith component.

If the first few principal components account for most of the vari-

ation, then we might interpret these components as “factors” under-

lying the whole set X1, . . . ,Xp. This is the basis of principal factor

analysis.

The question of how many components (or factors, or clusters,

or dimensions) usually has no definitive answer. Some attempt has

been made to do what are called Scree plots, and graphically see how

many components to retain. A plot is constructed of the value of the

eigenvalue on the y-axis and the number of the eigenvalue (e.g., 1, 2,

3, and so on) on the x-axis, and you look for an “elbow” to see where

to stop. Scree or talus is the pile of rock debris (detritus) at the foot

of a cliff, i.e., the sloping mass of debris at the bottom of the cliff. I,

unfortunately, can never see an “elbow”!

If we let a population correlation matrix corresponding to Σ be

denoted as P, then Tr(P) = p, and we might use only those principal

components that have variance of λi ≥ 1 — otherwise, the compo-

nent would “explain” less variance than would a single variable.

A major rub — if I do principal components on the correlation
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matrix, P, and on the original variance-covariance matrix, Σ, the

structures obtained are generally different. This is one reason the

“true believers” might prefer a factor analysis model over a PCA be-

cause the former holds out some hope for an invariance (to scaling).

Generally, it seems more reasonable to always use the population

correlation matrix, P; the units of the original variables become ir-

relevant, and it is much easier to interpret the principal components

through their coefficients.

The jth principal component is a′jX:

Cov(a′jX, Xi) = Cov(a′jX,b
′X), where b′ = [0 · · · 0 1 0 · · · 0],

with the 1 in the ith position, = a′jΣb = b′Σaj = b′λjaj = λj
times the ith component of aj = λjaij. Thus, Cor(a′jX, Xi) =

λjaij√
λjσi

=

√
λjaij
σi

,

where σi is the standard deviation of Xi. This correlation is called

the loading ofXi on the jth component. Generally, these correlations

can be used to see the contribution of each variable to each of the

principal components.

If the population covariance matrix, Σ, is replaced by the sample

covariance matrix, S, we obtain sample principal components; if the

population correlation matrix, P, is replaced by the sample correla-

tion matrix, R, we again obtain sample principal components. These

structures are generally different.
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The covariance matrix S (or Σ) can be represented by

S = [a1, . . . , ap]


√
λ1 · · · 0
... ...

0 · · ·
√
λp




√
λ1 · · · 0
... ...

0 · · ·
√
λp




a′1
...

a′p

 ≡ LL′

or as the sum of p, p× p matrices,

S = λ1a1a
′
1 + · · · + λpapa

′
p .

Given the ordering of the eigenvalues as λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0,

the least-squares approximation to S of rank r is λ1a1a
′
1 + · · · +

λrara
′
r, and the residual matrix, S − λ1a1a

′
1 − · · · − λrara

′
r, is

λr+1ar+1a
′
r+1 + · · · + λpapa

′
p.

Note that for an arbitrary matrix, Bp×q, the Tr(BB′) = sum of

squares of the entries in B. Also, for two matrices, B and C, if both

of the products BC and CB can be taken, then Tr(BC) is equal

to Tr(CB). Using these two results, the least-squares criterion value

can be given as

Tr([λr+1ar+1a
′
r+1 + · · · + λpapa

′
p][λr+1ar+1a

′
r+1 + · · · + λpapa

′
p]
′) =

∑
k≥r+1

λ2k .

This measure is one of how bad the rank r approximation might be

(i.e., the proportion of unexplained sum-of-squares when put over∑p
k=1 λ

2
k).

For a geometric interpretation of principal components, suppose

we have two variables, X1 and X2, that are centered at their respec-

tive means (i.e., the means of the scores on X1 and X2 are zero). In
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the diagram below, the ellipse represents the scatter diagram of the

sample points. The first principal component is a line through the

widest part; the second component is the line at right angles to the

first principal component. In other words, the first principal compo-

nent goes through the fattest part of the “football,” and the second

principal component through the next fattest part of the “football”

and orthogonal to the first; and so on. Or, we take our original frame

of reference and do a rigid transformation around the origin to get a

new set of axes; the origin is given by the sample means (of zero) on

the two X1 and X2 variables. (To make these same geometric points,

we could have used a constant density contour for a bivariate normal

pair of random variables, X1 and X2, with zero mean vector.)

X1

X2
first component

second component

As an example of how to find the placement of the components in

the picture given above, suppose we have the two variables, X1 and

X2, with variance-covariance matrix

Σ =

 σ21 σ12
σ12 σ22

 .
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Let a11 and a21 denote the weights from the first eigenvector of Σ;

a12 and a22 are the weights from the second eigenvector. If these

are placed in a 2 × 2 orthogonal (or rotation) matrix T, with the

first column containing the first eigenvector weights and the second

column the second eigenvector weights, we can obtain the direction

cosines of the new axes system from the following:

T =

 a11 a12
a21 a22

 =

 cos(θ) cos(90 + θ)

cos(θ − 90) cos(θ)

 =

 cos(θ) − sin(θ)

sin(θ) cos(θ)

 .
These are the cosines of the angles with the positive (horizontal and

vertical) axes. If we wish to change the orientation of a transformed

axis (i.e., to make the arrow go in the other direction), we merely

use a multiplication of the relevant eigenvector values by −1 (i.e.,

we choose the other normalized eigenvector for that same eigenvalue,

which still has unit length).

θ

θ − 90
θ

90 + θ

If we denote the data matrix in this simple two variable problem

as Xn×2, where n is the number of subjects and the two columns
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represent the values on variables X1 and X2 (i.e., the coordinates of

each subject on the original axes), the n × 2 matrix of coordinates

of the subjects on the transformed axes, say Xtrans can be given as

XT.

For another interpretation of principal components, the first com-

ponent could be obtained by minimizing the sum of squared per-

pendicular residuals from a line (and in analogy to simple regression

where the sum of squared vertical residuals from a line is minimized).

This notion generalizes to more than than one principal component

and in analogy to the way that multiple regression generalizes simple

regression — vertical residuals to hyperplanes are used in multiple

regression, and perpendicular residuals to hyperplanes are used in

PCA.

There are a number of specially patterned matrices that have in-

teresting eigenvector/eigenvalue decompositions. For example, for

the p× p diagonal variance-covariance matrix

Σp×p =


σ21 · · · 0
... ...

0 · · · σ2p

 ,

the roots are σ21, . . . , σ
2
p, and the eigenvector corresponding to σ2i

is [0 0 . . . 1 . . . 0]′ where the single 1 is in the ith position. If we

have a correlation matrix, the root of 1 has multiplicity p, and the

eigenvectors could also be chosen as these same vectors having all

zeros except for a single 1 in the ith position, 1 ≤ i ≤ p.

If the p × p variance-covariance matrix demonstrates compound
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symmetry,

Σp×p = σ2


1 · · · ρ
... ...

ρ · · · 1

 ,

or is an equicorrelation matrix,

P =


1 · · · ρ
... ...

ρ · · · 1

 ,

then the p − 1 smallest roots are all equal. For example, for the

equicorrelation matrix, λ1 = 1 + (p − 1)ρ, and the remaining p −
1 roots are all equal to 1 − ρ. The p × 1 eigenvector for λ1 is

[ 1√
p, . . . ,

1√
p]
′, and defines an average. Generally, for any variance-

covariance matrix with all entries greater than zero (or just non-

negative), the entries in the first eigenvector must all be greater than

zero (or non-negative). This is known as the Perron-Frobenius theo-

rem.

Although we will not give these tests explicitly here (they can be

found in Johnson and Wichern’s (2007) multivariate text), they are

inference methods to test the null hypothesis of an equicorrelation

matrix (i.e., the last p− 1 eigenvalues are equal); that the variance-

covariance matrix is diagonal or the correlation matrix is the identity

(i.e., all eigenvalues are equal); or a sphericity test of independence

that all eigenvalues are equal and Σ is σ2 times the identity matrix.
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0.5 Analytic Rotation Methods

Suppose we have a p × m matrix, A, containing the correlations

(loadings) between our p variables and the first m principal compo-

nents. We are seeking an orthogonal m ×m matrix T that defines

a rotation of the m components into a new p ×m matrix, B, that

contains the correlations (loadings) between the p variables and the

newly rotated axes: AT = B. A rotation matrix T is sought that

produces “nice” properties in B, e.g., a “simple structure”, where

generally the loadings are positive and either close to 1.0 or to 0.0.

The most common strategy is due to Kaiser, and calls for maxi-

mizing the normal varimax criterion:

1

p

m∑
j=1

[
p∑
i=1

(bij/hi)
4 − γ

p
{
p∑
i=1

(bij/hi)
2}2] ,

where the parameter γ = 1 for varimax, and hi =
√∑m

j=1 b
2
ij (this

is called the square root of the communality of the ith variable in a

factor analytic context). Other criteria have been suggested for this

so-called orthomax criterion that use different values of γ — 0 for

quartimax, m/2 for equamax, and p(m−1)/(p+m−2) for parsimax.

Also, various methods are available for attempting oblique rotations

where the transformed axes do not need to maintain orthogonality,

e.g., oblimin in SYSTAT; Procrustes in MATLAB.

Generally, varimax seems to be a good default choice. It tends to

“smear” the variance explained across the transformed axes rather

evenly. We will stick with varimax in the various examples we do

later.
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0.6 Little Jiffy

Chester Harris named a procedure posed by Henry Kaiser for “factor

analysis,” Little Jiffy. It is defined very simply as “principal com-

ponents (of a correlation matrix) with associated eigenvalues greater

than 1.0 followed by normal varimax rotation”. To this date, it is

the most used approach to do a factor analysis, and could be called

“the principal component solution to the factor analytic model”.

More explicitly, we start with the p× p sample correlation matrix

R and assume it has r eigenvalues greater than 1.0. R is then

approximated by a rank r matrix of the form:

R ≈ λ1a1a
′
1 + · · · + λrara

′
r =

(
√
λ1a1)(

√
λ1a

′
1) + · · · + (

√
λrar)(

√
λra

′
r) =

b1b
′
1 + · · · + brb

′
r =

(b1, . . . ,br)


b′1
...

b′r

 = BB′ ,

where

Bp×r =



b11 b12 · · · b1r
b21 b22 · · · b2r
... ... ...

bp1 bp2 · · · bpr


.

The entries in B are the loadings of the row variables on the column

components.

For any r × r orthogonal matrix T, we know TT′ = I, and

R ≈ BIB′ = BTT′B′ = (BT)(BT)′ = B∗p×rB
∗′
r×p .
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For example, varimax is one method for constructing B∗. The

columns of B∗ when normalized to unit length, define r linear com-

posites of the observable variables, where the sum of squares within

columns of B∗ defines the variance for that composite. The compos-

ites are still orthogonal.

0.7 Principal Components in Terms of the Data Ma-

trix

For convenience, suppose we transform our n × p data matrix X

into the z-score data matrix Z, and assuming n > p, let the SVD of

Zn×p = Un×pDp×pV
′
p×p. Note that the p× p correlation matrix

R =
1

n
Z′Z =

1

n
(VDU′)(UDV′) = V(

1

n
D2)V′ .

So, the rows of V′ are the principal component weights. Also,

ZV = UDV′V = UD .

In other words, (UD)n×p are the scores for the n subjects on the p

principal components.

What’s going on in “variable” space: Suppose we look at a rank

2 approximation of Zn×p ≈ Un×2D2×2V
′
2×p. The ith subject’s row

data vector sits somewhere in p-dimensional “variable” space; it is

approximated by a linear combination of the two eigenvectors (which

gives another point in p dimensions), where the weights used in the

linear combination come from the ith row of (UD)n×2. Because we

do least-squares, we are minimizing the squared Euclidean distances

between the subject’s row vector and the vector defined by the par-
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ticular linear combination of the two eigenvectors. These approxi-

mating vectors in p dimensions are all in a plane defined by all linear

combinations of the two eigenvectors. For a rank 1 approximation,

we merely have a multiple of the first eigenvector (in p dimensions)

as the approximating vector for a subject’s row vector.

What’s going on in “subject space”: Suppose we begin by look-

ing at a rank 1 approximation of Zn×p ≈ Un×1D1×1V
′
1×p. The

jth column (i.e., variable) of Z is a point in n-dimensional “subject

space,” and is approximated by a multiple of the scores on the first

component, (UD)n×1. The multiple used is the jth element of the

1 × p vector of first component weights, V′1×p. Thus, each column

of the n× p approximating matrix, Un×1D1×1V
′
1×p, is a multiple of

the same vector giving the scores on the first component. In other

words, we represent each column (variable) by a multiple of one spe-

cific vector, where the multiple represents where the projection lies

on this one single vector (the term “projection” is used because of the

least-squares property of the approximation). For a rank 2 approx-

imation, each column variable in Z is represented by a point in the

plane defined by all linear combinations of the two component score

columns in Un×2D2×2; the point in that plane is determined by the

weights in the jth column of V′2×p. Alternatively, Z is approximated

by the sum of two n×p matrices defined by columns being multiples

of the first or second component scores.

As a way of illustrating a graphical way of representing principal

components of a data matrix (through a biplot), suppose we have

the rank 2 approximation, Zn×p ≈ Un×2D2×2V
′
2×p, and consider

a two-dimensional Cartesian system where the horizontal axis cor-
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responds to the first component and the vertical axis corresponds

to the second component. Use the n two-dimensional coordinates

in (Un×2D2×2)n×2 to plot the rows (subjects), let Vp×2 define the

two-dimensional coordinates for the p variables in this same space.

As in any biplot, if a vector is drawn from the origin through the

ith row (subject) point, and the p column points are projected onto

this vector, the collection of such projections is proportional to the

ith row of the n× p approximation matrix (Un×2D2×2V
′
2×p)n×p.

The emphasis in this notes has been on the descriptive aspects of

principal components. For a discussion of the statistical properties of

these entities, consult Johnson and Wichern (2007) — confidence in-

tervals on the population eigenvalues; testing equality of eigenvalues;

assessing the patterning present in an eigenvector; and so on.
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Notes on Factor Analysis

The first question we need to address is why go to the trouble of

developing a specific factor analysis model when principal compo-

nents and “Little Jiffy” seem to get at this same problem of defining

factors:

(1) In a principal component approach, the emphasis is completely

on linear combinations of the observable random variables. There is

no underlying (latent) structure of the variables that I try to estimate.

Statisticians generally love models and find principal components to

be somewhat inelegant and nonstatistical.

(2) The issue of how many components should be extracted is al-

ways an open question. With explicit models having differing num-

bers of “factors,” we might be able to see which of the models fits

“best” through some formal statistical mechanism.

(3) Depending upon the scale of the variables used (i.e., the vari-

ances), principal components may vary and there is no direct way of

relating the components obtained on the correlation matrix and the

original variance-covariance matrix. With some forms of factor anal-

ysis, such as maximum likelihood (ML), it is possible to go between

the results obtained from the covariance matrix and the correlations

by dividing or multiplying by the standard deviations of the variables.

In other words, we can have a certain type of “scale invariance” if we

choose, for example, the maximum likelihood approach.

(4) If one wishes to work with a correlation matrix and have a

means of testing whether a particular model is adequate or to develop
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confidence intervals and the like, it is probably preferable to use the

ML approach. In PCA on a correlation matrix, the results that are

usable for statistical inference are limited and very strained generally

(and somewhat suspect).

To develop the factor analysis model, assume the p observable

random variables, X′ = [X1, . . . , Xp], are MVN(µ, Σ). Without

loss of generality, we can assume that µ is the zero vector. Also,

suppose that each Xi can be represented by a linear combination of

somem unobservable or latent random variables, Y′ = [Y1, . . . , Ym],

plus an error term, ei:

Xi = λi1Y1 + · · · + λimYm + ei, for 1 ≤ i ≤ p .

Here, Y1, . . . , Ym are the common factor variables; e1, . . . , ep are the

specific factor variables; λij is the loading (i.e., the covariance) of

the ith response variable, Xi, on the jth common factor variable.

If e′ = [e1, . . . , ep], then X = ΛY + e, where

Λ =


λ11 · · · λ1m

... ...

λp1 · · · λpm

 .

For notation, we let the variance of ei be ψi, 1 ≤ i ≤ p, and

refer to ψi as the specific variance of the ith response variable; ei ∼
N(0,ψi) and all the eis are independent of each other; Yi ∼ N(0,1)

and all the Yis are independent of each other and of the eis. Also,

we define the diagonal matrix containing the specific variances to be

Ψ =


ψ1 · · · 0
... ...

0 · · · ψp

 .
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Var(Xi) = Var(λi1Y1 + · · ·λimYm + ei) =

Var(λi1Y1) + · · · + Var(λimYm) + Var(ei) =

λ2i1 + · · · + λ2im + ψi .

The expression,
∑m
j=1 λ

2
ij, is called the communality of the ith variable,

Xi.

Because terms involving different unobservable and specific vari-

ables are zero because of independence, we have

Cov(Xi, Xj) = Cov(λi1Y1+· · ·λimYm+ei, λj1Y1+· · ·λjmYm+ej) =

λi1λj1 + · · · + λimλjm .

As a way of summarizing the results just given for the variances

and covariances of the observable variables in terms of the loadings

and specific variances, the factor analytic model is typically written

as

Σp×p = Λp×mΛ′m×p + Ψp×p .

There is a degree of indeterminacy in how this model is phrased,

because for any m×m orthogonal matrix T, we have the same type

of decomposition of Σ as

Σp×p = (ΛT)p×m(ΛT)′m×p + Ψp×p .

Thus, we have a rotation done by T to generate a new loading matrix,

ΛT.
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0.8 Iterated Principal (Axis) Factor Analysis

Suppose I assume the factor analytic model to hold for the popula-

tion correlation matrix, P = ΛΛ′ + Ψ, and am given the sample

correlation matrix, R. The Guttman lower bound to the communal-

ity of a variable is the squared multiple correlation of that variable

with the others, and can be used to give an initial estimate, Ψ̂, of

the matrix of specific variances by subtracting these lower bounds

from 1.0 (the main diagonal entries in R). A component analysis

(with m components) is carried out on R− Ψ̂ and then normalized

to produce a factoring, say, BB′. We estimate Ψ by using the diag-

onal of R −BB′, and iterate the process until convergence. (Little

Jiffy (the principal component solution to the factor analysis model)

could be viewed as a “one shot” process, with specific variances set

at 0.0.)

0.9 Maximum Likelihood Factor Analysis (MLFA)

The method of MLFA holds out the hope of being a scale-invariant

method, implying that the results from a correlation or the covariance

matrix can be transformed into each other though simple multiplica-

tions by the variable standard deviations. So if λij is a loading from

a (population) correlation matrix, then λijσi is the corresponding

loading from the (population) covariance matrix.

MLFA begins with the assumption that Xp×1 ∼ MVN(0,Σp×p =

Λp×mΛ′m×p + Ψp×p). If there is a unique diagonal matrix, Ψ, with

positive elements such that the m largest roots (eigenvalues) of Σ∗ =

Ψ−1/2ΣΨ−1/2 are distinct and greater than unity, and the p − m
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remaining roots are each unity (this is true if the model holds), then

Λ = Ψ1/2Ω∆1/2, where Σ∗ − I = Ωp×m∆m×mΩ′m×p. In other

words, once you get Ψ, you are “home free” because Λ comes along

by a formula.

So, we start with some Ψ (and generating Λ automatically), and

improve upon this initial value by maximizing the log-likelihood

`(Λ,Ψ) = −n
2

(ln |Σ| + Tr(SΣ−1)) + constant .

Equivalently, we can minimize

F(Λ,Ψ) = ln |Σ| + Tr(SΣ−1))− ln |S| − p .

The particular iterative optimization procedure used to obtain bet-

ter and better values for Ψ is typically the Davidon-Fletcher-Powell

method.

In practice, one has a large sample likelihood ratio test available

of

H0 : Σ = ΛΛ′ + Ψ ,

using a test statistic of (n− (2p+ 5)/6− 2m/3)F(Λ̂, Ψ̂), compared

to a chi-squared random variable with 1
2[(p−m)2− (p+m)] degrees

of freedom. Generally, the residuals one gets from an MLFA tend to

be smaller than from a PCA, even though the cumulative variance

explained in a PCA is usually larger; these are somewhat different

criteria of fit.

In MLFA, one typically needs a rotation (oblique or orthogonal) to

make the originally generated factors intelligible. Also, we now have

various forms of confirmatory factor analysis (CFA) where some of
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the loadings might be fixed and others free to vary. CFA seems

to be all the rage in scale development, but I would still like to

see what a PCA tells you in an exploratory and optimized context.

Finally, and although we talked about using and plotting component

scores on our subjects in PCA, the comparable factor scores here

should not be used. There has been an enormous controversy about

their indeterminacy; among people who are thinking straight (e.g.,

SYSTAT and Leland Wilkinson), factor scores are just not given.

When one allows correlated factors (e.g., using an oblique rota-

tion), the factor analytic model is generalized to

Σ = ΛΦΛ′ + Ψ

where Φ is the m ×m covariance matrix among the m factors. In

terms of terminology, the matrix, Λ, is called the factor pattern

matrix; ΛΦ is called the factor structure matrix and contains the

covariances between the observed variables and the m common fac-

tors.

There is one property of MLFA that sometimes (in fact, often)

rears its ugly head, involving what are called Heywood cases (or im-

proper solutions) in which the optimization procedure wants to make

some of the ψis go negative. When this appears to be happening, the

standard strategy is to remove the set of variables for which the ψis

want to go negative, set them equal to zero exactly; the removed set

is then subjected to a principal component analysis, and a “kluge”

made of the principal components and the results from an MLFA on

a covariance matrix residualized from the removed set. Obviously,

the nice scale invariance of a true MLFA approach disappears when
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these improper solutions are encountered. You can tell immediately

that you have this kind of hybrid solution when some of the specific

variances are exactly zero.
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